
Information Extraction as a Filtering Task

Henning Wachsmuth
University of Paderborn, s-lab

Paderborn, Germany
hwachsmuth@s-lab.upb.de

Benno Stein
Bauhaus-Universität Weimar

Weimar, Germany
benno.stein@uni-weimar.de

Gregor Engels
University of Paderborn, s-lab

Paderborn, Germany
engels@upb.de

ABSTRACT

Information extraction is usually approached as an annota-
tion task: Input texts run through several analysis steps of
an extraction process in which different semantic concepts
are annotated and matched against the slots of templates.
We argue that such an approach lacks an efficient control
of the input of the analysis steps. In this paper, we hence
propose and evaluate a model and a formal approach that
consistently put the filtering view in the focus: Before spend-
ing annotation effort, filter those portions of the input texts
that may contain relevant information for filling a template
and discard the others. We model all dependencies between
the semantic concepts sought for with a truth maintenance
system, which then efficiently infers the portions of text to
be annotated in each analysis step. The filtering view en-
ables an information extraction system (1) to annotate only
relevant portions of input texts and (2) to easily trade its
run-time efficiency for its recall. We provide our approach as
an open-source extension of Apache UIMA and we show the
potential of our approach in a number of experiments.

c©Wachsmuth et. al. (2013). This is the author’s version of the work. It is posted here for your personal use. Not for redistribution.

The definitive version refers to the Proceedings of the CIKM ’13, http://dx.doi.org/10.1145/2505515.2505557.

Categories and Subject Descriptors

I.2.7 [Artificial Intelligence]: Natural Language Pro-
cessing—Text analysis; F.2.3 [Analysis of Algorithms
and Problem Complexity]: Tradeoffs among Complexity
Measures; I.2.3 [Artificial Intelligence]: Deduction and
Theorem Proving—Nonmonotonic reasoning and belief revi-
sion; H.3.3 [Information Storage and Retrieval]: Infor-
mation Search and Retrieval—Information filtering ; B.2.1
[Arithmetic and Logic Structures]: Design Styles—
Pipeline

Keywords

information extraction; filtering; run-time efficiency; truth
maintenance; relevance

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CIKM’13, Oct. 27–Nov. 1, 2013, San Francisco, CA, USA.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2263-8/13/10 ...$15.00.

http://dx.doi.org/10.1145/2505515.2505557.

"Google ad revenues to reach $20B. The search company was founded in 1998."

Entity

Relation

Org.
entity

Event
anchor

Money
expression

Event
attribute

Entity
reference

Relation
anchor

Time
expression

Coreference

Foundation relationFinancial event

Figure 1: A sample text that contains information
matching the slots of templates of a financial event
(left) and of a foundation relation (right). The vari-
ous shown semantic concepts can be abstracted into
the two types Entity and Relation.

1. INTRODUCTION
Information extraction aims at identifying various seman-

tic concepts in natural language texts, ranging from named
entities, numeric expressions, and attributes over references
to relations, events, and their anchors [24]. From an ex-
traction viewpoint, these concepts can be unified into two
abstract types of information, as illustrated in Figure 1: An
entity type, whose instances are represented by spans of text,
and a relation type, whose instances are expressed in a text,
indicating relations between two or more entities. This uni-
fication reflects the view of information extraction as filling
the (entity) slots of (relation) templates.

Usually, information extraction is approached as an anno-
tation task where an input text is annotated in a scheduled
process of extraction steps. Given an extraction problem,
such an approach first performs certain lexical analyses (e.g.
tokenization or part-of-speech tagging) followed by an anno-
tation of all relevant entity types in the whole text. Next, it
conducts syntactic analyses (e.g. dependency parsing) that
are needed to extract relations between the annotated enti-
ties as well as to resolve coreferences [1].

In times of big data, the need for efficiency in information
extraction is constantly growing because extraction prob-
lems of increasing complexity have to be tackled under strict
time constraints on increasing numbers of input texts. While
existing information extraction systems control the process
of creating all output sought for, they often lack an efficient
control of the processed input. In particular, much effort is
spent for annotating portions of input texts that are not rel-
evant for a given extraction problem at all. Assume, for in-

stance, that the financial event template in Figure 1 requires
an appropriate time expression (which is missing). Then the
effort of filling its other slots is wasted. In order to improve
the run-time efficiency of extraction, it hence makes sense
to discard irrelevant portions of text as early as possible,
thereby filtering only the relevant portions.

The idea of filtering for improving efficiency is well-known
in information extraction [8] as well as in areas that combine
retrieval and extraction techniques such as question answer-
ing [9]. Until today, however, many information extraction
systems either do not incorporate filtering, or they filter rel-
evant portions of text only based on vague statistical models
or hand-coded heuristics (cf. Section 2 for details).

In this paper, we propose to consistently address informa-
tion extraction as a filtering task, which means to infer, an-
notate and filter only relevant portions of text in each extrac-
tion step. In case of the text in Figure 1, an approach that
performs filtering on the sentence level might e.g. annotate
time expressions first. Only the second sentence remains rel-
evant then and, thus, needs to be filtered. Depending on the
schedule of the extraction steps, that sentence sooner or later
turns out not to contain a financial event, and so on.1

To enable filtering, we model the dependencies between all
entity and relation types that are relevant for the extraction
problem at hand (Section 3). In addition, we manually spec-
ify a degree of filtering for each relation type, i.e., the unit of
text (e.g. a sentence or a paragraph) all dependent types of
information must lie within. Small units favor extraction ef-
ficiency over recall, whereas efficiency can also be optimized
without losing effectiveness by specifying degrees that match
the actual analyses (e.g. most binary relation extractors an-
alyze only entity pairs within sentence boundaries).

As outlined above, the relevance of a portion of text is non-
monotonic within a process of extraction steps. To handle
non-monotonicity, we efficiently analyze the modeled depen-
dencies with a truth maintenance system [36] that formally
determines in advance whether possible output annotations
of an extraction step within a portion of text may contribute
to fulfilling the extraction problem at hand. The actually
created output annotations are then used to filter the rele-
vant portions of text after each step (Section 4).

We implemented our approach as an open-source software
framework on top of Apache UIMA2 (Section 5). While the
efficiency potential of filtering naturally depends on the
amount of relevant information in the processed input texts,
we evaluate the main parameters of filtering as well as the ef-
ficiency of our approach for different extraction problems on
text corpora of different languages (Section 6). Our results
demonstrate the main contributions of our research:

1. The efficient input control based on truth maintenance
enables information extraction systems to formally in-
fer and to annotate only relevant portions of text.

2. The proposed filtering view of information extraction
provides an intuitive means to optimize the run-time
efficiency of a process of extraction steps and to easily
trade run-time efficiency for recall.

1The example indicates that the schedule of the extraction
steps affects efficiency, as studied in related work (see Sec-
tion 2). However, scheduling is not the focus of this paper.
2Apache UIMA, http://uima.apache.org

3. The realized software framework allows researchers to
efficiently address arbitrary extraction problems as fil-
tering tasks with minimum additional effort.

2. RELATED WORK
The common view of information extraction originates

in the Message Understanding Conferences, which focused
on the effective extraction of entities and relations from
newswire texts in order to fill complex event templates [6].
While current approaches address the same problems of ex-
tracting relations [29] and events [28], information extraction
is now on the verge of being exploited at web-scale [27] and
gradually finds its way into search engines [33]. Still, many
approaches fail computational efficiency.

In the last decade, the efficiency of information extrac-
tion is getting increasing attention in research and indus-
try [13]. Applied techniques range from parallelization [20],
specialized search indexes [4], and relation-oriented search
queries [2] over the use of cheap algorithms for preprocess-
ing [3] and extraction [32] to the efficient processing of input
texts, e.g. based on string hashing [18] or filtering [1]. We
focus on filtering, but we point out that our approach does
not render any of the other approaches impossible.

Filtering is very common in tasks where information needs
have to be addressed in real-time, such as question answer-
ing, which usually includes so called passage retrieval to filter
relevant portions of input texts [26]. The authors of [5] com-
pare the benefit of statistical and linguistic knowledge for fil-
tering candidate answers, and a fuzzy matching of questions
and possibly relevant portions of text is proposed in [9]. As
in these examples filtering in question answering usually re-
lies on heuristics and vague statistical models, whereas we
approach filtering formally in information extraction.

Information extraction has adopted filtering techniques
since the early times [8], mostly to improve efficiency. How-
ever, [34] observed that classifying the relevant portions of
text before extraction can also improve effectiveness. [23] ex-
ploits this for template filling, and [47] filters trustworthy
candidate relations in unsupervised relation extraction. Fil-
tering approaches for efficiency purposes often focus on com-
plete texts, e.g. using fast text categorization [41]. In [38],
the author complains that techniques for efficiently finding
the relevant portions of texts are still restricted to hand-
coded heuristics. [30] stresses the importance of filtering for
all kinds of extraction problems where relevant information
is sparse. There, machine learning is used to predict rele-
vant sentences. In contrast, we infer the relevant portions
of text from the currently available information. Moreover,
a restriction to sentences limits effectiveness [42], whereas
we provide a means to specify the sizes of filtered portions,
thereby trading efficiency for effectiveness.

In [46], we approach the creation of efficient information
extraction systems without losing effectiveness, partly by in-
cluding steps to filter relevant portions of text. Optimal effi-
ciency then results from an optimal schedule of the filtering
steps, as shown in [45]. Schedules are also optimized by Sys-
temT [7], which follows the paradigms of declarative infor-
mation extraction: user queries define extraction steps with
logical constraints, while the system manages the work-
flow [12]. SystemT restricts some analyses to scopes of a
text based on location conditions in a query [40]. We also use
queries and scopes in Section 3, but only to determine rele-
vance, which significantly reduces query complexity. While

SystemT is limited to rule-based extraction, we do not place
constraints on the kinds of analyses to be performed.

The filtering view targets at the classic and dominant form
of information extraction system, i.e., a pipeline [11]. A pipe-
line sequentially applies a set of extraction algorithms to its
input. The main frameworks for natural language process-
ing, UIMA [15] and GATE [10], focus on pipelines. In [44],
we present a system that builds filtering pipelines automat-
ically for given extraction problems. Without an input con-
trol, however, the system cannot tackle different problems at
the same time. Because of filtering, we do not consider pipe-
lines that employ more than one algorithm to annotate the
same type of information [48], though filtering could be de-
layed in such cases. Accordingly, iterative pipelines [17] and
probabilistic pipelines [22] are not covered in this paper.

Our approach profits from dividing an extraction process
into small steps. This contradicts the idea of joint informa-
tion extraction [35]. Still, joint extraction algorithms can be
used in pipelines, as is e.g. common in entity recognition [16].
Particularly, our approach benefits complex extraction prob-
lems, such as those of the BioNLP task [25]. Nevertheless, it
applies to all extraction processes with dependencies be-
tween the relevant types of information. To the best of our
knowledge, we are the first to consider these dependencies
for filtering. Moreover, since our approach performs filtering
during the extraction process, it can be integrated with all
existing approaches where filtering precedes extraction.

3. INFORMATION EXTRACTION

AS A FILTERING TASK
In this section, we propose a filtering view of information

extraction, which makes it possible to address every extrac-
tion problem as a filtering task, i.e, to analyze and filter only
the relevant portions of each input text.

3.1 The Relevance of a Portion of Text
In order to infer the relevance of a portion of text u, we

need a clear specification of the output sought for in an ex-
traction problem. As motivated in Section 1, we distinguish
two types of information: An entity type, denoted as E, can
be regarded as atomic in that its instances are used to fill
slots of templates. In contrast, a relation type R expresses a
conjunction of types, i.e., a template. Extraction problems
may target at different templates concurrently. We represent
such a disjunction of conjunctions in the form of a query:

Query A query q specifies the relevant types of information
in an extraction problem. Its abstract syntax is defined by
the following grammar:

q ::= q ∨ q | r

r ::= R(r {, r}∗) | E

A portion of text u is relevant at some point of an extrac-
tion process, if it may still contain all information needed
to fulfill the associated query. As an example, consider the
query q1 that addresses a simple binary relation type:

q1 = Founded(Organization, Time)

Before extracting relations, only those portions of text are
relevant that contain instances of both entity types. If orga-
nization entities are e.g. annotated first, then time entities
need to be annotated only in portions of texts with organi-
zation entities, and vice versa. Hence, we can filter the rele-

"GOOGLE FACTS. Google was founded in 1998. Its IPO followed in 2004."

Organization
entity

Time
entity

Time
entity

Relation
anchor

Slot-filling
view

Filtering
view

Organization
entity

Foundation relation

p
1
:Paragraph p

2
:Paragraph

s
1
:Sentence s

3
:Sentences

2
:Sentence

Figure 2: The slot-filling view of information extrac-
tion (bottom) and the proposed filtering view (top).
For the query q1 = Founded(Organization, Time), the
relevant portion of text is p2 on the paragraph level
and s2 on the sentence level, respectively.

vant portions of a text based on the output of an extraction
step (and discard the others). Figure 2 shows the portions of
a sample text to be filtered for q1 and opposes the slot-filling
view to the filtering view of information extraction.

In general, it is reasonable to filter different portions of
text for the different relation types in a query. The following
two queries illustrate this. While the former targets at arbi-
trary forecasts (i.e., statements about the future) with time
information, the latter asks for financial relations, which re-
late such forecasts to money entities:

q2 = Forecast(Anchor, Time)

q3 = Financial(Money, q2)

Assume that forecasts are extracted from single sentences
while financial relations may span a whole paragraph. Then,
a sentence without time entities is irrelevant for q2, but since
it might contain a money entity, its enclosing paragraph re-
mains relevant for q3 as a whole. In case of disjunctive que-
ries, relevance is even independent for each conjunction:

q4 = q1 ∨ q3

For instance, a portion of text without financial relations
can, of course, still contain foundation relations. Generally,
every relation type in a query may entail a different set of
relevant portions of text at each extraction step. For a given
input text, we call such a set a scope of that text:

Scope A scope SR = (u1, . . . , un) is the ordered set of
n≥ 0 portions of a text where instances of a relation type
R(r1, . . . , rk) may occur.

3.2 Specification of Degrees of Filtering
The concept of scopes reveals that a query q alone does not

suffice to perform filtering: While q enables us to automati-
cally infer the relevance of a portion of text u, it does not de-
fine the size of the portions of text to be filtered, when given
the output of an extraction step. We hence manually assign
a degree of filtering to each relation type in q that binds in-
stances of the relation type to units of the text:

Degree of Filtering A degree of filtering U is a type of
lexical or syntactic text unit that defines the size of a portion
of text, all information of an instance of a relation type
R(r1, . . . , rk) must lie within, denoted as U [R(r1, . . . , rk)].

The definition accounts for the fact that all extraction al-
gorithms operate on a certain text unit level. E.g., most

Financial Money

Founded Organization Time

Anchor TimeForecast

Paragraph

Sentence

Sentence

" GOOGLE NEWS 2014 ad revenues predicted. Forecasts promising: Google, founded in 1998, will hit $20B in 2014."

s
4
:Sentence

s
2
:Sentence

p
2
:Paragraph

s
2
:Sentences

1
:Sentence

s
1
:Sentence

p
1
:Paragraph

s
3
:Sentence

s
3
:Sentence

root of q
3
*

scope of Financial

scope of Forecast

scope of Founded

s
4
:Sentence

root of q
1
*

Figure 3: The dependency graph of the scoped query q∗4 = q∗1 ∨ q∗3 (left) and a mapping from the degrees of
filtering in q∗4 to the associated scopes, which represent the relevant portions of a sample text for q∗4 (right).

binary relation extractors process one sentence at a time,
taking as input only candidate entity pairs within that sen-
tence. In contrast, coreference resolution algorithms rather
analyze paragraphs or even the entire text.

Degrees of filtering provide a means to influence the trade-
off between the efficiency and the effectiveness of extraction:
small degrees allow for filtering small portions of text, which
positively affects run-time efficiency. Larger degrees provide
less room for filtering, but they allow for higher recall if rela-
tions exceed the boundaries of smaller text units. When the
degrees match the text unit levels of the employed extrac-
tion algorithms, efficiency will be improved without losing
recall.3 Hence, the slot-filling view and filtering view of in-
formation extraction can be integrated without loss. We call
a query with defined degrees of filtering a scoped query:

Scoped Query A scoped query q∗ is a query q that has
assigned a degree of filtering to each contained relation type
R(r1, . . . , rk).

3.3 The Dependency Graph of a Query
Within an extraction process, the degrees of filtering in a

scoped query q∗ are associated to respective scopes of the
current input text. These scopes may depend on each other,
as the following scoped version of the query q4 shows:

q∗4 =Sentence[Founded(Organization, Time)]
∨ Paragraph[Financial(Money, Sentence[q2])]

According to this query, paragraphs without time entities
will never span sentences with forecasts and, thus, will not
yield financial relations. Similarly, if a paragraph contains
no money entities, then there is no need for extracting fore-
casts from the paragraph’s sentences. So, filtering one of
the scopes of Forecast and Financial affects the other one.4

As in this example, a query implies hierarchical dependen-
cies between the relevant types of information that can be
represented as a dependency graph.

Dependency Graph The dependency graph of a scoped
query q∗ = q1∨. . .∨qm is a set of directed trees with one tree
for each conjunction qi ∈ {q1, . . . , qm}. An inner node of qi

corresponds to a degree of filtering and a leaf to an entity
type E or a relation type R. An edge from an inner node

3While there is no clear connection between degrees of filter-
ing and precision, a higher precision seems easier to achieve
if extraction is performed only on small portions of text.
4For complex relation types like coreference, the degree of
filtering of an inner relation type possibly exceeds the degree
of filtering of an outer relation type. In such a case, filtering
with respect to the outer relation type affects the entities to
be resolved, but not the entities to be used for resolution.

to a leaf means that the respective degree is assigned to the
respective type, and edges between inner nodes imply that
the associated scopes are dependent. The degree of filtering
of qi itself defines the root of the tree.

Figure 3 visualizes the dependency graph of q∗4 and the
associated scopes of a sample text. Such a graph can be ex-
ploited to automatically maintain relevant portions of text.

4. MAINTAINING THE RELEVANT

PORTIONS OF INPUT TEXTS
We now show how to automatically determine and filter

scopes of an input text in each step of an extraction process.
This enables the employed extraction algorithms to analyze
only portions of text their output is relevant for.

4.1 Input Control using Truth Maintenance
An extraction process can be regarded as non-monotonic

in that knowledge about input texts (i.e., annotated entities
and relations) changes in each step. In the beginning, usu-
ally no knowledge is given and, hence, each portion u of an
input text must be assumed relevant. If u lacks any required
knowledge in some step, it becomes irrelevant and can be ex-
cluded from further analyses. In artificial intelligence, such
non-monotonicity is well-studied and it is tackled with an
assumption-based truth maintenance system (ATMS), which
justifies and retracts assumptions expressed as propositional
formulas based on a set of believed assumptions [36].

We adapt the ATMS concept to filter the scopes of input
texts. For this purpose, we interpret all queries, entity types
and relation types as propositional symbols. Given a scoped
query q∗, we then model relevant portions of text as follows.
For each degree of filtering U that is a root in the dependency
graph of q∗, the relevance q∗(u) of each portion of text u in
the scope associated with U corresponds to the truth value of
the relation type R(r1, . . . , rk), to which U is assigned:

φ(u) : R(u) ∧ r
(u)
1 ∧ . . . ∧ r

(u)
k → q∗(u)

For all child nodes r
(u)
i of a root node U of the form

Ui[Ri(ri1, . . . , ril)], we additionally model the relevance of
a portion of text u′ of the scope associated to Ui as:

ψ(u′) : R
(u′)
i ∧ r

(u′)
i1 ∧ . . . ∧ r

(u′)
il → r

(u)
i

This modeling step is repeated recursively until each child

node r
(u′)
ij in a new formula ψ(u′) represents either an entity

type or a relation type. Now, the set of assumptions about
an input text is given by the set of all formulas φ(u) and
ψ(u) of that text. In case of the example in Figure 3, four
assumptions are initially believed for the paragraph p2:

Pseudocode 1 Determine Scope(Output types O)

1: for each Output type O in O do

2: if O is a degree of filtering in the scoped query q∗ then

3: return the whole input text

4: Scopes S

5: for each Output type O in O do

6: Scopes SO ← all scopes O is relevant for according to q∗

7: S.addAll(SO)

8: Scope S∪

9: for each Scope S in S do

10: for each Portion of text u in S do

11: if not u intersects with S∪ then S∪.add(u)
12: else S∪.merge(u)

13: return S∪

φ(p2) : Financial(p2)∧ Money(p2) ∧ q
∗(p2)
2 → q

∗(p2)
3

ψ(s2) : Forecast(s2) ∧ Anchor(s2)∧ Time(s2) → q
∗(p2)
2

ψ(s3) : Forecast(s3) ∧ Anchor(s3)∧ Time(s3) → q
∗(p2)
2

ψ(s4) : Forecast(s4) ∧ Anchor(s4)∧ Time(s4) → q
∗(p2)
2

However, the relevance of a portion of text u at a partic-
ular extraction step depends on the set of currently believed
assumptions. This set follows from the output of all extrac-
tion algorithms applied so far. Instead of maintaining all
assumptions, we filter the scopes of an input text according
to the output of the last algorithm and maintain assump-
tions for the scopes only. For instance, if time entities are
found only in the sentences s2 and s4 in Figure 3, then ψ(s3)

becomes false, whereas the other assumptions of p2 are up-
dated as follows:

φ(p2) : Financial(p2)∧ Money(p2) ∧ q
∗(p2)
2 → q

∗(p2)
3

ψ(s2) : Forecast(s2) ∧ Anchor(s2) → q
∗(p2)
2

ψ(s4) : Forecast(s4) ∧ Anchor(s4) → q
∗(p2)
2

An algorithm employed in an extraction step then has to
analyze all current scopes, its output types are relevant for:

Output Type An output typeO of an extraction algorithm
is an entity or relation type annotated by that algorithm.

Below, we describe how to determine and filter the scopes
of an input text based on the set of output types O of an ex-
traction algorithm. Initially, all scopes span the whole text.
These scopes must be generated by segmentation algorithms,
i.e., extraction algorithms whose output types include a de-
gree of filtering (e.g. a sentence splitter). However, we do
not explicitly distinguish algorithm types but simply create
scopes when the according output is annotated.

4.2 Determining Relevant Portions of Text
Given a scoped query q∗, an employed extraction algo-

rithm must be applied to each portion of text u, for which
an assumption φ(u) or ψ(u) exists that depends on an out-
put type of the algorithm. E.g., the assumptions φ(p2), ψ(s2),
and ψ(s4) imply that an algorithm with output type Forecast
needs to analyze the sentences s2 and s4. In general, an al-
gorithm with a set of output types O must be applied to the
union S∪ of the set S of all scopes S that meet one of two
conditions: (1) S is associated to a degree of filtering that is
assigned to any O ∈ O in q∗. (2) S is associated to a degree
of filtering assigned to an entity or relation type in q∗, which
needs instances of any O ∈ O as input. E.g., part-of-speech

Pseudocode 2 Filter(Scopes S, Output types O)

1: for each Scope S in S do

2: Output types O′ ← all types in O that are relevant for S

3: for each Portion of text u in S do

4: if not u contains an instance of any O ∈ O′ then

5: S.remove(u)

6: Scope S0 ← S.getRootScope()
7: if S0 6= S then

8: for each Portion of text u in S0 do

9: if not u intersects with S then S0.remove(u)

10: Scopes S′ ← S0.getDescendantScopes()
11: for each Scope S′ 6= S in S′ do

12: for each Portion of text u in S′ do

13: if not u intersects with S0 then S′.remove(u)

tags are not specified in q∗4 from Section 3, but they might
be necessary for extracting the type Organization.

The determination of S∪ based on a set of output types O
is sketched in Pseudocode 1. Lines 1–3 identify segmentation
algorithms, whereas the scopes to be unified are collected in
lines 4–7. The union S∪ is then obtained by taking all of
the scopes’ non-overlapping portions of text and by merging
overlapping portions (lines 8–12).5

4.3 Filtering Relevant Portions of Text
For each analyzed portion of text u, the believed assump-

tions φ(u) and ψ(u) containing a typeO∈O of the applied ex-
traction algorithm can be updated based on the algorithm’s
output. This in turn leads to a recursive update of assump-
tions that contain the consequent of some ψ(u). In case all
forecasts and their anchors have been detected in the sample
text in Figure 3, ψ(s2) and ψ(s4) turn out to be true. Hence,

q
∗(p2)
2 is true and φ(p2) remains in the following form:

φ(p2) : Financial(p2)∧ Money(p2) → q
∗(p2)
3

Thus, the output of an extraction algorithm is not only
used to filter the scopes in the above-mentioned set S but
also their dependent scopes. The set of dependent scopes
of a scope S consists of the scope associated to the root of
the node of S in the dependency graph of q∗ as well as of
all scopes of the root’s descendant nodes. This, of course,
includes all ancestor scopes of S.

Pseudocode 2 shows how to perform filtering. For each
scope S∈S, a portion of text u is maintained only if it con-
tains an instance of one of the output types O′⊆O that are
relevant for S (lines 1–5). Afterwards, lines 6–9 remove all
portions of text from the root scope S0 of S that do not inter-
sect with any portion of text in S.6 Accordingly, only those
portions of text in the set of descendant scopes S′ of S0 are
retained that intersect with a portion in S0 (lines 10–13).

5. IMPLEMENTATION
We realized all concepts that are needed to address extrac-

tion problems as filtering tasks in an efficient Java software
framework as an extension of Apache UIMA. The source

5For a concise presentation, Pseudocode 1 contains nested
loops. Actually, the unification can be realized in time linear
in the number of the portions of text of all scopes by stepwise
comparing portions according to their ordering in the text.
6Similar to a unification, an intersection can be achieved in
time linear in the number of text units of all scopes.

code of this filtering framework has been designed with a
focus on easy integration and minimal additional effort. It
can be freely accessed at http://www.arguana.com, together
with usage instructions and some sample applications.

5.1 Apache UIMA at a Glance
Apache UIMA is a software framework that allows devel-

opers to easily compose natural language processing applica-
tions while managing the applications’ control flow and data
flow [15]. For this purpose, algorithms are accompanied by
descriptor files with metadata.

Throughout this section, we provide a simplified concep-
tual view of Apache UIMA. Its architecture is defined by the
white classes and their associations on the left of the UML
class diagram [31] in Figure 4. Applications input texts and
analyze them with aggregate analysis engines (say, informa-
tion extraction systems). An aggregate analysis engine con-
trols a composition of primitive analysis engines (say, extrac-
tion algorithms), which access common analysis structures
to process and to create annotations. Each annotation spec-
ifies a span of a text, thereby representing an entity. Besides,
it may have features that store values or references to other
annotations. Hence, also relations can be realized as annota-
tions. In an application, subtypes of the Apache UIMA type
Annotation specify the concrete types of information. They
are defined in an application-specific type system.

5.2 The Filtering Framework
The implemented extension of the Apache UIMA frame-

work by the filtering framework is illustrated on the right of
Figure 4. It consists of four main classes:

Filtering Analysis Engine Extraction algorithms that
analyze and filter only relevant portions of their input texts
are represented by filtering analysis engines, which inherit
from primitive analysis engines and, hence, can be composed
in an aggregate analysis engine. Prior to analysis, a filtering
analysis engine automatically determines the scope its out-
put annotation types and features O are relevant for. After
analysis, it triggers the generation or the filtering of scopes
based on O and its created output.7

Scoped Query Each scoped query to be addressed by an
aggregate analysis engine is defined from an application and
then automatically parsed to derive the query’s dependency
graph (cf. Section 3.3) as well as the degrees of filtering of
all associated scopes.

Scope We have realized a scope as a set of generic anno-
tations in order not to require explicit scope types. In an
application, a scope of an input text may have a text unit
type assigned, e.g. Sentence. According to the derived de-
pendency graph, a scope can have at most one root scope
and an arbitrary number of descendant scopes.

Scope TMS To avoid modifications of the Apache UIMA
framework, we maintain all scopes using a blackboard archi-
tecture [21].8 In particular, filtering analysis engines deter-
mine and filter scopes via a globally accessible truth main-

7In Apache UIMA, the set O can be inferred from the result
specification of an analysis engine, which in turn is automat-
ically derived from the analysis engine’s descriptor file.
8Future versions of Apache UIMA could integrate the scope
TMS in the common analysis structure to allow for an opti-
mized integration of extraction and truth maintenance.

Application

Apache UIMA framework Filtering framework

Scoped query

Annotation Scope

Scope TMS

Primitive
analysis engine

Filtering
analysis engine

Common analysis
structure

Aggregate
analysis engine

inputs accesses employs creates defines

1..* 1..*

1..*

1..* 1

extends

consists of

1..*

*

11

1..*

1..*

1

*

1

refers to1

*

*

0..1

Text

Figure 4: Architecture of the filtering framework ex-
tension of Apache UIMA. A filtering analysis engine
is a primitive analysis engine, which analyzes only a
scope of a text determined by the scope TMS.

tenance system. This scope TMS maintains the dependency
graph of each scoped query, a mapping from the degrees of
filtering to the respective scopes, and a mapping from the
entity and relation types in a scoped query to their scopes.
Dependencies between the output types of analysis engines
are derived from their metadata. Given the output types
of an analysis engine, the scope TMS determines scopes ac-
cording to Pseudocode 1. If a type O is a degree of filtering,
the scope TMS generates each associated scope S by adding
all annotations of type O to S. Otherwise, it filters all con-
cerned scopes as shown in Pseudocode 2.9

Maintaining the scopes of an input text imposes compu-
tational costs linear in the number of portions of text of the
scopes. In Section 6, we see that these additional costs only
marginally affect the efficiency of an application.

6. EVALUATION
We now present experimental results on the efficiency and

effectiveness of filtering. A comprehensive evaluation of fil-
tering in information extraction seems infeasible since its po-
tential depends on the amount of information in the given
input texts that is relevant for the given extraction problem.
We hence provide an appropriate proof-of-concept instead,
based on the example queries from Section 3. Our goal is to
reveal the impact of the main parameters intrinsic to filtering
(i.e., the complexity of a query and the degree of filtering),
as well as to demonstrate the efficiency of our approach.

6.1 Experimental Set-up
All experiments were conducted on an 2 GHz Intel Core 2

Duo MacBook with 4 GB memory. The Java source code of
this evaluation is attached to the filtering framework given
at http://www.arguana.com.

9Notice that the Scope TMS never removes any annotations
from the UIMA indexes, but it only deletes references of the
annotations in order to exclude them from further analyses.

Table 1: The number of processed characters in millions with implied filter ratio, the run-time in seconds with
standard deviation σ and implied time ratio, and the numbers of true positives (TP), false positives (FP), and
positives (P) as well as the resulting precision of pipeline Π1 for the query q1 = Founded(Organization, Time)
under different degrees of filtering on the English CoNLL’03 corpus and on the German Revenue corpus.

Corpus Degree of filtering Characters Filter ratio Run-time ± σ Time ratio TP FP P Precision

CoNLL’03 No filtering 12.70 M 100.0% 75.4 s ± 0.3 s 100.0% 7 1 8 87.5%
Paragraph level 10.35 M 81.5% 52.1 s ± 0.5 s 69.0% 7 1 8 87.5%
Sentence level 5.16 M 40.6% 24.8 s ± 0.2 s 32.9% 5 0 5 100.0%

Revenue No filtering 30.63 M 100.0% 157.8 s ± 0.3 s 100.0% 37 15 52 71.2%
Paragraph level 24.95 M 81.4% 126.5 s ± 0.5 s 80.2% 27 11 38 71.1%
Sentence level 14.67 M 47.9% 74.9 s ± 0.2 s 47.5% 14 5 19 73.7%

Text Corpora In the evaluation, we analyze filtering on
two text corpora of different languages, which have been
used for information extraction purposes in the last years:
First, the complete English corpus of the CoNLL’03 Shared
Task [37] with 1393 news stories. And second, the complete
German Revenue corpus that we introduced in [43] and that
consists of 1128 online business news articles.

Algorithms Our experiments refer to the example queries
from Section 3, for which we employed eleven extraction al-
gorithms that can be parameterized to work for both English
and German. All algorithms have more or less comparable
run-time that scales linear with the text length.10

Concretely, we relied on self-implemented rule-based al-
gorithms for tokenization (tok), paragraph splitting (par),
and sentence splitting (sen), while we used the TreeTag-
ger [39] wrapper tt4j11 for part-of-speech tagging (pos) and
chunking (chu). Organization entities (org) were extracted
with Stanford NER [16] using the model from [14] for Ger-
man texts. We employed the regex-based recognizers for
time entities (tim) and money entities (mon) as well as the
SVM-based forecast event detector (for) presented in [46].
Finally, we developed lexicon-based relation extractors for
Founded (fou) and Financial (fin) that qualify for arbi-
trary degrees of filtering. These relation extractors look for
indicator words of the relation type in question and relate a
pair of entities if it is close enough to such a word.

Approaches Each information extraction system that we
evaluate is a pipeline Π, which sequentially applies a subset
of the eleven extraction algorithms to its input. The con-
crete pipelines are given below; some perform filtering, some
do not. We provide no comparison to existing filtering ap-
proaches (cf. Section 2), as these approaches do not compete
with our approach, but rather can be integrated with it.

Measures We determined the filter ratio of each pipeline Π,
which we define as the quotient of the number of characters
processed by Π and the number of characters processed by
a respective non-filtering pipeline. Similarly, we measured
the run-time of each Π in seconds (averaged over ten runs)
to compute the time ratio as the quotient of the run-time
of Π and the run-time of a non-filtering pipeline.

10We explicitly avoided to include computationally expensive
algorithms (e.g. a dependency parser). While such algo-
rithms significantly increase the efficiency potential of filter-
ing, they would make it difficult to distinguish between the
effects of filtering and of the order of algorithm application.

11tt4j wrapper, http://code.google.com/p/tt4j

0%

20%

40%

60%

80%

100%

PAR SEN TIM TOK POS CHU ORG FOU

no filtering

paragraph level

sentence level

73.6%

28.9% 10.8%

60.3%

100.0%100.0%

algorithm

filter ratio

query q
1
 on

CoNLL'03 corpus

Figure 5: Interpolated curves of the filter ratios of
the algorithms in pipeline Π1 under three degrees of
filtering for query q1 = Founded(Organization, Time)
on the CoNLL’03 corpus. The more computation-
ally expensive the algorithms later in a pipeline are,
the higher the efficiency impact of filtering is.

In terms of effectiveness, we counted the positives, i.e., the
number of extracted relations, in order to roughly compare
the recall of pipelines. An exact evaluation of recall is hardly
feasible on the given corpora for lack of appropriate manual
event and relation annotations. In Section 6.2, we show the
precision of extracting foundation relations under different
degrees of filtering. To this end, we decided for each found
positive manually whether it is true or false. In particular,
a relation was considered a true positive if and only if its
anchor was brought into relation with the correct time entity
while spanning the correct organization entity.12

6.2 Impact of the Degree of Filtering
In order to analyze the effects of filtering on the efficiency

and the effectiveness of extraction, we considered the query
q1 = Founded(Organization, Time) from Section 3.1 under
different degrees of filtering on both corpora. In particular,
we separately assigned the degrees Paragraph and Sentence
to q1. Then, we ran the pipeline

Π1 = (par, sen, tim, tok, pos, chu, org, fou)

to compare filtering for the according scoped queries to the
application of Π1 without filtering.

Figure 5 visualizes the filter ratios of all algorithms in Π1

on the CoNLL’03 corpus depending on the degree of filter-
ing. The first algorithm that discards significant portions

12The evaluation of precision is only fairly representative, as
in practice many extractors do not take into account cross-
sentence or even cross-paragraph relations at all. In such
cases, precision remains unaffected by the degree of filtering.

Table 2: The filter ratio, the time ratio, and the
number of positives (in terms of extracted relations)
of pipeline Π2 for q2 = Forecast(Anchor, Time) under
different degrees of filtering on the Revenue corpus.

Degree of filtering Filter ratio Time ratio Positives

No filtering 100.0% 100.0% 3 622
Paragraph level 87.2% 83.1% 3 622
Sentence level 64.8% 53.9% 3 622

of irrelevant text is tim, which filters 73.6% of its input on
the paragraph level and 28.9% on the sentence level. These
percentages further decrease after org to 60.3% and 10.8%,
respectively. While the efficiency and effectiveness impact
of filtering depends on the employed algorithms, the overall
values of Π1 on both corpora are listed in Table 1.

In case of the CoNLL’03 corpus, 81.5% of the 12.70 million
characters that are processed without filtering are analyzed
when performing filtering on the paragraph level. Thereby,
about a third of the run-time of 75.4 seconds is saved. For
both these degrees of filtering, the same eight relations were
extracted with a precision of 87.5%. This implies that no re-
lation was found, which exceeds paragraph boundaries. Fil-
tering on the sentence level lowered the filter ratio to 40.6%
and the time ratio to 32.9%, but also reduced the number of
positives to 5. The fact that all found in-sentence relations
are true positives might be coincidence, but it also indicates
a tendency to achieve better precision, when the size of the
filtered portions of texts remains small.

On the Revenue corpus, the filter and time ratios are hig-
her than on the CoNLL’03 corpus due to a larger amount of
time entities (which are extracted first in Π1). Still, under
the degree Sentence, Π1 needs only 47.5% of the time of a
non-filtering pipeline. Hence, the benefit of filtering is obvi-
ous even for simple binary relation types like Founded and
even though we did not employ expensive algorithms like
a dependency parser. Moreover, the numbers of positives
in Table 1 (52 in total, 38 within paragraphs, 19 within sen-
tences) suggest that degrees of filtering provide an intuitive
means to adjust the trade-off between a pipeline’s efficiency
and its recall, whereas precision remains rather stable.

6.3 Optimization of Run-Time Efficiency
As discussed in Section 3.1, filtering can also be exploited

to optimize the efficiency of a pipeline without compromising
effectiveness. To demonstrate this, we assigned the same
degrees of filtering as above to q2 = Forecast(Anchor, Time)
while knowing that the forecast event detector for operates
only on the sentence level. For all three degrees, we then
addressed q2 on the Revenue corpus with the pipeline Π2:

Π2 = (par, sen, tim, tok, pos, for)

Table 2 underlines the implied efficiency optimization po-
tential of filtering: Irrespective of the degree of filtering, the
same 3622 sentences were recognized as forecast relations.
At the same time, filtering reduces the fraction of analyzed
characters to less than two third (64.8%), though more than
every tenth sentence is classified relevant (3 622 of 33 364
sentences in the Revenue corpus). Such filtering forms the
basis of our and other pipeline scheduling approaches [40, 45,
46]. Here, it improves the run-time of Π2 by almost factor 2,
as expressed by a time ratio of 53.9%.

0%

20%

40%

60%

80%

100%

PAR SEN MON TIM TOK POS FOR FIN CHU ORG FOU

algorithm

filter ratio

42%

28.5% 27%

42%

17.2%

98%98.7%100%

scoped query q
4
* on

Revenue corpus

filter ratio of ∏4

Figure 6: Interpolated curve of the filter ratios of the
eleven algorithms in pipeline Π4 for the disjunctive
scoped query q∗4 = q∗1 ∨ q∗3 on the Revenue corpus.

6.4 Impact of the Complexity of the Query
In a last experiment, we analyzed the benefit and compu-

tational effort of filtering under increasing complexity of the
addressed query on the Revenue corpus. For this purpose,
we considered the following scoped versions of the queries
q1, q3, and q4 from Section 3:

q∗1 = Sentence[Founded(Organization, Time)]

q∗3 = Paragraph[Financial(Money, Sentence[q2])]

q∗4 = q∗1 ∨ q∗3

We applied pipeline Π1 for q∗1 again and we used the fol-
lowing pipelines for q∗3 and q∗4 , respectively:

Π3 = (par, sen, mon, tim, tok, pos, for, fin)

Π4 = (par, sen, mon, tim, tok, pos, for, fin,
chu, org, fou)

Table 3 lists the results. While the time ratios slightly
increase from q∗1 to q∗4 , they reveal that all three pipelines
took less than half of the run-time of their respective non-
filtering pipelines. Not surprisingly, the longest pipeline Π4

processed the largest number of characters (24.40 millions).
However, the filter ratio of Π4 (57.9%) seems more like a
“weighted average” of the filter ratios of Π1 and Π3.

The reason behind can be inferred from Figure 6, which
illustrates the filter ratios of all algorithms in Π4. The values
of the interpolated curve do not decline monotonously along
the pipeline, but they depend on what portions of the input
texts are relevant for which conjunction in the disjunctive
scoped query q∗4 . E.g., the algorithm for analyzed only text
units relevant for q∗3 , i.e., sentences that contain a time entity
in paragraphs that contain a money entity. In contrast, chu
processed the 42% of the characters that belong to sentences
with time entities. The same holds for pos, although the
output of pos was needed for both q∗3 and q∗4 .

Table 3 also shows the efficiency of our approach by com-
paring the analysis times of each of the three pipelines (i.e.,
the time taken by their employed extraction algorithms) to
the time required by the filtering framework. Only 1.0% (0.7
of 74.9 seconds) was spent for the generation, determination,
and filtering of the scopes of q∗1 . This percentage grows only
marginally under increasing query complexity, as the val-
ues for q∗3 (1.1%) and q∗4 (1.2%) suggest. We hence conclude
that the filtering view of information extraction can be oper-
ationalized efficiently, though our implementation certainly
leaves much room for optimization.

Table 3: The number of processed characters with implied filter ratio as well as the run-time with standard
deviation and implied time ratio of pipelines under increasing query complexity on the Revenue corpus. Each
run-time is broken down into the time spent for analysis and the time required by our filtering framework.

Query Pipeline Characters Filter ratio Run-time ± σ Time ratio Analysis time Framework time

q∗1 Π1 14.67 M 47.9% 74.9 s ± 0.2 s 47.5% 74.2 s (99.0%) 0.7 s (1.0%)
q∗3 Π3 17.86 M 58.3% 34.9 s ± 0.1 s 48.6% 34.5 s (98.9%) 0.4 s (1.1%)
q∗4 Π4 24.40 M 57.9% 91.2 s ± 0.5 s 48.8% 90.2 s (98.8%) 1.1 s (1.2%)

7. CONCLUSION
The need for run-time efficiency in information extraction

is pressing in times of big data where extraction problems
are tackled at large scale. To improve extraction efficiency,
we propose to view and to consistently address information
extraction as the task to filter the relevant portions of input
texts. For this purpose, we introduce an input control that
maintains the dependencies between all relevant types of
entities and relations in order to analyze and filter only rel-
evant portions of text in each step of an extraction process.
Thereby, the efficiency of an extraction process can be opti-
mized without losing effectiveness, and we can easily trade
efficiency for effectiveness, in particular for recall. Still, other
approaches to improve efficiency remain applicable.

We have implemented and evaluated the filtering view
in an easy-to-use and open-source software framework on
top of the Apache UIMA framework. While the exact effi-
ciency potential of filtering naturally depends on the amount
of information in the given input texts that is relevant for
the extraction problem at hand, the results emphasize that
our proposed approach significantly improves extraction ef-
ficiency without requiring notable additional time.

8. ACKNOWLEDGMENTS
This work has been partly funded by the research project

ArguAna of the German Federal Ministry of Education and
Research (BMBF) under contract number 01IS11016A.

9. REFERENCES

[1] E. Agichtein. Scaling Information Extraction to Large
Document Collections. Bulletin of the IEEE Computer
Society Technical Committee on Data Engineering,
28:3–10, 2005.

[2] E. Agichtein and L. Gravano. Querying Text
Databases for Efficient Information Extraction. In
Proceedings of the 19th International Conference on
Data Engineering, pages 113–124, 2003.

[3] R. Al-Rfou’ and S. Skiena. SpeedRead: A Fast Named
Entity Recognition Pipeline. In Proceedings of the 24th
International Conference on Computational
Linguistics, pages 51–66, 2012.

[4] M. J. Cafarella, D. Downey, S. Soderland, and
O. Etzioni. KnowItNow: Fast, Scalable Information
Extraction from the Web. In Proceedings of the
Conference on Human Language Technology and
Empirical Methods in Natural Language Processing,
pages 563–570, 2005.

[5] C. Cardie, V. Ng, D. Pierce, and C. Buckley.
Examining the role of statistical and linguistic
knowledge sources in a general-knowledge
question-answering system. In Proceedings of the Sixth

Applied Natural Language Processing Conference,
pages 180–187, 2000.

[6] N. Chinchor, D. D. Lewis, and L. Hirschman.
Evaluating Message Understanding Systems: An
Analysis of the Third Message Understanding
Conference (MUC-3). Computational Linguistics,
19(3):409–449, 1993.

[7] L. Chiticariu, R. Krishnamurthy, Y. Li, S. Raghavan,
F. R. Reiss, and S. Vaithyanathan. SystemT: An
Algebraic Approach to Declarative Information
Extraction. In Proceedings of the 48th Annual Meeting
of the Association for Computational Linguistics,
pages 128–137, 2010.

[8] J. Cowie and W. Lehnert. Information Extraction.
Communications of the ACM, 39(1):80–91, 1996.

[9] H. Cui, R. Sun, K. Li, M.-Y. Kan, and T.-S. Chua.
Question Answering Passage Retrieval using
Dependency Relations. In Proceedings of the 28th
Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 400–407, 2005.

[10] H. Cunningham, D. Maynard, K. Bontcheva,
V. Tablan, N. Aswani, I. Roberts, G. Gorrell, A. Funk,
A. Roberts, D. Damljanovic, T. Heitz, M. A.
Greenwood, H. Saggion, J. Petrak, Y. Li, and
W. Peters. Text Processing with GATE (Version 6).
University of Sheffield, 2011.

[11] A. Das Sarma, A. Jain, and P. Bohannon. Building a
Generic Debugger for Information Extraction
Pipelines. In Proceedings of the 20th ACM
International Conference on Information and
Knowledge Management, pages 2229–2232, 2011.

[12] A. Doan, J. F. Naughton, R. Ramakrishnan, A. Baid,
X. Chai, F. Chen, T. Chen, E. Chu, P. DeRose,
B. Gao, C. Gokhale, J. Huang, W. Shen, and B.-Q.
Vuong. Information Extraction Challenges in
Managing Unstructured Data. SIGMOD Records,
37(4):14–20, 2009.

[13] A. Doan, R. Ramakrishnan, and S. Vaithyanathan.
Managing Information Extraction: State of the Art
and Research Directions. In Proceedings of the 2006
ACM SIGMOD International Conference on
Management of Data, pages 799–800, 2006.

[14] M. Faruqui and S. Padó. Training and Evaluating a
German Named Entity Recognizer with Semantic
Generalization. In Proceedings of KONVENS 2010,
pages 129–133, 2010.

[15] D. Ferrucci and A. Lally. UIMA: An Architectural
Approach to Unstructured Information Processing in
the Corporate Research Environment. Natural
Language Engineering, 10(3–4):327–348, 2004.

[16] J. R. Finkel, T. Grenager, and C. D. Manning.
Incorporating Non-local Information into Information
Extraction Systems by Gibbs Sampling. In Proceedings
of the 43nd Annual Meeting of the Association for
Computational Linguistics, pages 363–370, 2005.

[17] J. R. Finkel, C. D. Manning, and A. Y. Ng. Solving
the Problem of Cascading Errors: Approximate
Bayesian Inference for Linguistic Annotation
Pipelines. In Proceedings of the 2006 Conference on
Empirical Methods in Natural Language Processing,
pages 618–626, 2006.

[18] G. Forman and E. Kirshenbaum. Extremely Fast Text
Feature Extraction for Classification and Indexing. In
Proceedings of the 17th ACM Conference on
Information and Knowledge Management, pages
1221–1230, 2008.

[19] R. Grishman. Information Extraction: Techniques and
Challenges. In International Summer School on
Information Extraction: A Multidisciplinary Approach
to an Emerging Information Technology, pages 10–27,
1997.

[20] D. Gruhl, L. Chavet, D. Gibson, J. Meyer,
P. Pattanayak, A. Tomkins, and J. Y. Zien. How to
Build a WebFountain: An Architecture for Very
Large-scale Text Analytics. IBM Systems Journal,
43(1):64–77, 2004.

[21] B. Hayes-Roth. A Blackboard Architecture for
Control. Artificial Intelligence, 26(3):251–321, 1985.

[22] K. Hollingshead and B. Roark. Pipeline Iteration. In
Proceedings of the 45th Annual Meeting of the
Association for Computational Linguistics, pages
952–959, 2007.

[23] L. Jean-Louis, R. Besançon, and O. Ferret. Text
Segmentation and Graph-based Method for Template
Filling in Information Extraction. In Proceedings of
the 5th International Joint Conference on Natural
Language Processing, pages 723–731, 2011.

[24] D. Jurafsky and J. H. Martin. Speech and Language
Processing: An Introduction to Natural Language
Processing, Speech Recognition, and Computational
Linguistics. Prentice-Hall, 2nd edition, 2009.

[25] J.-D. Kim, S. Pyysalo, T. Ohta, R. Bossy, N. Nguyen,
and J. Tsujii. Overview of BioNLP Shared Task 2011.
In Proceedings of the BioNLP Shared Task 2011
Workshop, pages 1–6, 2011.

[26] E. Krikon, D. Carmel, and O. Kurland. Predicting the
Performance of Passage Retrieval for Question
Answering. In Proceedings of the 21st ACM
International Conference on Information and
Knowledge management, pages 2451–2454, 2012.

[27] G. Limaye, S. Sarawagi, and S. Chakrabarti.
Annotating and Searching Web Tables using Entities,
Types and Relationships. Proceedings of the VLDB
Endowment, 3(1):1338–1347, 2010.

[28] W. Lu and D. Roth. Automatic Event Extraction with
Structured Preference Modeling. In Proceedings of the
50th Annual Meeting of the Association for
Computational Linguistics, pages 835–844, 2012.

[29] Mausam, M. Schmitz, R. Bart, S. Soderland, and
O. Etzioni. Open Language Learning for Information
Extraction. In Proceedings of the 2012 Joint
Conference on Empirical Methods in Natural Language

Processing and Computational Natural Language
Learning, pages 523–534, 2012.

[30] C. Nedellec, M. O. A. Vetah, and P. Bessières.
Sentence Filtering for Information Extraction in
Genomics, a Classification Problem. In Proceedings of
the 5th European Conference on Principles of Data
Mining and Knowledge Discovery, pages 326–337,
2001.

[31] OMG. Unified Modeling Language (OMG UML)
Superstructure, Version 2.4.1. 2011.

[32] P. Pantel, D. Ravichandran, and E. Hovy. Towards
Terascale Knowledge Acquisition. In Proceedings of
the 20th International Conference on Computational
Linguistics, pages 771–777, 2004.

[33] M. Pasca. Web-based Open-Domain Information
Extraction. In Proceedings of the 20th ACM
International Conference on Information and
Knowledge Management, pages 2605–2606, 2011.

[34] S. Patwardhan and E. Riloff. Effective Information
Extraction with Semantic Affinity Patterns and
Relevant Regions. In Proceedings of the 2007 Joint
Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language
Learning, pages 717–727, 2007.

[35] H. Poon and P. Domingos. Joint Inference in
Information Extraction. In Proceedings of the 22nd
National Conference on Artificial Intelligence, pages
913–918, 2007.

[36] S. J. Russell and P. Norvig. Artificial Intelligence: A
Modern Approach. Prentice-Hall, 3rd edition, 2009.

[37] E. F. T. K. Sang and F. D. Meulder. Introduction to
the CoNLL-2003 Shared Task: Language-independent
Named Entity Recognition. In Proceedings of the
Seventh Conference on Natural Language Learning at
HLT-NAACL 2003, pages 142–147, 2003.

[38] S. Sarawagi. Information Extraction. Foundations and
Trends in Databases, 1(3):261–377., 2008.

[39] H. Schmid. Improvements in Part-of-Speech Tagging
with an Application to German. In Proceedings of the
ACL SIGDAT-Workshop, pages 47–50, 1995.

[40] W. Shen, A. Doan, J. F. Naughton, and
R. Ramakrishnan. Declarative Information Extraction
using Datalog with Embedded Extraction Predicates.
In Proceedings of the 33rd International Conference on
Very Large Data Bases, pages 1033–1044, 2007.

[41] B. Stein, S. M. zu Eissen, G. Gräfe, and F. Wissbrock.
Automating Market Forecast Summarization from
Internet Data. In Proceedings of the Fourth
Conference on WWW/Internet, pages 395–402, 2005.

[42] M. Stevenson. Fact Distribution in Information
Extraction. Language Resources and Evaluation,
40(2):183–201, 2007.

[43] H. Wachsmuth, P. Prettenhofer, and B. Stein.
Efficient Statement Identification for Automatic
Market Forecasting. In Proceedings of the 23rd
International Conference on Computational
Linguistics, pages 1128–1136, 2010.

[44] H. Wachsmuth, M. Rose, and G. Engels. Automatic
Pipeline Construction for Real-Time Annotation. In
Proceedings of the 14th International Conference on
Intelligent Text Processing and Computational
Linguistics, pages 38–49, 2013.

[45] H. Wachsmuth and B. Stein. Optimal Scheduling of
Information Extraction Algorithms. In Proceedings of
the 24th International Conference on Computational
Linguistics: Posters, pages 1281–1290, 2012.

[46] H. Wachsmuth, B. Stein, and G. Engels. Constructing
Efficient Information Extraction Pipelines. In
Proceedings of the 20th ACM Conference on
Information and Knowledge Management, pages
2237–2240, 2011.

[47] W. Wang, R. Besançon, O. Ferret, and B. Grau.
Filtering and Clustering Relations for Unsupervised
Information Extraction in Open Domain. In
Proceedings of the 20th ACM Conference on
Information and Knowledge Management, pages
1405–1414, 2011.

[48] C. Whitelaw, A. Kehlenbeck, N. Petrovic, and
L. Ungar. Web-scale Named Entity Recognition. In
Proceedings of the 17th ACM Conference on
Information.

