PrrELINES FOR AD-HOC LARGE-SCALE TEXT MINING
(preprint)

A dissertation presented by
Henning Wachsmuth

to the
Faculty of Computer Science, Electrical Engineering, and Mathematics
of the
University of Paderborn

in partial fulfillment of the requirements for the academic degree of
Dr. rer. nat.

Paderborn, Germany
January 2015

DI1SSERTATION

Pipelines for Ad-hoc Large-scale Text Mining
Henning Wachsmuth, University of Paderborn
Paderborn, Germany, 2015

REVIEWERS

Prof. Dr. Gregor Engels, University of Paderborn
Prof. Dr. Benno Stein, Bauhaus-Universitat Weimar
Dr. Bernd Bohnet, Google London

DocroraL COMMITTEE

Prof. Dr. Gregor Engels, University of Paderborn

Prof. Dr. Benno Stein, Bauhaus-Universitidt Weimar

Dr. Bernd Bohnet, Google London

Prof. Dr. Hans Kleine Biining, University of Paderborn

Prof. Dr. Friedhelm Meyer auf der Heide, University of Paderborn

To Max, My sON.

Acknowledgments

THE FINDINGS OF THIS THESIS SHOULD NOT BE ATTRIBUTED TO A SINGLE PERSON. Al-
though I wrote the thesis on my own at the DataBase AND INFORMATION Sys-
TEMS group and the Sorrware QuaLity Las of the UNIVERsITY OF PADERBORN,
many people have worked together with me or have helped me in other
important respects during my PhD time.

First, I'd like to thank both my advisor, Gregor Engels, and my co-advisor,
Benno Stein, for supporting me throughout the whole time and for giving
me the feeling that my research is worth doing. Gregor, I express to you my
deep gratitude for letting me take my own path while keeping me in the
right direction. You showed me what a dissertation really means and you
continuously challenged me by finding even the smallest fallacy in my argu-
mentation. Benno, thank you so much for teaching me what science is all
about and how thoroughly I have to work for that. You improved my ability
to get the best out of me and you let me experience that the best ideas emerge
from collaboration. I'd like to thank Bernd Bohnet for such collaboration
and for directly saying “yes”, when I asked you to be the third reviewer of
this thesis. Similarly, I thank Hans Kleine Biining and Friedhelm Meyer auf
der Heide for serving as members of my doctoral committee.

As this thesis reuses content of a number of conference publications, I'd
like to thank all my co-authors not named so far. In chronological order, this
is Peter Prettenhofer, Kathrin Bujna, Mirko Rose, Tsvetomira Palakarska,
and Martin Trenkmann. Thank you for your great work. Without you, parts
of this thesis wouldn’t exist. Some parts have also profited from the effort of
students who worked at our lab, wrote their thesis under my supervision,
or participated in our project group ID|SE. Special thanks go to Joachim
Kohring and Steffen Beringer. Moreover, some results presented here are
based on work of companies we cooperated with in two research projects.
I want to thank Dennis Hannwacker in this regard, but also the other em-
ployees of Resorro INFORMATIK and DiGitaL COLLECTIONS.

The mentioned projects including my position were funded by the Ger-
MAN FEDERAL MiNisTRY OF EDUcCATION AND RESEarRcH (BMBF), for which I'm
very grateful. For respective reasons, I want to thank the company HRS, the
GerMAN FEDERAL MINISTRY FOR Economic AFrairs AND ENErGY (BMWI), and
my employer, the UNIVERsITY OF PADERBORN, in general.

VI

I'had a great time at the university, first and foremost because of my col-
leagues. Besides those named above, I say thank you to Fabian Christ and
Benjamin Nagel for all the fun discussions, for tolerating my habits, and for
becoming friends. The same holds for Christian Soltenborn and Christian
Gerth, who I particularly thank for making me confident about my research.
Further thanks go to Jan Bals, Markus Luckey, and Yavuz Sancar for exciting
foosball table matches, to the brave soccer team AG EncEeLs, and to the rest
of our group. I express my gratitude to Friedhelm Wegener for constant and
patient technical help as well as to Stefan Sauer for managing all the official
matters, actively supported by Sonja Saage and Beatrix Wiechers.

Especially, I am grateful to Theo Lettmann for pushing me to apply for
my position, for guiding me in the first time of my PhD, and for giving me
advice whenever needed without measurable benefit for himself. Thanks to
the WEBIs Grour in Weimar and to the people in our university that made all
my conference attendances possible. Because of you, I could enter the com-
putational linguistics community, which I appreciate so much, and make
new friends around the world. I'd like to point out Julian Brooke, who I en-
joyed discussing research and life with every year on a biannual conference,
as well as Alberto Barron, who opened my eyes to my limited understand-
ing of the world with sincerity and a dry sense of humor.

Aside from my professional life, I deeply thank all my dear friends for so
many great experiences and fun memories, for unconditionally accepting
how I am, and for giving me a relief from my everyday life. I'd like to name
Dirk, Kathrin, Sebastian, Stephan, and Tim here, but many more current
and former Bielefelders and Paderborners influenced me, including but not
limited to those from the HG KurzriLME and the ProjexTBEREICH EINE WELT.
I thank my parents for always loving and supporting me and for being the
best role models I can imagine. Ipke, the long time you spent for the great
corrections and your encouraging feedback helped me more than I can tell.
Thanks also to the rest of my family for being such a wonderful family.

Finally, my greatest thanks go to my own small family, Katrin and Max,
for letting me experience that there are much more important things in life
than work, for providing me the chance to learn being some sort of father,
for giving me a home throughout my PhD, for accepting my long working
hours, and for all the love and care I felt. Katrin, I'm sure you will eventually
find a profession that makes you as happy as research makes me. And Max,
I hope that the effort I put into this thesis and my excitement for learning
new stuff will give you inspiration for your life.

Henning Wachsmuth, January 2015

Notation

THE BASIC NOTATIONS USED IN THIS THEsIS are listed in the following. Specific

forms and variations of these notations are introduced where needed and

are marked explicitly with according indices or similar.

ANALYSIS

A
A

s
II
I

A text analysis algorithm.
A set or a repository of text analysis algorithms.

The schedule of the algorithms in a text analysis pipeline.
A text analysis pipeline or a filtering stage within a pipeline.
A set of text analysis pipelines.

TexT

nwn g9

A portion or a unit of a text.
A text.
A collection or a stream of texts.

A scope, i.e., a sequence of portions of a text.
A set of scopes.

INFORMATION

QQ-°

*

S I N> B

N

A piece of information, such as a class, an entity, a relation, etc.
An information type or a set of pieces of information.
A set of information types or a specification of an information need.

A flow, i.e., the sequence of instances of an information type in a text.
A set or a cluster of flows.

A flow clustering, i.e., a partition of a set of flows.

A flow pattern, i.e., the average of a set of flows.

A set of flow patterns.

A feature for machine learning.
A feature vector, i.e., an ordered set of features.
A set of feature vectors.

VII

VIII

TaAsk

200

QDB E = A

A query, which specifies a combination of information needs.
A scoped query, i.e., a query with assigned degrees of filtering.
The dependency graph of a scoped query.

An agenda, i.e., a list of input requirements.

A machine, which executes text analysis pipelines.

A planning problem.

A universe or an ontology, each of which specifies an environment.

QuALITY

q
q
Q
Q

p

A quality value or estimation.
A vector of quality estimations.
A quality criterion.

A set of quality criteria.

A quality prioritization, defined as a set of quality criteria.

MEASURES

=T”8 @ o

=

SLOxX9

A run-time, possibly averaged over a certain unit of text.
An accuracy value.

A precision value.

A recall value.

An Fq-score.

The averaged deviation, i.e., a measure of text heterogeneity.

A heuristic that predicts the run-time of a text analysis pipeline.
A quality function that maps analysis results to quality values.
A machine learning model that maps features to information.

Abstract

P1PELINES FOR AD-HOC LARGE-SCALE TEXT MINING

Today’s web search and big data analytics applications aim to address infor-
mation needs (typically given in the form of search queries) ad-hoc on large
numbers of texts. In order to directly return relevant information instead of
only returning potentially relevant texts, these applications have begun to
employ text mining. The term text mining covers tasks that deal with the in-
ference of structured high-quality information from collections and streams
of unstructured input texts. Text mining requires task-specific text analysis
processes that may consist of several interdependent steps. These processes
are realized with sequences of algorithms from information extraction, text
classification, and natural language processing. However, the use of such
text analysis pipelines is still restricted to addressing a few predefined infor-
mation needs. We argue that the reasons behind are three-fold:

First, text analysis pipelines are usually made manually in respect of the
given information need and input texts, because their design requires expert
knowledge about the algorithms to be employed. When information needs
have to be addressed that are unknown beforehand, text mining hence can-
not be performed ad-hoc. Second, text analysis pipelines tend to be ineffi-
cient in terms of run-time, because their execution often includes analyzing
texts with computationally expensive algorithms. When information needs
have to be addressed ad-hoc, text mining hence cannot be performed in the
large. And third, text analysis pipelines tend not to robustly achieve high
effectiveness on all texts, because their results are often inferred by algo-
rithms that rely on domain-dependent features of texts. Hence, text mining
currently cannot guarantee to infer high-quality information.

In this thesis, we contribute to the question of how to address information
needs from text mining ad-hoc in an efficient and domain-robust manner.
We observe that knowledge about a text analysis process and information
obtained within the process help to improve the design, the execution, and
the results of the pipeline that realizes the process. To this end, we ap-
ply different techniques from classical and statistical artificial intelligence.
In particular, we first develop knowledge-based approaches for an ad-hoc
pipeline construction and for an optimal execution of a pipeline on its in-
put. Then, we show theoretically and practically how to optimize and adapt

IX

the schedule of the algorithms in a pipeline based on information in the an-
alyzed input texts in order to maximize execution efficiency. Finally, we
learn patterns in the argumentation structures of texts statistically that re-
main strongly invariant across domains and that, thereby, allow for more
robust analysis results in a restricted set of tasks.

We formally analyze all developed approaches and we implement them
as open-source software applications. Based on these applications, we eval-
uate the approaches on established and on newly created collections of texts
for scientifically and industrially important text analysis tasks, such as fi-
nancial event extraction and fine-grained sentiment analysis. Our findings
show that text analysis pipelines can be designed automatically, which pro-
cess only portions of text that are relevant for the information need at hand.
Through scheduling, the run-time efficiency of pipelines can be improved
by up to more than one order of magnitude while maintaining effective-
ness. Moreover, we provide evidence that a pipeline’s domain robustness
substantially benefits from focusing on argumentation structure in tasks
like sentiment analysis. We conclude that our approaches denote essential
building blocks of enabling ad-hoc large-scale text mining in web search
and big data analytics applications.

Abstract (in German)

P1PELINES FUR AD-HOC LARGE-SCALE TEXT MINING

Aktuelle Anwendungen der Websuche und der Analyse von Big Data zielen
darauf ab, Informationsbediirfnisse (typischerweise gegeben als Suchanfra-
ge) ad-hoc auf Basis grofler Mengen an Texten zu adressieren. Um direkt
relevante Informationen anstatt nur potentiell relevante Texte zuriickzulie-
fern, beginnen diese Anwendungen Text Mining einzusetzen. Der Begriff
Text Mining erfasst Aufgaben, welche die Ermittlung strukturierter Informa-
tionen hoher Qualitdt aus unstrukturierten Texten beinhalten. Text Mining
erfordert aufgabenspezifische Textanalyseprozesse, die aus zahlreichen un-
tereinander abhdngigen Schritten bestehen kénnen und die mittels Folgen
an Algorithmen der Informationsextraktion, der Textklassifikation und der
natiirlichen Sprachverarbeitung realisiert werden. Bislang ist die Verwen-
dung solcher Textanalyse-Pipelines allerdings auf wenige im Vorhinein be-
kannte Informationsbediirfnisse beschriankt, was drei Ursachen hat:

Erstens werden Textanalyse-Pipelines tiblicherweise manuell fiir gegebe-
ne Informationsbediirfnisse und Eingabetexte erstellt, da ihr Design Exper-
tenwissen tiber die zu verwendenden Algorithmen erfordert. Im Fall von
Informationsbediirfnissen, die im Vorhinein nicht bekannt sind, lasst sich
Text Mining daher nicht ad-hoc einsetzen. Zweitens neigen Textanalyse-
Pipelines dazu, ineffizient beziiglich ihrer Laufzeit zu sein, da ihre Ausfiih-
rung oft die Analyse von Texten mittels berechnungsintensiver Algorith-
men beinhaltet. Im Fall ad-hoc zu adressierender Informationsbediirfnisse
lasst sich Text Mining daher nicht auf groffen Mengen an Texten einsetzen.
Und drittens neigen Textanalyse-Pipelines dazu, nicht robust hohe Effekti-
vitdt auf allen Texten zu erreichen, da ihre Ergebnisse oft von Algorithmen
ermittelt werden, die auf doménenabhéngige Eigenschaften von Texten zu-
riickgreifen. Daher ladsst sich im Text Mining aktuell nicht garantieren, dass
Informationen von hoher Qualitit sind.

Diese Arbeit widmet sich der Fragestellung, wie sich Informationsbe-
diirfnisse im Text Mining ad-hoc in effizienter und doméanenrobuster Weise
adressieren lassen. Dabei liegt die Beobachtung zugrunde, dass sich Wis-
sen iiber einen Textanalyseprozess und Informationen, die innerhalb des
Prozesses anfallen, nutzen lassen, um das Design, die Ausfithrung und die
Ergebnisse der Pipeline zu verbessern, die den Prozess realisiert. Zu die-

XI

XII

sem Zweck kommen in der Arbeit verschiedene Techniken der klassischen
und statistischen kiinstlichen Intelligenz zum Einsatz. Konkret werden zu-
erst wissensbasierte Ansétze entwickelt, mittels derer sich Pipelines ad-hoc
konstruieren und optimal auf Texten ausfiihren lassen. Danach wird theore-
tisch und praktisch gezeigt, wie sich die Reihenfolge der Algorithmen einer
Pipeline auf Basis von Informationen in analysierten Texten optimieren und
anpassen ldsst, um die Ausfiihrungseffizienz zu maximieren. Schliefilich
werden Muster in der Argumentationsstruktur von Texten statistisch ge-
lernt, die iiber Domédnengrenzen hinweg vorliegen und daher in bestimm-
ten Aufgaben robustere Analyseergebnisse zulassen.

Alle entwickelten Ansdtze werden in der Arbeit formal analysiert und
sind in Open-Source-Software-Anwendungen umgesetzt. Mithilfe dieser
Anwendungen werden die Ansidtze auf anerkannten und neu erstell-
ten Sammlungen an Texten fiir wissenschaftlich und industriell wichti-
ge Aufgaben evaluiert, wie die Extraktion von Finanzaussagen oder eine
feingranulare Stimmunganalyse. Die Ergebnisse der Arbeit zeigen, dass
Textanalyse-Pipelines automatisch konstruiert werden kdnnen, welche nur
diejenigen Teile von Texten verarbeiten, die fiir ein gegebenes Informati-
onsbediirfnis relevant sind. Durch die Reihenfolgeoptimierung ladsst sich
die Laufzeiteffizienz von Pipelines unter Erhaltung der Effektivitit teils um
mehr als eine Grofienordnung verbessern. Zudem kann belegt werden, dass
die Doménenrobustheit von Pipelines in Aufgaben wie der Stimmungs-
analyse wesentlich von einem Fokus auf Argumentationsstruktur profitiert.
Insgesamt stellen die vorgestellten Ansédtze damit grundlegende Bausteine
dar, um Text Mining ad-hoc auf grofien Mengen an Texten in Anwendungen
zur Websuche und zur Analyse von Big Data zu ermdglichen.

Contents

INTRODUCTION 15
1.1 Information Search in Times of Big Data 15
1.2 A Need for Efficient and Robust Text Analysis Pipelines . . . 18
1.3 Towards Intelligent Pipeline Design and Execution 22
1.4 Contributions and Outline of this Thesis 26
TeExT ANALYSIS PIPELINES 33
21 Foundations of Text Mining 34
2.2 Text Analysis Tasks, Processes, and Pipelines 49
2.3 Case Studies in this Thesis 56
2.4 State of the Art in Ad-hoc Large-Scale Text Mining 60
PrpeLINE DESIGN 71
3.1 Ideal Construction and Execution for Ad-hoc Text Mining . . 72
3.2 A Process-oriented View of Text Analysis 85
3.3 Ad-hoc Construction via Partial Order Planning 94
3.4 An Information-oriented View of Text Analysis 111
3.5 Optimal Execution via Truth Maintenance 120
3.6 Trading Efficiency for Effectiveness in Ad-hoc Text Mining . 138
PrpeLINE EFFICIENCY 143
41 Ideal Scheduling for Large-scale Text Mining 144
42 The Impact of Relevant Information in Input Texts 155
4.3 Optimized Scheduling via Informed Search 162
4.4 The Impact of the Heterogeneity of Input Texts 178
4.5 Adaptive Scheduling via Self-supervised Online Learning . 186
4.6 Parallelizing Execution in Large-scale Text Mining 200
P1pELINE ROBUSTNESS 207
5.1 Ideal Domain Independence for High-Quality Text Mining . 208
5.2 A Structure-oriented View of Text Analysis 215
5.3 The Impact of the Overall Structure of Input Texts 223
5.4 Features for Domain Independence via Supervised Clustering 234
5.5 Explaining Results in High-Quality Text Mining 251

XIII

X1V

6 CONCLUSION
6.1 Contributions and Open Problems
6.2 Implicationsand Outlook

A TExT ANALYSIS ALGORITHMS
Al Analyses and Algorithms
A2 EvaluationResults

B SOFTWARE
B.1 An Expert System for Ad-hoc Pipeline Construction
B.2 A Software Framework for Optimal Pipeline Execution . . .
B.3 A Web Application for Sentiment Scoring and Explanation .
B.4 Source Code of All Experiments and Case Studies

C Text CORPORA
C1 TheRevenueCorpus
C.2 The ArguAna TripAdvisor Corpus
C3 TheLFA-11Corpus
C.4 Used Existing Text Corpora

REFERENCES

259
260
264

269
269
279

283
283
288
290
293

297
297
301
307
310

313

1.1

In turning from the smaller instruments in frequent use to
the larger and more important machines, the economy aris-
ing from the increase of velocity becomes more striking.

Charles Babbage

Introduction

THE FUTURE OF INFORMATION SEARCH is not browsing through tons of web
pages or documents. In times of big data and the information overload of
the internet, experts in the field agree that both everyday and enterprise
search will gradually shift from only retrieving large numbers of texts that
potentially contain relevant information to directly mining relevant infor-
mation in these texts (Etzioni, 2011; Kelly and Hamm, 2013; Ananiadou
et al., 2013). In this chapter, we first motivate the benefit of such large-scale
text mining for today’s web search and big data analytics applications (Sec-
TION 1.1). In SECTION 1.2, We reveal the task specificity and the process com-
plexity of analyzing natural language text as the main problems that pre-
vent applications from performing text mining ad-hoc, i.e., immediately in
response to a user query. SEcTION 1.3 then points out how we tackle these
problems by improving the design, efficiency, and domain robustness of
the pipelines of algorithms used for text analysis with artificial intelligence
techniques. This leads to the contributions of the thesis (Section 1.4).

INFORMATION SEARCH IN TIMES OF BiGc Data

Information search constitutes an integral part of almost everybody’s ev-
eryday life. Today’s web search engines achieve to rank the most relevant
result highest for a large fraction of the information needs implied by search
queries. Following Manning et al. (2008), an information need can be seen as
a topic about which a user desires to know more. A result is relevant if it
yields information that helps to fulfill the information need at hand.

15

LARGE-SCALE

AD-HOC

INFORMATION NEED

RELEVANT

16 1.1 INFORMATION SEARCH IN TiMEs OF Bic Data

FiGure 1.1: Screenshot of PENTaHO Bic Data ANALYTICS as an example for an enter-
prise software. The shown “heat grid” visualizes the vehicle sales of a company.

Instead of directly providing relevant information, however, state-of-the-
art web search engines mostly return only links to web pages that may con-
tain relevant information, often thousands or millions of them. This can
make search time-consuming or even unsuccessful for queries where rele-
vant information has to be derived (e.g. for the query locations of search
companies), should be aggregated (e.g. user opinions on bing), seems like
a needle in a haystack (e.g. “if it isn’t on google it doesn’t exist”
original source), and so forth.

For enterprise environments, big data analytics applications aim to infer

micu-quariry mrormation - such high-quality information in the sense of relations, patterns, and hidden
facts from vast amounts of data (Davenport, 2012). FIGURE 1.1 gives an exam-
ple, showing the enterprise software of Pentano.! As with this software, big
data analytics is still only on the verge of including unstructured texts into
analysis, though such texts are assumed to make up 95% of all enterprise-
relevant data (HP Labs, 2010). So, to provide answers to a wide spectrum of
information needs, relevant texts must be filtered and relevant information
must be identified in these texts. We hence argue that search engines and
m=xr e big data analytics applications need to perform more text mining.

TExT MINING TO THE RESCUE

Text mining brings together techniques from the research fields of informa-
tion retrieval, data mining, and natural language processing in order to infer
structured high-quality information from usually large numbers of unstruc-
rormation reTrievaL - tured texts (Ananiadou and McNaught, 2005). While information retrieval

!Taken from the PentaHO blog, http://blog.pentaho.com/2012/06/07/the-diary-of-
a-construction-manger-in-love-with-his-bi-tool/, accessed on December 8, 2014.

1 INTRODUCTION 17

deals, at its heart, with indexing and searching unstructured texts, data min-
ing targets at the discovery of patterns in structured data. Natural language
processing, finally, is concerned with algorithms and engineering issues
for understanding and generating speech and human-readable text (Tsujii,
2011). It bridges the gap between the other fields by converting unstruc-
tured into structured information. Text mining is studied within the broad
interdisciplinary field of computational linguistics, as it addresses computa-
tional approaches from computer science to the processing of data and in-
formation while operationalizing findings from linguistics.

According to Sarawagi (2008), the most important text mining techniques
for identifying and filtering relevant texts and information within the three
fields refer to the areas of information extraction and text classification. The
former aims at extracting entities, relations between entities, and events the
entities participate in from mostly unstructured text. The latter denotes the
task of assigning a text to one or more predefined categories, such as topics,
genres, or sentiment polarities. Information extraction, text classification,
and similar tasks are considered in both natural language processing and
information retrieval. In this thesis, we summarize these tasks under the
term fext analysis. All text analyses have in common that they can signifi-
cantly increase the velocity of information search in many situations.

In our research project InrexBAZ, for instance, we developed algorithms
for a fast extraction and aggregation of financial forecast events from online
news articles, thereby supporting strategic business decision making. Such
events describe financial developments of organizations and markets over
time. They may have an author, a date, and the like. Entities and events of
the implied types can be found in texts like “If Apple does end up launching a
television in the next two years as has been rumored, it could help Apple’s annual
revenue skyrocket to $400 billion by 2015, according to Morgan Stanley analyst
Katy Huberty.”® In contrast, the goal of our research project ARGUANA* was
to classify and summarize opinions on products and their features found
in large numbers of review texts. To this end, we analyzed the sequence of
local sentiment on certain product features found in each of the reviews in
order to account for the argumentation of texts.

Of course, major search engines already use text analysis when address-
ing information needs (Pasca, 2011). E.g., a GoogLE search in late 2014 for

2InFEXBA — Information Extraction Technologies for Business Applications, funded by the
GerMAN FeDERAL MiNisTRY OF EDUCATION AND RESEarcH (BMBF), http://infexba.upb.de

3Taken from BusiNess INSIDER, http: //www.businessinsider. com/how-apples-annual-
revenue-could-hit-400-billion-by-2015-2012-5, accessed on December 8, 2014.

4 ARGUANA — Argumentation Analysis in Customer Opinion Mining, also funded by the
BMBF, http://www.arguana.com. Details on both research projects are given in Section 2.3.

DATA MINING

NATURAL LANGUAGE PROCESSING

COMPUTATIONAL LINGUISTICS

INFORMATION EXTRACTION

TEXT CLASSIFICATION

TEXT ANALYSIS

TEXT ANALYSIS PROCESS

1.2

INFORMATION TYPE

INPUT TEXT

18 1.2 A NEED FOR ErriciENT AND RoBUST TEXT ANALYSIS PIPELINES

Go gle Charles Babbage [o | # [
Web Images Videos Books New " Search tool o
About 821,000 roults 0,14 seconds)
Charles Babbage - Wikipedia, the free encyclopedia . [.
enuwikipedia.org/wikiCharles_Babbage - . -
h bbs FR h ith. ilosopher,

’ lets e page =
aries Babbage (*26. Dezerber 1761 In Walwort, Grafschaf Surey, England; 1 18 R vorsimages
ktober in ematiker, Philosoph,

Loben - Ziate - Wi o

Charles Babbage

Charles Babbage - Computer History Museum

olymath. A mathematici
e, Batbage o bost
cept of a programmable: computer.

Vital Statistics. Charles
December 26, 1791. He was

Charles Babbage Institute: Who Was Charles Babbage? N
T e bboge ecember 26, 1791, Teignmouth, United Kingdom
Introduction. The caiculating engines of English mathematician Charles Babbage Died: October 18, 1871, Manyiebone, United Kingdom

Ficure 1.2: GoocLE result page for the query Charles Babbage, showing an exam-
ple of directly providing relevant information instead of returning only web links.

Charles Babbage, the author of this chapter’s introductory quote, led to the
results in FIGURE 1.2, which convey that Babbage was recognized as a person
entity with a number of attributes and related entities.” The exact extent to
which today’s search engines perform text analyses is hard to guess, since
they also rely on knowledge bases like Freepase.® However, the presentation
of analysis results as answers is currently restricted to some frequent entity
types, such as persons or locations. Correspondingly, the few text-based
applications for analyzing big data focus on predefined information needs
of wide interest. E.g., AppINIONS continuously mines and aggregates opin-
ions on specified topics for monitoring purposes.” But, in accordance with
the quote of Babbage, the benefit of text mining arising from the increase of
velocity becomes more striking when turning from predefined text analyses
in frequent use to arbitrary and more complex text analysis processes.

A NEeeD FOR ErrFICIENT AND RoBUST TEXT ANALYSIS PIPELINES

Text mining deals with tasks that often entail complex text analysis pro-
cesses, consisting of several interdependent steps that aim to infer sophis-
ticated information types from collections and streams of natural language
input texts (cf. CHAPTER 2 for details). In the mentioned project INrexBA, dif-
ferent entity types (e.g. organization names) and event types (e.g. forecasts)
had to be extracted from input texts and correctly brought into relation, be-
fore they could be normalized and aggregated. Such steps require syntactic
annotations of texts, e.g. part-of-speech tags and parse tree labels (Sarawagi,
2008). These in turn can only be added to a text that is segmented into lexical
units, e.g. into tokens and sentences. Similarly, text classification often re-

5GooGLE, http://www.google . com/#hl=en&q=Charles+Babbage, December 8, 2014.
6FREEBASE, http://www. freebase.com, accessed on December 8, 2014.
7 APPINIONS, www . appinions . com, accessed on December 8, 2014.

1 INTRODUCTION 19

text analysis pipeline = = =
n=an (A)g=—CA)g G (A)
% /;.g\\\\ “. -~ .

asingle text analysié algorithms output and input ordering constraints
input text contained in A information defined inmt

FiGURE 1.3: A text analysis pipeline IT= (A, 7) with algorithm set A = {4, ..., A, }
and schedule 7. Each text analysis algorithm A; € A takes a text and information
of certain types as input and A; provides information of certain types as output.

lies on so called features (Manning et al., 2008) that are derived from lexical
and syntactic annotations or even from entities like in ARGUANA.

To realize the steps of a text analysis process, text analysis algorithms are
employed that annotate new information types in a text or that classify, re-
late, normalize, or filter previously annotated information. Such algorithms
perform analyses of different computational cost, ranging from the typically
cheap evaluation of single rules and regular expressions, over the matching
of lexicon terms and the statistical classification of text fragments, to com-
plex syntactic analyses like dependency parsing (Bohnet, 2010). Because of
the interdependencies between analysis steps, the standard way to realize a
text analysis process is in the form of a text analysis pipeline, which sequen-
tially applies each employed text analysis algorithm to its input.

Basic TexTt ANALYSIS SCENARIO

Conceptually, a text analysis pipeline can be modeled as a tuple I = (A,)
where A = {A4,..., A, } is an algorithm set consisting of m >1 text analysis
algorithms, while 7 is the pipeline’s schedule that defines the order of algo-
rithm application (Wachsmuth et al., 2011). Each algorithm A; € A takes
on one text analysis, producing information of certain information types as
output. In order to work properly, A; requires a text as well as information
of a (possibly empty) set of information types as input. This information
has to be produced by the algorithms preceding A; within the schedule 7.
Hence, 7 has to ensure that the input requirements of all algorithms in A
are fulfilled. Ficure 1.3 illustrates the defined concepts.

Text analysis pipelines process input texts in order to produce output in-
formation of a structured set of information types C that is relevant for an
information need at hand. Here, C may consist of both atomic types that
stand on their own (like entity types) and compounds of types (like rela-
tion types). Accordingly, the basic text analysis task that is addressed with a
pipeline IT and that we refine later on can be stated as follows:

Given a collection or a stream of input texts D, process D in order to
infer all output information of a structured set of information types C.

TEXT ANALYSIS ALGORITHM

TEXT ANALYSIS PIPELINE

ALGORITHM SET

SCHEDULE

OUTPUT INFORMATION

TEXT ANALYSIS TASK

EFFECTIVENESS

20 1.2 A NEED FOR ErriciENT AND RoBUST TEXT ANALYSIS PIPELINES

D text analysis task
[] (==
an 7
(==, ., =)
(..

input texts output information

Y B —

text analysis algorithms

Ficure 1.4: The basic text analysis scenario considered in this thesis: A text analysis
pipeline IT = (A, 7) composes a subset A of the set of all available text analysis
algorithms {4, ..., A, } in order to infer output information of a stuctured set of
information types C from a collection or a stream of input texts D.

Depending on the task, D may refer to anything from a small closed-domain
collection of texts to a never-ending input stream of open-domain texts from
the web. Accordingly, the types in C may represent different semantic con-
cepts, linguistic annotations, and the like. As a matter of fact, the compo-
sition of text analysis algorithms in II is task-specific; it follows from the
concrete types in C to be inferred and from the language, quality, style, and
other properties of the input texts in D. Traditionally, a pipeline II is there-
fore predefined when given a text analysis task by selecting and scheduling
an appropriate subset of all available text analysis algorithms.

The whole described text analysis scenario is sketched in FiGUre 1.4. We
will see that many text analysis processes conform with this scenario or with
extensions or variations of it, especially those in information extraction and
text classification. We detail the underlying concepts in CHAPTER 2.

SHORTCOMINGS OF TRADITIONAL TEXT ANALYSIS PIPELINES

In principle, text analysis pipelines can be applied to tackle arbitrary text
analysis tasks, i.e., to infer output information of arbitrary types from arbi-
trary input texts. This information will not always be correct, though, as it
results from analyzing ambiguous natural language text. Rather, a pipeline
achieves a certain effectiveness in terms of the quality of the inferred infor-
mation, e.g. quantified as the relative frequency of output information that
is correct in the given task (cf. CHAPTER 2 for details).

The inference of high-quality information can be seen as the most gen-
eral goal of text mining. Search engines and big data analytics applications,
in particular, aim to infer such information immediately and/or from large

1 INTRODUCTION 21

numbers of texts. Both of them deal with ad-hoc information needs, i.e., infor-
mation needs that are stated ad-hoc and are, thus, unknown beforehand.
We argue that the process complexity and task specificity outlined above
prevent such ad-hoc large-scale text mining today due to three problems:

First, the design of text analysis pipelines in terms of selecting and sche-
duling algorithms for the information needs at hand and the input texts
to be processed is traditionally made manually, because it requires human
expert knowledge about the functionalities and interdependencies of the
algorithms (Wachsmuth et al., 2013a). If information needs are stated ad-
hoc, also the design of pipelines has to be made ad-hoc, which takes time in
case of manual construction, even if proper tool supportis given (Kanoetal.,
2010). Hence, text mining currently cannot be performed immediately.

Second, the run-time efficiency of traditionally executing text analysis
pipelines is low, because computationally expensive analyses are performed
on the whole input texts (Sarawagi, 2008). Techniques are missing that
identify the portions of input texts, which contain information relevant for
the information need at hand, and that restrict expensive analyses to these
portions. Different texts vary in the distribution of relevant information,
which additionally makes these techniques input-dependent (Wachsmuth
and Stein, 2012). While a common approach to avoid efficiency problems
is to analyze input texts in advance when they are indexed (Cafarella et al.,
2005), this is not feasible for ad-hoc information needs. Also, the applica-
tion of faster algorithms (Pantel et al., 2004) seems critical because it mostly
also results in a reduced effectiveness. Hence, ad-hoc text mining currently
cannot be performed on large numbers of texts.

Third, text analysis pipelines tend not to infer high-quality information
with high robustness, because the employed algorithms traditionally rely on
features of input texts that are dependent on the domains of the texts (Blitzer
et al., 2007). The applications we target at, however, may process texts from
arbitrary domains, such that pipelines will often fail to infer information ef-
fectively. An approach to still achieve user acceptance under limited effec-
tiveness is to explain how information was inferred (Li et al., 2012b), but this
is difficult for pipelines, as they realize a process with several complex and
uncertain decisions about natural language (Das Sarma et al., 2011). Hence,
text mining cannot generally guarantee high quality.

PrROBLEM APPROACHED IN THIS THESIS

Altogether, we summarize that traditional text analysis pipelines fail to ad-
dress information needs ad-hoc in an efficient and domain-robust manner.

AD-HOC INFORMATION NEED

AD-HOC LARGE-SCALE
TEXT MINING

DESIGN

EFFICIENCY

ROBUSTNESS

1.3

22 1.3 Towarps INTELLIGENT PIPELINE DESIGN AND ExecuTtion

Therefore, our hypothesis is that three requirements must be met in order
to enable ad-hoc large-scale text mining within search engines and big data
analytics applications:

1. Automation of pipeline design. In order to address ad-hoc informa-
tion needs, pipelines need to be designed automatically for the given
text analysis tasks.

2. Optimization of pipeline efficiency. In order to address ad-hoc infor-
mation needs in the large, pipelines need to analyze relevant portions
of input texts only and analyze these portions as efficient as possible.

3. Improvement of pipeline robustness. In order to achieve high qual-
ity in addressing ad-hoc information needs, pipelines need to infer
information from input texts effectively irrespective of their domain.

Some recent approaches tackle parts of these requirements, such as an au-
tomatic design (Kano, 2012) or the optimization of efficiency (Shen et al.,
2007). However, neither covers any approach all requirements, nor is any of
the requirements met in general. Details on related research will be given
at the end of CuaPtER 2. In the next section, we outline how we approach
the requirements with the help of techniques from artificial intelligence.

TowARrDS INTELLIGENT PIPELINE DESIGN AND ExECUTION

In this thesis, we consider the problem of efficiently and effectively address-
ing ad-hoc information needs in large-scale text mining. In particular, we
contribute to this problem through an intelligent design and execution of
text analysis pipelines. Our approach relies on different kinds of knowl-
edge and information available for such pipelines.

CeNTRAL RESEARCH QUESTION AND METHOD OF THIS THESIS

As motivated in SectioN 1.2, the design, efficiency, and domain robustness
of text analysis pipelines strongly depend on the realized text analysis pro-
cesses. With this in mind, the central research question underlying this the-
sis as a whole can be formulated as follows:

How can we exploit knowledge about a text analysis process as well as
information obtained within the process in order to automatically im-
prove the design, the execution, and the results of the text analysis pipe-
lines that realize the process?

The distinction between knowledge and information is controversial and
not always unambiguous in practice (Rowley, 2007). For our purposes,

1 INTRODUCTION 23

though, it suffices to follow the simple view that knowledge is an interpreta-
tion of data that is assumed to be true irrespective of the context (e.g., APPLE
is a company), whereas information is data that has been given meaning by
a particular context (e.g., in this text the term “Apple” denotes a company).
In this regard, knowledge can be understood as specified beforehand, while
information is inferred during processing. Now, when speaking of “knowl-
edge about a text analysis process”, we basically mean two kinds:

1. Knowledge about the text analysis task to be addressed, namely, the
information need at hand, expected properties of the input texts to be
processed, as well as efficiency and effectiveness criteria to be met.

2. Knowledge about the text analysis algorithms to be employed, na-
mely, their input and output information types, restrictions of their
applicability, and their expected efficiency and effectiveness.

Similarly, we distinguish the following three kinds of “information obtained
within the process”:

1. Information about the processed input texts, namely, their concretely
observed properties, especially domain-independent properties.

2. Information about the produced output, namely, the occurrence and
distribution of the different types of information in the input texts.

3. Information about the executed text analysis pipelines, namely, the
schedule of the employed text analysis algorithms as well as their
achieved efficiency and effectiveness as far as observable.

The exploitation of knowledge and information for automatically solving
problems is closely related to the field of artificial intelligence. Artificial in-
telligence describes the ability of software and machines to think and act ra-
tionally or human-like. An according system aims to find efficient solutions
to problems based on operationalized expert knowledge and a perception
of its environment (Russell and Norvig, 2009). While text mining itself can
be viewed as a subfield of artificial intelligence, we here develop approaches
that use classical and statistical artificial intelligence techniques like plan-
ning, reasoning, and machine learning to improve traditional approaches
to text mining using the stated kinds of knowledge and information.

Our goal is to provide widely applicable approaches to the three require-
ments outlined at the end of Section 1.2, which is why we also cover aspects
of software engineering, such as the modeling of domains and the scaling of
methods. To investigate the defined research question, we evaluate all ap-
proaches with respect to these requirements. Some properties are proven
formally, whereas in all other cases we implement the approaches as open-

KNOWLEDGE

INFORMATION

ARTIFICIAL INTELLIGENCE

SOFTWARE ENGINEERING

AD-HOC TEXT ANALYSIS PIPELINE

24 1.3 Towarps INTELLIGENT PIPELINE DESIGN AND ExecuTtion

source Java applications in order to then conduct experiments in terms of
empirical analyses. These experiments are based on both existing and new
text corpora designed and compiled for that purpose. Most experiment set-
tings are controlled and compare the efficiency and effectiveness of our and
traditional appraches. They either refer to text analysis tasks from the men-
tioned projects INFEXBA and ArRGUANA or they address tasks that are well-
known in the field. Where appropriate, we also provide software frame-
works and stand-alone tools to demonstrate the correctness and practical
applicability of our approaches.

AN ARTIFICIAL INTELLIGENCE APPROACH TO PIPELINE DESIGN AND ExECcuTION

Our overall approach to enable ad-hoc large-scale text mining relies on three
core ideas, which we will discuss more detailed below:

1. Ad-hoc large-scale text analysis pipelines. We can automatically se-
lect the algorithms to be employed in a text analysis pipeline based
on the set of available algorithms and the information need at hand,
and we can optimize their schedule based on information about their
achieved efficiency and the produced output.?

2. Input control. We can automatically infer the portions of input texts
that need to be processed by each algorithm in a text analysis pipeline
from the information need at hand, the algorithm’s output informa-
tion types, and the output information produced so far.

3. Overall analysis. We can automatically improve the domain robust-
ness of certain algorithms in a text analysis pipeline by focusing on
information about the overall structure of the processed input texts
within their analyses while abstracting from their content.

FiGure 1.5 illustrates how these ideas can be operationalized to replace the
traditional predefined pipeline in the basic text analysis scenario. By that,
it serves as an overall view of all proposed approaches of this thesis. We
detail the different approaches in the following.

In order to address information needs ad-hoc, we construct ad-hoc text
analysis pipelines immediately before analysis. To this end, we formalize the
classical process-oriented view of text analysis, where each algorithm serves
as an action that, if applicable, transforms the state of an input text (i.e., its
input annotations) into another state (extended by the algorithm’s output
annotations). This view is e.g. realized by the leading software frameworks

8Throughout this thesis, we assume that information needs are already given in a pro-
cessable form (defined later on). Accordingly, we will not tackle problems from the areas of
query analysis and user interface design related to information search (Hearst, 2009).

1 INTRODUCTION 25

D text analysis task c
B (@

o

L] [F input control ovTraII
/l@ / / / — analysis (=, EI EI)

e ()~ (==, =)

input texts ad-hoc Iarge-scale text analysis pipeline [T*= <A*) output information

v
---- -

text analysis algorlthms

Ficure 1.5: Our overall approach to enable ad-hoc large-scale text mining: Each
algorithm A7} in the automatically constructed ad-hoc large-scale text analysis pipeline

= (A*, 7*) gets only portions of text from the input control its output is relevant
for. The schedule 7* is optimized in terms of efficiency, while the effectiveness of IT*
is improved through an overall analysis that produces the final output information.

for text analysis, APACHE UIMA® and GATE.!? As a consequence, ad-hoc
pipeline construction means to find a viable sequence of actions and, hence,
is a planning problem (Russell and Norvig, 2009). We tackle this problem
with partial order planning while considering possible efficiency and effec-
tiveness criteria (Wachsmuth et al., 2013a). Partial order planning conforms
to paradigms of ideal pipeline design and execution that we identify to be
always reasonable, e.g. lazy evaluation (Wachsmuth et al., 2011).

Instead of directly handing over the whole input texts from one algorithm

in a pipeline to the next, we introduce an input control that manages the in- mrur contror

put to be processed by each algorithm, as sketched in FiGure 1.5. Given the
output information of all algorithms applied so far, the input control de-
termines and filters only those portions of the current input text that may
contain all information required to fulfill the information need at hand. For
this information-oriented view, we realize the input control as a truth main-
tenance system (Russell and Norvig, 2009), which models the relevance of
each portion of text as a propositional formula. Reasoning about the for-
mulas then enables algorithms to analyze only relevant portions of text.
Thereby we avoid unnecessary analyses and we can influence the efficiency-
effectiveness tradeoff of a pipeline (Wachsmuth et al., 2013c).

Based on the information-oriented view, we next transform every pipe-

line into a large-scale text analysis pipeline, meaning that we make it as run- Larce-scate

time efficient as possible. In particular, we found that a pipeline’s schedule
strongly affects its efficiency, since the run-time of each employed algorithm

9 ApacHe UIMA, http://uima.apache.org, accessed on December 8, 2014.
OGATE, http://gate.ac.uk, accessed on December 8, 2014.

TEXT ANALYSIS PIPELINE

OVERALL ANALYSIS

1.4

26 1.4 CONTRIBUTIONS AND QUTLINE OF THIS THESIS

depends on the filtered portions of text it processes. The filtered portions in
turn result from the distribution of relevant information in the input texts.
Given the run-times on the filtered portions, we apply dynamic program-
ming (Cormen et al., 2009) to obtain an optimal schedule (Wachsmuth and
Stein, 2012). In practice, these run-times can only be estimated for the texts
at hand. We thus propose to address scheduling with informed best-first
search (Russell and Norvig, 2009), either in a greedy manner using estima-
tions of the algorithms’ run-times only or, for a more optimized scheduling,
using information from a sample of texts (Wachsmuth et al., 2013a).

Now, problems occur in case input texts are heterogeneous in the distri-
bution of relevant information, since such texts do not allow for accurate
run-time estimations. We quantify the impact of text heterogeneity on the
efficiency of a pipeline in order to estimate the optimization potential of
scheduling. A solution is to perform an adaptive scheduling that chooses
a schedule depending on the text (Wachsmuth et al., 2013b). For this pur-
pose, the characteristics of texts need to be mapped to the run-times of pipe-
lines. We induce such a mapping with self-supervised online learning, i.e.,
by incrementally learning from self-generated training data obtained dur-
ing processing (Witten and Frank, 2005; Banko et al., 2007). The scheduling
approach has implications for pipeline parallelization that we outline.

Finally, we present a novel overall analysis that aims to improve domain ro-
bustness by analyzing the overall structure of input texts while abstracting
from their content. As FIGURE 1.5 depicts, the overall analysis is an alterna-
tive last algorithm in a pipeline. Its structure-oriented view of text analysis
specifically targets at the classification of argumentative texts. It is based on
our observation from (Wachsmuth et al., 2014b) that the sequential flow of
information in a text is often decisive in those text classification tasks where
analyzing content does not suffice (Lipka, 2013). The overall analysis first
performs a supervised variant of clustering (Witten and Frank, 2005) to sta-
tistically learn common flow patterns of argumentative texts (Wachsmuth
et al., 2014a). Then, it uses these patterns as features for a more domain-
robust classification. The same patterns and their underlying information
can be used to explain the results of the analysis afterwards.

CONTRIBUTIONS AND OUTLINE OF THIS THESIS

We claim that our approach makes the design and execution of text analy-
sis pipelines more intelligent: Efficient solutions to text analysis tasks (i.e.,
pipelines) are found and accomplished automatically based on human ex-
pert knowledge and information perceived in the environment (i.e., the pro-

1 INTRODUCTION 27

text analysis task

input control

overall

input texts analysis

output information
ad-hoc : large-scale text analysis pipeline

Pipeline design Pipeline efficiency Pipeline robustness

text analysis algorithms

FiGuRrE 1.6: The three high-level contributions of the thesis: We present approaches
(1) to automatically design text analysis pipelines that optimally process input texts
ad-hoc, (2) to optimize the run-time efficiency of pipelines on all input texts, and
(3) to improve the robustness of pipelines on input texts from different domains.

cessing of texts). More precisely, we contribute to the approached problem
of enabling ad-hoc large-scale text mining in three high-level respects:

1. Pipeline design. Through ad-hoc pipeline construction, we can im-
mediately design text analysis pipelines to perform text mining ad-
hoc. Through the input control, we achieve to execute each pipeline
in an optimal manner, thereby enabling efficiency optimizations.

2. Pipeline efficiency. Through optimized scheduling, we can greatly
improve the run-time efficiency of traditional text analysis pipelines,
which benefits large-scale text mining. Through adaptive scheduling,
we maintain efficiency even on highly heterogeneous texts.

3. Pipeline robustness. Through the overall analysis, we can signifi-
cantly improve the domain robustness of text analysis pipelines for the
classification of argumentative texts over traditional approaches.

Ficure 1.6 shows how these main contributions relate to the three core ideas
within our overall approach. In the following, we summarize the main re-
sults for each main contribution.

New FINDINGS IN AD-HOC LARGE-scALE TeExT MINING

We analyze the impact of an optimal design of text analysis pipelines on
industrially relevant information extraction tasks from the INrexBA project.
Our results convey that the run-time efficiency of a pipeline can be improved
by more than one order of magnitude without harming the effectiveness of
the employed algorithms (Wachsmuth et al., 2011). We have realized our
approach to ad-hoc pipeline construction as a freely available expert sys-
tem (Wachsmuth et al., 2013a). Experiments with this system in the INFEXBA

28 1.4 CONTRIBUTIONS AND QUTLINE OF THIS THESIS

context as well as on the scientifically important biomedical extraction task
Genia (Kim et al., 2011) indicate that efficient and effective pipelines can be
designed in near-zero time. Open problems are largely due to automation
only, such as a missing weighting of the quality criteria to be met.

The use of our input control comes even without any notable drawback.
We have operationalized the input control as an open-source extension of
the ApacHe UIMA framework (Wachsmuth et al., 2013c), and we provide a
proof-of-concept for a number of tasks related to INFEXBA on well-known
text corpora of different languages. While the concrete impact of filtering
naturally depends on the employed algorithms and the density of relevant
information, our findings are convincing: The input control allows us to
optimize the run-time of arbitrary text analysis pipelines and it provides an
intuitive means to trade efficiency for effectiveness.

With respect to efficiency optimization, we show that the run-time op-
timal scheduling of text analysis algorithms denotes a dynamic program-
ming problem (Wachsmuth and Stein, 2012). Our experiments reveal, how-
ever, that an ideal solution is too expensive in practice, since it depends on
the input texts. In fact, the irrelevant portions of a text decide the optimal-
ity of a schedule, as we formally prove. Still, the ideal solution serves as a
benchmark for practical approaches to optimized scheduling. We have im-
plemented different approaches as open-source applications and we evalu-
ate them for a number of extraction tasks. Our results indicate that an op-
timal schedule can often be found very efficiently. Sometimes, even simple
greedy scheduling approaches suffice (Wachsmuth et al., 2013a).

Cases where optimal schedules are hard to find tend to emanate from a
high heterogeneity of the input texts, as we discover in experimental ana-
lyses (Wachsmuth et al., 2013b). On this basis, we develop new measures
that quantify the optimization potential of scheduling. Experiments on pre-
cisely constructed text corpora suggest that our adaptive scheduling ap-
proach still achieves near-optimal efficiency even where the optimal fixed
schedule significantly fails. Conversely, the approach encounters problems
in low-heterogeneity scenarios, because of limitations in the effectiveness of
our self-supervised online learning algorithm.

For classifying argumentative texts, we offer evidence that a focus on
their overall structure improves the domain robustness of text analysis. In
experiments, we stress the impact of sequential flows of information as well
as the domain dependence of traditional approaches. We have realized the
analysis of the flows in an open-source software, deployed as a prototypical
web application. An evaluation of sentiment analysis in the context of our
ARGUANA project emphasizes the benefit of modeling overall structure in

1 INTRODUCTION 29

this manner in terms of effectiveness and robustness. Also, we sketch how
an according model helps users understand the results of text analyses.

CoNTRIBUTIONS TO THE CONCERNED RESEARCH FIELDS

This thesis presents, at its heart, findings that refer to the field of computer
science. In particular, the outlined main contributions largely deal with the
development and application of algorithms, especially artificial intelligence
algorithms. Most of them benefit the practical applicability of text mining
in big data scenarios. Our main field of application is computational lin-
guistics. According to our underlying motivation of improving information
search, some of the implications for this field are connected to central con-
cepts from information retrieval, such as information needs or filtering.

Concretely, our approaches to pipeline design and efficiency affect the
information extraction area in the first place. In many extraction tasks, huge
amounts of text are processed to find the tiny portions of text with relevant
information (Sarawagi, 2008). Still, existing approaches waste much effort
processing irrelevant portions. If at all, they filter only based on heuristics
or vague statistical models (cf. SEcTiON 2.4 for details). In contrast, our input
control infers relevance formally and it is well-founded in the theory of truth
maintenance systems. We see the input control as a logical extension of
software frameworks like AracHe UIMA or GATE.

The efficiency of information extraction has long been disregarded to a
wide extent, but it is getting increasing attention in the last years (Chiti-
cariu et al., 2010b). Different from related approaches, we neither require
to lower the effectiveness of extraction, nor do we consider only rule-based
extraction algorithms, because we do not change the algorithms themselves
at all. Thereby, our approach achieves a very broad applicability in several
types of text analysis tasks. It addresses an often overseen means to scale
information extraction to large numbers of texts (Agichtein, 2005).

In terms of domain robustness, we aim at argumentation-related tasks
from the area of text classification. Our overall analysis improves the effec-
tiveness of pipelines on texts from domains unknown beforehand by con-
sidering the previously disregarded overall structure of texts. While the ul-
timate goal of guaranteeing high-quality information in ad-hoc large-scale
text mining is far from being solved, we are confident that our approach
denotes an important step towards a more intelligent text analysis.

In this regard, we also provide new insights into the pragmatics of com-
putational linguistics, i.e., the study of the relation between utterances and
their context (Jurafsky, 2003). Here, the most important findings refer to

30 1.4 CoNTRIBUTIONS AND QUTLINE OF THIS THESIS

Pipeline Design Pipeline Efficiency Pipeline Robustness
abstract solutions
ideal construction ideal ideal domain
and execution scheduling independence
31 4.1 5.1
concrete models
process- information- structure-
oriented view oriented view oriented view
3.2 34 5.2
experimental analyses
impact of relevant impact of impact of
information heterogeneity overall structure
4.2 4.4 5.3
practical approaches
ad-hoc optimal optimized adaptive features for
construction execution scheduling scheduling domain indep'ce
3.3 3.5 4.3 4.5 5.4
implications
trading efficiency parallelizing pipe- explaining
for effectiveness line execution results

3.6 4.6 5.5

Ficure 1.7: The structure of this thesis according to the three main contributions,
showing short names of all sections of the three main chapters.

our work on the argumentation of a text. In particular, we statistically de-
termine common patterns in the way people structure their argumentation
in according texts. Additionally, we claim that our model and quantifica-
tion of the heterogeneity of texts constitutes a substantial building block for
a better understanding of the processing complexity of texts.

To allow for a continuation of our research, a verifiability of our claims,
and a reproducability of our experiments, we have made most developed
approaches freely available in open-source software. Moreover, we provide
three new text corpora for the study of different scientifically and industri-
ally relevant information extraction and text classification problems.

STRUCTURE OF THE REMAINING CHAPTERS

In FiGure 1.7, we illustrate the organization of this thesis according to our
main contributions, established in CHAPTERS 3 to 5. In each case, we first de-
velop an abstract solution to the respective problem. Then, we present and
evaluate practical approaches. The approaches rely on a concrete model of
text analysis and/or are motivated by our own experimental analyses. We
conclude each main chapter with implications for the area of application.
Before, CHAPTER 2 provides the required background knowledge. First,
we introduce basic concepts and approaches in the context of text mining

1 INTRODUCTION 31

relevant for our purposes (Section 2.1). We point out the importance of text
analysis processes and their realization through pipelines in SecTioN 2.2,
while case studies that we resort to in examples and experiments follow in
SECTION 2.3. SECTION 2.4 then summarizes the state of the art.

As FiGURE 1.7 shows, CHAPTER 3 deals with the automation of pipeline
design. In SectioN 3.1, we present paradigms of an ideal pipeline construc-
tion and execution. On this basis, we formalize key concepts from Skc-
TION 2.2 in a process-oriented view of text analysis (SEcTion 3.2) and then
address ad-hoc pipeline construction (Section 3.3). Afterwards, we develop
an information-oriented view of text analysis (SEcTiON 3.4), which can be
operationalized to achieve an optimal execution (Section 3.5). This view
provides new ways of trading efficiency for effectiveness (Section 3.6).

Next, we optimize pipeline efficiency in CHAPTER 4, starting with a formal
solution to the optimal scheduling of text analysis algorithms (Section 4.1).
We analyze the impact of the distribution of relevant information in Sec-
TION 4.2, followed by our approach to optimized scheduling (Section 4.3)
that also requires the filtering view from SecTioN 3.4. An analysis of the
heterogeneity of texts (SEcTioN 4.4) then motivates the need for adaptive
scheduling, which we approach in SEction 4.5. Scheduling has implications
for pipeline parallelization, as we discuss in SEcTION 4.6.

In CuAPTER 5, finally, we present a novel approach for improving pipeline
robustness, which refers to an ideal domain independence (Section 5.1).
We model text analysis from a structure-oriented viewpoint (SectioN 5.2),
which emphasizes the impact of the overall structure in the classification of
argumentative texts (Section 5.3). The model forms the basis for our overall
analysis in SecTiON 5.4 and it can also be exploited for an explanation of
pipeline results (SEcTION 5.5).

We conclude the thesis in CHAPTER 6 with a summary of our contributions
and of remaining problems (SEcTiON 6.1). As a closing step, we give an out-
look and we sketch implications for the given and other areas of computer
science (SectiON 6.2). Information on all text analysis algorithms, software,
and text corpora referred to in this thesis is found in AppenpIcEs A to C.

PuBLISHED RESEARCH WITHIN THIS THESIS

This thesis presents the complete picture of our approach to enable ad-
hoc large-scale text mining for the first time. However, most of our main
findings have already been published in peer-reviewed scientific papers at
renowned international conferences from the fields of computational lin-
guistics and information retrieval. An overview is given in TasLE 1.1, which

32 1.4 CONTRIBUTIONS AND QUTLINE OF THIS THESIS

Publication Venue Type Pages Main sections
Wachsmuth et al. (2010) COLING full paper 9 2.3,Ca1
Wachsmuth et al. (2011) CIKM poster 4 3.1
Wachsmuth and Bujna (2011) IJJCNLP full paper 9 3.6;,53;C.3
Wachsmuth and Stein (2012) COLING poster 10 3.1; 4.1 — 4.2
Wachsmuth et al. (2013a) CICLing full paper 12 3.2-13.3;4.3
Wachsmuth et al. (2013b) IJCNLP full paper 9 4.4—4.5
Wachsmuth et al. (2013c¢) CIKM full paper 10 3.4-3.5
Wachsmuth et al. (2014a) COLING full paper 12 5.2, 5.4 —5.5
Wachsmuth et al. (2014b) CICLing full paper 12 5.3,C.2

TasLE 1.1: Overview of peer-reviewed publications this thesis is based on. For each
publication, the venue, the type, and the number of pages are given as well as the
main sections of this thesis, in which content of the publication is reused.

Thesis

Type

Connection

Main sections

Torunsky (2011)
Pranjic (2011)
Korshunov (2012)

bachelor’s thesis
bachelor’s thesis
master’s thesis

related work
related work
related work

Rose (2012) master’s thesis on-topic 3.2-3.3
Beringer (2012) master’s thesis on-topic 3.6
Melzner (2012) master’s thesis on-topic 4.3
Mex (2013) master’s thesis on-topic 4.4

TasLE 1.2: Overview of the student theses written in the context of this thesis. For
each student thesis, its type and the connection to this thesis are given as well as
the main sections of this thesis, to which its content has contributed.

lists the reference of each paper together with the short name of the respec-
tive conference, the type and length of publication, and the main sections
of this thesis content of the paper appears in.

Moreover, some parts of this thesis integrate content of student theses.
Among these, the most noteworthy refers to Rose (2012), whose results have
significantly influenced the approach to ad-hoc pipeline construction pre-
sented in SecTioN 3.3. For completeness, TasLE 1.2 lists all student theses
written in the context of this thesis. As shown, some of them tackle only
work related to this thesis, though. Also, some of those that are classified
as “on-topic” have contributed to this thesis to a limited degree only.

The exact reuse of content from the listed papers and theses is outlined
in the respective sections. In all cases, this thesis provides many new de-
tails and more comprehensive information on the discussed concepts. In
addition, extended evaluations and tool descriptions are given for most ap-
proaches. Besides, some parts of this thesis represent original contributions
that have not been published before, as pointed out where given.

I put my heart and my soul into my work, and have lost my
mind in the process.

Vincent van Gogh

Text Analysis Pipelines

THE UNDERSTANDING OF NATURAL LANGUAGE IS ONE OF THE PRIMARY ABILITIES that
provide the basis for human intelligence. Since the invention of computers,
people have thought about how to operationalize this ability in software ap-
plications (Jurafsky and Martin, 2009). The rise of the internet in the 1990’s
then made explicit the practical need for automatically processing natural
language in order to access relevant information. Search engines, as a solu-
tion, have revolutionalized the way we can find such information ad-hoc in
large amounts of text (Manning et al., 2008). Until today, however, search
engines excel in finding relevant texts rather than in understanding what in-
formation is relevant in the texts. CHAPTER 1 has proposed text mining as a
means to achieve progress towards the latter, thereby making information
search more intelligent. At the heart of every text mining application lies
the analysis of text, mostly realized in the form of text analysis pipelines. In
this chapter, we present the basics required to follow the approaches of this
thesis to improve such pipelines for enabling text mining ad-hoc on large
amounts of text as well as the state of the art in this respect.

Text mining combines techniques from information retrieval, natural lan-
guage processing, and data mining. In Secrion 2.1, we first provide a fo-
cused overview of those techniques referred to in this thesis. Then, we de-
fine the text analysis processes and pipelines that we consider in our pro-
posed approaches (cf. SEcTioN 2.2). We evaluate the different approaches
based on texts and pipelines from a number of case studies introduced in
Secrion 2.3. Finally, SEcTioN 2.4 surveys and discusses related existing work
in the broad context of ad-hoc large-scale text mining.

33

2.1

34 2.1 Founpations oF TexT MINING

FounbpaTions ofF TeExt MINING

In this section, we explain all general foundations of text mining the the-
sis at hand builds upon. After a brief outline of text mining, we organize
the foundations along the three main research fields related to text mining.
The goal is not to provide a formal and comprehensive introduction into
these fields, but rather to give exactly the information that is necessary to
follow our discussion. At the end, we describe how to develop and evaluate
approaches to text analysis. Basic concepts of text analysis processes are de-
fined in SectioN 2.2, while specific concepts related to our overall approach
are directly defined where needed in CHAPTERs 3 to 5.!

TexT MINING

Text mining deals with the automatic or semi-automatic discovery of new,
previously unknown information of high quality from large numbers of
unstructured texts (Hearst, 1999). Different than sometimes assumed, the
types of information to be inferred from the texts are usually specified man-
ually beforehand, i.e., text mining tackles given tasks. As introduced in Sec-
TION 1.1, this commonly requires to perform three steps in sequence, each of
which can be associated to one field (Ananiadou and McNaught, 2005):

1. Information retrieval. Gather input texts that are potentially relevant
for the given task.

2. Natural language processing. Analyze the input texts in order iden-
tify and structure relevant information.?

3. Datamining. Discover patterns in the structured information that has
been inferred from the texts.

Hearst (1999) points out that the main aspects of text mining are actually
the same as those studied in empirical computational linguistics. Although
focusing on natural language processing, some of the problems computa-
tional linguistics is concerned with are also addressed in information re-
trieval and data mining, such as text classification or machine learning. In
this thesis, we refer to all these aspects with the general term text analy-
sis (cf. SEcTiON 1.1). In the following, we look at the concepts of the three
fields that are important for our discussion of text analysis.

Notice that, throughout this thesis, we generally assume that the reader has a more or
less graduate-level background in computer science.

?Ananiadou and McNaught (2005) refer to the second step as information extraction.
While we agree that information extraction is often the important part of this step, also other
techniques from natural language processing play a role, as discussed later in this section.

2 Text ANaLysis PIPELINES 35

INFORMATION RETRIEVAL

Following Manning et al. (2008), the primary use case of information re-
trieval is to search and obtain those texts from a large collection of unstruc-
tured texts that can satisfy an information need, usually given in the form of
a query. In ad-hoc web search, such a query consists of a few keywords, but,
in general, it may also be given by a whole text, a logical expression, etc. An
information retrieval application assesses the relevance of all texts with re-
spect to a query based on some similarity measure. Afterwards, it ranks the
texts by decreasing relevance or it filters only those texts that are classified
as potentially relevant (Manning et al., 2008).

Although the improvement of ad-hoc search denotes one of the main mo-
tivations behind this thesis (cf. CHaPTER 1), we hardly consider the retrieval
step of text mining, since we focus on the inference of information from the
potentially relevant texts, as we detail in SEcTioN 2.2. Still, we borrow some
techniques from information retrieval, such as filtering or the determina-
tion of similar texts. For this purpose, we require the following concepts,
which are associated to information retrieval rather than to text analysis.

Vectors To determine the relevance of texts, many approaches map all texts
and queries into a vector space model (Manning et al., 2008). In general, such
a model defines a common vector representation x = (z1,...,zx), k> 1, for
all inputs, where each z; € x formalizes an input property. A concrete input
like a text D is then represented by one value LUE-D) for each x;. In web search,
the standard way to represent texts and queries is by the frequencies of the
words they contain from a set of (possibly hundreds of thousands) words.
Generally, any measurable property of an input can be formalized, though,
which becomes particularly relevant for tasks like text classification.

Similarity Given a common representation, similarities between texts and
queries can be computed. Most word frequencies of a search query will of-
ten be 0. In case they are of interest, a reasonable similarity measure is the
cosine distance, which puts emphasis on the properties that occur (Manning
et al., 2008). In CHAPTER 5, we compute similarities of whole texts, where a
zero does not always mean the absence of a property. Such scenarios sug-
gest other measures. In our experiments, we use the Manhattan distance be-
tween two vectors x(!) and x(?) of length k (Cha, 2007), which is defined as:

k
Manhattan distance(x"), x(?) = Z |XZ(-1) - xl(.z)\
i=1

Indexing While queries are typically stated ad-hoc, the key to efficient ad-
hoc search is that all texts in a given collection have been indexed before.

VECTOR SPACE MODEL

MANHATTAN DISTANCE

SEARCH INDEX

TEXT FILTERING

PASSAGE RETRIEVAL

AMBIGUITY

36 2.1 FounbatioNs orF TExT MINING

A query is then matched against the search index, thereby avoiding to pro-
cess the actual texts during search. Very sophisticated indexing approaches
exist and are used in today’s web search engines (Manning et al., 2008). In
its basic form, a search index contains one entry for every measured prop-
erty. Each entry points to all texts that are relevant with respect to the prop-
erty. Some researchers have adapted indexing to information extraction by
building specialized search indexes based on concepts like entities, such as
Cafarella et al. (2005). We discuss in SEcTION 2.4 in how far they reduce the
need for ad-hoc large-scale text mining that we address in this thesis.

Filtering While the ranking of texts by relevance is not needed in this thesis,
we filter relevant portions of texts in CuapPTER 3. Filtering is addressed in
information retrieval on two levels: Text filtering classifies complete texts
as being relevant or irrelevant (Sebastiani, 2002), whereas passage retrieval
aims to determine the passages of a text that are relevant for answering a
given query (Cui et al., 2005). We investigate the difference between our and
existing filtering approaches in Section 2.4 and their integration at the end
of CHaPrER 3. Filtering is usually seen as a classification task (Manning et al.,
2008) and, thus, addressed as a text analysis. We cover text classification as
part of natural language processing, which we describe next.

NATURAL LANGUAGE PROCESSING

Natural language processing covers algorithms and engineering issues for
the understanding and generation of speech and human-readable text (Tsu-
jii, 2011). In the thesis at hand, we concentrate on the analysis of text with
the goal of deriving structured information from unstructured texts.

In text analysis, algorithms are employed that, among others, infer lex-
ical information about the words in a text, syntactic information about the
structure between words, and semantic information about the meaning of
words (Manning and Schiitze, 1999). Also, they may analyze the discourse
and pragmatic level of a text (Jurafsky and Martin, 2009). In CHAPTERS 3
to 5, we use lexical and syntactic analyses as preprocessing for information
extraction and text classification. Information extraction targets at semantic
information. Text classification may seek for both semantic and pragmatic
information. To infer information of certain types from an input text, text
analysis algorithms apply rules or statistics, as we detail below.

Generally, natural language processing faces the problem of ambiguity,
i.e.,, many utterances of natural language allow for different interpretations.
As a consequence, all text analysis algorithms need to resolve ambigui-
ties (Jurafsky and Martin, 2009). Without sufficient context, a correct ana-

2 Text ANaLysis PIPELINES 37

lysis is hence often hard and can even be impossible. For instance, the sen-
tence “SHE’S AN APPLE FAN.” alone leaves undecidable whether it refers
to a fruit or a company.

Technically, natural language processing can be seen as the production
of annotations (Ferrucci and Lally, 2004). An annotation marks a text or a
span of text that represents an instance of a particular type of information.
We discuss the role of annotations more extensively in SEctioN 2.2, before
we formalize the view of text analysis as an annotation task in CHAPTER 3.

Lexical and Syntactic Analyses For our purposes, we distinguish three
types of lexical and syntactical analyses: The segmentation of a text into sin-
gle units, the fagging of units, and the parsing of syntactic structure.

Mostly, the smallest text unit considered in natural language processing
is a token, denoting a word, a number, a symbol, or anything similar (Man-
ning and Schiitze, 1999). Besides the tokenization of texts, we also perform
segmentation with sentence splitting and paragraph splitting in this thesis. In
terms of tagging, we look at part-of-speech, meaning the categories of tokens
like nouns or verbs, although much more specific part-of-speech tags are used
in practice (Jurafsky and Martin, 2009). Also, we perform lemmatization in
some experiments to get the lemmas of tokens, i.e., their dictionary forms,
such as “be” in case of “is” (Manning and Schiitze, 1999). Finally, we use
shallow parsing, called chunking (Jurafsky and Martin, 2009), to identify dif-
ferent types of phrases, and dependency parsing to infer the dependency tree
structure of sentences (Bohnet, 2010). Appenpix A provides details on all
named analyses and on the respective algorithms we rely on. The output of
parsing is particularly important for information extraction.

Information Extraction The basic semantic concept is a named or numeric
entity from the real world (Jurafsky and Martin, 2009). Information extrac-
tion analyzes usually unstructured texts in order to recognize references of
such entities, relations between entities, and events the entities participate
in (Sarawagi, 2008). In the classical view of the MEssaGE UNDERSTANDING
ConrereNCES, information extraction is seen as a template filling task (Chin-
chor et al., 1993), where the goal is to fill entity slots of relation or event
templates with information from a collection or a stream of texts D.

The set of information types C to be recognized is often predefined, al-
though some recent approaches address this limitation (cf. Section 2.4).
Both rule-based approaches, e.g. based on regular expressions or lexicons,
and statistical approaches, mostly based on machine learning (see below),
are applied in information extraction (Sarawagi, 2008). The output is struc-
tured information that can be stored in databases or directly displayed to the

ANNOTATION

SEGMENTATION
TAGGING

PARSING

TOKEN

TOKENIZATION
SENTENCE SPLITTING
PARAGRAPH SPLITTING
PART-OF-SPEECH

PART-OF-SPEECH TAG

LEMMATIZATION

LEMMA

CHUNKING

DEPENDENCY PARSING

ENTITY

RELATION

EVENT

38 2.1 FounbatioNs orF TExT MINING

users (Cunningham, 2006). As a matter of fact, information extraction plays
an important role in today’s database research (Chiticariu et al., 2010a),
while it has its origin in computational linguistics (Sarawagi, 2008). In prin-
ciple, the output qualifies for being exploited in text mining applications,
e.g. to provide relevant information like GoogGLE in the example from FiG-
URE 1.2 (SEcTION 1.1). However, many information types tend to be domain-
specific and application-specific (Cunningham, 2006), making their extrac-
tion cost-intensive. Moreover, while some types can be extracted accurately,
at least from high-quality texts of common languages (Ratinov and Roth,
2009), others still denote open challenges in current research (Ng, 2010).
Information extraction often involves a number of subtasks, including
CoREFERENCE RESOLUTION COTeference resolution, i.e., the identification of references that refer to the
normaLization same entity (Cunningham, 2006), and the normalization of entities and the
like. In this thesis, we focus mainly on the most central subtasks, namely,

ENTITY RECOGNITION . . op e . . .
named and numeric entity recognition, binary relation extraction, and event

RELATION EXTRACTION .
event perecrion Aetection (Jurafsky and Martin, 2009). Concrete analyses as well as algo-

rithms that realize the analyses are found in AppENDIX A. As an example,
Ficure 2.1(a) illustrates instances of different information types in a sample
text. Some refer to a relation of the type Founded(Organization, Time).

In SectION 2.3, we introduce the more sophisticated extraction of finan-
cial events from news articles that we consider in many experiments in this
thesis. Without exception, we extraction information only within but not
across texts unlike e.g. Li et al. (2011). Also, we restrict our view to unstruc-
tured texts and, hence, omit to present approaches that target at structured
or semi-structured texts like wrapper induction (Kushmerick, 1997).

Text Classification Text classification (or text categorization) denotes the
task of assigning each text from a collection or a stream of texts D to one of
cass a set of predefined classes C' = {ci, . .., c;}, k>2 (Jurafsky and Martin, 2009).
cLassirication scueme. We call C' the classification scheme here. The standard approach to text clas-
sification is to statistically learn an assignment based on a set of training
texts with known classes (Manning et al., 2008). To this end, every text is
converted into a vector representation consisting of a number of (typically
lexical or shallow syntactic) features of the text (Sebastiani, 2002). We intro-
duce this representation as part of the data mining foundations below.
Several text classification tasks are studied in natural language process-
ing (Manning and Schiitze, 1999) and information retrieval (Manning et al.,
roric perection 2008). The classic topic detection (Lewis et al., 2004) targets at the main topic
NONSTANDARD of a text, whereas in non-standard text classification tasks, classes go beyond

TEXT CLASSIFICATION TASK

the subjects of texts (Lipka, 2013). Examples are the identification of the

2 Text ANALYSIS PIPELINES

39

information extraction text classification

(a)

Time entity Organization entity
2014 ad revenues of Google are going to reach

(b)

“ This was truly a lovely hotel to stay in .
The staff were all friendly and very helpful .

The location was excellent . The atmosphere is

Reference Time entity

$20B. The search company was founded in '98.

Reference Time entity Founded relation

Its IPO followed in 2004. [...] “ great and the decor is beautiful. ”

Output: Founded("Google", 1998) Output: Topic("hotel"), Sentiment("positive")

FiGure 2.1: (a) An information extraction example: Extraction of a relation of the
type Founded(Organization, Time) from a sample text. (b) A text classification exam-
ple: Classification of the topic and the sentiment polarity of a sample text.

genre of a text in terms of the form, purpose, and/or intended audience of
the text (Stein et al., 2010), or authorship attribution where the author of a text
is to be determined (Stamatatos, 2009). In automatic essay grading, the goal is
to assign ratings from a usually numeric classification scheme to texts like
essays (Dikli, 2006), and stance recognition seeks for the stance of a person
with respect to some topic (Somasundaran and Wiebe, 2010). All these and
some related tasks are discussed more or less detailed in this thesis.

Of highest importance in our experiments is sentiment analysis, which
has become one of the most widely investigated text classification tasks in
the last decade. By default, sentiment analysis refers to the classification
of the sentiment polarity of a text as being positive or negative (Pang et al.,
2002). An example is shown in FIGURE 2.1(b). Sometimes, also an objec-
tive (or neutral) “polarity” is considered, although this class rather refers to
subjectivity (Pang and Lee, 2004). Moreover, sentiment can also be assessed
on numeric scales (Pang and Lee, 2005), which we call sentiment scoring here.
We employ a number of sentiment analysis algorithms in Section 5. They
are listed in APPENDIX A.

As passage retrieval (see above), text classification does not always deal
with complete texts. In CHAPTER 5, we classify the subjectivity of single dis-
course units, where objective units can be seen as facts and subjective units
as opinions. In opinion mining, such techniques are combined with informa-
tion extraction techniques to find opinions on certain topics (Popescu and
Etzioni, 2005), as done in one of our case studies (cf. SEcTion 2.3).3> Senti-
ment analysis and opinion mining are of high practical relevance, because
they can be used in text mining applications that analyze the people’s opin-
ions on products and brands in social media, online review sites, and the
like (Pang and Lee, 2008). For this purpose, data mining needs to be per-
formed on the output of the respective algorithms.

3Unlike us, some researchers do not distinguish between sentiment analysis and opinion
mining, but they use these two terms interchangeably (Pang and Lee, 2008).

GENRE

AUTHORSHIP ATTRIBUTION

AUTOMATIC ESSAY GRADING

STANCE RECOGNITION

SENTIMENT ANALYSIS

SENTIMENT POLARITY

SUBJECTIVITY

SENTIMENT SCORING

FACT
OPINION

OPINION MINING

40 2.1 Founpations or Text MINING

. (=2, ..,5)
input 3 3 . output
data =] mmmmmmees ik ; information

data mining (25 ..5)

l representation generalization T
(] o
° . .
machine learning
instances ° > patterns
O ol :

° °

Ficure 2.2: [llustration of a high-level view of data mining. Input data is repre-
sented as a set of instances, from which a model is derived using machine learning.
The model is then generalized to infer new output information.

Data MINING

Data mining primarily aims at the inference of new information of specified
types from typically huge amounts of input data, already given in struc-
rrepicTion prosiem tured form (Witten and Frank, 2005). To address such a prediction problem,
the data is first converted into instances of a defined representation and then
macine tearnine - handed over to a machine learning algorithm. The algorithm recognizes sta-
tistical patterns in the instances that are relevant for the prediction problem.
mane This process is called training. The found patterns are then generalized, such
that they can be applied to infer new information from unseen data, gener-
erepicrion ally referred to as prediction. In this regard, machine learning can be seen
as the technical basis of data mining applications (Witten and Frank, 2005).
FiGure 2.2 shows a high-level view of the outlined process.

Data mining and text mining are related in two respects: On one hand,
the structured output information of text analysis serves as the input to ma-
chine learning, e.g. to train a text classifier. On the other hand, many text
analyses themselves rely on machine learning algorithms to produce output
information. Both respects are important in this thesis. In the following, we

summarize the basic concepts relevant for our purposes.*

Machine Learning Machine learning describes the ability of an algorithm
to learn without being explicitly programmed (Samuel, 1959). An algorithm
can be said to learn from data with respect to a given prediction problem
and some quality measure, if the measured prediction quality increases the
more data is processed (Mitchell, 1997).> Machine learning aims at predic-
tarceT FuncTion tion problems where the target function, which maps input data to output in-

“Besides the cited references, parts of the summary are inspired by the Coursera machine
learning course, https://www.coursera.org/course/ml (accessed on December 2, 2014).
5 A discussion of common quality measures follows at the end of this section.

2 Text ANALYSIS PIPELINES 41

formation, is unknown and which, thus, cannot be (fully) solved by follow-
ing hand-crafted rules. In the end, all non-trivial text analysis tasks denote
such prediction problems, even though many tasks have been successfully
tackled with rule-based approaches.®

A machine learning algorithm produces a model) : x — C, which gen-
eralizes patterns found in the input data in order to approximate the target
function.) defines a mapping from represented data x to a target variable C,
where C captures the type of information sought for. In text analysis, the
target variable may represent classes of texts (e.g. topics or genres), types
of annotations (e.g. part-of-speech tags or entity types), etc. Since machine
learning generalizes from examples, the learned prediction of output infor-
mation cannot be expected to be correct in all cases. Rather, the goal is to
find a model Y that is optimal with respect to a given quality measure (see
below). Besides the input data, the quality of) depends on how the data is
represented and how the found patterns are generalized.

Representation Similar to information retrieval, most machine learning
algorithms rely on a vector space model. In particular, the input data is rep-
resented by a set X of feature vectors of the form x. x defines an ordered set
of features, where each feature x € x denotes a measurable property of an
input (Hastie et al., 2009). In text mining, common features are e.g. the fre-
quency of a particular word in a given text or the shape of a word (say, cap-
italized or not). Representing input data means to create a set of instances
of x, such that each instance contains one feature value for every feature in x.”
In many cases, hundreds or thousands of features are considered in combi-
nation. They belong to different feature types, like bag-of-words where each
feature means the frequency of a word (Manning et al., 2008).

The feature representation of the input data governs what patterns can
be found during learning. As a consequence, the development of features,
which predict a given target variable C, is one of the most important (and
often most difficult) steps in machine learning. Although common feature
types like bag-of-words help in many text analysis tasks, the most discrimi-
native features tend to require expert knowledge about the task and input.®

5The question for what text analysis tasks to prefer a rule-based approach over a machine
learning approach is out of the scope of this thesis.

"Throughout this thesis, we consider only features whose values come from a metric
scale. Other features are transformed, e.g. a feature with values “red”, “green”, and “blue”
can be represented by three 0/1-features, one for each value. All values are normalized to
the same interval, namely [0,1], which benefits learning (Witten and Frank, 2005).

$The concrete features of a feature type can often be chosen automatically based on input
data, as we do in our experiments, e.g. by taking only those words whose occurrence is above
some threshold. Thereby, useless features that would introduce noise are excluded.

MODEL

TARGET VARIABLE

FEATURE VECTOR

FEATURE

FEATURE VALUE

FEATURE TYPE

BAG-OF-WORDS

FITTING

GRADIENT DESCENT

STOCHASTIC GRADIENT DESCENT

SUPERVISED LEARNING

TRAINING DATA

CLASSIFICATION

42 2.1 Founpations or Text MINING

Also, some features generalize worse than others, often because they cap-
ture domain-specific properties, as we see in CHAPTER 5.

Generalization As shown in FIGURE 2.2, generalization refers to the infer-
ence of output information from unseen data based on patterns captured in
a learned model (Witten and Frank, 2005). As such, it is strongly connected
to the used machine learning algorithm. The training of such an algorithm
based on a given set of instances explores a large space of models, because
most algorithms have a number of parameters. An important decision in
this regard is how much to bias the algorithm with respect to the complex-
ity of the model to be learned (Witten and Frank, 2005). Simple models (say,
linear functions) induce a high bias, which may not fit the input data well,
but regularize noise in the data and, thus, tend to generalize well. Complex
models (say, high polynomials) can be fitted well to the data, but tend to
generalize less. We come back to this problem of fitting in Section 5.1.

During training, a machine learning algorithm incrementally chooses a
possible model and evaluates the model based on some cost function. The
choice relies on an optimization procedure, e.g. gradient descent stepwise
heads towards a local minimum of the cost function until convergence by
adapting the model to all input data (Witten and Frank, 2005). In large-scale
scenarios, a variant called stochastic gradient descent is often more suitable. It
repeatedly iterates over all data instances in isolation, thereby being much
faster while not guaranteeing to find a local minimum (Zhang, 2004). No
deep understanding of the generalization process is needed in this thesis,
since we focus only on the question how to address text analysis tasks with
existing machine learning algorithms in order to then select an adequate
one. What matters for us is the type of learning that can or should be per-
formed within the task at hand. Mainly, we consider two very prominent
types in this thesis, supervised learning and unsupervised learning.

Supervised Learning In supervised learning, a machine learning algorithm
derives a model from known training data, i.e., pairs of a data instance and
the associated output information (Witten and Frank, 2005). The model can
then be used to predict output information for unknown data. The notion
of being supervised refers to the fact that the learning process is guided by
examples of correct predictions. In this thesis, we use supervised learning
for both statistical classification and statistical regression.

Classification describes the task to assign a data instance to the most likely
of a set of two or more predefined discrete classes (Witten and Frank, 2005).

Techniques like feature selection and dimensionality reduction, which aim to reduce
the set of considered features to improve generalizability and training efficiency among oth-
ers (Hastie et al., 2009), are beyond the scope of this thesis.

2 TexT ANALYSIS PIPELINES 43
classification regression
(@) x, (b) ¢ 9
decision training
instances O [s] 0
O regression
o model
o I A
o a ‘s unknown
training ® instance
instances
.. o
training '
O instances 1 unknown
o 0%
o ! instance
X4 t Xy

Ficure 2.3: Illustration of supervised learning: (a) In classification, a decision
boundary can be derived from training instances with known classes (open circles
and squares) based on their features values, here for z; and x5. The boundary de-
cides the class of unknown instances. (b) In regression, a regression model can be
derived from training instances (represented by the feature x;) with known value
for the target variable C. The model decides the values of all other instances.

In case of binary classification, machine learning algorithms seek for an
optimal decision boundary that separates the instances of two classes, as il-
lustrated in FiGure 2.3(a). Multi-class classification is handled through ap-
proaches like one-versus-all classification (Hastie et al., 2009). The applica-
tions of classification in text mining are manifold. E.g., it denotes the stan-
dard approach to text classification (Sebastiani, 2002) and it is also often
used to classify candidate relations between entities (Sarawagi, 2008). In all
respective experiments below, we perform classification with a support vec-
tor machine (Witten and Frank, 2005). Support vector machines aim to maxi-
mize the margin between the decision boundary and the training instances
of each class. They have been shown to often perform well (Meyer et al.,
2003) while not being prone to adapt to noise (Witten and Frank, 2005).°

In case of regression, the task is to assign a given data instance to the most
likely value of a metric, continuous target variable (Witten and Frank, 2005).
The result of learning is a regression model that can predict the target vari-
able for arbitrary instances (cf. FIGURE 2.3(b)). We restrict our view to linear
regression models, which we apply in CHAPTER 4 to predict the run-times of
pipelines. In our experiments, we learn these models with stochastic gradi-
ent descent for efficiency purposes.

Unsupervised Learning In contrast to supervised learning, unsupervised
learning is only given data instances without output information. As a con-
sequence, it usually does not serve for predicting a target variable from an
instance, but merely for identifying the organization and association of in-
put data (Hastie et al., 2009). The most common technique in unsupervised

%Some existing text analysis algorithms that we employ rely on other classification algo-
rithms, though, such as decision trees or artificial neural networks (Witten and Frank, 2005).

DECISION BOUNDARY

SUPPORT VECTOR MACHINE

REGRESSION

REGRESSION MODEL

LINEAR REGRESSION

UNSUPERVISED LEARNING

44

flat clustering

°
cluster 2

°
cluster 1

°
° °
cluster 3

X

(b) x,

2.1 FounbatioNs orF TExT MINING

hierarchical clustering

x>

()

~T~inner
% e | cluster
L ®__leaf

cluster

~—root

o o
cluster

X,

Ficure 2.4: Illustration of unsupervised learning: (a) Flat clustering groups a set
of instances into a (possibly predefined) number of clusters. (b) Hierarchical clus-
tering creates a binary hierarchy tree structure over the instances.

awsterne learning is clustering, which groups a set of instances into a possibly but not

awster necessarily predefined number of clusters (Witten and Frank, 2005). Here,
we consider only hard clusterings, where each instance belongs to a single
cluster that represents some class. Different from classification, the mean-
ing of a class is usually unknown in clustering, though. Clustering learns
patterns in the similarities of instances based on similarity measures like
those used in information retrieval (see above). The resulting model can
assign arbitrary instances to one of the given clusters. In text mining, clus-

FLAT CLUSTERING

HIERARCHICAL CLUSTERING

AGGLOMERATIVE
HIERARCHICAL CLUSTERING

SEMI-SUPERVISED LEARNING

tering is e.g. used to detect texts with similar properties.

Conceptually, two basic types of clustering exist, as shown in FIGURE 2.4.

While flat clustering partitions instances without specifying associations be-
tween the created clusters, hierarchical clustering organizes instances in a hi-
erachical tree (Manning et al., 2008). Each node in the tree represents a clus-
ter of a certain size. The root cluster consists of all instances and each leaf
refers to a single instance. A flat clustering can be derived from a hierar-
chical clustering through cuts in the tree. The tree is incrementally created
by measuring distances between instances and clusters. To this end, a clus-
centrom ter is e.g. represented by its centroid, i.e., the average of all instances in the

cluster (Manning et al., 2008). In general, both clustering types have certain

advantages with respect to efficiency and cluster quality. We rely on hierar-

chical clustering in CHAPTER 5 for reasons discussed there. In particular, we
perform agglomerative hierarchical clustering where the hierarchy is created
bottom-up, beginning with the single instances (Manning et al., 2008).

Further Learning Types Some other machine learning types are used more

or less frequently in text mining, part of which are variations of supervised

learning. Sporadically, we talk about semi-supervised learning in this thesis,

which targets at tasks where much input data is available, but little known
training data. Intuitively, semi-supervised learning first derives patterns
from the training data and then applies knowledge about these patterns to

2 TexT ANALYSIS PIPELINES 45

find similar patterns in the other data (Chapelle et al., 2006). Some research
in information extraction proposes self-supervised learning approaches that
aim to fully overcome the need for known data by generating training data
on their own (Banko et al., 2007). This can work when some output informa-
tion is accessable without uncertainty. We present an according approach
in CHAPTER 5. Also, we employ an entity recognition algorithm that relies
on sequence labeling (cf. APPENDIX A). Sequence labeling classifies each of a
sequence of instances, exploiting information about the other instances.

While there are more learning types, like reinforcement learning, recom-
mender systems or one-class classification, we do not apply them in this
thesis and, so, omit to introduce them here for brevity.

DEVELOPMENT AND EVALUATION

As discussed, text analysis aims to approximate unknown target functions,
which map input texts to output information. To this end, both rule-based
and statistical text analysis approaches are usually developed based on a
collection of input texts with known properties. Still, the output informa-
tion they produce will, in general, not always be correct. The reasons behind
relate to the ambiguity of natural language (see above) and to the incom-
pleteness and inexactness of the input data (Witten and Frank, 2005).

As a consequence, an empirical evaluation of the quality of a text analy-
sis approach is of high importance and mostly closely connected to its de-
velopment. Here, with quality we primarily refer to the effectiveness and
efficiency of an approach, as outlined in Section 1.2.11 While the concrete
quality measures that are adequate for evaluation partly differ between the
mentioned tasks from information retrieval, natural language processing,
and data mining, in principle all three fields rely on similar methods (Man-
ning et al., 2008; Jurafsky and Martin, 2009; Witten and Frank, 2005). In par-
ticular, experiments are performed, in which an approach is first developed
on a collection of input texts. Then, its quality is measured on previously
unseen input texts and compared to alternative approaches. In the follow-
ing, we detail the outlined concepts for text analysis.

Text Corpora In this thesis, we approach text analysis in a corpus linguistics
mannet, i.e., we address all tasks based on the analysis of samples of real-
world texts, called text corpora. A text corpus is a principled collection of
texts that has been compiled to analyze a problem related to language (Biber
et al., 1998). Here, we consider corpora that serve for the development of

"Besides effectiveness and efficiency, we also investigate the robustness and intelligibility
of text analysis in CHAPTER 5. Further details are given there.

SELF-SUPERVISED LEARNING

SEQUENCE LABELING

CORPUS LINGUISTICS

TEXT CORPUS

ANNOTATION PROCESS

GROUND TRUTH

REPRESENTATIVE

BALANCED

POSITIVES

NEGATIVES

TRUE POSITIVES

TRUE NEGATIVES

FALSE NEGATIVES

FALSE POSITIVES

ACCURACY

46 2.1 Founpations or Text MINING

text analyses (e.g. for sentiment analysis). Text corpora often contain an-
notations, especially annotations of the target variable that represents the
output information to be inferred (e.g. the sentiment polarity of a text). In
contrast to the annotations produced by text analysis algorithms, corpus an-
notations have usually been created manually in a cost-intensive annotation
process. To avoid such a process, they can sometimes be derived from exist-
ing metadata (such as the author or star rating of a review). In both cases,
they are seen as ground truth annotations (Manning et al., 2008).

To allow for generalization, the compilation of texts in a text corpus usu-
ally aims to be representative for some target variable C, i.e., it includes the
full range of variability of texts with respect to C (Biber et al., 1998). We dis-
cuss representativeness at the beginning of CHaptER 5. For evaluation, also
the distribution of texts over the values of C' should be representative for
the real distribution. For machine learning, though, a balanced distribution,
where all values of the target variable are evenly represented, is favorable
according to statistical learning theory (Batista et al., 2004).

Effectiveness Text analysis approaches are mostly evaluated with respect to
their effectiveness, which quantifies the extent to which output information
is correct. Given a collection of input texts with ground truth annotations
for the target variable C of a text analysis approach be given, the effective-
ness of all approaches relevant in this thesis can be evaluated in the sense
of a two-class classification task, i.e., whether the decision to produce each
possible instance of C' is correct or not.

We call the output instances of an approach the positives and all other
possible instances the negatives. On this basis, four different sets can be dis-
tinguished (Witten and Frank, 2005): True positives (TP) are all positives that
belong to the ground truth, true negatives (TN) are all negatives that do not
belong to the ground truth, false negatives (FN) are all negatives that belong
to the ground truth, and false positives (FP) are all positives that do not be-
long to the ground truth. FiGure 2.5 illustrates the four sets.

Given the four sets, effectiveness can directly be quantified with different
measures whose adequateness depends on the given task. One measure is
given by the accuracy a, which means the ratio of correct decisions:

a = (|TP|+|TNJ|) / (|TP|+ |TN| + |FP|+ |FN|)

The accuracy is an adequate measure, when all decisions are of equal im-
portance. This holds for many text classification tasks as well as for other
text analysis tasks, in which every portion of an input text is annotated and,
thus requires a decision, such as in tokenization. In contrast, especially in

2 TexT ANALYSIS PIPELINES 47

true false true false
negatives negatives positives positives
(TN) (FN) (TP) (FP)

all information ground truth information output information

Ficure 2.5: Venn diagram showing the four sets that can be derived from the
ground truth information of some type in a collection of input texts and the output
information of that type inferred from the input texts by a text analysis approach.

information extraction tasks like entity recognition, the output information
usually covers only a small amount of the processed input texts. As a con-
sequence, high accuracy can be achieved by simply producing no output
information at all. Thus, accuracy is inadequate if the true negatives are of
low importance. Instead, it seems more suitable to measure effectiveness in
terms of the precision p and the recall r (Manning and Schiitze, 1999):

p = [TP|/(|ITP|+ [FP]) r = [TP|/(|TP|+ [FN])

Precision quantifies the ratio of output information that is inferred correctly,
while recall refers to the ratio of all correct information that is inferred. In
many cases, however, achieving either high precision or high recall is as
easy as useless. E.g., perfect recall can be obtained by producing all possible
output information. If both high precision and high recall are desired, their
harmonic mean can be computed, called the F;-score (or Fi-measure), which
rewards an equal balance between p and r (van Rijsbergen, 1979):

i = 2per/ (o)

The four defined effectiveness measures are used in a number of experi-
ments in this thesis. In addition, we compute the mean regression error of
numeric predictions in CHAPTER 5, which is defined as the average differ-
ence between a predicted and a correct value. Also, we mention the labeled
attachment score once in CHAPTER 3, which denotes the proportion of fully
correctly classified tokens in dependency parsing (Bohnet, 2010). Other ef-
fectiveness measures are not specified here for lack of relevance.

Efficiency Since we aim to perform text analysis on large amounts of input
texts, not only effectiveness is important in this thesis, but also efficiency.
In general, efficiency quantifies costs in terms of the consumption of time
or memory (Cormen et al., 2009). While we sporadically discuss the effects
of memory-related observations in the subsequent chapters, such as a high
system load, we always refer to efficiency here as the run-time (also called
running time) an approach takes to process a given input. We use the terms
efficiency and run-time efficiency interchangeably from here on.

PRECISION

RECALL

F1-SCORE

REGRESSION ERROR

LABELED ATTACHMENT SCORE

RUN-TIME

RUN-TIME EFFICIENCY

OVERALL RUN-TIME

AVERAGE RUN-TIME
PER PORTION OF TEXT

STANDARD DEVIATION

DATASET

TRAINING SET

VALIDATION SET

TEST SET

N-FOLD CROSS-VALIDATION

48 2.1 Founpations or Text MINING

We quantify the efficiency of every algorithm A4; and pipeline II in terms
of two measures, both specified in seconds or milliseconds: First, the abso-
lute overall run-times t;(D) and t11(D) on an input text D, and second, the
average run-time per portion of text (mostly, per sentence), t(A4;) and ¢(II). All
run-times are averaged over a defined number of runs (either 5 or 10) and
complemented by their standard deviation o. In some cases, we compute spe-
cific run-times (say, the training time), as defined where given.

Experiments In corpus linguistics, the general method to develop and eval-
uate both rule-based and statistical text analysis approaches is to perform
experiments based on a split of a text corpus into different datasets. One (or
the union of several) of these datasets is analyzed manually or automatically
for the development, and the others are processed to evaluate a developed
approach (Jurafsky and Martin, 2009).1? We realize the process underlying
this method in the following two ways in the thesis at hand, both of which
are very common in statistical evaluation (Witten and Frank, 2005).

In most cases, we split a given text corpus into a training set, a valida-
tion set, and a test set, as illustrated in FiGUre 2.6(a).13 After developing an
approach on the training set, the quality of different configurations of the
approach (e.g. with different feature vectors or learning parameters) is iter-
atively evaluated on the wvalidation set. The validation set thereby serves for
optimizing the approach, while the approach adapts to the validation set.
The best configuration is then evaluated on the test set (also referred to as the
held-out set). A test set represents the unseen data. It serves for estimating
the quality of an approach in practical applications.!*

The described method appears reasonable when each dataset is of suffi-
cient size and when the given split prevents from bias that may compromise
the representativeness of the respective corpus. In other cases, an alterna-
tive is to perform (stratified) n-fold cross-validation (Witten and Frank, 2005).
In n-fold cross-validation, a text corpus is split into . (e.g. 10) even folds, as-
suring that the distribution of the target variable is similar in all folds. The
development and evaluation then consist of n runs, over which the mea-
sured quality of an approach is averaged. In each run ¢, the i-th fold is used
for evaluation and all others for development. Such a split is shown in Fic-
URE 2.6(b). We conduct according experiments once in CHAPTER 5.

12The development of statistical approaches benefits from a balanced dataset (see above).
This can be achieved through either undersampling minority classes or oversampling ma-
jority classes. Where needed, we mostly perform the latter using random duplicates.

Many text corpora already provide an according corpus split, including most of those
that we use in our experiments (cf. AppenDIxX C).

“In some of our efficiency experiments, no parameter optimization takes place. We leave
out the use of validation set in these cases, as pointed out where relevant.

2.2

2 TexT ANALYSIS PIPELINES 49

(a) training set validation set test set
ENE ENE ENE
corpus
(b) fold 1 fold 2 fold i fold n

text N S S S N N . N
corpus

Ficure 2.6: Illustration of two ways of splitting a text corpus for development and
evaluation: (a) A training set is used for development, a validation set for optimiz-
ing parameters, and a test set for the final evaluation. (b) Each fold i out of n folds
serves for evaluation in the i-th of n runs, while all others are used for development.

Comparison The measured effectiveness and efficiency results of a text
analysis approach are usually compared to alternative ways of addressing
the given task in order to assess whether the results are good bad. For many
tasks, an upper-bound ceiling of effectiveness is assumed to be the effective-
ness a human would achieve (Jurafsky and Martin, 2009)."> For simplicity,
effectiveness is thus often measured with respect to the human-annotated
ground truth. While there is no general upper-bound efficiency ceiling, we
see in the subsequent chapters that optimal efficiency can often be deter-
mined in a given experiment setting. We call every upper-bound ceiling of
a quality measure the gold standard and define it where needed.

For interpretation, results are also checked whether they are significantly
better than some lower bound baseline (Jurafsky and Martin, 2009). E.g., an
accuracy of 40% in a 5-class classification task may appear low, but it is still
twice as good as the accuracy of guessing. The standard way to determine
lower bounds is to compare an evaluated approach with one or more ap-
proaches that are trivial (like guessing), standard (like a bag-of-words ap-
proach in text classification), or known from the literature. We compare our
approaches to according baselines in all our experiments in CHAPTERs 3 to 5.
In these experiments, we mostly consider complex text analysis processes
realized by pipelines of text analysis algorithms, as presented next.

TexT ANALYSIS TAsks, PROCESSES, AND PIPELINES

In Section 1.2, we have roughly outlined that text mining requires task-
specific text analysis processes with several classification, extraction, and
similar steps. These processes are realized by text analysis pipelines that
infer output information from input texts in order to satisfy a given infor-

15Some exceptions to the truth of this assumption exist, of course. For instance, authorship
attribution (see above) is expected to be often hard for humans.

GOLD STANDARD

BASELINE

COLLECTION OF TEXTS

STREAM OF TEXTS

UNSTRUCTURED TEXT

50 2.2 Text ANALysis Tasks, PROCESSES, AND PIPELINES

mation need. Since text analysis pipelines are in the focus of all approaches
proposed in this thesis, we now explain the outlined concepts of text ana-
lysis more comprehensively and we illustrate them at the end. Thereby, we
define the starting point for all discussions in CHAPTERS 3 to 5.

TexT ANALYSIS TASKS

As specified in SEcTioN 1.2, we consider text analysis tasks in which we are
given input texts and an information need to be addressed. The goal is to
infer certain output information from the input texts that is relevant with
respect to the information need. Here, we detail basic concepts behind such
tasks. An extension of these concepts by quality criteria to be met follows
in CHAPTER 3 after discussing the optimality of text analysis pipelines.

Input Texts In principle, the input we deal with in this thesis may be either
given in the form of a collection of texts or a stream of texts. The former denotes
a set of natural language texts { D1, ..., D, }, n> 1, usually compiled with a
purpose, like a text corpus (see above). With the latter, we refer to continu-
ously incoming natural language text data. We assume here that such data
can be split into logical segments D1, Ds, . .. (technically, this is always pos-
sible anyway). Given that the speed of processing a stream can be chosen
freely, we can therefore deal with collections and streams in the same way
except for the constraint that streaming data must be processed in the order
in which it arrives. We denote both a collection and a stream as D.

We see a single text D €D as the atomic input unit in text analysis tasks.
While no general assumptions are made about the length, style, language,
or other properties of D, we largely restrict our view to fully unstructured
texts, i.e., plain texts that have no explicit structure aside from line breaks
and comparable character-level formattings. Although text mining may re-
ceive several types of documents as input, such as HTML files in case of
web applications, our restriction is not a limitation but rather a focus: Most
text analysis approaches work on plain text. If necessary, some content ex-
traction is, thus, usually performed in the beginning that converts the doc-
uments into plain text (Gottron, 2008). Besides, some of our approaches in
the subsequent chapters allow the input texts to already have annotations
of a certain set of zero or more information types Cy, which holds for many
text corpora in computational linguistics research (cf. Section 2.1).

Output Information In Section 2.1, different information types have been
mentioned, e.g. tokens, part-of-speech tags, concrete types of entities and
relations, certain text classification schemes, etc. In general, an information
type C = {ci1, ¢, ...} denotes the set of all pieces of information c € C' that

2 Text ANaLysis PIPELINES 51

represent a particular lexical, syntactic, semantic, or pragmatic concept. We
postpone a more exact definition of information types to CHAPTER 3, where
we formalize the expert knowledge for tackling text analysis tasks automat-
ically. A concrete information type is denoted with an upper-case term in
this thesis, such as Token or a relation type Founded. To signal that an infor-
mation type is part of an event or relation type, we append it to that type in
lower case, such as Token.lemma or Founded.time.

Now, in many tasks from information extraction and text classification,
the goal is to infer output information of a specific set of information types C
from texts or portions of texts. Here, we use the set notation as in proposi-
tional logic (Kleine Biining and Lettmann, 1999),i.e.,asetC={C1,...,Cy},
k > 1, can be understood as a conjunction C; A ... A Ci. In case of
Founded(Organization, Time) from SectiON 2.1, for example, a text or a por-
tion of text that contains an instance of this relation type must comprise
an organization name and a time information as well as a representation
of a foundation relation between them. Hence, the relation type implicitly
refers to a conjunction Founded N Founded.organization N\ Founded.time, i.e., a
set {Founded, Founded.organization, Founded.time/.

Information Needs Based on the notion of information types, we can define
what information is relevant with respect to an information need in that it
helps to fulfill the need. The goal of text mining is to infer new information
of specified types from a collection or a stream of input texts D (cf. Sec-
TION 2.1). From a text analysis perspective, addressing an information need
hence means to return all instances of a given set of information types C
that are found in D. In this regard, C itself can be seen as a specification of
an information need, a single information need in particular. Accordingly,
a combination of k£ > 1 information needs (say, the desire to get information
on k = 2 relations at the same time) refers to a disjunction C; V ...V Cy.
In practical text mining applications, parts of an information need might
be specified beforehand. E.g., Founded(Organization, “1998”) denotes the re-
quest to extract all names of organizations founded in the year 1998.

We assume in this thesis that information needs are already given in a
formalized form. Consequently, we can concentrate on the text analysis pro-
cesses required to address information needs. Similar to information types,
we actually formalize information needs later on in CHAPTER 3.

TexT ANALYSIS PROCESSES

In real-world text analysis tasks, information needs may refer to combina-
tions of concrete information types from the field of natural language pro-

ANALYSIS STEP

SEMANTIC ROLE LABELING

52 2.2 Text ANALysis Tasks, PROCESSEs, AND PIPELINES

cessing. We have introduced the general analyses that can infer these infor-
mation types from input texts in SEction 2.1. However, even the inference of
a single information type often requires several analysis steps, each of which
refers to one text analysis. The reason is that many text analyses require as
input the output of other text analyses, which in turn depend on further text
analyses, and so forth. As a consequence, addressing such an information
need means the realization of a complex text analysis process. Common ex-
amples refer to the areas of information extraction and text classification, as
sketched below. In general, also other natural language processing tasks en-
tail a number of analysis steps, like semantic role labeling, which seeks for the
associations between the verb in a sentence and its arguments (Gildea and
Jurafsky, 2002). Some researchers report on processes in the intersection of
the different areas with almost 30 steps (Solovyev et al., 2013).

Information Extraction As discussed in SectioN 2.1, information extrac-
tion often aims at filling complex event templates whose instances can be
stored in databases. Therefore, information extraction processes are made
up of possibly tens of analysis steps, covering the whole spectrum from lex-
ical and syntactic preprocessing over entity recognition, relation extraction,
and event detection to coreference resolution and normalization. While we
investigate processes with up to 11 distinguished analysis steps in the ex-
periments of the subsequent chapters, for brevity we here exemplify only
that even binary relation extraction may already require several steps.

In particular, assume that instances of the above-mentioned relation type
Founded shall be extracted from the sentences of an input text using super-
vised classification (cf. Section 2.1). Before features can be computed for
classification, both organization and time entities need to be recognized in
the sentences. Entity recognition often relies on the output of a chunker,
while relation extraction benefits from information about the positions of
candidate entities in a dependency parse tree (Sarawagi, 2008). These ana-
lyses are usually based on part-of-speech tags and lemmas, which mostly
makes a preceding tokenization and sentence splitting necessary.

Text Classification In terms of the number of distinguished analysis steps,
text classification processes tend to be shorter than information extraction
processes, because the focus is usually on the computation of feature values
the class of an input text is inferred from. Still, many features rely on the
existence of previously produced instances of information types, especially
those resulting from lexical and shallow syntactic analyses (cf. SEcTiON 2.1).
In sentiment analysis, for example, some baseline approaches derive fea-
tures from the output of tokenization and part-of-speech tagging only (Pang

2 Text ANaLysis PIPELINES 53

et al., 2002), while others e.g. also perform chunking, and extract relations
between recognized domain-specific terms (Yi et al., 2003). Moreover, some
text classification approaches rely on fine-grained information from seman-
tic and pragmatic text analyses, such as the sentiment analysis in our case
study ARGUANA that we introduce in SEcTioN 2.3.

Realization The complexity of common text analysis processes raises the
question of how to approach a text analysis task without losing the mind in
the process like van Gogh according to the introductory quote of this chap-
ter. As the examples above indicate, especially the dependencies between
analysis steps are not always clear in general (e.g. some entity recognition
algorithms require part-of-speech tags, while others do not). In addition,
errors may propagate through the analysis steps, because the output of one
step serves as input to subsequent steps (Bangalore, 2012). This entails the
danger of achieving limited overall effectiveness, although each single ana-
lysis step works fine. A common approach to avoid error propagation is to
perform joint inference, where all or at least some steps are performed con-
currently. Some studies indicate that joint approaches can be more effective
in tasks like information extraction'® (cf. SEcTiON 2.4 for details).

For our purposes, joint approaches entail limitations, though, because we
seek to realize task-specific processes ad-hoc for arbitrary information needs
from text analysis. Moreover, joint approaches tend to be computationally
expensive (Poon and Domingos, 2007), as they explore larger search spaces
emanating from combinations of information types. This can be problem-
atic for the large-scale scenarios we target at. Following (Buschmann et al.,
1996), our requirements suggest the resort to a sequence of small analysis
steps composed to address a task at hand. In particular, small analysis steps
allow for an easy recombination and they simplify the handling of interde-
pedencies. Still, a joint apprach may be used as a single step in an according
sequence. We employ a few joint approaches (e.g. the algorithm exE de-
scribed in AppENDIX A.1) in the experiments of this thesis. Now, we present
the text analysis pipelines that realize sequences of analysis steps.

TexT ANALYSIS PIPELINES

Pipelines can be seen as the standard approach to realize text analysis pro-
cesses. Although the application of pipelines is ubiquitous in natural lan-
guage processing (Hollingshead and Roark, 2007), rarely their design and

16 A simple example is the interpretation of periods in tokenization and sentence splitting:
Knowing sentence boundaries simplifies the determination of tokens with periods like ab-
breviations, but knowing the abbreviations also helps to determine sentence boundaries.

PIPELINE

EMPTY PIPELINE

PARTIAL PIPELINE

PARTIALLY ORDERED PIPELINE

PARTIAL SCHEDULE

UNIVERSE

54 2.2 Text ANALysis Tasks, PROCESSES, AND PIPELINES

execution are defined formally. As sketched in Section 1.2, a text analysis
pipeline processes a collection or a stream of input texts with a sequence of
algorithms in order to stepwise produce a set of output information types.!”
We model a text analysis pipeline in the following way:!®
Text Analysis Pipeline A text analysis pipeline Il is a 2-tuple (A, 7) where

1. Algorithm Set. A = {A,,..., A;,} is a set of m >1 text analysis algo-

rithms, and

2. Schedule. 7 C {(A;<A;j) | A;, Aj € A} is astrict total order on A.
For a concise presentation, we sometimes shorten the notation of a text ana-
lysis pipeline with m algorithms in this thesis as Il = (A;, ..., A;,) and we
often refer to text analysis pipelines as pipelines only. Also, we discuss some
special pipeline cases, namely, empty pipelines with m = 0 algorithms, partial
pipelines that employ a subset of the algorithms in A only, and partially or-
dered pipelines that have a partial schedule, defining a partial order only.

Text Analysis Algorithms According to our motivation from CHAPTER 1, we
consider pipelines in a universe () where the set A of all available text ana-
lysis algorithms is arbitrary but fixed. Each algorithm from Aq employed
in a pipeline IT = (A, 7) realizes one analysis step of a text analysis process,
performing any text analysis like those outlined in Section 2.1. By that, such
an algorithm can be seen as the atomic processing unit in text analysis.
While an algorithm may perform several analyses, feature computations,
and the like, we handle all algorithms in a black box manner, not consider-
ing their internal operations. Instead, we describe each algorithm A; € A by
its input and output behavior. In particular, A; requires a text and instances
of a (possibly empty) set of information types C Em)
instances of a set of information types C Eout) as output. A more formal def-
inition is provided in CHAPTER 3, where we also talk about the effects of
language and other input properties on the applicability and quality of an
algorithm. Technically, algorithms produce annotations of texts or portions

asinputand A; produces

of texts, as discussed in SEctiON 2.1. In some parts of this thesis, we assume
that no text analysis is performed by more than algorithm in a pipeline (as
mentioned there). In this case, an algorithm adds annotations to a text, but
it never deletes or overwrites annotations given already:.

7Some related work speaks about workflows rather than pipelines, such as (Shen et al.,
2007). The term workflow is more general, also covering cascades where the input can take
different paths. Indeed, such cascades are important in text analysis, e.g. when the sequence
of algorithms to be executed depends on the language of the input text. From an execution
viewpoint, however, we can see each taken path as a single pipeline in such cases.

¥While named differently, the way we represent pipelines and the algorithms they com-
pose here largely conform to their realization in standard software frameworks for text ana-
lysis like Apacue UIMA, http://uima.apache.org, accessed on December 8, 2014.

2 Text ANaLysis PIPELINES 55

Schedules The schedule 7 of a pipeline II = (A, 1) prescribes the order in
which the algorithms in A are applied to every input text. As such, 7 rules
whether the input requirements of each algorithm A; € A are fulfilled, i.e.,
whether all information types in Cgm) are produced by the algorithms pre-
ceding A;. While some algorithms will fail completely if their requirements
are not met (e.g. entity recognition must precede the extraction of respec-
tive relations), others will behave unpredictably, usually degrading signif-
icantly in effectiveness. Schedules play an important role in the appraches
proposed in CHAPTERs 3 and 4. We formalize desired properties of sched-
ules in CHAPTER 3. Afterwards, we reveal that scheduling, i.e., the definition
of a schedule for a given algorithm set, impacts pipeline efficiency.

Pipeline Design The general design style of text analysis pipelines is fixed.
According to their definition above, it largely corresponds to the architec-
tural pattern pipes and filters. Pipes and filters divides a process into several
sequential processing steps that are connected by the data flow of the pro-
cess (Buschmann et al., 1996). In particular, the output data of one process-
ing step is the input to the subsequent step. Different from pipes and filters
architectures in areas like computer graphics (Angel, 2008), however, usual
text analysis algorithms do not really transform their input, but they add
information in the sense of annotations to their input only. In terms of data
management, text analysis pipelines hence rather follow a blackboard archi-
tecture (Hayes-Roth, 1985), i.e., they have a shared knowledge base (with
texts and annotations) that all algorithms can access.

In principle, text analysis processes may also be realized withs so called
tees and joins, i.e., algorithms with more than one predecessor or succes-
sor (Buschmann et al., 1996). Without parallelization, a respective pipeline
needs to be linearized for execution anyway. In the mentioned area of com-
puter graphics, different orderings of processing steps like transformations
can lead to different possibly useful results (Angel, 2008). In contrast, as
long as annotations are only added to a text, either the ordering of two al-
gorithms does not matter (in case they are independent) or there is exactly
one correct ordering (otherwise). We discuss limitations of the pipeline ar-
chitecture in Section 2.4 and we clarify both the notion of correct orderings
and the effects of parallelization in CHAPTER 3.

Since the analysis steps to be performed depend on the text analysis task
to be tackled, pipelines are task-specific. Traditionally, a pipeline IT = (A, 7)
is designed manually by a human expert by when given a task by selecting
and scheduling an appropriate subset A of the set of available text analysis
algorithms A (Ferrucci and Lally, 2004).

SCHEDULING

PIPES AND FILTERS

BLACKBOARD ARCHITECTURE

2.3

56 2.3 Casg STUDIES IN THIS THESIS

input execution output
tests D D D D D D
c ctm c (in)
. . 1 2 -1
pipeline 1T = . .. 2O ©
cl c2 m-1 m
2 m-1 i
information C, C,uC, Uc C, Uc oc
i=0 i=0 =@
FIGURE 2.7: Abstract view of executing a text analysis pipeline IT = (A1,..., A)

on a collection or a stream of input texts D to produce a set of output information
types C. For every text in D, each algorithm A4;, 1 < i <m, adds instances of a set of

information types CZ(-O”t) to the instances of all inferred information types U;‘:o C;.
This set is initialized with instances of a possibly empty set of information types C.

Pipeline Execution FiGurk 2.7 illustrates how a pipeline II is traditionally
executed on a collection or a stream of input texts D, for which a set of
information types C is already provided in advance (see above). For a clear
presentation, the type level is shown for most of the concepts explained on
the previous pages. Actually, each text from D runs sequentially through
the m algorithms in II, and each algorithm A; in IT produces instances of a
{u') a5 output by adding annotations to the text.
After the execution of A;, the union U;':o C; of information types inferred
so far is given. The union of information types inferred by all algorithms
employed in ITis supposed to be a superset of the set of information types C,
which represents the information need to be addressed. So, we observe that
the pipeline controls the process of creating all information sought for.

At the same time, the processed input texts themselves do not change

set of information types C

at all within the realized text analysis process, as emphasized in the upper
part of FIGURE 2.7. L.e., each algorithm tradionally processes each input text
completely. We present an improvements of such an execution in CHAPTER 3
after summarizing existing approaches in Section 2.4. Before, we introduce
the case studies we examine in order to evaluate all of our approaches.

CASE STUDIES IN THIS THESIS

In this thesis, we aim to improve the design, efficiency, and robustness of the
text analysis pipelines defined in Section 2.2. All developed approaches are
evaluated in empirical experiments with text analysis tasks that refer to a
selection of scientifically and/or industrially relevant case studies. Some of
these case studies are associated to two of our research projects, INFEXBA
and ArRGUANA, whereas the others are known from related research. We
briefly outline all of them in this section.

2 Text ANaLysis PIPELINES 57

INFEXBA — INFORMATION EXTRACTION FOR BUSINESS APPLICATIONS

InrEXBA is a research project that was funded by the GErman FEDERAL MIN-
1STRY OF EDUCATION AND RESEarcH (BMBF) from 2008 to 2010 under contract
number 01IS08007A. The primary goal of INrFExBA was to develop text min-
ing applications for an automatic market analysis in the sense of a focused
web search engine. Given an organization or market name, the search en-
gine retrieves a set of candidate web pages, extracts, normalizes, and ag-
gregates information about financial forecasts for the given subject from the
web pages, and visualizes the aggregated information. More details about
the project and its results can be found at http://infexba.upb.de.

Within the project, we proposed to perform text mining in a sequence of
eight information retrieval, natural language processing, and data mining
stages (Wachsmuth et al., 2010), but the focus was on those stages related
to information extraction. In particular, information extraction begins after
converting all retrieved web pages into plain texts and ends after normaliza-
tion. We can view the set of these plain texts as a collection of input texts D.
One of the main tasks tackled in INFEXBA was to extract each revenue fore-
cast for the given organization or market at a certain location (including the
date it was published) from D and to bring the time and money informa-
tion associated to the forecast into resolved and normalized form. We can
specify the underlying information need as follows:

Forecast(Revenue(Subject, Location, Resolved(Time), Resolved(Money), Date))

Given the market “automobile” as the subject, FIGURE 2.8(a) exemplifies for
one input text what information is meant to satisfy the need. Some informa-
tion is directly found in the text (e.g. “Egypt”), some must be computed (e.g.
the money amount of “9.95 bn” at the end of 2010).

We refer to the INFExBA project in the majority of experiments in CHar-
TERS 3 and 4 that deal with pipeline design and optimization. For a focused
discussion, we evaluate different simplifications of the presented informa-
tion need, though. One such need, for instance, targets at all related pairs of
time and money information that belong to revenue forecasts. Accordingly,
the text analysis pipelines that we evaluate still perform several preprocess-
ing, entity recognition, relation extraction, event detection, and normaliza-
tion steps in our experiments. In total, 21 different text analysis algorithms
are employed in the evaluated pipelines, namely, all those described in Ap-
PENDIX A that are not used for classification or discourse parsing.

For the development and evaluation of approaches related to an auto-
matic market analysis, a manually annotated text corpus with German on-
line business news articles was created within INreExBA, called the REVENUE

58 2.3 Casg STUDIES IN THIS THESIS

(a) InfexBA (b) ArguAna
Information need Information need
Forecast(Revenue(“automobile®, Location, Opinion(Aspect, Attribute, Polarity)
Resolved(Time), Resolved(Money), Date)) v Sentiment.score
Input text Input text
“ Cairo, August 25th 2010 -- “ This hotel is pretty nice. The rooms are large
Forecast on Egypt’s Automobile industry and comfortable. The lobby is also very nice.
[...] In the next five years, revenues will rise The only problem with this hotel is the pool.
by 97% to US-$19.6 bn. [...] “ It is very cold. I might go back here.
Output information Output information
Forecast(Revenue(Opinion(“hotel”, “pretty nice“, “positive)
“automobile®, Opinion(“rooms*®, “large*, “positive”)
“Egypt*, Opinion(“rooms*, “comfortable”, “positive“)
(“2011-01-01¢, “2015-12-31%), Opinion(“lobby“, “very nice“, “positive)
(“9.95 bn*, “1.97%), Opinion(“pool“, “very cold“, “negative®)
“2010-08-25) Sentiment(“4.0%)

Ficure 2.8: Example for output information inferred from an input text to address
the main information needs in (a) the INrExBA project and (b) the ARGUANA project.

corpus. We describe the corpus in Appenpix C.1. Besides, some existing
corpora are used, especially the CoNLL-2003 dataset (cf. AppENDIX C.4).

ARGUANA — ARGUMENTATION ANALYSIS IN CusTOMER OPINION MINING

As INnrExBA, ARGUANA is a research project that was funded by the Ger-
MAN FEDERAL MINIsTRY OF EDUCATION AND RESEARCH (BMBF). It ran from 2012
to 2014 under contract number 01IS11016A. The project aimed at the devel-
opment of novel text analysis algorithms for fine-grained opinion mining
from customer product reviews. In particular, a focus was on the analy-
sis of the sequence of single arguments in a review in order to capture and
interpret the review’s overall argumentation. From the results of a set of re-
views, a text mining application cannot only infer collective opinions about
different aspects of a product, but also provide a precise classification of
the sentiment of customers with respect to the product. More information
about ARGUANA is given at http://www.arguana.com.

In the project, we developed a complex text analysis process to tackle the
underlying text classification and information extraction tasks. First, the
body of each review text from a collection of input texts D is segmented into
its single subsentence-level discourse units. Every unit is classified as being
either an objective fact, a positive, or a negative opinion. Discourse relations
between the units are then extracted as well as products and aspects the
units are about, together with their attributes. Finally, a sentiment score in
the sense of the review’s overall rating is predicted. The output information
helps to address the following information need:

2 Text ANaLysis PIPELINES 59

Opinion(Aspect, Attribute, Polarity) N\ Sentiment.score

As for this information need, the disjunctions defined in Section 2.2 should
not be misunderstood in the sense that addressing one of the two connected
conjunctions suffices. Rather, it states that instances of either of them is rele-
vant. FiGure 2.8(b) shows the output information for a sample hotel review.
The sentiment score comes from a scale between 1 (worst) and 5 (best).

We refer to the ARGUANA project mostly in the evaluation of pipeline ro-
bustness in CHAPTER 5. There, we omit the recognition of products, aspects,
and attributes, but we focus on text classification approaches based on the
extracted facts, opinions, and discourse relations. The remaining text analy-
sis process is realized with the following pipeline (cf. AprENDIX A for details
on the algorithms): ITarcuana = (SSE, STO2, TPO1, PDU, CSB, CSP, PDR, CSS).

The experiments related to the ARGUANA project are based on two En-
glish collections of texts, consisting of reviews from the hotel domain and
the film domain, respectively. In particular, we rely on our own ARGUANA
TripApvisor corpus developed within the project (cf. Appenpix C.2) as well
as on the widely used SENTIMENT ScALE DATASET (cf. APPENDIX C.4).

OTHER EvALUATED TEXT ANALYSIS TASKS

Most of the concrete text analysis tasks evaluated in this thesis are at least
loosely connected to the presented projects INFEXBA and ARGUANA. In some
cases, though, we provide complementary results obtained in other experi-
ments in order to achieve more generality or to analyze the generalizability
of our approaches. All noteworthy results of this kind are associated to the
following three text analysis tasks.

Genia Event Extraction Genia denotes one of the main evaluation tasks of
the BioNLP SuareD Task (Kim et al., 2011). While the latter deals with the
general question how text mining can help to recognize changes of states of
bio-molecules described in the biomedical literature, the former specifically
targets at the extraction of nine different event types that relate a number
of proteins, other entities, or other events. For instance, a Phosphorylation
event refers to an entity of the Protein type as well as to some information
that denotes a binding site of the protein (Kim et al., 2011). In the evaluation
of automatic pipeline design in CHAPTER 3, we consider the formal specifica-
tions of several entity recognition and event detection algorithms that infer
information types relevant in the Genia task.

Named Entity Recognition A named entity is an entity that refers to a
unique concept from the real world. While numerous types of named enti-
ties exist, most of them tend to be rather application-specific (Jurafsky and

NAMED ENTITY

NAMED ENTITY RECOGNITION

LANGUAGE FUNCTION ANALYSIS

LANGUAGE FUNCTION

2.4

60 2.4 STATE OF THE ART IN AD-HOC LARGE-ScALE TEXT MINING

Martin, 2009). Some types, though, occur in diverse types of natural lan-
guage texts, of which the most common are person names, location names,
and organization names. They have been in the focus of the CoNLL-2003
SHARED TASK on named entity recognition (Tjong Kim Sang and Meulder, 2003).
In CHAPTER 4, we analyze the distribution of the three entity types in several
text corpora from Arpenpix C in the context of influencing factors of pipe-
line efficiency. There, we rely on a common sequence labeling approach
to named entity recognition (cf. SEction 2.1), using the algorithm eNE (cf.
APPENDIX A) in the pipeline Il = (SSE, STO2, TPO{, PCH, ENE).

Language Function Analysis Finally, we address the text classification
task language function analysis in this thesis. We introduced this task our-
selves in (Wachsmuth and Bujna, 2011). As argued there, every text can be
seen as being predominantly expressive, appellative, or informative. These
language functions define an abstract classification scheme, which can be un-
derstood as capturing a single aspect of genres (Wachsmuth and Bujna,
2011). In CHaPTER 5, we concretize the scheme for product-related texts in
order to then outline how much text classification depends on the domain of
the input texts. Moreover, in CHAPTER 3 we integrate cLF in the information
extraction pipelines from INFEXBA (see above). In particular, we employ cLr
to filter possibly relevant candidate input texts, which can be seen as one of
the most common applications of text classification in text mining.

STATE OF THE ART IN AD-HOC LARGE-ScALE TeExT MINING

With the approaches developed in this thesis, we seek to enable the use of
text analysis pipelines for ad-hoc large-scale text mining (cf. SEcTION 1.3).
Several other approaches have been proposed in the literature that tackle
similar problems or that tackle different problems but pursue similar goals.
In this section, we survey the state of the art in these respects, focusing on
text analysis to a wide extent, and we stress how our approaches extend the
state of the art. From an abstract viewpoint, our discussion follows the over-
all structure of this thesis. It reuses content from the related work sections
of most of our publications listed in TABLE 1.1 (SECTION 1.4).

TeExT ANALYSIS APPROACHES

As defined in SectiON 2.2, we consider the classic realization of a text ana-
lysis process in the form of a pipeline, where each algorithm takes as input
the output of all proceeding algorithms and produces further output. Pipe-
lines represent the most widely adopted text analysis approach (Bangalore,

2 Text ANALYSIS PIPELINES 61

2012). The leading software frameworks for text analysis, Apacne UIMA
and GATE, target at pipelines (cf. SEcTiON 1.3). Some of our approaches as-
sume that no analysis is performed by more than one algorithm in a pipe-
line. This is usual, but not always the case (Whitelaw et al., 2008). As a con-
sequence, algorithms can never make up for errors of their predecessors,
which may limit the overall effectiveness of pipelines (Bangalore, 2012). In
addition, the task dependency of effective text analysis algorithms and pipe-
lines (cf. Sections 2.1 and 2.2) renders their use in the ad-hoc search scenar-
ios we focus on problematic (Etzioni, 2011). In the following, we describe
the most important approaches to tackle these problems, grouped under
the topics joint inference, pipeline enhancement, and task independence.

Joint Inference We have already outlined joint inference as a way to avoid
the problem of error propagation in classic pipelines in Section 2.2. Joint
approaches infer different types of information at the same time, thereby
mimicking the way humans process and analyze texts (McCallum, 2009).
Among others, tasks like entity recognition and relation extraction have
been said to benefit from joint inference (Choi et al., 2006). However, the
possible gain of effectiveness comes at the cost of lower efficiency and less
reusability (cf. Section 2.2), which is why we do not target at joint ap-
proaches in this thesis, but only integrate them when feasible.

Pipeline Enhancement Other researchers have addressed the error pro-
pragation through iterative or probabilistic pipelines. In case of the former,
a pipeline is executed repeatedly, such that the output of later algorithms in
a pipeline can be used to improve the output of earlier algorithms (Holling-
shead and Roark, 2007).1 In case of the latter, a probability model is built
based on different possible outputs of each algorithm (Finkel et al., 2006) or
on confidence values given for the outputs (Raman et al., 2013). While these
approaches provide reasonable enhancements of the classic pipeline archi-
tecture, they require modifications of the available algorithms and partly
also significantly reduce efficiency. Both does not fit well to our motivation
of enabling ad-hoc large-scale text mining (cf. SEcTION 1.1).

Task Independence The mentioned approaches can improve the effective-
ness of text analysis. Still, they have to be designed for the concrete task at
hand. For the extraction of entities and relations, Banko et al. (2007) intro-
duced open information extraction to overcome such task dependency. Unlike
traditional approaches for predefined entity and relation types (Cunning-

Ylterative pipelines are somewhat related to compiler pipelines that include feedback
loops (Buschmann et al., 1996). There, results from later compiler stages (say, semantic ana-
lysis) are used to resolve ambiguities in earlier stages (say, lexical analysis).

62 2.4 STATE OF THE ART IN AD-HOC LARGE-ScALE TExT MINING

ham, 2006), their system TExTRUNNER efficiently looks for general syntactic
patterns (made up of verbs and certain part-of-speech tags) that indicate re-
lations. Instead of task-specific analyses, it requires only a keyword-based
query as input that allows identifying task-relevant relations. While Cun-
ningham (2006) argues that high effectiveness implies high specificity, open
information extraction targets at web-scale scenarios. There, precision can
be preferred over recall, which suggests the exploitation of redundancy in
the output information (Downey et al., 2005) and the resort to highly reliable
extraction rules, as in the subsequent system ReVErs (Fader et al., 2011).

Open information extraction denotes an important step towards the use
of text analysis in web search and big data analytics applications. Until
today, however, it is restricted to rather simple binary relation extraction
tasks (Mesquita et al., 2013). In contrast, we seek to be able to tackle arbitrary
text analysis tasks, for which appropriate algorithms are available. With re-
spect to pipelines, we address the problem of task dependency in CHAPTER 3
through an automatic design of text analysis pipelines.

DEsiGN oF TEXT ANALYSIS APPROACHES

In SecTION 2.2, we have discussed that text analysis processes are mostly re-
alized manually in regard of the information need to be addressed. Also,
the resulting text analysis approaches traditionally process all input texts
completely. Not only ApacHe UIMA and GATE themselves provide tool sup-
port for the construction and execution of according text analysis pipelines,
as outlined below. In order to address information needs ad-hoc on large
numbers of texts, a number of approaches have been proposed that, similar
to us, aim for an automatic construction of text analysis approaches as well
as for optimizing their execution by filtering relevant texts and portions of
text. In CHAPTER 3, we detail that the key to make the approaches success-
ful is the existence of a pool of reusable and formally specified text analysis
algorithms and the like (Wimalasuriya and Dou, 2010).

Tool Support Kano et al. (2010) introduced U-Comrarg, which supports
an easy but manual construction of text analysis pipelines. U-ComPARE tar-
gets at the automatic evaluation of pipelines on given text corpora. Simi-
larly, Yang et al. (2013) describe a framework for the comparison of differ-
ent pipelines for the same task. Conversely, the tool WesLicHT, associated to
the project CLARIN-D on interoperable and scalable infrastructure for lan-
guage research, allows setting up pipelines for an automatic corpus anno-
tation (Hinrichs et al., 2010). In contrast to these works, we realize pipeline
construction fully automatically in order to enable ad-hoc text mining.

2 TexT ANALYSIS PIPELINES 63

Automatic Construction For automation, we rely on the artificial intelli-
gence technique planning (Russell and Norvig, 2009). Dezsényi et al. (2005)
have proposed planning for composing information extraction algorithms.
Unlike us, however, the authors neither realize nor evaluate planning and
they disregard the quality of the composition. In related areas, approaches
exist that plan knowledge discovery workflows of minimum length given
an ontology of data mining algorithms (Zakova et al., 2011) or that sum up
the costs of a planned sequence of data stream processing steps (Riabov and
Liu, 2006). While these approaches generally seem transferrable to text ana-
lysis, their quality functions do not apply to the efficiency and effectiveness
criteria relevant here (cf. SectiON 2.1). Recently, Kano (2012) presented a first
glance of the software platform Kacnako, which composes and executes a
defined set of algorithms largely automatically based on the standard algo-
rithm descriptions of ApacHe UIMA. While KacHako appears to be similar
to our expert system for ad-hoc pipeline design described in CHAPTER 3, it
is not yet available, rendering an exact comparison hard.

An alternative to the automatic design of text analysis pipelines is imple-
mented in SystemT, which seeks to address the needs of enterprise analy-
tics applications, such as scalability and usability (Chiticariu et al., 2010b).
SystemT follows the paradigms of declarative information extraction (Krishna-
murthy et al., 2009): a user defines analysis steps with logical constraints in
the form of a query, while the system manages the workflow (Doan et al.,
2009). We do not adopt the declarative approach here, as it is restricted to
rule-based text analyses (Reiss et al., 2008). Still, we rely on similar con-
cepts. E.g., SysteMT restricts some analyses to scopes of a text based on
location conditions in the given query (Shen et al., 2007), which resembles
the filtering of the input control that we develop in CHAPTER 3.

Filtering Our input control filters only relevant portions of an input text in
each analysis step. The idea of filtering relevant texts and portions of texts
is well-known in text analysis. Traditionally, filtering is performed based on
word statistics or predefined patterns (Cowie and Lehnert, 1996). Lewis and
Tong (1992) analyze how the filtering of complete texts at different positions
in a pipeline impacts the effectiveness in complex extraction tasks. Other re-
searchers observe that also classifying the relevance of sentences can help to
improve effectiveness (Patwardhan and Riloff, 2007; Jean-Louis et al., 2011).
Nedellec et al. (2001) stress the importance of such filtering for all extrac-
tion tasks where relevant information is sparse. According to Stevenson
(2007), a restriction to sentences may also limit effectiveness in event detec-
tion tasks, though. While we use filtering to improve efficiency, we provide

64 2.4 STATE OF THE ART IN AD-HOC LARGE-ScALE TEXT MINING

evidence that our approach maintains effectiveness. Still, we allow specify-
ing the sizes of filtered portions to trade efficiency for effectiveness.

Filtering approaches for efficiency often target at complete texts, e.g. us-
ing fast text classification (Stein et al., 2005) or querying approaches trained
on texts with the relations of interest (Agichtein and Gravano, 2003). A tech-
nique that filters portions of text is passage retrieval (cf. SEctioN 2.1). While
many text mining applications do not incorporate filtering until today, pas-
sage retrieval is common where information needs must be addressed in
real-time, e.g. in question answering (Krikon et al., 2012). Cardie et al. (2000)
compare the benefit of statistical and linguistic knowledge for filtering can-
didate passages, and Cui et al. (2005) propose a fuzzy matching of questions
and possibly relevant portions of text. Sarawagi (2008) sees the efficient fil-
tering of relevant portions of input texts as a main challenge of informa-
tion extraction in large-scale scenarios. She complains that existing tech-
niques are still restricted to hand-coded heuristics. Common heuristics aim
for high recall in order not to miss relevant information later on, whereas
precision can be preferred on large collections of texts under the assumption
that relevant information appears redundantly (Agichtein, 2005).

Different from all the outlined approaches, our filtering approach does
not predict relevance, relying on vague models derived from statistics or
hand-crafted rules. In contrast, our approach infers the relevant portions
of an input text formally from the currently available information. More-
over, we discuss in CHAPTER 3 that the input control can be integrated with
common filtering approaches. At the same time, it does not prevent most
other approaches to improve the efficiency of text analysis.

ErFiciENcY OF TEXT ANALYSIS APPROACHES

Efficiency has always been a main aspect of algorithm research (Cormen
et al., 2009). For a long time, most rewarded research on text analysis fo-
cused on effectiveness as did the leading evaluation tracks, such as the
MessaGe UNDERSTANDING CoNFERENCES (Chinchor et al., 1993) or the CoNLL
SHARED TAsK. In the latter, efficiency has at least sometimes been an optional
evaluation criterion (Haji¢ et al., 2009). In times of big data, however, effi-
ciency is getting increasing attention in both research and industry (Chiti-
cariu et al., 2010b). While the filtering techniques from above denote one
way to improve efficiency, the filtered texts or portions of texts still often
run through a process with many expensive analysis steps (Sarawagi, 2008).
Other techniques address this process, ranging from efficient algorithms over
an optimization through scheduling to indexing and parallelization.

2 TexT ANALYSIS PIPELINES 65

Efficient Algorithms Efficient algorithms have been developed for several
text analyses. For instance, Al-Rfou’ and Skiena (2012) present how to apply
simple heuristics and caching mechanisms in order to increase the velocity
of segmentation and tagging (cf. SEction 2.1). Complex syntactic analyses
like dependency parsing can be approached in linear time by processing
input texts from left to right only (Nivre, 2003). Bohnet and Kuhn (2012)
show how to integrate the knowledge of deeper analyses in such transition-
based parsing while still achieving only quadratic complexity in the worst-
case. van Noord (2009) trades parsing efficiency for effectiveness by learn-
ing a heuristic filtering of useful parses. For entity recognition, Ratinov and
Roth (2009) demonstrate that a greedy informed search (Russell and Norvig,
2009) can compete with a more exact sequence labeling (cf. SEcTiON 2.1).
Others offers evidence that simple patterns based on words and part-of-
speech tags suffice for relation extraction, when given enough data (Pantel
et al., 2004). In text classification tasks like genre identification, efficiently
computable features are best practice (Stein et al., 2010). Also, the feature
computation itself can be sped up through unicode conversion and string
hash computations (Forman and Kirshenbaum, 2008).

All these approaches aim to improve the efficiency of single text analyses,
mostly at the cost of some effectiveness. We do not compete with these ap-
proaches but rather complement them, since we investigate how to improve
pipelines that realize complete processes consisting of different text analyses.
In particular, we optimize the efficiency of pipelines without compromising
effectiveness through scheduling.

Scheduling Some approaches related to text mining optimally schedule
different algorithms for the same analysis. For instance, Stoyanov and Eis-
ner (2012) effectively resolve coreferences by beginning with the easy cases,
and Hagen et al. (2011) efficiently detect sessions of search queries with the
same information need by beginning with the fastest detection steps. The
ordering in which information is sought for can also have a big influence on
the run-time of text analysis (Sarawagi, 2008). In CHAPTER 4, we seize on this
idea where we optimize the schedules of pipelines that filter only relevant
portions of texts. However, the optimal schedule is input-dependent, as has
been analyzed by Wang et al. (2011) for rule-based information extraction.
Similar to the authors, we process samples of input texts in order to estimate
the efficiency of different schedules.

In this regard, our research is in line with approaches in the context of the
above-mentioned SystemT. Concretely, Shen et al. (2007) and (Doan et al.,
2009) exploit dependencies and distances between relevant text regions to

66 2.4 STATE OF THE ART IN AD-HOC LARGE-ScALE TEXT MINING

optimize the schedules of declarative information extraction approaches,
yielding efficiency gains of about one order of magnitude. Others obtain
comparable results through optimization strategies such as the integration
of analysis steps (Reiss et al., 2008).

In these works, the authors provide only heuristic hints on the reasons
behind their empirical results. While some algebraic foundations of Sys-
TEMT are established in (Chiticariu et al., 2010a), these foundations again re-
veal the limitation of declarative information extraction, i.e., its restriction to
rule-based text analysis. In contrast, we approach scheduling for arbitrary
sets of text analysis algorithms. While we achieve similar gains as SystemT
through an optimized scheduling, our adaptive scheduling approach is, to
our knowledge, the first that maintains efficiency on heterogeneous input
texts. In addition, we show that the theoretically optimal schedule can be
found with dynamic programming (Cormen et al., 2009) based on the run-
times and filtered portions of text of the employed algorithms.

In the database community, dynamic programming is used to optimize
the efficiency of join operations (Selinger et al., 1979). However, the problem
of filtering relevant portions of text for an information need corresponds
to processing and-conditioned queries (cf. SEcTION 2.2). Such queries select
those tuples of a database table whose values fulfill some attribute conjunc-
tion, as e.g. in SELECT * FROM forecasts WHERE (time>2011 AND time<2015
AND organization=IBM). Different from text analysis, the optimal schedule
for an and-conditioned query is obtained by ordering the involved attribute
tests (e.g. time>2011) according to the numbers of expected matches (Ioan-
nidis, 1997), i.e., without having to consider algorithm run-times.

Indexing An alternative to optimizing the efficiency of text analysis is to
largely avoid the need for efficient analyses by indexing relevant informa-
tion for each input text beforehand (cf. Section 2.1). For instance, Cafarella
et al. (2005) have presented the KnowItNow system, which builds special-
ized index structures using the output of information extraction algorithms.
Their approach has then been adopted in the open information extraction
systems discussed above. Also, the GoocLE KNOWLEDGE GRAPH is opera-
tionalized in an index-like manner as far as known.?’

In the best case, indexing renders text analysis unnecessary when ad-
dressing information needs (Agichtein, 2005). In the database analogy from
above, the run-times of the tests (that correspond to the text analysis algo-

rithms) drop out then. By that, indexing is particularly helpful in scenarios

DGoocLe KnowLepGE GrapH, http://googleblog.blogspot.co.uk/2012/05/introdu
cing-knowledge-graph-things-not.html, accessed on December 22, 2014.

2 TexT ANALYSIS PIPELINES 67

like ad-hoc search. However, it naturally applies only to anticipated infor-
mation needs and to input texts that can be preprocessed beforehand. Both
cannot be assumed in the tasks that we consider (cf. SEcTION 1.2).

Parallelization With the goal of efficiency finally arises the topic of paral-
lelization. As discussed above, we concentrate on typical text analysis al-
gorithms and pipelines, which operate over each input text independently,
making many parallelization techniques easily applicable (Agichtein, 2005).
This might be the reason for the limited literature on parallel text analy-
sis, despite the importance of parallelization for practical text mining appli-
cations. Here, we focus on process-related approaches as opposed to dis-
tributed memory management (Dunlavy et al., 2010) or algorithm schemes
like MaPReDUCE for text analysis (Luis and de Matos, 2009).2!

Text analysis can be parallelized on various levels: Different algorithms
may run distributed, both to increase the load of pipelines (Ramamoor-
thy and Li, 1977) and to parallelize independent analyses. Pokkunuri et al.
(2011) run different pipelines at the same time, and Dill et al. (2003) report
on the parallelization of different algorithms. The two latter do not allow in-
teractions between the parallelized steps, while other approaches also con-
sider synchronization (Egner et al., 2007). A deep analysis of several parallel
scheduling strategies has been performed by Zhang (2010). Apart from that,
different texts can be processed in parallel (Gruhl et al., 2004), whereas the
execution of analysis steps like parsing is commonly parallelized for differ-
ent portions of text (Bohnet, 2010). Kalyanpur et al. (2011) even run different
pipelines on the same text in parallel in order to provide results as fast as
possible in ad-hoc question answering.

At the end of CHAPTER 4, we see that input-based parallelization is always
applicable to the pipelines that we employ. The same holds for the majority
of other approaches, as discussed there. Because of filtering, synchroniza-
tion entails new challenges with respect to our approaches, though.

RoBuUSTNESS OF TEXT ANALYSIS APPROACHES

In CuAPTER 5, we seek to improve the domain robustness of text analysis
in order to produce high-quality information in applications where the do-
main of input texts cannot be anticipated, like ad-hoc web search. Most text
analysis approaches at least partly rely on features of texts that are specific to
a domain of application (Blitzer et al., 2007) and, hence, significantly drop
in effectiveness when being applied in a new domain. Early work in this

2 Accordingly, we omit to talk about infrastructural technologies for distributed comput-
ing, such as AracHe Hapoop, http://hadoop.apache.org, accessed on December 31, 2014.

68 2.4 STATE OF THE ART IN AD-HOC LARGE-ScALE TEXT MINING

context often aimed to reduce the cost of adapting to new domains by ex-
ploiting machine learning techniques for obtaining training data automati-
cally, surveyed by Turmo et al. (2006). However, the predominant approach
today is to tackle domain dependence through domain adaptation (Daumé
and Marcu, 2006), as explained below. Some approaches also strive for do-
main independence based on generally valid features. From these, we adopt
the idea of focusing on structure, especially on the argumentation structure
of texts, which in turn relates to information structure and discourse structure.
Since robustness does not mean perfect effectiveness, we end with existing
work on how to increase the user acceptance of erroneous results.

Domain Adaptation The scenario usually addressed in domain adaptation
is that many training texts are given from some source domain, but only few
from a target domain (Blitzer et al., 2008). The goal is to learn a model on
the source texts that works well on unknown target texts. In information
extraction, most domain adaptation approaches share that they choose a
representation of the source texts that makes them close the distribution of
the target texts (Gupta and Sarawagi, 2009). Similarly, domain adaptation
is often tackled in text classification by separating the domain-specific from
the domain-independent features and then exploiting knowledge about the
latter (Daumé and Marcu, 2006). Also, structural correspondences can be
learned between domains (Blitzer et al., 2007; Prettenhofer and Stein, 2011).
In particular, domain-specific features are aligned based on a few domain-
independent features, e.g. “Stay away!” in the hotel domain may have a
similar meaning as “Read the book!” in the film domain.

Domain adaptation, however, does not really apply to ad-hoc search and
similar applications, where it is not possible to access texts from all tar-
get domains in advance. This also excludes the approach of Gupta and
Sarawagi (2009) who derive domain-independent features from a compari-
son of the set of all unknown target texts to the set of known source texts.

Domain Independence Since domains are often characterized by content
words and the like (cf. CHAPTER 5 for details), most approaches that explic-
itly aim for domain independence try to abstract from content. Glorot et al.
(2011), for instance, argue that higher-level intermediate concepts obtained
through the non-linear input transformations of deep learning help in cross-
domain sentiment analysis of reviews. While we evaluate domain robust-
ness for the same task, we do not presume a certain type of machine learning
algorithms. Rather, we work on the features to be learned. Lipka (2013) ob-
serves that style features like character trigrams serve the robustness of text
quality assessment. Similar results are reported for authorship attribution

2 TexT ANALYSIS PIPELINES 69

in (Sapkota et al., 2014). The authors reveal the benefit of mixed-domain
training sets for developing robust text analysis algorithms.

Some experiments that we perform in CHAPTER 5 suggest that style fea-
tures are still limited in their generalizability. We therefore propose features
that model the structure of texts. This resembles the idea of open informa-
tion extraction, which avoids the resort to any domain-dependent features,
but captures only generally valid syntactic patterns in sentences (see above).
However, we seek for domain independence in tasks, where complete texts
have to be classified. For authorship attribution, Menon and Choi (2011)
provide evidence that structure-based features like function word n-grams
achieve high effectiveness across domains. We go one step further by inves-
tigating the argumentation structure of texts.

Argumentation Structure Argumentation is studied in various disciplines,
such as logic, philosophy, and artificial intelligence. We consider it from
the linguistics perspective, where it is pragmatically viewed as a regulated
sequence of speech or text (Walton and Godden, 2006). The purpose of ar-
gumentation is to provide persuasive arguments for or against a decision
or claim, where each argument itself can be seen as a claim with some ev-
idence. Following the pioneer model of Toulmin (1958), the structure of
an argumentation relates a claim to facts and warrants that are justified by
backings or countered by rebuttals. Most work in the emerging research
area of argumentation mining relies on this or similar models of argumen-
tation (Habernal et al., 2014). Concretely, argumentation mining analyzes
natural language texts in order to detect different types of arguments as well
as their interactions (Mochales and Moens, 2011).

Within our approach to robustness, we focus on texts that comprise a
monological and positional argumentation, like reviews, essays, or scien-
tific articles. In such a text, a single author collates and structures a choice
of facts, pros, and cons in order to persuade the intended recipients about
his or her conclusion (Besnard and Hunter, 2008). Unlike arqumentative zon-
ing (Teufel et al., 2009), which classifies segments of scientific articles accord-
ing to their argumentative functions, we aim to find argumentation patterns
in these texts that help to solve text classification tasks. For this purpose, we
develop a shallow model of argumentation structure in CHAPTER 5.

Information Structure Our model captures sequences of task-specific in-
formation in the units of a text as well as relations between them. By that,
it is connected to information structure, which refers to the way informa-
tion is packaged in a text (Lambrecht, 1994). Different from approaches like
(Bohnet et al., 2013), however, we do not analyze the abstract information

70 2.4 STATE OF THE ART IN AD-HOC LARGE-ScALE TExT MINING

structure within sentences. Rather, we look for patterns of how information
is composed in whole texts (Gylling, 2013). In sentiment-related tasks, for
instance, we claim that the sequence of subjectivities and polarities in the
facts and opinions of a text represents the argumentation of the text. While
Mao and Lebanon (2007) have already investigated such sequences, they
have analyzed the positions in the sequences only separately (cf. CHAPTER 5
for details). In contrast, we develop an approach that learns patterns in the
complete sequences found in texts, thereby capturing the overall structure
of the texts. To the best of our knowledge, no text analysis approach to cap-
ture overall structure has been published before.

Discourse Structure The information structure that we consider is based on
the discourse structure of a text (Gylling, 2013). Discourse structure refers
to organizational and functional relations between the different parts of a
text (Mann and Thompson, 1988), as presented in CHaPTER 5. There, we
reveal that patterns also exist in the sequences of discourse relations that
e.g. cooccur with certain sentiment. Stab and Gurevych (2014b) highlight
the close connection between discourse structure and argumentation, while
O Séaghdha and Teufel (2014) point out the topic independence of discourse
structure. The benefit of discourse structure for sentiment analysis, espe-
cially in combination with opinion polarities, has been indicated in recent
publications (Villalba and Saint-Dizier, 2012; Chenlo et al., 2014). We use
according features as baselines in our domain robustness experiments.

User Acceptance Even a robust text mining application will output erro-
neous results occasionally. If users do not understand the reasons behind,
their acceptance of such an application may be limited (Lim and Dey, 2009).
While in some technologies related to text mining much attention is paid to
the transparency of results, like recommender systems (Sinha and Swearin-
gen, 2002), according research for text analysis is limited. We consider the
explanation of text classification, which traditionally outputs only a class la-
bel, possibly extended by some probability estimate (Manning et al., 2008).
Alvarez and Martin (2009) present an explanation approach to general su-
pervised classification that puts the decision boundary in the focus (cf. Sec-
TION 2.1). Kulesza et al. (2011) visualize the internal logic of a text classifier,
and Gabrilovich and Markovitch (2007) stress the understandability of fea-
tures that correspond to real-world concepts. At the end of CHAPTER 5, we
sketch explanation approaches that follow the intuitions of the two latter
using knowledge about the employed pipelines and information about the
developed features. We believe that the user acceptance of erroneous results
is decisive for the success of ad-hoc large-scale text mining applications.

Once you eliminate the impossible, whatever remains, no
matter how improbable, must be the truth.

Arthur Conan Doyle

Pipeline Design

THE REALIZATION OF A TEXT ANALYSIS PROCESS as a sequential execution of the
algorithms in a pipeline does not mimic the way humans approach text ana-
lysis tasks. Humans simultaneously investigate lexical, syntactic, semantic,
and pragmatic clues in and about a text (McCallum, 2009) while skimming
over the text to fastly focus on the portions of text relevant for a task (Duggan
and Payne, 2009). From a machine viewpoint, however, the decomposition
of a text analysis process into single executable steps is a prerequisite for
identifying relevant information types and their interdependencies. Until
today, this decomposition and the subsequent construction of a text analy-
sis pipeline are mostly made manually, which prevents the use of pipelines
for tasks in ad-hoc text mining. Moreover, such pipelines do not focus on
the task-relevant portions of input texts, making their execution slower than
necessary (cf. SEctioN 2.2). In this chapter, we show that both parts of pipe-
line design (i.e, construction and task-specific execution) can be fully auto-
mated, given appropriate formalizations of text analysis.

In SecTION 3.1, we discuss the optimality of text analysis pipelines and we
introduce paradigms of an ideal pipeline construction and execution. For
automatic construction, we model the expert knowledge underlying text
analysis processes formally (Section 3.2). On this basis, we operational-
ize the cognitive skills of constructing pipelines through partial order plan-
ning (SectioN 3.3). In our evaluation, the construction always takes near
zero-time, thus enabling ad-hoc text mining. In Section 3.4, we then rein-
terpret text analysis as the task to filter the portions of a text that contain
relevant information, i.e., to consistently imitate skimming. We realize this

71

3.1

72 3.1 IpeEaL ConsTRUCTION AND ExEcUTION FOR AD-HOC TEXT MINING

text analysis task

Sections 3.1-3.3
ad-hoc large-scale text analysis pipeline

input
texts

output
information

text analysis algorithms

FI1GURE 3.1: Abstract view of the overall approach of this thesis (cf. FIGURE 1.5). SEc-
TIONS 3.1 to 3.3 discuss the automatic design of ad-hoc text analysis pipelines.

information-oriented view by equipping a pipeline with an input control.
Based on the dependencies between relevant information types, the input
control determines for each employed algorithm in advance what portions
of text its output is relevant for (Section 3.5). Such an automatic truth main-
tenance of the relevant portions results in an optimal pipeline execution,
since all unnecessary analyses of input texts are avoided. This does not only
improve pipeline efficiency significantly in all our experiments, but it also
creates the efficiency potential of pipeline scheduling that we target at in
CHAPTER 4. In addition, it implies different ways of trading efficiency for
effectiveness, which we examine before (SectioN 3.6).

IpeEAL CoNSTRUCTION AND ExXECUTION FOR AD-HOC TEXT MINING

In this section, we formally develop the notion of optimal text analysis pipe-
lines. Then, we introduce generic paradigms of constructing and execut-
ing such pipelines in ad-hoc text analysis tasks. The descriptions of the
paradigms and a subsequent case study of its impact are based on and partly
reuse content from (Wachsmuth et al., 2011). Ficure 3.1 highlights the con-
tribution of this section as well as of the two subsequent sections to the over-
all approach of this thesis. Concretely, this section contains a great deal of
the theory behind ad-hoc large-scale text analysis pipelines, which will be
completed by the optimal solution to pipeline scheduling in SEcTiON 4.1.

THe OrTIMALITY OF TEXT ANALYSIS PIPELINES

The term “optimal” always relates to some measure of quality. Informally,
a text analysis pipeline can be called optimal if it achieves a higher qual-
ity in what it does than any other text analysis pipeline. Accordingly, the
optimality is associated to the tackled text analysis task, i.e., to a particular
information need C and a collection or a stream of input texts D.

3 PrpeLINE DEsioN 73

When we speak of the quality of a pipeline in this thesis, we refer to the
effectiveness of the pipeline’s results with respect to C and to the (run-time)
efficiency of its execution on D. Both can be quantified in terms of the qual-
ity criteria introduced in Section 2.1, which provide the basis for defining
optimality. As soon as more than one criterion is considered, finding an op-
timal pipeline becomes a multi-criteria optimization problem (Marler and
Arora, 2004): Usually, more effective pipelines are less efficient and vice
versa, because, in principle, higher effectiveness implies deeper and, thus,
more expensive analyses (cf. SEcTION 2.4). Sometimes, the optimal pipeline
is the most efficient one under all most effective ones. Sometimes, the op-
posite holds, and sometimes, there may also be a reasonable weighting of
quality criteria. In general, some quality function Q is required that speci-
fies how to compute the quality of a pipeline from the pipeline’s measured
effectiveness and efficiency in the given text analysis task. Without loss of
generality, we assume here that a higher value for O means a higher quality.
The notion of Q implies how to define pipeline optimality:

Pipeline Optimality Let D be a collection or a stream of texts and let C be
an information need. Further, let IT = {IIy, ... ,H|H|} be the set of all text
analysis pipelines for C on D. Then, IT* € II is optimal for C on D with
respect to a quality function Q if and only if the following holds:

VI e II: Q(II*|C,D) > Q(IT|C,D) (3.1)

Now, the question is how to design an optimal pipeline II* for a given infor-
mation need C and a collection or a stream of input texts D. Our focus is
realizing complete text analysis processes rather than single text analyses.
Therefore, we consider the question for a universe €2 where the set Aq of all
available algorithms is predefined (cf. Section 2.2). Under this premise, the
quality of a pipeline follows only from its construction and its execution.

As presented in SEcTION 2.2, the design style of a pipeline IT = (A, 7) is
fixed, consisting in a sequence of algorithms where the output of one algo-
rithm is the input of the next. Consequently, pipeline construction means the
selection of an algorithm set A from Ag that can address C on D as well as
the definition of a schedule 7 of the algorithms in A. Similarly, we use the
term pipeline execution to refer to the application of a pipeline’s algorithms to
the texts in D and to its production of output information of the types in C.
While the process of producing output from an input is defined within an
algorithm, the execution can be influenced by controlling what part of the
input is processed by each algorithm. As a matter of fact, pipeline optimal-
ity follows from an optimal selection and scheduling of algorithms as well
as from an optimal control of the input of each selected algorithm.

QUALITY FUNCTION

PIPELINE OPTIMALITY

PIPELINE CONSTRUCTION

PIPELINE EXECUTION

VALIDITY

COMPLETENESS

ADMISSIBILITY

74 3.1 IpEaL ConstrUCTION AND EXECUTION FOR AD-HOC TEXT MINING

The dependency of optimality on a specified quality function Q suggests
that, in general, there is not a single pipeline that is always optimal for a
given text analysis task. However, one prerequisite of optimality is to ensure
that the respective pipeline behaves correct. Since it is not generally possible
to design pipelines that achieve maximum effectiveness (cf. Section 2.1), we
speak of the validity of a pipeline if it tackles the task it is meant to solve:

Validity Let D be a collection or a stream of texts and let Cy be the set of
information types known in advance for each text in D. Further, let C be an
information need. Then, a text analysis pipeline Il = (A, 1) = (A41,..., An)
is valid for C on D if and only if II is both complete and admissible:
1. Completeness. The algorithm set A = {A;, ..., A,,} produces all in-
formation types needed to address C on D, i.e,,

Cc culjc™ (3.2)
i=1
2. Admissibility. The schedule 7 fulfills all input constraints of all algo-
rithmsin A, i.e., i1
VA € (Ar,..., An): CIY C cou |l (3.3)
j=1

A complete algorithm set does not guarantee that an admissible schedule
exists, since it may yield circular or unfulfillable dependencies. So, both
properties are necessary for validity. Only valid pipelines allow the em-
ployed algorithms to produce output information in the way they are sup-
posed to do, which is why we restrict our view to such pipelines through-
out this thesis. Admissibility has an important implication, which can be
exploited during pipeline construction and execution: Given that no infor-
mation type is output by more than one algorithm of an algorithm set A, all
admissible pipelines based on A achieve the same effectiveness, irrespective
of the tackled text analysis task.!

We come back to this implication when we prove the correctness of our
solution to optimal scheduling in Section 4.1. The intuition is that, under
admissibility, the schedule of any two algorithms is only variable if neither
depends on the other. In this case, applying the algorithms in sequence is
a commutative operation, which leads to the same result irrespective of the
schedule. In our project INFEXBA (cf. SEcTION 2.3), for instance, we extracted
relations between time and money entities from sentences. No matter which

!The limitation to pipelines with only one algorithm for each information type could be
dropped by extending the definition of admissibility, which we leave out here for simplicity.
Admissibility would then require that an algorithm A; € A with input types CE"") is not
scheduled before any algorithm A; for which C§.°“t> N Ci™ £ () holds.

3 PrpeLINE DEsioN 75

(a) \ Impact of algorithm selection (b) \ Impact of pipeline scheduling
/
£ £
*
b B = é)\?' ,schedule i
c c & ,
2 2
[} [}
= £
.19,- schedule 1t .193_ schedule 1t
o o
_ schedule
pipeline effectiveness pipeline effectiveness

Ficure 3.2: The impact of the selection and the schedule of the algorithms in a text
analysis pipeline: (a) Selecting a more effective algorithm set improves a pipeline’s
effectiveness, but it also entails higher run-time. (b) A smart scheduling of the
algorithms can improve the pipeline’s run-time without impairing its effectiveness.

entity type is recognized first, relation extraction must take place only on
those sentences that contain both a time entity and a money entity.

What we get from admissibility is that we can subdivide the problem of
finding an optimal pipeline IT* = (A*, 7*) into two subproblems. The first
subproblem is to select an algorithm set A* that best matches the efficiency-
effectiveness tradeoff to be made, which has to be inferred from the quality
function Q at hand. This situation is illustrated in FiGure 3.2(a). Once A* is
given, the second subproblem breaks down to a single-criterion optimiza-
tion problem that is independent from Q, namely, to schedule and execute
the selected algorithms in the most efficient manner, because all pipelines
based on A* are of equal effectiveness. Accordingly, the best pipeline for
A* in Ficure 3.2(b) refers to the one with lowest run-time. We conclude
that only the selection of algorithms actually depends on Q. Altogether, the
developed pipeline optimization problem can be summarized as follows:?

Pipeline Optimization Problem Let D be a collection or a stream of texts
and let C be an information need. Then, the optimal text analysis pipeline
IT* = (A*, 7*) for C on D with respect to a quality function Q is found by
solving the following subproblems:

1. Algorithm Selection. Determine an algorithm set A* that is complete
with respect to C and that is optimal for C on D with respect to Q.

2. Pipeline Scheduling. Given an algorithm set A* thatis complete with
respect to C. Determine a schedule 7* such that (A*, 7*) is run-time
optimal on D under all admissible pipelines for A*.

’The second subproblem of the pipeline optimization problem has originally been pre-
sented in the context of the theory on optimal scheduling in (Wachsmuth and Stein, 2012).

PIPELINE OPTIMIZATION PROBLEM

FILTERING STEP

FILTERING STAGE

76 3.1 IpEaL ConstrUCTION AND EXECUTION FOR AD-HOC TEXT MINING

Unfortunately, the two subproblems are not fully separable in practice if
the quality function Q is based on both effectiveness and efficiency crite-
ria, since the efficiency of a pipeline is decided by both the selection and
the scheduling. In general, the algorithm selection already implies whether
there is an admissible schedule of the algorithms at all, which raises the
need to consider scheduling within the selection process.

In the following, however, we present basic paradigms of an ideal pipe-
line design. For this purpose, we assume that the selection of algorithms
directly follows from the text analysis task to be tackled. In Section 3.3, we
drop this assumption, when we develop a practical approach to pipeline
construction. Nevertheless, we see there that the assumption is justified as
long as only one quality criterion is to be optimized.

ParabpicMms oF DESIGNING OprtiMAL TEXT ANALYSIS PIPELINES

We consider the pipeline optimization problem for a single arbitrary but
fixed text analysis task, i.e., for a collection or a stream of input texts D and
an information need C. In SectioN 2.2, we have discussed that such a task
implies a certain text analysis process, which infers instances of C from the
texts in D. To realize the process, we can choose from a given set of available
text analysis algorithms Ag. On this basis, we argue that an optimal text

analysis pipeline IT* for C on D results from following four paradigrns.:3

a. Maximum Decomposition. Split the task of addressing C on D into
a sequential process of single text analyses. Realize the process with
a pipeline with one algorithm from Ag, for each text analysis.

b. Early Filtering. After each algorithm that produces information types
from C, insert a filtering step that maintains only those portions of text
from D, which contain instances of these types.

c. Lazy Evaluation. Postpone each algorithm within the pipeline before
the first algorithm that depends on it. Interdependent algorithms to-
gether with their filtering steps are called filtering stages.

d. Optimal Scheduling. Rearrange the schedule of these filtering stages
such that the resulting pipeline is run-time optimal under all admis-
sible pipelines of the filtering stages.

FiGure 3.3 illustrates the four paradigms. In the following, we explain each
of the paradigms in detail.

*The given steps revise the pipeline construction method from (Wachsmuth et al., 2011).
There, we named the last step “optimized scheduling”. We call it “optimal scheduling” here,
since we discuss the theory behind pipeline design rather than a practical approach. The
difference between optimal and optimized scheduling is detailed in CHAPTER 4.

3 PrpeLINE DEsioN 77

text analysis task (a) maximum pipeline of text analysis algorithms
decomposition
° ddl @S @O @
(b) early pipeline of text analysis algorithms with filtering steps
filterin
¢ @mm ..o e (P (A) .~ (A~ B~ (A)~ (&)
text analysis algorithms ~ (€) lazy pipeline of filtering stages
evaluation
............. s (A= (A)= (A)= A (A)= (A7)
Aq
D (d) optimal optimal text analysis pipeline

st LA+ (A)~(A+ (A)(A A0

F1GuRE 3.3: Sample illustration of the four steps of designing an optimal text analy-
sis pipeline for a collection or a stream of input texts D and an information need C
using a selection A, ..., A,, of the set of all text analysis algorithms Ag,.

MaxiMmuM DecoMPOSITION OF A TExT ANALYSIS TASK

Given a text analysis task, maximum decomposition splits the process of ad- maxmwm pEcompostTon
dressing C on D into single text analyses, such that the output of each text
analysis can be inferred with one algorithm A in Ag. As stated above, in this
section we assume for the moment that the decomposition directly implies
the algorithm set A C Aq to be employed, while the text analysis process
suggests an initial schedule 7(® of a pipeline II'® = (A, 7(®)). This is re-
flected in the top part of FiGUure 3.3. The assumption reduces the pipeline
optimization problem to the pipeline scheduling problem (i.e., to find an
optimal schedule 7*). In general, the more a text analysis task is decom-
posed into single text analyses, the better the schedule of the algorithms
that realize the analyses can be optimized.

As motivated in SEcTION 1.1, we consider mainly tasks from information
extraction and text classification. In information extraction, the intuitive
unit of decomposition is given by a text analysis that produces a certain in-
formation type, e.g. author name annotations or the part-of-speech tags of
tokens. In principle, it would be useful to even decompose single text analy-
ses. Different analyses often share similar elements and, so, a finer decom-
position avoids redundant analyses. This fact gets more obvious, when we
look at text classification. Consider a pipeline that first classifies the subjec-
tivity of each text and then the sentiment polarity of each subjective text, as
used in our case study ARGUANA (cf. SEcTION 2.3). Both classifiers rely on
certain preprocessing and feature computation steps. While it is common to
separate the preprocessors, it would also be reasonable to decompose fea-
ture computation, since every shared feature of the two classifiers is com-
puted twice otherwise. Mex (2013) points out the importance of such a de-
composition in efficient approaches to tasks like text quality assessment.

EARLY FILTERING

78 3.1 IpEaL ConstrUCTION AND EXECUTION FOR AD-HOC TEXT MINING

The example also reveals that a non-maximum decomposition can in-
duce redundancy. For the mentioned pipeline, the separation of subjectivity
and polarity classification implies the unit of decomposition. If each classi-
fier encapsulates its feature computations, redundancy cannot be avoided.
While this is different without encapsulation, an according decomposition
entails a longer and thus more complex process, so there is a tradeoff be-
tween encapsulation and process complexity. Besides, in practice, the algo-
rithms that realize text analyses are often packed in off-the-shelf tools that
can only be used as given. Examples can be found in Aprenpix A. Since we
view all algorithms as black boxes (cf. SectioN 2.2), we derive the smallest
units of decomposition from the single information types to be inferred.

EARLY FILTERING OF RELEVANT PoORTIONS OF TEXT

The goal of the valid but not yet optimized pipeline TI(®) = (A, 7(%)) is to
address the information need C only. Therefore, we propose to perform
early filtering on the input texts in D, i.e., to maintain only those portions of
text at each point of a text analysis process, which are relevant in that they
may still contain all information types in C. To this end, we insert filtering
steps ASF), e ,A,(CF) into I1(® after each of the k > 1 algorithms in A that
does not annotate all portions of text (i.e, it is not a preprocessor). By that,
we obtain a modified algorithm set A* = {A;,..., A, A(IF), e ,A,iF } and
hence a modified schedule 7(%) in the resulting pipeline 1"} = (A*, 7)),
Such a pipeline is visualized in step (b) of FIGURE 3.3.

Especially information extraction tasks like INFEXBA (cf. Section 2.3)
profit from filtering. In order to extract all revenue forecasts, for instance,
only those portions of text need to be filtered, which contain both a time
entity and a money entity and where these entities can be normalized if
needed. For many applications on top of INFEXBA, relevant portions of text
will be those only where an arbitrary or even a specific organization or mar-
ket name is recognized. Also, the classification of forecasts can be restricted
to portions that have been identified to refer to revenue.

In the end, the filtering steps give rise to the optimization potential of
pipeline scheduling: Without filtering, every admissible pipeline for an al-
gorithm set would have the same run-time on each input text, because each
algorithm would then process all portions of all texts. Conversely, filter-
ing the relevant portions of text enables a pipeline to avoid all analyses that
are unnecessary for the inference of C from D (Wachsmuth et al., 2013c).
Thereby, the run-time of pipeline can be optimized without changing its ef-
fectiveness. In Section 3.5, we discuss filtering in detail, where we see that

3 PrpeLINE DEsioN 79

a consistent filtering is indeed possible automatically and that it also allows
a trading of efficiency for effectiveness. There, we substitute the filtering
steps by an input control that works independent from the given pipeline.

LAazy EvaLuATION OF TEXT ANALYSIS ALGORITHMS

Based on the filtering steps, an always reasonable step to further improve
the run-time of the pipeline IT(") is to apply lazy evaluation, i.e., to delay each
algorithm in 7(*) until its output is needed. More precisely, each 4; € A*
is moved directly before the first algorithm A; € A* within 7® for which
Cgom) N Cgm) # (holds (or to the end of 7(¥) if no such A; exists). Thereby,
A~ is implicitly partitioned into an ordered set of filtering stages. We define
a filtering stage as a partial pipeline II;, consisting of a filtering step AgF)
and each text analysis algorithm 4; € A with C\”* n C§m) # () that pre-
cedes AE.F). Among others, we sketch a filtering stage in FIGURE 3.3 for A,
A,,—1,and Agle. Of course, no algorithm in A* is executed more than once
in the resulting pipeline of filtering stages I1() = (A*, 7(¢)) 4

The rationale behind lazy evaluation is that, the more filtering takes place
before the execution of an algorithm, the less portions of text the algorithm
will process. Therefore, an algorithm is, in general, faster if it is scheduled
later in a pipeline. The potential of lazy evaluation is rooted in the decom-
position of the text analysis task. E.g., in INFEXBA, tokens were required for
both time recognition and named entity recognition, but part-of-speech tags
only for the latter. The decomposition of tokenization and tagging hence al-
lowed us to tag only tokens of statements with time entities.

OPTIMAL SCHEDULING OF FILTERING STAGES

Finally, an optimal scheduling of the filtering stages in I1(®) determines a
schedule 7* that minimizes the run-time of all text analysis pipelines, which
are based on A*. Different from early filtering and lazy evaluation, optimal
scheduling cannot be performed irrespective of the collection or stream of
input texts D at hand. To underpin this, in the following we combine parts
of the argumentations from (Wachsmuth et al., 2011) and our subsequent
work on optimal scheduling (Wachsmuth and Stein, 2012). While the argu-
mentation refers to algorithms, it applies to filtering stages as well.
Foranalgorithmset A ={A,,..., A}, two admissible pipelines can vary
in their run-time if they apply the algorithms in A to different portions of

*The given definition of filtering stages revises the definition of (Wachsmuth et al., 2011)
where we used the term to denote partial pipelines resulting from early filtering.

LAZY EVALUATION

OPTIMAL SCHEDULING

SELECTIVITY

80 3.1 IpEaL ConstrUCTION AND EXECUTION FOR AD-HOC TEXT MINING

text from D. In particular, the run-time ¢17(D) of a pipeline II = (A, 7) on a
text D € D sums up the run-time ¢; of each algorithm A; € A on the portions
of text d;_; filtered by its preceding algorithm A;_; within 7. Without loss
of generality, assume that = schedules A as (Ai,...,A,,). Then, A; pro-
cesses D, Ay processes di(D), As processes di(D) N dz(D), and so on. So,
we have: ;

m i—1
tn(D) = t(D)+ > () di(D)) (3.4)
=2 j=1
Consequently, optimal scheduling defines an optimization problem,
namely, to find an admissible pipeline II* = (A*, 7*) that minimizes Equa-
TION 3.4.° While it thereby resembles the whole pipeline scheduling prob-
lem, step (b) and (c) of our method usually significantly reduce the search
space to be explored. CHAPTER 4 presents both the theoretical solution and
practical approaches to optimal scheduling. In contrast, in the case study
below we approximate solutions by only pairwise computing the optimal
schedule of two algorithms A;, A» € A based on estimations of their aver-
age run-times as well as of their selectivity g; and ¢, i.e., the ratios of filtered
portions of text when first applicable to a text (in the sense of admissibility).
Concretely, we let A; precede A, in 7* if and only if

t(A1) + q-t(A2) < t(A2) + g2 t(A1). (3.5)

Cask Stupy OF IDEAL PIPELINE CONSTRUCTION AND EXECUTION

In the following, we present an extended version of the application of the
four paradigms in the INFEXBA context from (Wachsmuth et al., 2011). The
goals are (1) to demonstrate how the paradigms can be followed in general
and (2) to offer first evidence that, especially in information extraction, fil-
tering and scheduling significantly impacts efficiency without compromis-
ing effectiveness. The results provide the basis for all practical approaches
and evaluations presented in CHAPTERs 3 and 4. The Java source code of the
performed experiments is detailed in AppENDIX B.4.

Information Need We study the application of the paradigms for the ex-
traction of all related time and money entities from sentences that denote
revenue forecasts. This information need can be modeled as follows:

C = {Relation(Time, Money), Forecast, Revenue}

An instance of C is e.g. found in the sentence “In 2009, market analysts ex-
pected touch screen revenues to reach $9B by 2015”.

SEQUATION 3.4 assumes that the run-time of each filtering step AF) € A* is zero. In
SecTION 3.5, we offer evidence that the time required for filtering is in fact almost neglible.

3 PrpeLINE DEsioN 81

(a) pipeline after maximum decomposition
SSE STO, TPO, PDE;, ETI EMO RTM, RRE,
(b) pipeline after early filtering
(c) pipeline after lazy evaluation
(d) pipeline after optimal scheduling

FiGure 3.4: Application of the paradigms from FIGURE 3.3 of designing an optimal
pipeline ITj = (A%, 7*) for addressing the information need Forecast(Time, Money)
on the Revenue corpus. The application is based on the algorithm set A.

Input Texts In the case study, we process the provided split of our REveNuE
corrus, for which details are presented in Appenpix C.1. We use the training
set of the corpus to estimate all run-times and initially filtered portions of
text of the employed text analysis algorithms.

Maximum Decomposition To address C, we need a recognition of time
entities and money entities, an extraction of their relations, and a detec-
tion of revenue and forecast events. For these text analyses, an input text
must be segmented into sentences and tokens before. Depending on the
employed algorithms, the tokens may additionally have to be extended by
part-of-speech tags, lemmas, and dependency parse information. Based on
these circumstances, we consider three algorithm sets for C, each of them
representing a different level of effectiveness:

A = { ssE, sTO9, TPO1, ETI, EMO, RTM1, RRE], RFO }
A5 = { ssE, sTO3, TPO1, PDE{, ETI, EMO, RTM2, RRE3, RFO }

A3 = { ssE, sTO9, TPO9, TLE, PDEg, ETI, EMO, RTM2, RRE3, RFO }

For information on the algorithms (input and output, quality estimations,
etc.), see AppENDIX A. Differences between A, Ay, and Ajz are that (1) only
A3 contains separated algorithms Troy and TLE for part-of-speech tagging
and lemmatization, (2) because of the simple rule-based relation extractor
RTM1, A requires no dependency parser, and (3) the revenue event detector
RRE; Of A; is faster but less effective than Rrey. Exemplarily, Ficure 3.4 il-
lustrates the design of an optimal text analysis pipeline for A, showing the
result of maximum decomposition at the top, i.e., an initial valid pipeline
" = (Ay, 7{")). For each algorithm set, the initial pipeline schedules the
algorithms in the ordering shown above.

Early Filtering Next, each of the three algorithm sets is modified by adding
filtering steps after every non-preprocessing algorithm. This results in three

82 3.1 IpeEaL ConsTRUCTION AND ExEcUTION FOR AD-HOC TEXT MINING

modified pipelines, such as the pipeline Héb) = (A%, m2) in FiGUure 3.4(b).

The pipelines Hgb) to H:gb)

to match the information needed to address C.

perform filtering on the sentence-level in order

Lazy Evaluation According to the input and output constraints of the em-
ployed algorithms (cf. AprEnDIX A.1), the outputs of the algorithms Tro;
and ppE; in 11V = (A%, 7"} are first needed by rrmy. In TIYY = (A%, i),
we hence delay them after Tt and Emo, as shown in FIGURE 3.4(c), and we

perform similar operations on Hgb) and Hgb).

Optimal Scheduling Finally, we compute an optimal scheduling of the fil-
tering stages in ch), e ch) in order to obtain optimal pipelines I17, . . . , 1I5.
Here, we sketch scheduling for IT = (A3, 75) only. We know that admissible
pipelines based on Aj execute err and Emo before rTMy and et also before
rFO. Given these constraints, we apply the approximation of INEQuALITY 3.5,
i.e., we pairwise compute the optimal schedule of two filtering stages. E.g.,
for Ilzyo = (SSE, STO2, EMO, emoF’)) and Ilzzo = (SSE, STO2, TPO1, RFO, rro(X’)),

we have:
t(RFO) + Grro - t(EMO) = 1.67ms + 0.20ms

< t(EMO) + @emo - t(RFO) = 1.77ms + 0.17ms

Therefore, we move the algorithms in I, before Emo, which also means
that we separate TPO; from pDE; to insert Tro; before rro. For corresponding
reasons, we postpone RTM%F) to the end of the schedule. Thereby, we obtain
the final pipeline IIj that is illustrated in Figure 3.4(d). Correspondingly,
we obtain the following pipelines for A}, A3, and Aj:

IT] = (ssE, sTO2, RRE], rre(™), 11, ETIF), MO, EMOF), TPO,, RFO, RFO(F),
kv, Rm(F))
I = (ssE, stog, ET1, ETI), MO, MO, RRE{, RRE(F), TPOY, TLE, RFO,
rrO'F), PDEs, RTM3, RTM(F))
Baselines To show the single effects of our method, we consider all con-
structed intermediate pipelines. For Ay, for instance, this means Héa), Hgb),
ch), and II5. In addition, we compare the schedules of the different opti-
mized pipelines. Le., for 1 < i,j < 3, we compare each IT} = (A}, 7*) to all
pipelines (A7, 77) with i # j except for 7} 7] applies rrE; before time and
money recognition, which would not be admissible for rrez. For (A, %),

i
we assume that 7} refers to the algorithms of A*. ’
Experiments We compute the run-time per sentence ¢(II) and its standard
deviation o for each pipeline II on the test set of the REVENUE corpus us-
ing a 2 GHz Intel Core 2 Duo MacBook with 4 GB RAM. All run-times are
averaged over five runs. Effectiveness is captured in terms of precision p,
recall 7, and F;-score f; (cf. SEcTION 2.1).

3 PrpeLINE DESIGN 83

5 Ai: p r t+o Az p r t+o As: p r t+o
' 0.65 0.56 3.23 +.07 0.72 0.58 51.05 +.40 0.75 0.61 168.40 £.57
m®) 0.65 0.56 2.864.09 0.72 0.58 49.66 +.28 0.75 0.61 167.85+.70
o 0.65 0.56 2.54 4.08 0.72 0.58 15.54 +.23 0.75 0.61 45.16 +.53
7t 0.65 0.56 2.44 +.03 0.72 0.58 - 0.75 0.61 -
T 0.65 0.56 2.47 +.15 0.72 058 4.77 +.06 0.75 0.61 16.25+.15
o 0.65 0.56 2.62 +.05 0.72 058 4.954.09 0.75 0.61 10.19 +.05

TasLE 3.1: The precision p and recall r as well as the average run-time in millisec-
onds per sentence ¢(II]) and its standard deviation o for each considered pipeline
II] = (A;, ;) based on Ay, Ay, and A3 on the REVENUE corpus.

Results Table 3.1 lists the precision, recall and run-time of each pipeline
based on Ay, Ay, or As. In all cases, the application of the paradigms does
not change the effectiveness of the employed algorithm set.® Both precision
and recall significantly increase from A; to A; and from A, to A3, leading
to Fi-scores of 0.60, 0.65, and 0.67, respectively. These values match the
hypothesis that deeper analyses supports higher effectiveness.

Paradigms (b) to (c) reduce the average run-time of A; from 3.23 ms per
sentence of Hga) to ¢(I}) = 2.44 ms. IIj is indeed the fastest pipeline, but
only at a low confidence level according to the standard deviations. The
efficiency gain under A; is largely due to early filtering and lazy evalua-
tion. In contrast, the benefit of optimal scheduling becomes obvious for A,
and Ajs. Most significantly, II; clearly outperforms all other pipelines with
t(I15) = 10.19 ms. It requires less than one fourth of the run-time of the
pipeline after lazy evaluation, Hi(f), and even less than one sixteenth of the
run-time of I1{").

In Ficure 3.5(a), we plot the run-times of all considered pipelines as a
function of their effectiveness in order to stress the efficiency impact of the
four paradigms. The shown interpolated curves have the shape sketched in
F1GURE 3.2. While they grow more rapidly under increasing F;-score, only a
moderate slope is observed after optimal scheduling. For A, FIGURE 3.5(b)
illustrates the main effects of the paradigms on the employed algorithms:
Dependency parsing (pDE;) takes about 90% of the run-time of both (A, 7,)
and (Ag,). Lazy evaluation then postpones ppE;, reducing the run-time
to one third. The same relative gain is achieved by optimal scheduling, re-
sulting in (A, m5) where pDE; takes less than half of the total run-time.

®In (Wachsmuth et al., 2011), we report on a small precision loss for Az, which we there
assume to emanate from noise of algorithms that operate on token-level. Meanwhile, we
have found out that the actual reason was an implementation error, which is now fixed.

3.1 IpeEaL ConsTRUCTION AND ExEcUTION FOR AD-HOC TEXT MINING

Q0
&~

a ; b RFO
(a) Information need C schedule T, (b) 50 < RRE,
° on the REVENUE CORPUS f ° < RTM, =
2 150 i 2 EMO
8 i 2 ETI
5 s 5
7] i ? 40
5 N 5
a 125 : o a
0 : &% 0
£ L £
£ £
@ 100 [
E EX
b b
c f=
2 2 —PDE
g 7 g ‘
o 8 20
[1] [7]
> i >
© 9 ©
50 : schedule m, =
: 10
25 i schedule 1%,
schedule 1% /;:_81
2
SEN =— |
0! V4
0.61 0.63 0.65 0.67 F,-score m, T, M, 5

Ficure 3.5: (a) Visualization of the run-time per sentence of each considered pipe-
line (A, 7;) on the test set of the REVENUE corrus at the levels of effectiveness rep-
resented by A, Ay, and Ajz. (b) Run-time per sentence of each algorithm A € A,
on the test set depending on the schedule 7; of the respective pipeline (A, ;).

DiscussioN oF IDeEAL PiPELINE CONSTRUCTION AND EXECUTION

According to the observed results, the efficiency impact of an ideal pipeline
construction and execution seems to grow with the achieved effectiveness.
In fact, however, the important difference between the studied algorithm
sets is that the run-times of the algorithms in A are quite uniform, while A
involves one much more expensive algorithm (ppE;) and A3 involves three
such algorithms (Tpoy, TLE, and ppEy). This difference gives rise to much
of the potential of lazy evaluation and optimal scheduling. Moreover, the
room for improvement depends on the density and distribution of relevant
information in input texts. With respect to C, only 2% of the sentences in
the test set of the ReEveENUE corrus are relevant. In contrast, the more dense
relevant information occurs, the less filtering impacts efficiency, and, the
more spread it is across the text, the larger the size of the filtered portions
of text must be in order to achieve high recall, as we see later on.

Still, the introduced paradigms are generic in that they work irrespective
of the employed algorithms and the tackled text analysis task. To give a
first intuition of the optimization potential of the underlying filtering and
scheduling steps, we have considered a scenario where the algorithm set is
already given. Also, the discussed task is restricted to a single information
need with defined sizes of relevant portions of texts. In general, approaches

3.2

3 PrpeLINE DESIGN 85

are needed that can (1) choose a complete algorithm set on their own and
(2) perform filtering for arbitrary text analysis tasks. We address these is-
sues in the remainder of CHAPTER 3. On this basis, CHAPTER 4 then turns our
view to the raised optimization problem of pipeline scheduling.

A PROCESS-ORIENTED VIEW OF TEXT ANALYSIS

The paradigms introduced in Section 3.1 assume that the set of text analysis
algorithms to be employed is given. In practice, the algorithms” properties
need to be specified in a machine-readable form in order to be able to au-
tomatically select and schedule an algorithm set that is complete according
to EQuaTioN 3.2 (see above). For this purpose, we now formalize the con-
cepts underlying text analysis processes in a metamodel. Then, we exem-
plify how to instantiate the metamodel within an application and we dis-
cuss its limitations. This section presents an extended version of the model
from (Wachsmuth et al., 2013a), which in turn consolidates content from the
work of Rose (2012) that has also influenced the following descriptions.

TExT ANALYSIS AS AN ANNOTATION TASK

Our goal is to automatically design optimal text analysis pipelines for arbi-
trary text analysis tasks (cf. EQuaTioN 3.1). As motivated in CHAPTER 1, the
design of a pipeline requires human expert knowledge related to the text
analysis algorithms to be employed. For automation, we therefore develop
a model that formalizes this expert knowledge.

To this end, we resort to the use of an ontology. Following Gruber (1993),
an ontology specifies a conceptualization by defining associations between
names in a universe. We rely on OWL-DL, i.e., a complete and decidable
variant of the web ontology language.” OWL-DL represents knowledge using
description logic, i.e., a subset of first-order logic made up of concepts, roles,
individuals, and their relations (Baader et al., 2003). As Rose (2012) argues,
the most important advantages of OWL-DL are its wide successful use and
its readability for both humans and machines. It is the recommended stan-
dard of the W3C (Horrocks, 2008), which is why OWL-DL ontologies are
normally visualized as resource description framework (RDF) graphs.

Now, to formalize the expert knowledge, we slightly refine our basic sce-
nario from SecTION 1.2 by viewing text analysis as an annotation task:

Given a collection or a stream of input texts D, process D in order to
annotate all information of a structured set of information types C.

"OWL, http://wuw.w3.org/TR/owl2-overview/, accessed on December 27, 2014.

ONTOLOGY

ANNOTATION TASK

ANNOTATION TASK METAMODEL

TYPE SYSTEM

86 3.2 A PROCESs-ORIENTED VIEW OF TEXT ANALYSIS

The rationale behind this process-oriented view is that all text analyses can
largely be operationalized as an annotation of input texts (cf. SectiON 2.2).
Hence, we can model general expert knowledge about text analysis pro-
cesses in an ontology that is irrespective of the given task, whereas both
the input texts to be processed and the information need to be addressed
depend on the task. Such an annotation task metamodel serves as an upper
ontology that is extended by concrete types of knowledge in a task at hand.
In particular, we model three aspects of the universe of annotation tasks:

1. The information to be annotated,
2. the analysis to be performed for annotation, and

3. the quality to be achieved by the annotation.

Each aspect subsumes different abstract concepts, each of which is instanti-
ated by the concrete concepts of the text analysis task at hand. Since OWL-
DL integrates types and instances within one model, such an instantiation
can be understood as an extension of the metamodel. FiGure 3.6 illustrates
the complete annotation task metamodel as an RDF graph. In the following,
we discuss the rationale and representation of all shown concepts in detail.
For a concise presentation of limited complexity and for lack of other re-
quirements, we define only some concepts formally.

MODELING THE INFORMATION TO BE ANNOTATED

The information needs addressed in annotation tasks refer to possibly com-
plex real-world concepts, such as semantic roles or relations between en-
tities (cf. SectioN 2.2). Usually, the types of information that are relevant
for an according application are implicitly or explicitly predefined in a type
system. In our case study INFEXBA, for instance, we considered entity types
like Organization, Time, or Money as well as relation and event types based
on these types, whereas the type system in ARGUANA specified opinions,
facts, product names, and the like (cf. SEcTiON 2.3).

As for our case studies, most types are specific to the language, domain,
or application of interest: Classical natural language processing types em-
anate from lexical or syntactic units like tokens or sentences. While the set of
types is quite stable, their values partly vary significantly across languages.
An example is given by part-of-speech tags, for which a universal tagset can
only catch the most general concepts (Petrov et al., 2012). In information ex-
traction, some entity types are very common like person names, but there
does not even exist an approved definition of the term “entity” (Jurafsky
and Martin, 2009). Relations and events tend to be both domain-specific

3 PrpeLINE DESIGN 87

Information Analysis Quality

1 2 3

C Annotation" 4

type
supenype yp OUtpUt
\ / A
\ 1.2¢ f/input

g1 Information

-~

active type

Quality

1 S
criterion

* o/

Quality Ord_er
estimation relation

Selectivity
estimation

~

/‘

—_—

1
0.1

Aggregate
function

<+
‘\\\\\‘ll‘gillj

successor
Quality Q
priority i

Value
constraint

| |‘| |‘|
—
&

oo

7
N

Quality
prioritization

Primitive
type

Filter

20
0

(instantiated by a type system) (instantiated by an algorithm repository) (instantiated by a quality model)

Ficure 3.6: The proposed metamodel of the expert knowledge that is needed for
addressing annotation tasks, given in the form of an RDF graph. Black arrowheads
denote “has” relations and white arrowheads “subclass” relations. The six non-
white abstract concepts are instantiated by concrete concepts in an application.

and application-specific like the association of time and money entities to
revenue forecasts in INFExBA. And in text classification, the class attribute
and its values differ from application to application, though there are some
common classification schemes like the ReuTErs topics (Lewis et al., 2004)
or the sentiment polarities (Pang et al., 2002).

Since the concrete type systems vary across annotation tasks, it does not
make sense to generally model a certain set of concrete types. In contrast,
we observe that, in principle, all employed type systems instantiate a subset
of the same abstract structures. These structures are defined in our meta-
model, as shown on the left hand side of FIGURE 3.6.3

In particular, we distinguish two abstract types: (1) Primitive types, such as Z:f;nm .
integers, real numbers, booleans, or strings. In the given context, primitive
types play a role where values are assigned to annotations of a text (exam-
ples follow below). (1) An annotation type, which denotes the set of all an- annorarion Tvre
notations of all texts that represent a specific (usually syntactic or semantic)
real-world concept. A concrete annotation type might e.g. be Author, sub-
suming all annotations of author names. An instance of the annotation type
(i.e., an annotation) assigns the represented concept to a span of text, e.g. it
marks a token or an author name. Formally, we abstract from the textual
annotations in the definition of an abstract annotation type, which specifies
the associated concept only through its identifier:

8The notion of type systems and the modeled structures are in line with the software
framework ApracHe UIMA, http://uima.apache.org, accessed on December 8, 2014.

SUPERTYPE

FEATURE

QUALITY CRITERION

88 3.2 A PROCESs-ORIENTED VIEW OF TEXT ANALYSIS
Annotation type An annotation type C4)
concept and associates it to a 2-tuple (C(4), C"(4)) such that

1. Features. C4) is the set of]C(A)| > (features of C), where each

feature is a concept that has a certain abstract type of information.
(4)

represents a specific real-world

2. Supertype. C') is either undefined or it is the supertype of C(4).

According to the definition, concrete annotation types can be organized hi-
erarchically through supertypes. E.g., the supertype of Author may be Person,
whose supertype may in turn be Named entity, and so forth. An annotation
type has an arbitrary but fixed number of features.” Each feature has a type
itself. The value of a feature is either a primitive or an annotation. Primitive
features e.g. represent class values or normalized forms of annotations (say,
the part-of-speech tag or the lemma of a token) or they simply specify an an-
notation’s boundary indices or reference address. Through features, anno-
tations can also model relations or events. In our case study ARGUANA from
SectiON 2.3, we modeled the type Discourse relation on the statement level
as an annotation type with two features of the annotation type Statement as
well as a third primitive string feature that defines the type of relation.

MODELING THE QUALITY TO BE ACHIEVED BY THE ANNOTATION

When addressing an information need, text analysis pipelines often target
at the optimization of a quality function Q (cf. SEcTioN 3.1). Depending on
the task, several concrete quality criteria exist, mostly referring to effective-
ness and efficiency (cf. Section 2.1). The abstract concepts that we consider
for quality criteria are illustrated on the right hand side of Ficure 3.6. In
principle, a quality criterion simply defines a set of comparable values:

Quality Criterion A quality criterion) denotes a set of values that has the
following properties:

1. Order Relation. The values in () have a defined total order.

2. Aggregate Function. (Q may have an aggregate function that maps
two arbitrary values ¢, g2 € @ to an aggregate value ¢ € Q.

Annotation tasks aim at optimizing a set of quality criteria Q. While aggre-
gate functions provide a possibility to infer the quality of a solution from the
quality of solutions to subtasks, far from all criteria entail such functions.
E.g., aggregating the absolute run-times of two text analysis algorithms exe-
cuted in sequence means computing their sum, whereas there is no general
way of inferring an overall precision from the precision of two algorithms.

"We refer to features of annotations in this chapter only. They should not be confused
with the machine learning features (cf. CHAPTER 2.1), which play a role in CHAPTERs 4 and 5.

3 PrpeLINE DESIGN 89

Similarly, quality functions that aggregate values of different quality crite-
ria (as in the case of precision of recall) only rarely exist. Thus, in contrast
to several other multi-criteria optimization problems, weighting different
Pareto-optimal solutions (where any improvement in one criterion worsens
others) does not seem reasonable in annotation tasks. Instead, we propose
to rely on a quality prioritization that defines an order of importance:
Quality Prioritization A quality prioritization p=(Q/, ..., Q}) is a permu-
tation of a set of quality criteria Q={Q1,...,Qr}, k> 1.

E.g., the quality prioritization (run-time, F1-score, recall) targets at finding
the best solution in terms of recall under all best solutions in terms of F;-
score under all best solutions in terms of run-time. As the example shows,
quality prioritizations can at least integrate the weighting of different qual-
ity criteria by including an “aggregate quality criterion” like the F;-score.

In the annotation task metamodel in FIGURE 3.6, we define a quality pri-
oritization as a sequence of one more quality priorities, where each quality
priority points to a quality criterion and has zero or one successor. Within a
universe (2, we call the combination of a set of concrete quality criteria Qq
and a set of concrete quality prioritizations the quality model of 2. Such a
quality model instantiates the concepts of the quality aspect of the annota-
tion task metamodel for a concrete application.

MODELING THE ANALYSIS TO BE PERFORMED FOR ANNOTATION

Finally, to address a given information need under a given quality prioriti-
zation, a text analysis process needs to be realized that performs the anno-
tation of the input texts. Each text analysis refers to the inference of certain
annotation types or features. It is conducted by a set of text analysis algo-
rithms from a given algorithm repository Aq. Within a respective text analysis
process, not all features of an annotation are always set. Similarly, an algo-
rithm may require or produce only some features of an annotation type. We
call a feature an active feature if it has a value assigned.

In accordance with SectioN 2.2, an information need can be seen as defin-
ing a set of annotation types and active features. In addition, it may specify
value constraints, i.e., constraints a text span must meet in order to be con-
sidered for annotation. In one of our prototypes from INrFexBA, for instance,
a user can specify the organization to find forecasts for, say “Google” (cf.
SectION 2.3). Only organization annotations that refer to GoocLe then meet
the implied value constraint. Besides such instance-specific constraints, im-
plicitly all text spans must meet the basic constraint that they refer to the
real-world concept represented by the respective annotation type. Based on

QUALITY PRIORITIZATION

QUALITY PRIORITY

QUALITY MODEL

ALGORITHM REPOSITORY

ACTIVE FEATURE

VALUE CONSTRAINT

INPUT TYPE

OUTPUT TYPE

QUALITY ESTIMATION

ALGORITHM

90 3.2 A PROCESs-ORIENTED VIEW OF TEXT ANALYSIS

the notion of active features and value constraints, we formally define the
abstract information type to be found in annotation tasks as follows:

Information Type A set of instances of an annotation type denotes an in-
formation type C if it contains all instances that meet two conditions:

1. Active Feature. The instances in C either have no active feature or
they have the same single active feature.

2. Constraints. The instances in C fulfill the same value constraints.

By defining an information type C to have at most one active feature, we
obtain a normalized unit of information in annotation tasks. Le., every in-
formation need can be stated as a set of information types C = {C1,...,C}},
meaning a conjunction C; A ... A Cy with £>1, as defined in SecTion 2.2. In
this regard, we can denote the above-sketched example information need
from INFEXBA as {Forecast, Forecast.organization = “Google”}, where Forecast is
a concrete annotation type with a feature organization.

With respect to an information type, the internal operations of a text ana-
lysis algorithm that infers this type from a text do not matter, but only the al-
gorithm’s behavior in terms of the input types it requires and the output types
it produces. The actual quality of an algorithm (say, its efficiency and/or
effectiveness) in processing a collection or a stream of texts is, in general,
unknown beforehand. For many algorithms, quality estimations are known
from evaluations, though. Formally, our abstract concept of an algorithm in
the center of FIGURE 3.6 hence has the following properties:

Algorithm Let C be a set of information types and Q a set of quality criteria.
Then an algorithm A is a 3-tuple (C(™), C©¥) q) with C(") £ C(°%) and

1. Input types. C("") C Cis a set of input information types,
2. Output types. C(°*") C C is a set of output information types, and

3. Quality estimations. q € (Q1U{L}) x ... x (Qq U{L}) contains
one value ¢; for each quality criterion Q); € Q. ¢; defines a quality
estimation or it is unknown, denoted as L.

Different from frameworks like AracHe UIMA, the definition does not al-
low equal input and output types, which is important for ad-hoc pipeline
construction. We come back to this disparity in Section 3.3.

Now, assume that an algorithm has produced instances of an output
type C € C (say, Organization) for an information need C. As discussed in
SECTION 3.1, a means to improve efficiency is early filtering, i.e., to further an-
alyze only portions of text that contain instances of C' and that, hence, may
be relevant for C. Also, portions can be excluded from consideration, if they

3 PrpeLINE DEsioN 91

span only instances that do not fulfill some value constraint in C (say, orga-
nization = “Google”). For such purposes, we introduce the notion of filters,
which discard portions of an input text that do not meet some checked value
constraint and, thus, filter the others. We formalize filters as follows:

Filter Let C be a set of information types. Then a filter is an algorithm A()
that additionally defines a 2-tuple (C(*), ¢(*)) such that

(F)

1. Value constraints. C¥) C C is the set of value constraints of A,

2. Selectivity estimations. ¢(") € [0, 1]* is a vector of selectivity estima-
tions of A("), where each estimation refers to a set of input types.

In line with our case study in SectioN 3.1, the definition states that a filter
entails certain selectivities, which depend on the given input types. Selectiv-
ities, however, strongly depend on the processed input texts, as we observed
in (Wachsmuth and Stein, 2012). Therefore, reasonable selectivity estimations
can only be obtained during analysis and then assigned to a given filter.

Filters can be created on-the-fly for information types. A respective filter
then has a single input type in C(") that equals its output type in C(*“)
except that C(**) additionally meets the filter’s value constraints. We use
filters in Section 3.3 in order to improve the efficiency of text analysis pipe-
lines. In SectiONS 3.4 and 3.5, we outsource filtering into an input control,
which makes an explicit distinction of filters obsolete.

DEFINING AN ANNOTATION TAsk ONTOLOGY

The metamodel in FIGURE 3.6 is instiantiated within a concrete application.
We define the knowledge induced thereby as an annotation task ontology,
which can be understood as a universe for annotation tasks:

Annotation Task Ontology An annotation task ontology (2 is a 3-tuple
(Cq, Qq, Aq) such that

1. Type system. Cq, is a set of concrete annotation types,

2. Quality model. Qg is a set of concrete quality criteria, and

3. Algorithm repository. Ag is a set of concrete algorithms.

This definition differs from the one in (Wachsmuth et al., 2013a), where we
define an annotation task ontology to contain the set of all possible infor-
mation types and quality prioritizations instead of the annotation types and
quality criteria. However, the definition in (Wachsmuth et al., 2013a) was
chosen merely to shorten the discussion. In the end, the set of possible in-
formation types implies the given set of annotation types and vice versa.
The same holds for quality criteria and prioritizations, assuming that all
possible prioritizations of a given set of quality criteria are viable.

FILTER

SELECTIVITY ESTIMATION

ANNOTATION TASK ONTOLOGY

92 3.2 A PROCESS-ORIENTED VIEW OF TEXT ANALYSIS

Information Analysis Quality

Sentence Sentence() OU‘F‘U‘ Sentence splitter
Annotatron nformatront AI orithm
nucleus Fact act Accurac =78%
Feature Annotatron nformatront ualn estimation Order relatlon
output

supertype
Dlscourse relatlon Statement tatement mput Subectlvn classi- ACCU"GC
Annotatlont Annotahon nformauont fier:Algorithm AI orithm uallt criterion
output
supertype
satellite |n| O inion Accurac =80 /e Prio 1:
:Feature Ann tation nformatlont uallt estimation :Quality priority

mput

trln Irlt actlve QDML(P_OL&M) output Polarity classifier
Prlmltlv tur nf :Information type AI rithm

Ficure 3.7: Excerpt from the annotation task ontology that we considered in the
project ARGUANA. The shown concrete concepts instantiate the abstract concepts
of the annotation task metamodel from FiGUrEe 3.6.

To demonstrate the development of concrete concepts based on our an-
notation task metamodel within an application, we sketch a sample anno-
tation task ontology for our case study ARGUANA (cf. SEcTiON 2.3). Here,
we follow the notation of Rose (2012). Although ArRcuANA does not yield
insightful instances of all abstract concepts, it suffices to outline how to use
our annotation task metamodel in practice. In the AracHe UIMA sense, the
instantiation process corresponds to the creation of a type system and all
analysis engine descriptors. That being said, we observe that quality is not
modeled in ApacHe UIMA, which gets important in Section 3.3.

Ficure 3.7 illustrates an excerpt from the sample annotation task ontol-
ogy. It shows five annotation types, such as Statement and Opinion where
the former is the supertype of the latter. The opinion feature polarity is a
primitive, whereas nucleus and satellite of Discourse relation define a relation
between two statements. Annotation types are referenced by the informa-
tion types of concrete algorithm concepts. E.g., Subjectivity classifier has an
output type Opinion() without active features, which also serves as the input
type of Polarity classifier. A polarity classifier sets the value of the polarity
feature, represented by the output type Opinion(polarity). In that, it achieves
an estimated accuracy of 80%. Accuracy denotes the only quality criterion in
the quality model of the sample ontology. Its order relation defines that an
accuracy value ¢ is better than an accuracy value g3 if it is greater than ¢o.

3 PrpeLINE DEsioN 93

The quality criteria directly imply possible quality prioritizations. Here, the
only quality prioritization assigns Prio 1 to accuracy. A more sophisticated
quality model follows in the evaluation in SEcTION 3.3.

DiscussioN OF THE PROCESS-ORIENTED VIEW

To conclude, this section has introduced a metamodel that represents a
processed-oriented view of text analysis in order to formalize knowledge
about concepts of information, analysis, and quality related to according
tasks. We have demonstrated the derivation of a concrete annotation task
ontology from the annotation task metamodel. In the next section, we see
that such an ontology enables an automatic construction of text analysis
pipelines for arbitrary annotation tasks.

The aim of the developed metamodel is to capture the expert knowledge
that is necessary to realize the text analysis processes performed within an
annotation task. Because of that, the model does not cover the underlying
text analysis process itself. Correspondingly, it is designed as being fully
independent from the collection or stream of input texts to be processed as
well as from the information need to be addressed.

In accordance with this, we decided to leave out properties of algorithms
that refer to the input texts, such as the language, domain, and format that
can or should be processed by an algorithm. As a consequence, our model
does not enable mechanisms like the determination of an algorithm for a
specific language, except for those that can be realized through quality cri-
teria. The reason behind the decision is that even an abstract concept like
Input property would require to also consider such properties in the informa-
tion needs. This would make the presentation of ad-hoc pipeline construc-
tion more complex without providing considerable new insights. Besides,
our model is perfectly appropriate as long as the given algorithm repository
is dedicated to the application at hand. Still, an extension in terms of input
properties should be possible without notable problems.

In terms of quality, the chosen prioritization concept naturally entails
limitations. When following a quality prioritization, algorithms that tar-
get at a middle ground between efficiency and effectiveness will tend not to
be considered, as they are neither preferred over very efficient nor over very
effective algorithms. Moreover, it is not possible to e.g. prioritize efficiency
in one stage of a text analysis process (say, preprocessing) and effectiveness
in another (say, entity recognition). Possible solutions to these problems
would require more user interaction in an according application, thereby
reflecting the inherent tradeoff between automation and manual tuning.

33

94 3.3 Ap-HOC CONSTRUCTION VIA PARTIAL ORDER PLANNING

text analysis algorithms t0.06 t0.37
A a 95% S " - f, 0.94
Q () . () (a) algorithm entence en ence (F)
selection (570 Token Token (En®) Time
............. » \
information need 'I'lme
Sentence F)) Forecast
C ={ Forecast(=2015) } Token TPO1 Token.pos ——— e @ RFO() (2015)
t0.34 Token.pos t0.29
quality prioritization a97% a93%
p = (run-time in ms/unit (t), (b) linearization
Foscore (), seeseeeseesed - _,_») _»_» _» =G

Accuracy (a)) 10.06 t037 qPo3s 10.34 t029 qPo.10

Ficure 3.8: Sample illustration of our approach to ad-hoc pipeline construction:
(a) A complete algorithm set A C A, is selected that addresses a given information
need C while following a given quality prioritization p. (b) The partial order of the
algorithms in A is linearized to obtain a text analysis pipeline IT = (A, 7).

Ap-HOC CONSTRUCTION VIA PARTIAL ORDER PLANNING

Based on the proposed process-oriented view of text analysis, this section
shows how to construct text analysis pipelines ad-hoc for arbitrary infor-
mation needs and quality prioritizations. First, we show how to perform
partial order planning (Russell and Norvig, 2009) to select an algorithm set
that is complete in terms of the definition in Section 3.1 while allowing for
an admissible schedule. Then, we present a basic approach to linearize the
resulting partial order of the selected algorithms. More efficient lineariza-
tion approaches follow in CHAPTER 4 in the context of pipeline scheduling.
We realize the pipeline construction process in an expert system that we
finally use to evaluate the automation of pipeline construction. As above,
this section reuses content of (Wachsmuth et al., 2013a) and (Rose, 2012).

Ficure 3.8 exemplarily illustrates the pipeline construction for a sample
information need C from our case study INrexBA (cf. SEcTION 2.3), which re-
quests all forecasts for the year 2015 or later. Depending on the given quality
prioritization p, a set of algorithms that can address C is selected from an
algorithm repository Ag, relying on quality estimations of the algorithms.
In addition, filters are automatically created and inserted. The lineariza-
tion then derives an efficient schedule using measures or estimations of the
run-times and selectivities of the algorithms and filters.

MODELING ALGORITHM SELECTION AS A PLANNING PROBLEM

The selection and scheduling of an algorithm set, which is optimal for an
information need C on a collection or a stream of input texts D with respect
to a quality function Q is traditionally made manually by human experts (cf.
SecTION 2.2). Based on the presented formalization of expert knowledge in
an annotation task ontology (2, we now introduce an artificial intelligence

3 PrpeLINE DEsioN 95

approach to automatically construct text analysis pipelines, hence enabling
ad-hoc text mining (cf. CHAPTER 1). As discussed at the end of the previous
section, we leave out the properties of input texts in our approach and we
assume Q to be based on a given quality prioritization p.
We consider ad-hoc pipeline construction as a planning problem. In ar-
tificial intelligence, the term planning denotes the process of generating a rrannmc
viable sequence of actions that transforms an initial state of the world into
a specified goal state (Russell and Norvig, 2009). A planning problem is
defined by the goal (and optional constraints) to be satistified as well as by
the states and actions of the world. Here, we describe the pipeline planning eweine pLaNNING PrOBLEM

problem based on the definition of annotation task ontologies as follows. "

Pipeline Planning Problem Let 2 = (Cq, Qq, Aq) be an annotation task
ontology. Then a pipeline planning problem ®* under Q2 denotes a 4-tuple
(Co, C, p, Aq) such that

1. Initial State. Cy C Cq, is the initially given set of information types,
2. Goal. C C Cq is the set of information types to be inferred,

3. Constraints. p = (Q1, ..., Q|q,|) With Q; € Qq for 1 < i < |Qq] is the
quality prioritization to be met, and

4. Actions. Ag is the set of available text analysis algorithms.

As can be seen, we implicitly model states as sets of information types,

thereby reflecting the states of analysis of an input text. If Cy is not empty,

the analysis starts on input texts that already have certain annotations. Each

A€ Ag represents an action, which has the effect that output types A.C(%)

are added to the current state, given that its preconditions A.C("™) are satis- rrsconnrmon
fied. The information need C implies that all states Cy with C C Cg are

goal states. To solve a planning problem ®(¥), we hence need an admissible

pipeline (A,) that produces C\ Cy while complying with p.

SELECTING THE ALGORITHMS OF A PARTIALLY ORDERED PIPELINE

For the selection of an algorithm set A, we propose to use partial order plan- rarmar orper PLANNING
ning. This backward approach recursively generates and combines sub-
plans (i.e., sequences of actions) for all preconditions of those actions that
satisfy a planning goal (Russell and Norvig, 2009). In general, actions may
conflict, namely, if an effect of one action violates a precondition of another
one. In annotation tasks, however, algorithms only produce information.

1%Because of the changed definition of annotation tasks ontologies in SEcTion 3.1, the def-
inition of planning problems also slightly differs from the one in (Wachsmuth et al., 2013a).

PLANNING AGENDA

INPUT REQUIREMENT

96 3.3 Ap-HOC CONSTRUCTION VIA PARTIAL ORDER PLANNING

PIPELINEPARTIALORDERPLANNING(Cy, C, p, A)

1: Algorithm set A +— {Ao}

: Partial schedule 7 «— 0
: Input requirements A «+ {(C, Ao) | C € C\Co}

2
3
4: while A # () do

5: Input requirement (C, A) < A.poll()
6

7

8

if C € C then
Filter AF) <+ createFiLTER(C)
A+~ Au{A}
9: 7 7 U{Aa® < A)}
10: (C, A) — (AB),.) poll(), AH)

11: Algorithm A* + seLectBestArLcoritum(C, C, p, Aq)
12: if A= 1 then return L

13: A —AU{A"}

14: 7 7 U{(4A" < A)}

15: A < AU{(C,A*) | C e A*.C"™\Cy}

16: return (A, 7)

Pseupocopk 3.1: Partial order planning for selecting an algorithm set A (with a
partial schedule 7) that addresses a planning problem &) = (Cy, C, p, Ag).

While filters reduce the input to be processed, they do not remove infor-
mation types from the current state, thus never preventing subsequent al-
gorithms from being applicable (Dezsényi et al., 2005). Consequently, the
preconditions of an algorithm will always be satisfied as soon as they are
satisfied once. Partial order planning follows a least commitment strategy,
which leaves the ordering of the actions as open as possible. Therefore, it
is, in many cases, a very efficient planning variant (Minton et al., 1995).
Pseubpocopk 3.1 shows our partial order planning approach to algorithm
selection. Given a planning problem, the approach creates a complete algo-
rithm set A together with a partial schedule 7. Only to initialize planning, a
helper finish algorithm A, is first added to A. Also, the planning agenda A is
derived from the information need C and the initial state C (pseudocode
lines 1 to 3). A stores each open input requirement, i.e., a single precondition
to be satistified together with the algorithm it refers to. As long as open in-
put requirements exist, lines 4 to 15 iteratively update the planning agenda
while inserting algorithms into A and respective ordering constraints into 7.
In particular, line 5 retrieves an input requirement (C, A) from A using the
method poll(). If C contains C, a filter AW is created and integrated on-the-

fly (lines 6 to 9). According to Section 3.2, A()

discards all portions of text
that do not comprise instances of C. After replacing (C, A) with the input
requirement of AU, line 11 selects an algorithm A* € Ag that produces C

and that is best in terms of the quality prioritization p. If any C' cannot be

3 PrpeLINE DEsioN 97

seLECTBESTALGORITHM(C, C, p, AQ)

1: Algorithm set Ac + {A € Ag | C € A.C"M}
2: if |A¢| =0 then return L

3: for each Quality criterion Q; € p with ¢ from 1 to |p| do

4: Algorithm set AL « 0
5: Quality estimation ¢* <— Q;.worst()
6: for each Algorithm A € Ac do
7: Quality estimation g < EsTIMATEQUALITY(A, Q;, C, Aq)
8: if Q;.isEqual(g, ¢*) then A <— A U{A}
9: if Q);.isBetter(q, ¢*) then
10: AL+ {A}
11: q" +—q

12: Ac — Aé
13: if |Ac| =1 then return Ac.poll()

14: return Ac.poll()

PsEupOCODE 3.2: Selection of an algorithm from A, that produces the information
type C and that is best in terms of the quality prioritization p.

satisfied, planning fails (line 12) and does not reach line 16 to return a par-
tially ordered pipeline (A, 7).

Different from (Wachsmuth et al., 2013a), we also present the method
SELECTBESTALGORITHM in detail here, shown in Pseubocopk 3.2. The under-
lying process has been defined by Rose (2012) originally. Lines 1 and 2
check if algorithms exist that produce the given precondition C. The set
A of these algorithms is then compared subsequently for each quality cri-
terion Q; in p (lines 3 to 13) in order to determine the set Af, of all algorithms
with the best quality estimation ¢* (initialized with the worst possible value
of Q; in lines 4 and 5). To build Af, line 6 to 11 iteratively compare the qual-
ity estimation ¢ of each algorithm A in A with respect to ;. Only possibly
best algorithms are kept (line 12). In case only one algorithm remains for
any ();, it constitutes the single best algorithm (line 13). Otherwise, any best
algorithm is eventually returned in line 14.

Finally, Pseupocopk 3.3 estimates the quality ¢ of an algorithm A from
the repository Aq. ¢ is naturally based on the quality estimation A.g; of A.
For lack of better alternatives, we assume g to be the worst possible value of
(QQ; whenever A.g; is not specified. If values of); cannot be aggregated (cf.
SectiON 3.2), ¢ simply equals A.g; (lines 1 to 3). Elsewise, line 4 to 9 re-
cursively aggregate the quality estimations g7, ;,, of all best algorithms (in
terms of ;) that satisfy a precondition C'") of A. In the worst case, this
may require to create a full partial order plan for each precondition. As
guaranteed in line 4, however, we consider only algorithms that produce

LINEARIZATION

98 3.3 Ap-HOC CONSTRUCTION VIA PARTIAL ORDER PLANNING

ESTIMATEQuALITY(A, Q;, C, Ag)
1: Quality estimation q < A.g;
: if ¢ =1 then g + Q;.worst()
: if Q; has no aggregate function then return ¢

: for each Information type C™) € A.C"™)\C do
Quality estimation g, = Qs.worst()
for each Algorithm A (i) € Ag with CU™ € A) .C" do
Quality estimation g (iny <= ESTIMATEQUALITY(A(iny, Qi, C, Aq)
if Q;.isBetter(qo(in) , @5 (iny) then ¢ iny < qoin
9: q + Q;.aggregate(q, (i)
10: return q

PN T R

Pseupocope 3.3: Computation of a quality estimation ¢ for the algorithm A in
terms of the quality criterion @;. Given that @); has an aggregate function, ¢ recur-
sively aggregates the best quality estimations of all required predecessors of A.

some information type C'™) ¢ C. The reason is that other algorithms will
be succeeded by a filter in the partial schedule 7 (cf. Pseupocope 3.1). Since
filters change the input to be processed, it seems questionable to aggregate
quality estimations of algorithms before and after filtering.

LiNEARIZING THE PARTIALLY ORDERED PIPELINE

Before the selected algorithm set A can be executed, an admissible sched-
ule ™ must be derived from the partial schedule 7, as illustrated at the bot-
tom of FIGURE 3.8 above. Such a linearization of a partial order plan addresses
the pipeline scheduling problem from Secrion 3.1.

An algorithm set A implies a search space with up to |A|! admissible
schedules. As follows from EQuartioN 3.4, the optimal schedule 7* of A de-
pends on the run-times and on the filtered portions of text of the employed
algorithms. In an annotation task ontology, we model these two properties
through estimations. Different from the algorithms’ run-time estimations,
however, selectivity estimations are never given for the filters created by our
partial order planner. This design decision is made, since reliable selectiv-
ity estimations cannot be obtained before processing (cf. SEction 3.2). In the
end, an optimal schedule 7* depends on the collection or stream of input
texts D, as we analyze in depth in CHAPTER 4. Among others, there we ef-
ficiently explore the mentioned search space on a sample of input texts in
order to construct a pipeline for large-scale text mining purposes.

In contrast, we predominantly target at ad-hoc text mining here. Conse-
quently, processing texts only for pipeline construction may impose much
computational overhead, especially because an analysis of these texts could

3 PrpeLINE DEsioN 99

GREEDYPIPELINELINEARIZATION(A, 7)

1: Algorithm set Agp « 0

2: Schedule 7 + 0

3: while Ag # A do

4 Filtering stages IT « 0

5 for each Filter A € {A € A\Ag | Ais afilter} do

6: Algorithm set A « {AY)} U GerPreDECESSORS(A \ A g, 7, A))
7.

8

9

Schedule 7" « GeTANYCorrECTTOTALORDERING(A (F) | 7)
Estimated run-time q((A(F), 7r(F>)) =D acamm t(A)
: I+ U {(AF) 7y}
10: Filtering stage (A, m;) < argmin g((A) 7(F)Y)
(AF) 7(F)yern
11: m—rmUm U{(A< A;j)| AcAs N Aj€A;}
12: Agp +— Agp U Aj
13: return (A, 7)

Pseubpocobk 3.4: Greedy linearization of a partially ordered pipeline (A, 7). The
pipeline’s filtering stages are ordered by increasing estimated run-time.

already suffice to directly respond to an information need. We thus propose
an approach instead that works irrespective of D using estimated algorithm
run-times only. The approach can be seen as an informed greedy search, i.e., it
always greedily chooses the best decision given the current knowledge (Cor-
men et al., 2009).!! This seems reasonable, knowing that the first algorithms
in a pipeline need to process the whole input. At the same time, scheduling
can be performed without a sample of texts in a hill-climbing manner, as no
text is actually taken into account.

Pseubpocopk 3.4 shows our greedy approach for finding a pipeline (A,).
Lines 3 to 12 follow the first three paradigms from Section 3.1 by determin-
ing filtering stages in the given partially ordered pipeline (A, 7) in order to
subsequently schedule the filtering stage (A ;, 7;) with the lowest aggregate
run-time estimation ¢((A, 7;)) first. To this end, the set IT is built with one
filtering stage for each not yet scheduled filter A/") in Ag\ A (lines 4 to 9).
Using GETPREDECESSORS, line 6 identifies all remaining algorithms in A\ Ag
that must precede A according to 7. A total ordering of the algorithms
and a run-time estimation of the resulting filtering stage (A(¥), 7(¥)) are ob-
tained in lines 7 and 8. Then, line 10 determines (A ;, 7;). Before A and A
are merged in line 12, 7 is extended by 7; as well as by ordering constraints
for scheduling the algorithms in A ; after those in A (line 11).

We do not show pseudocode for the two called methods here, as both re-
fer to classical techniques from the literature: GETPREDECESsORs can be based

""We assume that run-time estimations of all algorithms in A are given. In doubt, for each
algorithm without a run-time estimation, at least some default value can be used.

GREEDY SEARCH

CONSISTENT

100 3.3 Ap-HOC CONSTRUCTION VIA PARTIAL ORDER PLANNING

on a transitive closure of a graph representation of (A, 7) whose edges (im-
plied by 7) are inverted in order to access predecessors. Rose (2012) suggests
to use the FLoyp-WarsHALL ALGoriTHM (Cormen et al., 2009) to compute the
transitive closure, which has to be done only once per call of GREEDYPIPELINE-
LinearizaTioN. Even simpler, GETANYCORRECTTOTALORDERING can be real-
ized with some standard topological sort approach (Cormen et al., 2009).

PrOPERTIES OF THE PROPOSED CONSTRUCTION APPROACH

We now turn to the properties of our approach in terms of its benefits and
limitations as well as its correctness and complexity. Especially the analysis
of the correctness and complexity is a new contribution of this thesis.

We use planning to operationalize the first paradigm from Section 3.1,
maximum decomposition. The actual benefit of partial order planning,
however, relates to the second and third paradigm. It originates in the least
commitment strategy of partial order planning: As planning proceeds back-
wards, the constraints in the partial schedule 7 (cf. Pseupocopk 3.1) pre-
scribe only to execute an algorithm right before its output is needed, which
implies lazy evaluation. Also, 7 allows a direct execution of a filter after the
text analysis algorithm it refers to, thereby enabling early filtering.

In the described form, PrPELINEPARTIALORDERPLANNING is restricted to the
construction of a pipeline for one information need C. In general, also
text analysis tasks exist that target at £ > 1 information needs at the same
time. Because our case studies INrExBA and ArRGUANA do not serve as
proper examples in this regard, in the evaluation below we also look at the
biomedical event extraction task Genia (cf. SEcTion 2.3). Genia addresses
nine different event types, such as Positive regulation or Binding. The prin-
ciple generalization for k planning problems ®1, ..., ®; is straightforward:
We apply our approach to each ®; in isolation, resulting in k partially or-
dered pipelines (A1, 71),..., (A, 7). Then, we unify all algorithm sets
and partial schedules, respectively, to create one partially ordered pipe-
line (A, 7) = (U"_, A;,U", ™). As a consequence, attention must be paid
to filters. For instance, a portion of text without positive regulations still
may comprise a binding event. To handle @4, ..., ®; concurrently, a set of
relevant portions must be maintained independently for each ®;, which is
achieved by the input control that follows in SectioN 3.5.

Correctness Our planner may fail if the given algorithm repository Agq is
not consistent, i.e., if there is any algorithm in Ag whose input types can-
not be satisfied by any other algorithm in Ag. We ignore this case, because
such an algorithm will never prove helpful and, hence, should be removed

3 PrpeLINE DEsioN 101

from Agq. Similarly, we do not pay attention to algorithms with a circular
dependency. As an example, assume that we have (1) a tokenizer sto, which
requires clm - {Sentence} as input and produces clow) - {Token} as output,
and (2) a sentence splitter sse with clm) {Token} and clovt) _ {Sentence}.
Given each of them is the best to satisfy the other’s precondition, these al-
gorithms would be repeatedly added to the set of selected algorithms A in
an alternating manner. A solution to avoid circular dependencies is to ig-
nore algorithms whose input types are output types of algorithms already
added to A. However, this might cause situations where planning fails,
even though a valid pipeline would have been possible. Here, we leave more
sophisticated solutions to future work. In the end, the described problem

might be realistic, but it is in our experience far from common.

Tueorem 3.1. Let &) = (Cy, C, p, Aq) be a planning problem with a con-
sistent algorithm repository Aq that does not contain circular dependencies.
Then prPELINEPARTIALORDERPLANNING(Cy, C, p, Aq) returns a complete algo-
rithm set A for C\ Cy iff. such an algorithm set exists in Ag.

Proof. We provide only an informal proof here, since the general correctness
of partial order planning is known from the literature (Minton et al., 1995).
The only case where planning fails is when seLEcTBEsTALGORITHMS finds no
algorithm in A that satisfies C. Since Aq is consistent, this can happen
only if C'e€ C holds. Then, C\ Cy must indeed be unsatisfiable using Aq.

If C\C, is satisfiable using A, SELECTBESTALGORITHMS always returns an
algorithm that satisfies C' by definition of A¢. It remains to be shown that
Pseupocopk 3.1 returns a complete algorithm set A for C\ C then. Without
circular dependencies in A, the while-loop in lines 4 to 15 always termi-
nates, because (1) the number of input requirements added to A is finite and
(2) an input requirement is removed from A in each iteration. As all added
input requirements are satisfied, each algorithm in A works properly, while
the initialization of A in line 3 ensures that all information types in C\ Cy
are produced. Hence, A is complete and, so, THEOREM 3.1 is correct.]

THEOREM 3.2. Let (A, 7) be a partially ordered pipeline returned by PIPELINEPAR-
TIALORDERPLANNING for a planning problem (Cy, C, p, Aq). Then GReEeDYP1PE-
LINELINEARIZATION(A, 70) returns an admissible pipeline (A,) for C\ Co.

Proof. To prove THEOREM 3.2, we first show the termination of GREEDY-
PrreLINELINEARIZATION. The guaranteed total order in 7 then follows from
induction over the length of 7. According to the pseudocode of our plan-
ner (Pseubpocopk 3.1), each text analysis algorithm in A is a predecessor
of at least one filter in A. Since all predecessors of the filter in the filter-
ing stage (A, 7;), chosen in line 10 of GREEDYPIPELINELINEARIZATION, belong

CIRCULAR DEPENDENCY

102 3.3 Ap-HOC CONSTRUCTION VIA PARTIAL ORDER PLANNING

to Aj, Ag is extended in every iteration of the while-loop (lines 3 to 12).
Thus, Ag eventually equals A, so the method always terminates.

The schedule 7 is initialized with the empty set, which denotes a trivial
correct total order. Now, for the inductive step, assume a correct total order
in m within some loop iteration. The schedule 7; added to 7 guarantees
a correct total order by definition of GETANYCORRECTTOTALORDERING. For
each A; referred toin 7, line 11 adds ordering constraints to 7 that prescribe
the execution of A; after all algorithms referred to in 7 before. Hence, 7
remains a correct total order and, so, THEOREM 3.2 must hold. O

THEOREMS 3.1 and 3.2 state the correctness and completeness of our ap-
proach. In contrast, the quality of the selected algorithms with respect to
the given quality function O (implied by the quality prioritization p) as well
as the optimality of the derived schedule remain unclear. Our planner re-
lies on externally defined quality estimations of the algorithms, which e.g.
come from related experiments. It works well as long as the algorithms,
which are considered best for single text analyses, also achieve high qual-
ity when assembled together. Similarly, the greedy linearization can yield a
near-optimal schedule only if comparably slow filtering stages do not filter
much less portions of the processed texts than faster filtering stages. Other
construction approaches like (Kano et al., 2010) and (Yang et al., 2013) di-
rectly compare alternative pipelines on sample texts. However, our primary
goal here is to enable ad-hoc text mining, which will often not allow the pre-
processing of a significant sample. That is why we decided to remain with
an approach that can construct pipelines in almost zero time.

Complexity To estimate the run-time of PIPELINEPARTIALORDERPLANNING,
we determine its asymptotic upper bound using the O-notation (Cormen
etal., 2009). The while-loop in Pseupocopk 3.1 is repeated once for each pre-
condition to be satisfied. Assuming that an annotation type implies a con-
stant number of related information types, this is at most O(|Cgq|) times due
to the finite number of available annotation types in Cq. Within the loop,
SELECTBESTALGORITHM is called. It iterates O(]A¢|) times following from the
inner for-loop, since the number of iterations of the outer for-loop (i.e., the
number of quality criteria in p) is constant. In the worst case, each algorithm
in the algorithm repository A produces one information type only. Hence,
we can infer that O(|Cq| - |A¢|) = O(|Cq|) holds, so there are actually only
O(|Cql) external calls of estiMATEQuALITY. For each algorithm A, the sat-
isfaction of all its preconditions requires at most all |Aq| algorithms. This
means that the two for-loops in EstTiMATEQuALITY result in O(|Aq|) internal
calls of estimaTEQUALITY that recursively require to satisfy preconditions.

3 PrpeLINE DEsioN 103

) O(1A,I°) calls
C i C_(m
-7 TE ... BT .
P ~ ~ =<
:)
. i i N
- 1 1 S o
it) it i) it)
C'm% — C1(cu) CJD% — C1"°u)
-) (1) car
. C.m C.m
2 =H .. =272
e . el O(1A,]*) calls
e i , A
- 1 1 S o
e - ~ ~.
- - ! h ~
- i i N
- 1 1 S o
i) it) it) it]
Cia'2 =Ce™ Cie'2 =Cic ™" O(1A,I*?) call
calls

FIGURE 3.9: Sketch of the worst-case number O(|Aq|/®2!) of calls of the method
ESTIMATEQUALITY for a given algorithm A, visualized by the algorithms that produce
a required information type and, thus, lead to a recursive call of the method.

This process is reflected in FIGURE 3.9. Analog to our argumentation for the
preconditions, the maximum recursion depth is |Cgq|, which implies a total
number of O(|Aq|/€2!) executions of estiMateQuarLiTY. Therefore, we obtain
the asymptotic worst-case overall run-time

tPIPELINEPARTIALORDERPLANNING(CQ7 AQ) = @ (|CQ’ : ‘AQ ‘ |CQ|) . (36)

This estimation seems problematic for large type systems Cq and algorithm
repositories Aq. In practice, however, both the while-loop iterations and the
recursion depth are governed rather by the number of information types in
the information need C. Moreover, the recursion (which causes the main
factor in the worst-case run-time) assumes the existence of aggregate func-
tions, which will normally hold for efficiency criteria only. With respect
to algorithms, the actual influencing factor is the number of algorithms
that serve as preprocessors, called the branching factor in artificial intelli-
gence (Russell and Norvig, 2009). The average branching factor is limited
by C again. Additionally, it is further reduced through the disregard of
algorithms that allow for filtering (cf. line 6 in PSEupocoDE 3.3).

Given the output (A, 7) of the planner, the run-time of GREEDYPIPELINE-
LiNearizaTION depends on the number of algorithms in A. Since the while-
loop in Pseupocopk 3.4 adds algorithms to the helper algorithm set A, it it-
erates O(|A|) times (cf. the proof of THEOREM 3.2). So, the driver of the asym-
potic run-time is not the number of loop iterations, but the computation of a
transitive closure for GeTPREDECEssOR, which typically takes O(|A|?) opera-
tions (Cormen et al., 2009). As mentioned above, the computation needs to
be performed only once. Thus, we obtain a worst-case run-time of

tGREEDYPIPELINELINEARIZATION (A) = @ (| A | 3) . (3 . 7)

EXPERT SYSTEM

104 3.3 Ap-HOC CONSTRUCTION VIA PARTIAL ORDER PLANNING

O(JA]?) can be said to be easily tractable, considering that the number of
algorithms in A is usually at most in the lower tens (cf. SecTiON 2.2). Alto-
gether, we hence claim that the run-time of our approach to ad-hoc pipeline
construction will often be negligible in practice. In our evaluation of ad-hoc
pipeline construction below, we will offer evidence for this claim.

AN ExPERT SYSTEM FOR AD-HOC CONSTRUCTION

Rose (2012) has implemented the described ad-hoc construction of pipelines
and their subsequent execution as a Java software tool on top of the software
framework AracHe UIMA already mentioned above. Technical details on
the software tool and its usage are found in Appenpix B.1. Here, we present
an extended version of the high-level view of the main concepts underlying
the software tool presented in (Wachsmuth et al., 2013a).

The software tool can be regarded as a classical expert system. In gen-
eral, expert systems simulate the reasoning of human experts within a spe-
cific domain (Jackson, 1990). The purpose of expert systems is either to re-
place or to assist experts in solving problems that require to reason based on
domain- and task-specific expert knowledge. Reasoning is performed by an
inference engine, whereas the expert knowledge is represented in a respec-
tive knowledge base. To serve their purpose, expert systems must achieve
a high efficiency and effectiveness while being capable of explaining their
problem solutions. One of the tasks expert systems have most often been
used for since the early times of artificial intelligence is the planning of se-
quences of actions (Fox and Smith, 1984). As discussed above, the construc-
tion of a text analysis pipeline is an example for such kind of tasks.

To build an expert system, the required expert knowledge must be for-
malized. Here, our model of text analysis as an annotation task from Sec-
TION 3.2 comes into play. Since the model conforms with basic and already
well-defined concepts of Aracue UIMA to a wide extent, we rely on APAcHE
UIMA in the realization of the expert system. In particular, Apacae UIMA
defines text analysis pipelines through so called aggregate analysis engines,
which consist of a set of primitive analysis engines (text analysis algorithms)
with a specified flow (the schedule). Each analysis engine is represented by
a descriptor file with metadata, such as the analysis engine’s input and out-
put annotation types and features. Similarly, the available set of annotation
typesis specified in a type system descriptor file. In contrast, quality criteria
and estimations are not specified by default. For this reason, we allow al-
gorithm developers to integrate quality estimations in the description field
of the analysis engine descriptor files via a fixed notation, e.g. “@Recall 0.7".

3 PrpeLINE DEsioN 105

boundary tier knowledge information result
(user interface) acquisition search explanation
control tier ontology ad-hoc pipeline pipeline
(inference engine) import construction execution
¥ « input outpu\ A%put

algorithm ; text analysis input
repository s pipeline output

entity tier | quality | | quality |

(knowledge base) model prioritization
collection of
input texts
type information __output
system heed information
annotation task ontology annotation task annotation results
(domain-specific knowledge) (task-specific knowledge) (new knowledge)

Ficure 3.10: An UML-like class diagram that shows the three-tier architecture of
our expert system PrpeLINE XPS for ad-hoc pipeline construction and execution.

run-time/sentence (t) run-time/sentence () run-time/sentence (t)
efficiency implies
prioritized trp =—= @trf) —=0O (ta) —= 1)
effectiveness (Pt f1)
prioritized P, f1y 1)
™~ O L ® labeled
precision (p) F,-score (f,) recall () accuracy (a) attachment score (1)

FiGure 3.11: Visualization of the built-in quality model of our expert system. The
colored, partially labeled circles denote possible quality prioritizations. Exemplar-
ily, the shown implies relations illustrate that some prioritizations imply others.

The resulting descriptor files comprise all knowledge required by our expert
system for ad-hoc pipeline construction, called PipeLiNe XPS.

FiGcure 3.10 sketches the three-tier architecture of PipeLiNe XPS in a UML-
like class diagram notation (OMG, 2011). As usual for expert systems, the
architecture separates the user interface from the inference engine, and both
of them from the knowledge base. In accordance with Section 3.2, the latter
stores all domain-specific expert knowledge in an annotation task ontology
realized with OWL-DL. Via a knowledge acquisition component, users (typi-
cally experts) can trigger an automatic ontology import that creates an algo-
rithm repository and a type system from a set of descriptor files. Conversely,
we decided to rely on a predefined quality model for lack of specified qual-
ity criteria in ApacHE UIMA (cf. SEcTiON 3.2) and for convenience reasons:
Since the set of quality criteria is rather stable in text analysis, we thereby
achieve that users only rarely deal with ontology specifications if at all.

The quality model that we provide is visualized in FIGURE 3.11. It contains
six criteria from SectiON 2.2, one for efficiency (i.e., run-time per sentence) and
five for effectiveness (e.g. accuracy). Possible quality prioritizations are rep-
resented by small circles. Some of these are labeled for illustration, such

106 3.3 Ap-HOC CONSTRUCTION VIA PARTIAL ORDER PLANNING

as (p, t, f1). In addition, the quality model defines relations between those
quality prioritizations where one implies the other, as in the illustrated case
of (¢, r, fi) and (¢, a). In this way, users can restrict their view to the three ef-
fectiveness criteria in the left part of FIGURE 3.11, since the expert system can
e.g. compare algorithms whose effectiveness is measured as accuracy (say,
tokenizers), when e.g. Fi-score is to be optimized. Also, some quality pri-
oritizations are naturally equivalent. For instance, (p, f1, t) is equivalent to
(p, r, t), because, given the best possible precision, the best possible F-score
follows from the best possible recall. In contrast, (fi, p, t) is different from
(r, p, t), since it prioritizes a high F;-score over a high recall.

Through the information search interface in FIGURE 3.10, a user can choose
a quality prioritization, the information need to be addressed, and the collection
of input texts to be processed. The ad-hoc pipeline construction component
takes these parts of an annotation task together with the given ontology as
input. Implementing Pseupocobes 3.1 to 3.4, it outputs a valid text analysis
pipeline in the form of a UIMA aggregate analysis engine. On this basis, the
inference engine performs the pipeline execution, which results in the desired
output information. This information as well as a protocol of the construction
and execution are presented to the user via a result explanation component.
A screenshot of the prototypical user interfacace of the implemented expert
system from (Rose, 2012) is found in AppENDIX B.1.

EvaLuaTiON OF AD-HOC CONSTRUCTION

We evaluate our approach to ad-hoc pipeline construction in controlled
experiments for two information extraction tasks introduced in Skc-
TION 2.3 (see APPENDIX B.4 for information on the used source code): our
industrially relevant case study INrexBA and the scientifically important
task Genia. The presented results greatly increase the comprehensiveness
of those reported in (Wachsmuth et al., 2013a).

Annotation Task Ontologies We consider two annotation task ontolo-
gies, 1 = (Cq, Qq, Ag,) and Qs = (Cq, Qq, Aq,), with the same annotation
types Cq and quality criteria Qgq but different algorithm repositories. Cg
consists of 40 concrete annotation types, and Qg complies with the quality
model described above. A, comprises 76 algorithms for preprocessing,
entity recognition, relation extraction, event detection, and normalization,
whereas Ag, contains exactly half of them. Up to three algorithms exist for
an analysis in both cases, but Aq, provides more alternatives for some ana-
lyses. For instance, sto; and sto; belong to Aq,, while the only tokenizer in
Agq, is st01. Information on the algorithms is given in ApPENDIX A.

3 PrpeLINE DEsioN 107

Task Information need C |A]
INFEXBA Revenue() 3
Revenue(Subject) 6
Revenue(Subject, Location) 9
Revenue(Subject, Location, Time) 15
Revenue(Subject, Location, Time, Money) 16
Revenue(Subject, Location, Time, Money, Date) 18
Revenue(“Apple”, “USA”, “2012”, Money, Date) 21
GENIA PositiveRegulation() 6
PositiveRegulation(Theme) 12
PositiveRegulation(Theme, Cause) 14
PositiveRegulation(Theme, Cause, Site) 17
PositiveRegulation(Theme, Cause, Site, CSite) 19
PositiveRegulation(“expression”, Cause, Site, CSite) 20
PositiveRegulation(“expression”, “Eo-VP16”, Site, CSite) 21

TaBLE 3.2: Each information need C from the INrFexBA and Genia task, for which
we evaluate the run-time of ad-hoc pipeline construction, as well as the number of
algorithms |A| in the respective resulting text analysis pipeline IT = (A, 7).

Text Corpora Based on 2; and 25, we evaluate both pipeline construction
and pipeline execution. As described, our construction approach is inde-
pendent from the processed input. In case of the execution, we restrict our
view to an information need from INrEXBA and, so, rely on the REVENUE
corpus again, which is outlined in AppenpIx C.1.

Experiments All experiments are conducted on an 2 GHz Intel Core 2
Duo MacBook with 4 GB memory by manually triggering the evaluated
functionalities of our expert system. In particular, we measure the absolute
run-time of ad-hoc pipeline construction in a first experiment. Certainly
due to I/O operations (for the creation of ApacHe UIMA descriptor files and
the like), the standard deviation of this run-time is quite high, which is why
we average it over the last 25 of 30 consecutive runs. In a second experiment,
we compare the efficiency and effectiveness of different pipelines for the
same information need with respect to their average run-time per sentence ¢
as well as with respect to the precision p and recall r they achieve.

Efficiency of Pipeline Construction To demonstrate the efficiency of our
approach, we construct pipelines for seven information needs of increasing
complexity for each of the two considered tasks. TABLE 3.2 gives an overview
of the information needs: For both Revenue and PositiveRegulation events, we
tirst stepwise add required entity types to the respective information need
(e.g. Subject in case of the former). Then, we also require specific values for
some of these types (e.g. “Apple” in case of Subject). In terms of quality, we
prioritize precision over recall and both over the run-time per sentence in

108 3.3 Ap-HOC CONSTRUCTION VIA PARTIAL ORDER PLANNING

D
)
w0
S
Cs

- 30 -
text analysis pipelines for text analysis pipelines for

Revenue events PositiveRegulation events

N
(&)
!

25 -

~ 1Ayl =76 [1Ay =76 | |
20 A [
o o~ 1Ag,l = 38 4
. 15 -
a\goﬂ\hm selection
10 - 10 | A -
/ - g

average run-time in milliseconds
average run-time in milliseconds

scheduling
M
3 6 9 1516 18 21 6 12 14 17 192021
number of algorithms in pipeline number of algorithms in pipeline

Ficure 3.12: The run-time of our expert system on a standard computer taken for
ad-hoc pipeline construction in total as well as for algorithm selection and schedul-
ing alone, each as a function of the number of algorithms in the constructed pipe-
line. The algorithms are selected from a repository of either 76 (solid curves) or 38
algorithms (dashed) and target at event types from (a) INrexBA or (b) GeN1a.

all cases. While we construct pipelines once based on §2; and once based on
(23, the information needs lead to the same selected algorithm sets for both
ontologies. By that, we achieve that we can directly compare the run-time
of our expert system under Q; and Q3. The cardinalities of the algorithm
sets are listed in the right column of TaBLE 3.2.

FiGure 3.12 plots interpolated curves of the run-time of our expert sys-
tem as a function of the number of algorithms in the resulting pipeline. For
simplicity, we omit to show the standard deviations, which range between
3.6 ms and 9.8 ms for pipeline construction in total and proportionally lower
values for algorithm selection and scheduling. Even on the given far from
up-to-date standard computer, both the algorithm selection via partial or-
der planning and the scheduling via greedy linearization take only a few
milliseconds for all information needs. The remaining run-time of pipeline
construction refers to operations, such as the creation of Aracue UIMA de-
scriptor files. Different from the asymptotic worst-case run-times computed
above, the measured run-times seem to grow only linear in the number of
employed text analysis algorithms in practice, although there is some noise
in the depicted curves because of the high deviations.

As expected from theory, the size of the algorithm repositories has only
a small effect on the run-time, since the decisive factor is the number of al-
gorithms available for each required text analysis. Accordingly, scheduling
is not dependent on the size of the repository at all. Altogether, our expert
system takes at most 26 ms for pipeline construction in all cases, and this ef-

3 PrpeLINE DEsioN 109

Pipeline Quality prioritizations t fo p r
11, (t,p,7), (t,7,p) 0.58 +0.01 0.6 0.48
IL. (r,t,p) 3.53 +0.03 0.67 0.58
I, (p,r,t), (p,t,7), (r,p,t) 20.77 +0.16 0.76 0.66

TaBLE 3.3: The run-time ¢ in ms per sentence on the test set of the REVENUE corpUs
averaged over ten runs with standard deviation ¢ as well as the precision p and
recall r of each text analysis pipeline resulting from one of the evaluated quality
prioritizations for the information need Revenue(Time, Money).

ficiency could certainly be significantly improved through an optimized im-
plementation. In contrast, manual pipeline construction would take at least
minutes, even with appropriate tool support as given for Apacue UIMA.

Correctness of Pipeline Construction To offer practical evidence for the
correctness of our approach, we evaluate the execution of different pipe-
lines for a single information need, Revenue(Time, Money). We analyze the
impact of all six possible quality prioritizations of precision, recall, and the
average run-time per sentence. Our expert system constructs three different
pipelines for these prioritizations (for details of the employed algorithms,
see AprPENDIX A), which we execute on the test set of the REVENUE corprus:

() F) 1po1, PDE], RTM2, RTM())
F)

IT; = (sto1, RRE1, RRE\Y'/, ETI, ETI(F), EMO, Emo!
I1, = ('ssE, sTO2, EMO, EMO(F), ETI, ETI(F), RRE1, RRE!

k™1, Rem(D))

, TLE, TPO3, PDE2,

IT, = (sk, stog, E1, ETI), EMO, BMO(), RRE, RRE(), TLE, TPOS, PDES,
RTM3, RTM(F))

I1; fully relies on rule-based extraction algorithms and fast preprocessors.
I, and II,, include more exact preprocessors, and II,, additionally performs
event recognition and relation extraction statistically. The mapping from
quality prioritizations to pipelines is shown in TasLE 3.3, which lists the
obtained efficiency and effectiveness results. In accordance with the quality
prioritizations, the pipeline for (¢,p,r) and (¢, 7, p) is one to two orders of
magnitude faster than the other ones while achieving the lowest precision
(0.6) and recall (0.48). Similarly II,, has both the highest precision and the
highest run-time. In contrast, the comparably fair recall of II,. (0.58) appears
counterintuitive at first sight. However, it indicates the restricted validity of
quality estimations in annotation tasks: favoring algorithms of high quality
supports but does not ensure high overall quality, because the output of
an employed algorithm is influenced by the quality of its input, which in
turn depends on the interaction with other algorithms. In the end, quality
can never be predicted perfectly in annotation tasks, as it depends on the
domain of application and the processed input texts.

110 3.3 Ap-HOC CONSTRUCTION VIA PARTIAL ORDER PLANNING

DiscussioN oF Ap-Hoc CONSTRUCTION

In this section, we have presented an artificial intelligence approach for
ad-hoc pipeline construction. We have shown its correctness and we have
evaluated its run-time efficiency due to its purpose of enabling ad-hoc text
mining. In our experience, the evaluated annotation task ontologies are of
realistic scale, at least for applications that focus on specific domains. An
example of similar scale is the standard configuration of U-Compare (Kano
etal., 2010), which comes with about 40 text analysis algorithms.!? For such
a scale, the observed run-time of our expert system seems almost neglible
even for highly complex information needs. Hence, we argue that our ap-
proach is, in general, suitable for ad-hoc text mining. A scenario that would
require further investigation is the ad-hoc use of text analysis pipelines
within general purpose search engines, which we leave open here.

General limitations of our approach have already been discussed above
as part of its properties. Partly, they already emanate from the underlying
model (cf. SEcTiON 3.2). In addition, our realization of the approach as an
expert system has revealed some further noteworthy limitations:

One limitation is that text analysis algorithms, which jointly annotate
more than one information type, can compromise a given quality prioritiza-
tion. E.g., a constructed pipeline that targets at effectiveness might sched-
ule the algorithm Tro; before the algorithm tro;, employing the former for
part-of-speech tagging and the latter for lemmatization (cf. ApPENDIX A.1).
Since 1PO; also tags part-of-speech, it overwrites the output of tro,. This
problem emanates from a non-maximum decomposition intrinsic to the re-
spective algorithm repository and it is not tackled by our expert system. On
the contrary, the expert system handles cases where one algorithm “domi-
nates” another one. Given that efficiency is of upmost priority, for instance,
TPO2 Would be removed from a pipeline if preceded by TrO;.

A solved challenge relates to the hierarchical structure of annotation
types, which implies that interdependencies of information types can result
from supertypes. In the information need PositiveRegulation(Theme), for in-
stance, the feature Theme might be inherited from a general type Event. For
this reason, the expert system normalizes the information need into Posi-
tiveRegulation N\ Event(Theme) while ensuring that only positive regulation
events are kept. However, the example also entails a more complex prob-
lem: In Genia, different event types can be themes of positive regulations.
But, for scheduling, it suffices to detect one single event type before the ex-
traction of themes. In its current form, our approach then does not select

12J-Comepare version 2.0, http: //nactem. ac.uk/ucompare/, accessed on March 26, 2014.

3-4

3 PrpeLINE DEsioN 111

text analysis task

Sections 3.4-3.6 input control

input output
- _ o

text analysis algorithms

Ficure 3.13: Abstract view of the overall approach of this thesis (cf. FIGURE 1.5). SEc-
TIONS 3.4 to 3.6 address the extension of a text analysis pipeline by an input control.

further algorithms, which is not the desired behavior. A solution would be
to require all subtypes for types like Event, but this is left to future work.

Finally, by now our approach does not completely exploit the potential
of filtering outlined in SecTioN 3.1. In particular, it integrates filters only for
output types, i.e., those types that belong to the information need at hand,
but not information types the output types depend on. E.g., the information
need from ARGUANA studied in SEcTioN 3.1 allows for a filtering of opinions,
but this would not be recognized by our approach. Moreover, as mentioned
above, filtering gets complex when more than one information need shall
be addressed at the same time. What is missing is an input control that
consistently filters the relevant portions of text depending on the analysis
to be performed. The following sections deal with this issue.

AN INFORMATION-ORIENTED VIEW OF TEXT ANALYSIS

While the process-oriented view of text analysis described above is suitable
for pipeline construction, we now reinterpret text analysis as the task to fil-
ter exactly those portions of input texts that are relevant for the information
need at hand. This information-oriented view has originally been devel-
oped in (Wachsmuth et al., 2013c). Here, we reorganize and detail content
of that publication for an improved presentation. The information-oriented
view enables us to automatically execute text analysis pipelines in an opti-
mal manner, as we see in the subsequent section, i.e., without performing
any unnecessary analyses. Together, SEcTiONS 3.4 to 3.6 discuss our concept
of an input control (cf. FiGUre 3.13) as well as its implications.

TeExT ANALYSIS AS A FILTERING TAsk

Traditional text analysis approaches control the process of creating all out-
put information sought for (cf. SEctioN 2.2). However, they often do not

FILTERING TASK

112 3.4 AN INFORMATION-ORIENTED VIEW OF TEXT ANALYSIS

“Google’s ad revenues are going to reach $20B. The search company was founded in 1998.”

Entity Organization Event Event Money Entity Relation Time

types entity attribute type expression reference anchor expression
2 Coreference
Relation
types A ARATEE T
Financial event Foundation relation

FIGURE 3.14: A sample text with instances of information types associated to a fi-
nancial event and a foundation relation. One information (the time) of the financial
event is missing, which can be exploited to filter and analyze only parts of the text.

comprise an efficient control of the processed input texts, thus executing
text analysis pipelines in a suboptimal manner. Concretely, much effort is
spent for annotating portions of the texts that are not relevant, as they lack
certain required information. For instance, consider the text analysis task
to annotate all mentions of financial developments of organizations over
time in the sample text at the top of FIGURE 3.14, modeled by an event type
Financial(Organization, Sector, Criterion, Time, Money). While the text spans
instances of most required information types, an appropriate time entity is
missing. Hence, the effort of annotating the other information of the finan-
cial event is wasted, except for the organization entity, which also indirectly
belongs to a binary relation of the type Founded(Organization, Time).
Therefore, instead of simply processing the complete text, we propose to
filter only those portions of the text before spending annotation effort that
may be relevant for the task. To this end, we reinterpret the basic scenario
from SectiON 1.2 and its refined version from SectION 3.2 as a filtering task:

Given a collection or a stream of input texts D, process D in order to
filter all portions of text that contain information of a structured set of
information types C.

To address text analysis in this way, we formalize the required expert knowl-
edge again (cf. SEcTiON 3.2). We assume the employed text analysis pipeline
to be given already. Thus, we can restrict our view to the input and output
of the pipeline. However, the input and output vary for different text ana-
lysis tasks, so we need to model the expert knowledge ad-hoc when a new
task is given. For this purpose, we propose the three following steps:

a. Defining the relevance of portions of text,
b. specifying a degree of filtering for each relation type, and

c. modeling the dependencies between relevant information types.

3 PrpeLINE DEsioN 113

Before we explain the steps in detail, we sketch the information-oriented
view of text analysis for the mentioned financial events. Here, a portion
of text is relevant if it contains related instances of all types associated to
Financial, such as Time. Now, assume that time entities have already been
annotated in the sample text in FiGUre 3.14. If the specified degree pre-
scribes to filter sentences, then only the second sentence remains relevant
and, thus, needs to be analyzed. According to the schedule of the employed
text analysis algorithms, that sentence sooner or later also turns out to be
irrelevant for lack of financial events. Filtering the relevant sentences (and
disregarding the others) hence prevents a pipeline from wasting time.

By viewing text analysis in this sense, we gain (1) that each algorithm
in a text analysis pipeline annotates only relevant portions of input texts,
thus optimizing the pipeline’s run-time efficiency, and (2) that we can eas-
ily trade the run-time efficiency of the pipeline for its effectiveness. We offer
evidence for these benefits later on in Section 3.5. In accordance with the
given examples, the primary focus of the information-oriented view is in-
formation extraction and not text analysis as a whole. Still, the view also
applies to text classification in principle, if we model the information need
to be addressed accordingly. We give a short example below, although we
largely restrict our discussion to tasks from information extraction.

FiGure 3.15 models the main concepts that we refer to below, separately
for the three proposed steps. To contrast the differences between the three
models, the roles of all associations are named. The chosen ontology form
merely serves as an analogy to the process-oriented view of text analysis
from SectioN 3.2, showing the structural relationships between the con-
cepts. It is not used in the sense of a knowledge base.

DEFINING THE RELEVANCE OF PORrRTIONS OF TEXT

Given a collection or a stream of input texts D, we consider each text D € D
as an ordered set (di,...,d,) of n>1 portions of text. Each portion of text d
defines a span of text, such as a sentence, a paragraph, a section, or similar.
We come back to the size of a portion of text later on. In order to perform
filtering correctly, we must be able to infer the relevance of a portion of text
at each point of a text analysis process. To this end, a clear specification of
the information sought for in a text analysis task is needed.

As summarized in SEcTiON 3.2, the concrete types of information sought
for can be manifold. There, we have represented all of them by an abstract
annotation type with features in order to allow for uniform descriptions
of the algorithms in a text analysis pipeline. In this section, however, we

PORTION OF TEXT

114 3.4 AN INFORMATION-ORIENTED VIEW OF TEXT ANALYSIS

(a) Defining the relevance (b) Specifying a degree of filtering (c) Modeling the dependencies bet-
of portions of text for each relation type ween relevant information types
............. SCOPed ependenCV
query graph
COI“IJUI’\CHOI“I I'OOI
conjunction conjunction Degree . Degree TR
of filtering /_assigned to ShiC C of filtering Q pa
assigned to l @ 1 1
* 0..1 nests
* : . parent \ \parent
Relation Relation
nests C t t
ype ype child child
relates relates

0.1 VA
Relation
type

FIGURE 3.15: Modeling expert knowledge of filtering tasks: (a) A query defines the
relevance of a portion of text. (b) A scoped query specifies the degrees of filtering.
(c) The scoped query implies a dependency graph for the relevant information types.

are interested in the actual execution of a pipeline, which takes a certain
input and produces the information sought for as output. From an output
viewpoint, we argue that it rather makes sense to unify the concrete types of
entiry vee - information into two other abstract types: An atomic entity type Cr, whose
reLaTion TvpE iNstances are represented by annotated spans of text, and a relation type Cp,
whose instances are expressed in a text, indicating relations between two or
more entities. This unification has already been illustrated for the sample
information types in FIGURE 3.14 above.!3

Based on the notion of entity and relation types, we can define the rel-
evance of a portion of text for an information need at hand. By now, we
have considered an information need as a single set of information types,
implicitly meaning a conjunction of the respective types. As stated, tasks
like GEN1A target at different sets concurrently. Here, we therefore define

query the relevance in a more general manner with respect to a so called query:

Query A query v specifies the relevant sets of information types in a text
analysis task. Its abstract syntax is defined by the following grammar:

1. Disjunction. ~ == vV vy | C

2. Conjunction. C == Cr(C{, C}*) | Cg

BEspecially the term “entity” may be counterintuitive for types that are not core infor-
mation extraction types, e.g. for Sentence or Opinion. In the end, however, the output of all
pipelines is structured information that can be used in databases. Hence, it serves to fill the
(entity) slots of a (relation) template in the language of the classical MUC tasks (Chinchor
et al., 1993). Such templates represent the table schemes of databases.

3 PrpeLINE DEsioN 115

[dyo: Paragraph |

Filtering .
view [d,: Sentence |
“GOOGLE FACTS. Google was founded in 1998. Its IPO followed in 2004. “
Organization ~ Organization Relation Time Time
entity entity anchor entity entity
Annotation CL 1]
view Foundation relation

Ficure 3.16: The annotations (bottom) and the relevant portions (top) of a sample
text. For the query 71 = Founded(Organization, Time), the only relevant portion of
text is d,2 on the paragraph level and d, on the sentence level, respectively.

According to the definition, every query v denotes a disjunction of (outer)
conjunctions. Each such conjunction C binds a number of information types
through a relation type Cg that can both relate different entity types C'r and
nest further (inner) conjunctions, for which the same holds. The structure
of the concepts of a query is shown in FIGUre 3.15(a), implicitly modeling
the defined disjunction as a set of conjunctions.

Now, addressing information needs can be regarded as fulfilling a given
query, i.e., finding all portions of text that contain the information sought
for. Similar to the truth of a logical formula, the fulfillment of a query ~
follows from the fulfillment of any of the outer conjunctions in v, which in
turn depends on the fulfillment of all its inner conjunctions. Consequently,
we define the relevance of a portion of text with respect to a conjunction C of FE-EvANcEOF &
the query v to be addressed. In particular, a portion of text can be said to be
relevant for C at some point of a text analysis process if it still may contain
all information needed to fulfill C.

As a simple example, consider the following query ~; that contains only
one conjunction, namely, the binary relation type Founded with two associ-
ated entity types, which has been introduced in FIGURE 3.14:

v = Founded(Organization, Time)

Before the extraction of Founded relations in a respective text analysis pro-
cess, the relevant portions of text are those that contain at least one instance
of both entity types, i.e., an organization and a time entity. Consequently, if
time entities are annotated first, then only those portions of text remain rel-
evant for organization recognition that contain time entities, and vice versa.
The portions remaining after relation extraction fulfill vy;. FIGURE 3.16 visu-
alizes them for a sample text, both on the paragraph level and on the sen-
tence level. Also, it shows the respective annotations. By that, it opposes the
information-oriented view to the process-oriented view of text analysis.

DEGREE OF FILTERING

116 3.4 AN INFORMATION-ORIENTED VIEW OF TEXT ANALYSIS

SPECIFYING A DEGREE OF FILTERING FOR EACH RELATION TYPE

At each point of a text analysis process, the relevance of a given portion of
text can be automatically inferred from the addressed query. However, a
query alone does not suffice to perform filtering, because it does not spec-
ify the size of the portions to be filtered. Since these portions serve for the
fulfillment of single conjunctions, different portions can be relevant for dif-
ferent conjunctions of a query. The following queries exemplify this:

~o = Forecast(Anchor, Time)

~s = Financial(Money, v2) = Financial(Money, Forecast(Anchor, Time))

72 targets at the extraction of forecasts (i.e., statements about the future)
with time information that have an explicit anchor, while 3 refers to finan-
cial events, which relate forecasts to money entities. With respect to the in-
ner conjunction of 3 (i.e., the query 7»), a portion of text without time enti-
ties is irrelevant, but since such a portion may still contain a money entity, it
remains relevant for the outer conjunction (i.e., the query -3 as a whole).

In case of disjunctive queries like v4, the relevance of all portions of text
is largely decided indepedently for each of them:

va =1 V3 = Founded(Organization, Time) \/ Financial(Money, v2)

Here, a portion of text that does not fulfill the conjunctive query ~; can, of
course, still fulfill 3, except for the constraint that both v, and 73 require
an instance of the entity type Time. In general, every conjunction in a query
may entail a different set of relevant portions of text at each step of the ana-
lysis of an input text. Therefore, we propose to assign a degree of filtering to
each conjunction in a query.

Degree of Filtering A degree of filtering Cy is a type of lexical or syntactic
text unit that defines the size of a portion of text, all information of an in-
stance of a conjunction Cr(Cy, ..., Cy), k>1, from a query to be addressed
must lie within, denoted as Cs[Cr(Cy, ..., Cyg)].

Degrees of filtering associate instances of conjunctions to units of text.!*
The specification of degrees of filtering accounts for the fact that most text
analysis algorithms operate on a certain text unit level. E.g., sequential clas-
sifiers for part-of-speech tagging or entity recognition normally process one
sentence at a time. Similarly, most binary relation extractors take as input

4In (Wachsmuth et al., 2013c), we associate the relevance of portions of texts and, hence,
also the assignment of degrees of filtering to relation types instead of conjunctions. The
resort to conjunctions can be seen as a generalization, because it allows us to determine the
relevance of a portion of text also with respect to an atomic entity type only.

3 PrpeLINE DEsioN 117

only candidate entity pairs within that sentence. In contrast, coreference
resolution rather analyzes paragraphs or even the entire text. We call a
query with assigned degrees of filtering a scoped query:

Scoped Query A scoped query v* is a query v where a degree of filtering
is assigned to each contained conjunction Cg(Cy,...,Cy), k> 1, from .

Ficure 3.15(b) shows how degrees of filtering are integrated in a query to
form a scoped query. Every degree of filtering either belongs to a relation
type or to an entity type, never to none or both (this cannot be modeled
in the chosen ontology notation). Moreover, entity types have an assigned
degree of filtering only if they denote an outer conjunction on their own.
All other entity types are bound to a relation type and are, thus, covered by
the degree of filtering of that relation type. As an example, a scoped version
of 74 may prescribe to look for the event type Financial in paragraphs and
for the binary relation types in sentences. Le.:

v: = Sentence[Founded(Organization, Time)]
V Paragraph[Financial(Money, Sentence[Forecast(Anchor, Time)])]

The definition of a scoped query denotes a design decision and should, in
this regard, be performed manually. In particular, degrees of filtering pro-
vide a means to influence the tradeoff between the efficiency of a text ana-
lysis pipeline and its effectiveness: small degrees allow for the filtering of
small portions of text, which positively affects run-time efficiency. Larger
degrees provide less room for filtering, but they allow for higher recall if
relations exceed the boundaries of small portions. When the degrees match
the text unit levels of the employed text analysis algorithms, efficiency will
be optimized without losing recall, since an algorithm can never find rele-
vant information that exceeds the respective text units.!> Hence, knowing
the text unit levels of the employed algorithms would in principle also en-
able an automatic specification of degrees of filtering.

The notion behind the term “scoped query” is that, at each point of a text
analysis process, every degree of filtering in a scoped query implies a set of
relevant portions of text, which we call a scope of the analyzed input text:

Scope A scope S = (dy,...,dy) is an ordered set of n > 0 portions of an
input text where instances of a conjunction Cr(Cjy,...,Cy), k> 1, from a
scoped query v* may occur.

PThere is no clear connection between the specified degrees of filtering and the precision
of a text analysis. In many applications, however, a higher precision will often be easier to
achieve if text analysis is performed only on small portions of text.

SCOPED QUERY

SCOPE

DEPENDENCY GRAPH

118 3.4 AN INFORMATION-ORIENTED VIEW OF TEXT ANALYSIS

MODELING THE DEPENDENCIES BETWEEN RELEVANT INFORMATION TYPES

When addressing a scoped query v* on a given input text, only the scopes
of the text need to be analyzed. However, the scopes change within the text
analysis process according to the found instances of the information types
that are relevant with respect to v*. To maintain the scopes, the dependen-
cies between the entity and relation types in v* and their associated degrees
of filtering must be known, because the change of one scope may affect an-
other one. For illustration, consider the above-mentioned scoped query ~;.
In terms of 7}, paragraphs without time entities will never span sentences
with forecasts and, thus, will not yield financial relations. Similarly, if a
paragraph contains no money entities, then there is no need for extracting
forecasts from the sentences in the paragraph. So, filtering one of the scopes
of Forecast and Financial affects the other one.!®

In general, an instance of a conjunction Cr(Cjy,.. ., Cy) in v* requires the
existence of information of the relation type Cr and of all related sets of in-
formation types Cj, ..., Cj within the same portion of text. All these types
hence depend on the same degree of filtering. In case of an inner conjunc-
tion in an outer conjunction Cr(Cjy, ..., Cy), the relevance of a portion of
text with respect to the inner conjunction can depend on the relevance with
respect to the outer conjunction and vice versa. So, degrees of filtering de-
pend on the degrees of filtering they subsume and they are subsumed by.
We explicitly represent these hierarchical dependencies between the rele-
vant types of information as a dependency graph:

Dependency Graph The dependency graph I associated to a scoped query
v =C1V...VCyg k>1,is a set of directed trees with one tree for each
conjunction C; € {Cy,...,Ci}. An inner node of any C; corresponds to a
degree of filtering C's and a leaf to an entity type Cg or a relation type Cr.
An edge from an inner node to a leaf means that the respective degree of fil-
tering is assigned to the respective information type, and an edge between
two inner nodes implies that the associated degrees of filtering are depen-
dent. The degree of filtering of C; itself defines the root of the tree of C;.

The structure of a dependency graph is given in FIGURE 3.15(c) above.
FiGure 3.17(a) models an instance of this structure, namely, the dependency
graph of the example scoped query ~}. FIGURE 3.17(b) visualizes the associ-
ated scopes of a sample text. The dependency graph of a scoped query can

1Eor complex relation types like coreference, the degree of filtering of an inner conjunction
may exceed the degree of an outer conjunction. E.g., in the example from FiGure 3.14, foun-
dation relations (outer) might be filtered sentence-wise, while coreferences (inner) could be
resolved based on complete paragraphs. In such a case, filtering with respect to the outer
conjunction affects the entities to be resolved, but not the entities to be used for resolution.

3 PrpeLINE DEsioN 119

(a)
:Degree of filtering of filterin ra Deree of Flltenn
/ parent parent \@rent / parent parent ‘Wrent
child chlld hild child chlld child

‘Organization t| T|m Fln nci Sentence
R I t| nt Entlt Entlt t R lati nt Entlt t :Degree of filtering

parent parent
child chrId child

parent

Time
:Entity type

Forecast Anchor
:Relation type :Entity type

) “ GOOGLE NEWS. 2014 ad revenues predicted. Forecasts promising: Google, founded in 1998, hits $20B in 2014. “

scope of Sentence[Founded(Organization, Time)]

[d.4: Sentence |

scope of Paragraph[Financial(Money, Sentence[q,])]
[d,p: Paragraph |

scope of Sentence[Forecast(Anchor, Time)]
[d.,: Sentence | [d.4: Sentence |

Ficure 3.17: (a) The dependency graph of the scoped query v; = v{ V 735. (b) The
scopes of a sample text associated to the degrees of filtering in v;. They store the
portions of text that are relevant for v} after all text analyses have been performed.

be exploited to automatically maintain the relevant portions of text at each
point of a text analysis process, as we see in SECTION 3.5.

DiscussioN OF THE INFORMATION-ORIENTED VIEW

In most cases, the classical process-oriented view of text analysis and the
information-oriented view proposed in this section can be integrated with-
out loss, meaning that no output information sought for is lost through fil-
tering. To this end, the specified degrees of filtering need to match the actual
analyses of the employed algorithms, as described above. We offer evidence
for this effectiveness preservation in the evaluation of Section 3.5.

An exception that is not explicitly covered by the view emanates from
algorithms that do not operate on some text unit level, but that e.g. look at a
sliding window of an input text without paying attention to text unit bound-
aries. For instance, an entity recognition algorithm might classify a candi-
date term based on clues from the three preceding and the three subsequent
tokens. Such algorithms will change their behavior when only portions of
the text are analyzed. In our experience, though, most important informa-
tion for according classification decisions is typically found within sentence
boundaries, which is why the algorithms will often still work appropriately
when considering a text as a set of portions of text (as we do).

PREDECESSOR TYPE

3-5

120 3.5 OptiMAL ExEcUTION via TRUTH MAINTENANCE

As mentioned, the information-oriented view does not help much in
usual text classification tasks where complete texts shall be categorized,
since these tasks often do not allow for filtering at all. Still, as soon as an
analysis can be restricted to some scope of the text, an appropriate model-
ing of the task may enable filtering. As an example, consider the prediction
of sentiment scores from the bodies of review texts in our case study Ar-
GUANA (cf. SectiON 2.3). This task directly implies a degree of filtering Body.
Additionally, there may be features used for prediction that are e.g. com-
puted only based on statements that denote opinions (as opposed to facts).
Therefore, a scoped query may restrict preceding analyses like the recogni-
tion of product names or aspects to the according portions of texts:

YVaeore = Body[SentimentScore(Opinion[Product], Opinion[Aspect])]

Scoped queries and the derived dependency graphs normally ought to
model the information types explicitly sought for in a text analysis task only.
In the following section, we use the dependency graphs in order to automat-
ically maintain the relevant portions of an input text based on the output of
the employed text analysis algorithms. However, some algorithms produce
information types that do not appear in a dependency graph at all, but that
only serve as input for other algorithms. Typical examples are basic lexical
and syntactic types like Token or Part-of-speech. Also, annotations of a spe-
cific type (say, Author) may require annotations of a more general type (say,
Person) to be given already. We decided not to model any of these predecessor
types here, because they depend on the employed pipeline. Consequently;, it
seems more reasonable to determine their dependencies when the pipeline
is given. In particular, the dependencies can be automatically determined
from the input and output types of the algorithms in the pipeline, just as
we have done for the ad-hoc pipeline construction in Secrion 3.3.

OrtiMAL ExEcUTION VIA TRUTH MAINTENANCE

The information-oriented view of text analysis can be exploited to analyze
only relevant portions of an input text in each step of a text analysis process,
thereby operationalizing the way humans skim over texts in a consistent
way. To this end, we now adopt the concept of truth maintenance (Russell
and Norvig, 2009) for keeping track of the relevance of each portion of text.
Then, we realize such kind of input control as part of a software framework.
Using this framework, we conduct several experiments to show the benefit
of our approach. As in SectioN 3.4, we reuse content from (Wachsmuth
et al., 2013c) here, but we also provide many new insights.

3 PrpeLINE DEsioN 121

(@) (b)

assumption-based Input

truth maintenance control
assumptions and beliefs and annotations and relevant portions
Jjustifications contradictions scopes of text

engine pipeline
Ficure 3.18: Comparison of (a) the classical high-level concept of an assumption-
based truth maintenance system and (b) the proposed input control.

MOoDELING INPUT CONTROL AS A TRUTH MAINTENANCE PROBLEM

Text analysis processes can be regarded as non-monotonic in that knowl-
edge about the input texts to be processed changes in each step. By knowl-
edge, we mean annotations of entity and relation types here that help to
address the information needs at hand (represented by a scoped query).!”
In many cases, no knowledge is given beforehand, meaning that the text
analysis process starts on a plain input text. Consequently, each portion of
the text d must be assumed relevant in the beginning. During text analysis,
new knowledge is inferred through annotation. If, in some step of the pro-
cess, d lacks any knowledge that is required for the given scoped query, it
becomes irrelevant and can be excluded from further analysis.

In artificial intelligence, such non-monotonicity is well-studied. To han-
dle the non-monotonic knowledge used by inference engines, one common
approach is to rely on an assumption-based truth maintenance system (ATMS), A%UMTIONBASED @ cverem
which justifies and retracts assumptions about the problem to be solved in
order to constantly update what can be believed as true, i.e., what inferences
can be made based on the currently given knowledge (Russell and Norvig,
2009). To this end, the inference engine passes current assumptions and jus-
tifications expressed as propositional symbols and formulas to the ATMS.
The ATMS then returns the inferrable beliefs and contradictions.

To address text analysis as a filtering task, we adapt the ATMS concept
for maintaining the portions of an input text that are relevant with respect
to a given scoped query ~*. In particular, we propose to equip a text ana-
lysis pipeline with an input control that takes the annotations and current
scopes of a text as input in order to determine in advance of executing a
text analysis algorithm what portions of text need to be processed by that
algorithm. FIGURE 3.18 compares the high-level concept of a classical ATMS
to the proposed input control.

7We omit to distinguish between knowledge and information in this section to emphasize
the connection between text analysis and non-monotonicity in artificial intelligence.

ASSUMPTION

JUSTIFICATION

122 3.5 OptiMAL ExEcUTION via TRUTH MAINTENANCE

The input control models the relevance of each portion of text using an in-
dependent set of propositional formulas. In a formula, every propositional
symbol represents an assumption about the portion of text, i.e., the assumed
existence of an information type or the assumed fulfillment of the scoped
query v* or a conjunction in v*. The formulas themselves denote justifica-
tions. A justification is an implication in definite Horn form whose conse-
quent corresponds to the fulfillment of a query or conjunction, while the
antecedent consists of the assumptions under which the fulfillment holds.

Concretely, the following formulas are defined initially. For each portion
of text d that is associated to an outer conjunction Cs[Cr(Cy,...,Cy)] in~*,
we denote the relevance of d with respect to the scoped query v* as 7*(%) and
we let the input control model its justification as ¢(%):

@ DA A AC? o D (3.8)
(d)

Additionally, the input control defines a justification of the relevance C;™ of
the portion d with respect to each inner conjunction of the outer conjunction
Cs[Cr(Cy, ..., Cy)| that has the form C; = C4[C,(Ci1, ..., Cy)]. Based on
the portions of text associated to the degree of filtering of C;, we introduce

a formula @ZJEd/) for each such portion of text d:

o A A A A el (3.9)
(@)

/ K
new formula wi(d) represents either an entity type Cg or a relation type Ck.

This modeling step is repeated recursively until each child node C;’’ in a
As a result, the set of all formulas ¢(¥) and wgd/) of all portions of text defines
what can initially believed for the respective input text.

To give an example, we look at the sample text from FiGure 3.17(b). The
scoped query 7; to be addressed has two outer conjunctions, 7} and ~;,
with the degrees of filtering Sentence and Paragraph, respectively. For the
four sentences and two paragraphs of the text, we have six formulas:

o4 . Founded V) A Organization®) A Timelds) — yz(d“)
¢\ %2) . Founded®® A Organization(@s?) A Time®2) — VZ(dSQ)
$(4s3) Founded®3) A Organization'®3) A Time @) — %s;(dsg)
gi)(ds‘*) Founded®) A Organization(d54) A Timeldst) — Vz(d“)
Pl . Financial %) A Money %) A yg(dpl) — 'yz(d”l)
plr2) . Financial %) A Money %2 A wg(d’ﬂ) — vz(d’ﬂ)

In case of the two latter formulas, the relevance depends on the inner con-
junction v; of v, for which we define four additional formulas:

3 PrpeLINE DEsioN 123

z/J(d“) : Forecast'V) A Anchor®) A Timel®1) — ’y;(d”l)
¢(d52) : Forecast'%2?) A Anchor®?) A Timel®2) — 'y;(d”2)
w(ds“) : Forecast'¥3) A Anchor@3) A Time(®s3) — vg(d‘ﬁ)
w(ds“) : Forecast'%) A Anchor®9) A Timel®s1) — yg(dm)

The antecedents of these formulas consist of entity and relations types only,
so no further formula needs to be added. Altogether, the relevance of the
six distinguished portions of the sample text is hence initially justified by
the ten defined formulas.

After each text analysis, the formulas of a processed input text must be
updated, because their truth depends on the set of currently believed as-
sumptions, which follows from the output of all text analysis algorithms
applied so far. Moreover, the set of current formulas implies, whether a
portion of text must be processed by a specific text analysis algorithm or
not. In particular, an algorithm can cause a change of only those formulas
that include an output type of the algorithm. At the end of the text analy-
sis process then, what formula ever remains, must be the truth, just in the
sense of this chapter’s introductory quote by Arthur Conan Doyle.

Here, by truth, we mean that the respective portions of text are relevant
with respect to the scoped query v* to be addressed. To maintain the rel-
evant portions of an input text, we have already introduced the concept
of scopes that are associated to the degrees of filtering in the dependency
graph I' of v*. Initially, these scopes span the whole input text. Updating
the formulas then means to filter the scopes according to the output of a text
analysis algorithm. Similarly, we can restrict the analysis of that algorithm
to those portions of text its output types are relevant for. In the following,
we discuss how to perform these operations.

FiLTERING THE RELEVANT PoRTIONS OF TEXT

Given the output of an applied text analysis algorithm, we update all justi-
fications ¢(® and (9 of the relevance of an analyzed portion of text d that
contain an output type C'©*) € C(°%") of the algorithm. In particular, the as-
sumptions about these types become either true or false. Once an assump-
tion turns out to be false, it will always remain false. Instead of maintaining
the respective justifications, we can hence delete those that are contradicted,
thereby filtering the analyzed scopes of the input text.

For instance, if time entities are found only in the sentences ds2 and d,4 in
FiGURE 3.17(b), then all formulas with Time(®1) or Time(?3) are falsified. In
the other ones, the respective assumptions Time(s2) and Time @) are jus-

124 3.5 OptiMAL ExEcUTION via TRUTH MAINTENANCE

UPDATESCOPES(C(941))

1: for each Information type C°*") in C°*") do
2: if C(°"") is a degree of filtering in the dependency graph I then
GENERATEScOPE(C (%))

: Scopes S «+ GETRELEVANTSCOPES(C(°""))
: for each Scope S in S do
Information types C « all C' € C°*) to which S is assigned
for each Portion of text d in S do
if not d contains an instance of any C' € C then S.remove(d)

PN @

9: Scope Sy — I'.getRootScope(.S)
10: if Sp # S then
11: for each Portion of text d in Sy do
12: if not d intersects with S then Sy.remove(d)

13: Scopes S’ «+ I'.getAllDescendantScopes(So)

14: for each Scope S’ # Sin S’ do

15: for each Portion of text d in S" do

16: if not d intersects with Sy then S’.remove(d)

Pseupocopk 3.5: Update of scopes based on the set of output types C(°“) of a text
analysis algorithm and the produced instances of these types. An update may lead
both to the generation and to the filtering of the affected scopes.

tified by replacing them with “true” and, consequently, deleting them from
the antecedents of the formulas. In addition, updating a formula (¥ re-
quires a recursive update of all formulas that contain the consequent of 1(%).
In the given case, the consequent fy; (dp1) of w(dsl) becomes false, which is
why ¢(%1) also cannot hold anymore. This in turn could render the fulfill-
ment of further nested conjunctions useless. However, such conjunctions
do not exist in ¢(@1). Therefore, the following formulas remain:

Plds2) Founded%?) A Organization!@s?) — ’yZ(dSQ)
Plds1) Founded'®V) A Organizationd9 — 7Z(d34)
¢(r2) . Financial %) A Money ®2) A fy;(dpz) — ’yz(dpz)
Plds2) Forecast'®2) A Anchor(®?) — ’y;(d”Q)

Pldsa) Forecast'®t) A Anchor(®) — 'y;(d’ﬁ)

We summarize that the output of a text analysis algorithm is used to fil-
ter not only the scopes analyzed by the algorithm, but also the dependent
scopes of these scopes. The set of dependent scopes of a scope S consists of
the scope S associated to the root of the degree of filtering C's of S in the
dependency graph of v* as well as of each scope S’ of a descendant degree
of filtering of the root. This, of course, includes the scopes of all ancestor
degrees of filtering of C's besides the root.

3 PrpeLINE DEsioN 125

GETRELEVANTSCOPES(C (%))

1: Scopes S
2: for each Degree of filtering C's in the dependency graph I" do
3: if [.getChildren(Cs) N C°“ £ () then

4 S.add(I".getScope(C's))

5 else if GerPREDECESSORTYPES(I".getChildren(Cis)) N Cut) - () then
6: S.add(I".getScope(C's))

7: return S

Pseupocopk 3.6: Determination of the set S of all scopes that are relevant with
respect to the output types C(°*") of a text analysis algorithm.

Pseupocopk 3.5 shows how to update the scopes of an input text based
on the output types C(®*) of a text analysis algorithm. To enable filtering,
all scopes must initially be generated by segmentation algorithms (e.g. by a
sentence splitter), i.e., algorithms with an output type C(°**) that denotes a
degree of filtering in the dependency graph I'. This is done in lines 1 to 3 of
the pseudocode, given that the employed pipeline schedules the according
algorithms first. Independent of the algorithm, the method GETRELEvANT-
Scopes next determines the set S of scopes that are relevant with respect
to the output of the applied algorithm (line 4).!® For each scope S € S, a
portion of text d is maintained only if it contains an instance of one of the
types C C C(u!) relevant for S (lines 5 to 8). Afterwards, lines 9 to 12
remove all portions of text from the root scope Sy of S that do not intersect
with any portion of text in S. Accordingly, only those portions of text in the
set of descendant scopes S’ of Sy are retained that intersect with a portion
in Sy (lines 13 to 16).

GETRELEVANTSCOPES is given in PSEUDOCODE 3.6: A scope is relevant with
respect to C(°%)
degrees of filtering: First, an information type from C©*) is a child of the
degree in the depedency graph I' (lines 3 to 4). Second, an information
type from C(©“!) serves as the required input of another algorithm in the
employed pipeline (lines 5 to 7), i.e., it denotes a preprocessing type in the

if at least one of two conditions holds for the associated

sense discussed at the end of Section 3.4. E.g., part-of-speech tags are not
specified in v}, but they might be necessary for the type Organization.

DEeTERMINING THE RELEVANT PORTIONS OF TEXT

Above, we discussed how to filter the relevant portions of text based on the
output of a text analysis algorithm. Still, the question is what subset of the

8Different from here, we do not determine the relevant scopes within UPDATEScOPEs in
(Wachsmuth et al., 2013c) for space reasons, which requires to store the scopes externally.

126 3.5 OptiMAL ExEcUTION via TRUTH MAINTENANCE

DETERMINEUNIFIEDSCOPE(C (9%))

1: for each Information type C(°*) in C(°*) do
2: if C°"Y is a degree of filtering in the dependency graph I then
return the whole input text

: Scopes S «+ GETRELEVANTSCOPES(C(°""))

: Scope Sy « 0

: for each Scope S'in S do

for each Portion of text d in S do
if not d intersects with Sy then Sy.add(d)
else Su.merge(d)

0

10: return Sy

Pseubpocobk 3.7: Determination of the unified scope Sy to be analyzed by a text
analysis algorithm based on the given output types C(°*) of the algorithm.

current scopes of an input text actually need to be processed by an algo-
rithm. As an example, consider the five mentioned formulas that remain
after time recognition when addressing the scoped query v; = 7 V v;. Al-
though the whole paragraph d» is assumed relevant for ~}, an algorithm
that produces Organization annotations will only lead to a change of the for-
mulas ¢(%2) and ¢(%4). So, the analysis of the algorithm can be restricted to
the scope associated 77, thus leaving out the sentence d3 of ds.

In general, an employed text analysis algorithm must be applied to each
portion of text d, for which an assumption D or (@ exists that depends
on one of the output types C(“!) of the algorithm. That is, the algorithm
must be applied to the union Sy, of the set S of all scopes that are relevant
for the algorithm according to the method GETRELEVANTSCOPES.

Pseupocopk 3.7 sketches how to determine the unified scope Sy that
contains all portions of an input text, which are relevant for the output
types Cl°“) of an employed algorithm. Lines 1 to 3 check whether a type
in C(") is a degree of filtering. In this case, the employed algorithm is a seg-
mentation algorithm and, so, the whole input text is returned. Elsewise, the
set S of relevant scopes is identified using GETRELEVANTScoPEs from Pseupo-
coDE 3.6 again. These scopes are then unified in lines 5 to 9 by collecting all
non-overlapping portions of text while merging the overlapping ones.

PrOPERTIES OF THE PROPOSED EXECUTION APPROACH

We have already discussed the limitations of the information-oriented view
at the end of SectioN 3.4, namely, there are two noteworthy prerequisites
that must be fulfilled in order to allow for filtering: (1) The algorithms in the
employed pipeline must operate on some text unit level. (2) Not all parts of

3 PrpeLINE DEsioN 127

all input texts (and, hence, not all possible annotations) are relevant to fulfill
the information needs at hand. In the following, we restrict our view to
pipelines where both prerequisites hold. As for the pipeline construction
in SecTION 3.3, we look at the correctness and run-time of the developed
approaches. In (Wachsmuth et al., 2013c), we have sketched these properties
roughly, whereas we analyze them more formally here.

Correctness Concretely, we investigate the question whether the execution
of a pipeline that is equipped with an input control, which determines and
updates the scopes of an input text before each step of a text analysis pro-
cess (as presented), is optimal in that it analyzes only relevant portions of
text.!” As throughout this thesis, we consider only pipelines, where no out-
put type is produced by more than one algorithm (cf. Section 3.1). Also,
for consistent filtering, we require all pipelines to schedule the algorithms
whose output is needed for generating the scopes of an input text before
any possible filtering takes place. Given these circumstances, we now show
the correctness of our algorithms for determining and updating scopes:

Lemma 3.1. Let a text analysis pipeline 11 = (A, 7) address a scoped query v* on
an input text D. Let uppaTEScoPEs(C ™) be called after each execution of an
algorithm A€ A on D with the output types C'“Y) of A. Then every scope S of D
associated to ~* always contains exactly those portions of text that are currently
relevant with respect to v*.

Proof. We prove the lemma by induction over the number m of text analysis
algorithms executed so far. By assumption, no scope is generated before the
first algorithm has been executed. So, for m =0, the lemma holds. Therefore,
we hypothesize that each generated scope S contains exactly those portions
of text that can be relevant with respect to v* after the execution of an arbi-
trary but fixed number m of algorithms.

Now, by definition, line 4 of uppAaTEScOPEs determines all scopes S whose
portions of text need to span an instance of one of the output types C(**) of
the m+1-th algorithm in order to be relevant for v*2° Every such portion d
in a scope S € S is retained in lines 7 to 8. Because of the induction hypothe-
sis, d can still fulfill the conjunction C of v* its associated degree of filtering
is assigned to. Consequently, also the outer conjunction of C can still be ful-

YHere, we analyze the optimality of pipeline execution for the case that both the algorithms
employed in a pipeline and the schedule of these algorithms have been defined. In contrast,
the examples at the beginning of Section 3.4 have suggested that the amount of text to be an-
alyzed (and, hence, the run-time optimal pipeline) may depend on the schedule. The problem
of finding the optimal schedule under the given filtering view is discussed in CHAPTER 4.

2For the proof, it does not matter whether the instances of an information type in C°*
are used to generate scopes, since no filtering has taken place yet in this case and, hence, the
whole text D can be relevant after lines 1 to 3 of uPDATEScoOPEs.

128 3.5 OptiMAL ExEcUTION via TRUTH MAINTENANCE

filled by the portions of text that intersect with S in lines 11 to 12 (e.g., the
paragraph d,» in FIGURE 3.17(b) remains relevant after time recognition, as it
intersects with the scope of Sentence[Forecast(Anchor, Time)].) If an outer con-
junction becomes false (as for d,; after money recognition), the same holds
for all inner conjunctions, which is why the respective portions of text (ds;
only) are removed in lines 14 to 16. Altogether, exactly those portions that
are relevant with respect to any conjunction in v* remain after executing the
m+1-th algorithm. So, LEemma 3.1 holds. O]

LemmMma 3.2. Let a text analysis pipeline I1 = (A, 7) address a scoped query v* on
an input text D. Further, let each degree of filtering in v* have an associated scope S
of D. Given that S contains exactly the portions of text that can be relevant with
respect to v*, the scope Sy, returned by pETERMINEUNTFIEDSCOPE(C(°™)) contains
a portion of text d € D iff. it is relevant for the information types C(o"%).

Proof. By assumption, every segmentation algorithm must always process
the whole input text, which is assured in lines 1 to 3 of Pseupocobk 3.7. For
each other algorithm A € A, exactly those scopes belong to S where the
output of A may help to fulfill a conjunction (line 4). All portions of text of
the scopes in S are unified incrementally (line 5 to 9) while preventing that
overlapping parts of the scopes are considered more than once. Thus, no
relevant portion of text is missed and no irrelevant one is analyzed. O

The two lemmas lead to the optimality of using an input control:

THeOREM 3.3. Let a text analysis pipeline IT = (A,) address a scoped query ~v*
on an input text D. Let uppaTeScopes(C) be called after each execution of an
algorithm A€ A on D with the output types C(©“Y) of A, and let each A process only
the portions of D returned by pETERMINEUNIFIEDSCOPE(C(?“Y)). Then 11 analyzes
only portions of D that are currently relevant with respect to v*.

Proof. As LEmma 3.1 holds, all scopes contain exactly those portions of D
that are relevant with respect to v* according to the current knowledge.
As LemMa 3.2 holds, each algorithm employed in II gets only those portions
of D its output is relevant for. From that, TaHEOREM 3.3 follows directly. [J

THEOREM 3.3 implies that an input-controlled text analysis pipeline does not
perform any unnecessary analysis. The intended benefit is to make a text
analysis process faster. Of course, the maintenance of relevant portions of
text naturally produces some overhead in terms of computational cost. In
the evaluation below, however, we give experimental evidence that these
additional costs only marginally affect the efficiency of an application in
comparison to the efficiency gains achieved through filtering. Before, we
now analyze the asymptotic time complexity of the proposed methods.

3 PrpeLINE DEsioN 129

out)| of an algorithm is a small

Complexity The number of output types |C!
constant. Hence, lines 1 to 3 of uppAaTEScOPES take time linear in the length
of the input text D, i.e., O(|D|). Getting the relevant scopes for C(°*Y) then
requires an iteration over all degrees of filtering Cg in the scoped query v*.
Also, the for-loop from line 5 to 16 is executed at most once for each scope .S
and, thus, again depends on |Cg|. Within one loop iteration, the filtering
of S in lines 6 to 8 needs O(|D|) operations. Afterwards, S is intersected
with at most |Cg/| other scopes. Each intersection can be realized in O(|D])
time by stepwise comparing the portions of text in all scopes according to
their ordering in D. Altogether, the run-time of the for-loop thus dominates
the worst-case run-time of uppaTeScores, which can be estimated as

tUPDATESCOPEs(DaCS) = O(|CS’(’CSH’1)‘D|) = O(|CS|2|D|) (310)

In most cases, the number of degrees of filtering |Cg| will be a negligi-
bly small constant. In the end, we therefore simply assume a call of up-
DATESCOPES to be linear in the length of the analyzed text D.

Analogous to the update of the scopes, the determination of a unified
scope in Pseupocopk 3.7 begins with O(|Cg|) steps in lines 1 to 3 and O(|D|)
steps in line 4. For a concise presentation, lines 6 to 9 then contain nested
loops. As for the intersection of scopes, the unification of a set of scopes
can in fact be realized in time linear in the number of portions of text of all
scopes through a stepwise comparison (we realized an according procedure
in the software framework described below) and, thus, O(|D|) operations.
Consequently, the asymptotic run-time of DETERMINEUNIFIEDSCOPE is

tDETERMINEUNIFIEDSCOPE(D7 CS) = O(|CS’) + O(’D‘) (311)

Practically, this again results in time linear to the length of D. We conclude
that the filtering view of text analysis can be efficiently realized in the form
of an input control that governs the portions of text processed by each algo-
rithm in an employed text analysis pipeline. In the following, we describe
the main concepts behind our realization.

A SorrwARE FRAMEWORK FOR OprTiMAL EXECUTION

To demonstrate how to equip a text analysis pipeline with an input con-
trol in an application, we now sketch our realization of the developed ap-
proach as a Java software framework on top of AracHe UIMA (see above).
The realization has originally been presented in (Wachsmuth et al., 2013c).
Some technical details about this FiLrering FRaMEWORK and how it can be
extended by an application are given in AppENDIX B.2.

FILTERING ANALYSIS ENGINE

130 3.5 OptiMAL ExEcUTION via TRUTH MAINTENANCE

Filtering framework

oplipize 1. Scoped query
v
creates Scope TMS 1 0.1
e . "
Filtering 1 * Scope x
analysis engine —
Application extendsj] consists oi refers to
employs | Aggregate O— Primitive . . Annotation
1..| analysis engine |{ «| analysis engine \1‘ 1/'
accesses Common analysis|
1 structure 1
s | Text -

1.% 1
Apache UIMA framework

Ficure 3.19: An UML-like class diagram that shows the high-level architecture of
realizing an input control as a filtering framework, which extends Aracue UIMA.

Some concepts of ApacHE UIMA have been introduced in Section 3.3.
Here, we provide a simplified view of its architecture thatis illustrated at the
bottom of FiIGURE 3.19 in a UML-like class diagram notation (OMG, 2011).
An application based on Aracue UIMA inputs at least one but typically
much more texts and analyzes these texts with aggregate analysis engines (text
analysis pipelines). An aggregate analysis engine executes a composition of
primitive analysis engines (say, text analysis algorithms), which make use of
common analysis structures in order to process and to produce output anno-
tations of the input text at hand. Concrete annotation types do not denote
entity types only, but also relation types, because they may have features
that store values or references to other annotations.

We extend AracHe UIMA with our Firtering FRamMEWORK. FIGURE 3.19
shows the four main concepts of this extension at the top:

1. The filtering analysis engines that analyze only relevant portions of text,
2. the scoped query to be addressed by the analysis engines,
3. the scopes that contain the relevant portions of the input text, and

4. the scope TMS, which updates and determines all scopes.

Filtering analysis engines inherit from primitive analysis engines and,
hence, can be composed in an aggregate analysis engine. Prior to analy-
sis, a filtering analysis engine automatically requests the unified scope its
output annotation types and features C(*“*) are relevant for from the scope
TMS. After analysis, it triggers the update of scopes based on C(°*") and its

produced output annotations.?!

A The set C(°“") can be inferred from the so called result specification of an analysis engine,
which Aracue UIMA automatically derives from the analysis engine’s descriptor file.

3 PrpeLINE DEsioN 131

To enable filtering, an application must define the scoped query v* to be
addressed by an aggregate analysis engine. In our implementation, v* is en-
tered in the form of a string. Then, v* is parsed by the FiLTERING FRAMEWORK
to derive its dependency graph I' and to prepare the scopes associated to
its degrees of filtering. In accordance with I', each scope can have at most
one root scope and an arbitrary number of descendant scopes. We realize
a scope as a set of generic annotations that may have a text unit type as-
signed (say, Sentence). The text unit type can be exploited to improve the
efficiency of operations like the unification of scopes.

Since the access points of the ApacHe UIMA framework are fixed, analy-
sis engines cannot simply access objects outside the framework. To avoid
modifications of the framework’s source code, we decided to maintain all
scopes using a blackboard architecture. Such an architecture is common
in artificial intelligence, defining a shared knowledge base that can be ac-
cessed by a group of specialists (cf. SEcTion 2.2). Here, the specialists are
filtering analysis engines, which determine and update scopes via a glob-
ally accessible truth maintenance system. This scope TMS maintains the de-
pendency graph I' of each scoped query +*, a mapping from the degrees of
filtering in v* to the associated scopes, and a mapping from all output types
of the filtering analysis engines (including the predecessor types mentioned
in SecTION 3.4) to the scopes they are relevant for. Dependencies between
the output types are derived from the analysis engines” descriptor files.

For the determination of a unified scope, the scope TMS implements
Pseupocope 3.7 that is executed based on the output types C(“Y) of the
calling filtering analysis engine. Once the filtering analysis engine has pro-
cessed the scope, the scope TMS updates all respective scopes according to
Pseupocope 3.5. Concretely, if an output type C°%) € C(°¥) denotes a de-
gree of filtering, the scope TMS adds all produced instances of C'°*!) to the
associated scope S. Otherwise, it filters all concerned scopes, thus keeping
track of the relevant portions of an input text while excluding the others
from further analyses.

EvarLuaTioN oF OprimAaL ExecuTtioN

Based on the realized filtering framework, we now evaluate the effects of
using an input control on the efficiency and effectiveness of pipeline execu-
tion. The impact of the underlying filtering view depends on the amout of
information in the given input texts that is relevant for the given text analy-
sis task. This makes a comprehensive evaluation of filtering in text analysis
infeasible. Instead, our experiments serve as a reasonable proof-of-concept

SCOPE TMS

FILTER RATIO

132 3.5 OptiMAL ExEcUTION via TRUTH MAINTENANCE

that (1) analyzes the main parameters intrinsic to filtering and (2) offers ev-
idence for the efficiency of our proposed approach. Arpenpix B.4 yields
information on the Java source code of this evaluation.

Input Texts Our experiments are conducted all on texts from two text cor-
pora of different languages. First, the widely used English dataset of the
CoNLL-2003 sHARED Task that has originally served for the development
of approaches to language-independent named entity recognition (cf. Ap-
PENDIX C.4). The dataset consists of 1,393 mixed classic newspaper stories.
And second, our complete REvENUE corpus with 1,128 German online busi-
ness news articles that we already processed in Sections 3.1 and 3.3 and that
is described in AppenDix C.1.

Scoped Queries From a task perspective, the impact of our approach is pri-
marily influenced by the complexity and the filtering potential of the scoped
query to be addressed. To evaluate these parameters, we consider the ex-
ample queries v; to 74 from SecTioN 3.4 under three degrees of filtering:
Sentence, Paragraph, and Text, where the latter is equivalent to performing
no filtering at all. The resulting scoped queries are specified below.

Text Analysis Pipelines We address the scoped queries with different pipe-
lines, some of which use an input control, while the others do not. In all
cases, we employ a subset of eleven text analysis algorithms that have been
adjusted to serve as filtering analysis engines. Each of these algorithms can
be parameterized to work both on English and on German texts. Concretely,
we make use of the segmentation algorithms stoy, ssg, and Tro; as well as
of the chunker pch for preprocessing. The entity types that appear in the
queries (i.e., Time, Money, and Organization) are recognized with ET1, EMO,
and ENE, respectively. Accordingly, we extract relations with the algorithms
RFO (Forecast), Reu (Founded), and re1 (Financial). While rro operates only on
the sentence-level, the other two qualify for arbitrary degrees of filtering.
Further information on the algorithms can be found in AppENDIX A.

All employed algorithms have a roughly comparable run-time that scales
linear with the length of the processed input text. While computationally
expensive algorithms (say, a dependency parser) strongly increase the ef-
ficiency potential of filtering (the later such an algorithm is scheduled the
better), employing them would render it hard to distinguish the effects of
filtering from those of the order of algorithm application (cf. CHAPTER 4).

Experiments We quantify the filtering potential of our approach by com-
paring the filter ratio (Filter %) of each evaluated pipeline II, i.e., the quotient
between the number of characters processed by II and the number of charac-
ters processed by a respective non-filtering pipeline. Similarly, we compute

3 PrpeLINE DEsioN 133

(a) filter ratio 100.0% 100.0% (b) filter ratio 100.0% 100.0%
100% 1 & - =4 oo —o—o o 100% 7 & — &= —
EAN no filtering N no filtering
TN N
80% Vo = > o L5 = 80% A 4".75:’20,7 - - -
60% "«__73'6 ’* paragraph level >4 60% 1 A ° paragraph level >
60.3%
40% - 40% - 42l(>)-°~/-~-<l ------- ooooo l_.' 53.5%
e [oo n 7 sentence level .
20% 1 query Y; on 28.9% sentence level .. 20% 1 query Y, on ‘m
CoNLL-2003 dataset 108% REVENUE CORPUS 17.2%
0% - 0%

SPA SSE ETI STO, TPO, PCH ENE RFU SPA ' SSE ETI STO, TPO, PCH ENE RFU
algorithm algorithm

Ficure 3.20: Interpolated curves of the filter ratios of the algorithms in pipeline IT;
under three degrees of filtering for the query v, = Founded(Organization, Time) on
(a) the English CoNLL-2003 dataset and (b) the German RevENUE corpus.

the time ratio (Time %) of each II as the quotient between the run-time of II
and the run-time of a non-filtering pipeline.?> All run-times are measured
on a 2 GHz Intel Core 2 Duo MacBook with 4 GB memory and averaged
over ten runs (with standard deviation o). In terms of effectiveness, below
we partly count the positives (P) only, i.e., the number of extracted relations
of the types sought for, in order to roughly compare the recall of pipelines.
For the foundation relations, we also distinguish between false positives (FP)
and true positives (TP) to compute the extraction precision. To this end, we
have decided for each positive manually whether it is true or false. In par-
ticular, an extracted foundation relation is considered a true positive if and
only if its anchor is brought into relation with the correct time entity while
spanning the correct organization entity.?

Tradeoff between Efficiency and Effectiveness We analyze different de-
grees of filtering for the query ~, = Founded(Organization, Time). In particu-
lar, we execute the pipeline II; = (sPa, SSE, ETI, STO2, TPO2, PCH, ENE, RFU) ON
both given corpora to address each of three scoped versions of v;:

v; = Sentence[~1] vy, = Paragraph[~] i = Text[y1]

To examine the effects of an input control, we first look at the impact
of the degree of filtering. FIGURE 3.20 illustrates the filter ratios of all single
algorithms in IT; on each of the two corpora with one interpolated curve for
every evaluated degree of filtering. As the beginnings of the curves convey,
even the segmentation of paragraphs (given for the paragraph level only)
and sentences already enables the input control to disregard small parts of a

ZWe provide no comparison to existing filtering approaches, as these approaches do not
compete with our approach, but rather can be integrated with it (cf. Section 3.6).

Z An exact evaluation of precision and recall is hardly feasible on the input texts, since
the relation types sought for are not annotated. Moreover, the given evaluation of precision
is only fairly representative: In practice, many extractors do not look for cross-sentence and
cross-paragraph relations at all. In such cases, precision remains unaffected by filtering.

TIME RATIO

134 3.5 OptiMAL ExEcUTION via TRUTH MAINTENANCE

Corpus Degree of filtering Char’s Filter % t+o Time% TP FP D
CoNLL Text (no filtering) 1270M 100.0% 754 +03 100.0% 7 1 87.5%
Paragraph 1035M 815% 521+£05 69.0% 7 1 875%
Sentence 516 M 40.6% 248+02 32.9% 5 0 100.0%
Revenue Text (no filtering) 30.63M 100.0% 157.8+0.3 100.0% 37 15 71.2%
Paragraph 2495M 81.4% 1265+05 802% 27 11 71.1%
Sentence 14.67M 47.9% 749+02 475% 14 5 73.7%

TasLE 3.4: The number of processed characters in millions with filter ratio Filter %,
the run-time ¢ in seconds with standard deviation ¢ and time ratio Time %, and
the numbers of true positives (TP) and false positives (FP) as well as the resulting
precision p of pipeline II; for the query ~, = Founded(Organization, Time) with three
degrees of filtering on the English CoNLL-2003 dataset and on the REVENUE corpus.

text, namely those between the segmented text portions. The first algorithm
in Iy, then, that really reduces the number of relevant portions of text is Tim.
On the sentence level, it filters 28.9% of its input characters from the texts in
the CoNLL-2003 dataset and 42.0% from the ReveNUE corpus. These values
are further decreased by ENE, such that rru has to analyze only 10.8% and
17.2% of all characters, respectively. The values for the degree of filtering
Paragraph behave similar, while naturally being higher.

The resulting overall efficiency and effectiveness values are listed in Ta-
BLE 3.4. On the paragraph level, II; processes 81.5% of the 12.70 million
characters of the CoNLL-2003 dataset that it processes on the text level, re-
sulting in a time ratio of 69.0%. For both these degrees of filtering, the same
eight relations are extracted with a precision of 87.5%. So, no relation is
found that exceeds paragraph boundaries. Filtering on the sentence level
lowers the filter ratio to 40.6% and the time ratio to 32.9%. While this re-
duces the number of true positives to 5, it also prevents any false positive.
Such behavior may be coincidence, but it may also indicate a tendency to
achieve better precision, when the filtered portions of texts are small.

On the REVENUE corpus, the filter and time ratios are higher due to a larger
amount of time entities (which are produced first by II;). Still, the use of
an input control saves more than half of the run-time ¢, when performing
filtering on the sentence level. Even for simple binary relation types like
Founded and even without employing any computationally expensive algo-
rithm, the efficiency potential of filtering hence becomes obvious. At the
same time, the numbers of found true positives in TabLE 3.4 (37 in total, 27
within paragraphs, 14 within sentences) suggest that the use of an input
control provides an intuitive means to trade the efficiency of a pipeline for
its recall, whereas precision remains quite stable.

3 PrpeLINE DEsioN 135

Degree of filtering Char’s Filter % t+o Time % Positives
Text (no filtering) 19.14 M 100.0% 58.7 £ 0.4 100.0% 3622
Paragraph 20.02M 87.2% 488 £1.1 83.1% 3622
Sentence 12.40 M 64.8% 31.6 £ 0.3 53.9% 3622

TaBLE 3.5: The number of processed characters in millions with filter ratio Filter %,
the run-time ¢ in seconds with standard deviation o and time ratio Time %, and the
number of positives (in terms of extracted relations) of pipeline Il for the query
2 = Forecast(Anchor, Time) under three degrees of filtering on the REVENUE CORPUS.

Optimization of Run-Time Efficiency In Section 3.4, we claim that it is
possible to optimize the efficiency of a pipeline through an input control
without losing effectiveness by specifying degrees of filtering that match
the text unit levels of the employed algorithms. For demonstration, we as-
sign the same degrees of filtering as above to the query 2 = Forecast(Anchor,
Time). Each of the three resulting scoped queries is then addressed on the
RevENUE corpus using the pipeline Il = (sPa, SSE, ETI, STO3, TPO2, RFO). As
stated, the algorithm rro operates on the sentence level only.

TaBLE 3.5 offers evidence for the truth of our claim: Under all three de-

grees of filtering, I; extracts the same 3622 forecast relations from the 33,364
sentences in the REVENUE corpus. Although more than every tenth sentence
is hence classified as being relevant with respect to s, the filter ratio is re-
duced down to 64.8%.2¢ Performing filtering in such a way forms the basis
of our approaches to pipeline scheduling that we develop in CHAPTER 4.
Also, related approaches like (Shen et al., 2007) rely on similar concepts.
Here, the input control improves the run-time of II, by almost factor 2, thus
emphasizing its great efficiency optimization potential.
Impact of the Complexity of the Query Finally, we analyze the benefit and
computational effort of filtering on the REvENUE corpus under increasing
complexity of the addressed query. For this purpose, we consider ~] from
the first experiment as well as the following scoped queries:

~4 = Paragraph[Financial(Money, Sentence[~>])] Y=Y V3
For 7, we employ II; again, whereas we use the following pipelines II3 and
I14 to address 73 and v}, respectively:

II3 = (sPa, SSE, EMO, ETI, STO2, TPO3, RFO, RFI)

IT4 = (spA, SSE, EMO, ETI, STO3, TPO9, RFO, RFI, PCH, ENE, RFU)

*In TasLE 3.5, the number of characters for Paragraph is higher than for Text (20.02 M as
opposed to 19.14 M), which seems counterintuitive. The reason behind is that the degree
of filtering Paragraph requires an additional application of the algorithm spa. A respective
non-filtering pipeline for the paragraph level actually processes 22.97 million characters.

136 3.5 OptiMAL ExEcUTION via TRUTH MAINTENANCE

v 10 Char’s Filter % t+ o Time % Analysis time Control time Positives
vi i 1467M 479% 749+£02 475% 74.2(99.0%) 0.7 (1.0%) 19
vs I3 1786 M 583% 349+0.1 48.6% 34.5(98.9%) 0.4 (1.1%) 1,741
~vi Iy 2440M 579% 91.2+05 48.8% 90.2(98.8%) 1.1 (1.2%) 1,760

TaBLE 3.6: The number of processed characters with filter ratio Filter % and the run-
time ¢ in seconds with standard deviation o and time ratio Time % of I1y,... I3
on the REVENUE corpus under increasingly complex queries 7*. Each run-time is
broken down into the times spent for text analysis and for input control. In the
right-most column, the positives are listed, i.e., the number of extracted relations.

100% 7 4 00%

80%

filter ratio

filter ratio of I,
60% 4 N tierTatio Of T,

40%

20% -| scoped query Y,* 285% 279
on REVENUE CORPUS 17.2%

0% T T T T T T T T T T d
SPA SSE EMO ETI STO, TPO, RFO RFI PCH ENE RFU algorithm

Ficure 3.21: Interpolated curve of the filter ratios of the eleven algorithms in the
pipeline I1, for the scoped query v; = 7§ V 73 on the REVENUE CORPUS.

In TaBLE 3.6, we list the efficiency results and the numbers of positives for
the three queries. While the time ratios get slightly higher under increasing
query complexity (i.e., from 77 to), the input control saves over 50% of the
run-time of a standard pipeline in all cases. At the same time, up to 1,760
relations are extracted from the ReveNue corprus (2,103 relations without
filtering). While the longest pipeline (Il;) processes the largest number of
characters (24.40 millions), the filter ratio of I14 (57.9%) rather appears to be
the “weighted average” of the filter ratios of II; and II;.

For a more exact interpretation of the results of v}, FIGURE 3.21 visualizes
the filter ratios of all algorithms in II4. As shown, the interpolated curve
does not decline monotonously along the pipeline. Rather, the filter ratios
depend on what portions of text are relevant for which conjunctions in ~;,
which follows from the dependency graph of v} (cf. FiGure 3.17(a)). For
instance, the algorithm rro precedes the algorithm pch, but entails a lower
filter ratio (28.9% vs. 42%). rFo needs to analyze the portions of text in the
scope of v3 only. According to the schedule of II5, this means all sentences
with a time entity in paragraphs that contain a money entity. In contrast,
cHU processes all sentences with time entities, as it produces a predecessor
type required by Exg, which is relevant for the scope of 7.

Besides the efficiency impact of controlling the input, TasLE 3.6 also pro-
vides insights into the efficiency of our implementation. In particular, it

3 PrpeLINE DEsioN 137

opposes the analysis time of each pipeline (i.e., the overall run-time of the
employed text analysis algorithms) to the control time (i.e., the overall run-
time of the input control). In case of 77, the input control takes 1.0% of the
total run-time (0.7 of 74.9 seconds). This fraction grows only marginally un-
der increasing query complexity, as the control times of 73 and 7} suggest.
While our implementation certainly leaves room for optimizations, we thus
conclude that the input control can be operationalized efficiently.

DiscussioN oF OpriMAL EXEcUTION

As summarized in SECTION 2.4, the idea of performing filtering to improve
the efficiency of text analysis is not new. However, different from existing
approaches, such as the prediction of sentences that contain relevant infor-
mation (Nedellec et al., 2001) or the fuzzy matching of queries and possibly
relevant portions of text (Cui et al., 2005), our proposed input control does
not rely on vague statistical models. Instead, we formally infer the relevance
of a portion of text from the current knowledge.

In general, the goal of equipping a text analysis pipeline with an input
control is to achieve an optimal pipeline execution. Following Section 3.1,
this means to fulfill an information need on a collection or a stream of input
texts in the most run-time efficient manner. In this section, we have proven
that a pipeline IT = (A, 7) based on our input control approach analyzes
only possibly relevant portions of text in each step. Given that A and 7 are
fixed, such an execution is optimal, because no performed analysis can be
omitted without possibly missing some information sought for.

Our evaluation has offered evidence that we can optimize the efficiency
of a pipeline using an input control while not influencing the pipeline’s ef-
fecticeness. At the same time, the overhead induced by maintaining the
relevant portions of text is low. Even in text analysis tasks that are hardly
viable for filtering like most text classification tasks, an input control hence
will usually have few negative effects. We therefore argue that, in principle,
every text analysis pipeline can be equipped with an input control with-
out noteable drawbacks. What we have hardly discussed here, though, is
that our current implementation based on Aracue UIMA still requires some
effort for each text analysis algorithm (cf. AppenDIX B.2 for details). To over-
come this issue, future versions of ApacHe UIMA could directly integrate
the maintenance of scopes in the common analysis structure.

While the exact efficiency potential of filtering naturally depends on the
amount of relevant information in the given input texts, the results of our
experiments suggest that our approach can significantly speed up text ana-

3.6

138 3.6 TRADING EFFICIENCY FOR EFFECTIVENESS IN AD-HOC TEXT MINING

lysis pipelines. Moreover, the specification of degrees of filtering provides
a means to easily trade the efficiency of a pipeline for its effectiveness. This
tradeoff plays an important role in today’s and tomorrow’s text mining sce-
narios, as we finally sketch in the concluding section of this chapter.

TrRADING ErricIENCY FOR EFFECTIVENESS IN AD-HOC TEXT MINING

Aswe have seen in the previous section, approaching text analysis as a filter-
ing task provides a means to trade efficiency for effectiveness within ad-hoc
text mining. We now extend the analysis of this tradeoff by discussing the
integration of different filtering approaches. Then, we conclude with the
important observation that filtering governs how an optimal solution to the
pipeline scheduling problem raised in Section 3.1 looks like.

INTEGRATION WITH PASSAGE RETRIEVAL

As surveyed in SEcTION 2.4, our input control is not the first approach that
filters possibly relevant portions of text. The question is in how far exist-
ing approaches integrate with ours. Especially in time-critical ad-hoc text
mining applications like question answering, returning a precise result is
usually of higher importance than achieving high recall (and, thus, high
overall effectiveness), which enables great improvements of run-time effi-
ciency. To this end, only promising candidate passages (i.e., paragraphs or
the like) are retrieved in the first place, from which relevant information to
answer the question at hand is then extracted (Cui et al., 2005).

A study of Stevenson (2007) suggests that most extraction algorithms op-
erate on the sentence level only, while related information is often spread
across passages. Under the above-motivated assumption that extraction is
easier on smaller portions of text, precision is hence preferred over recall
again. In terms of the filtering view from Section 3.4, this makes Sentence
the most important degree of filtering and it directly shows that passage
retrieval techniques should often be integrable with our input control: As
long as the size of candidate passages exceeds the specified degrees of filter-
ing, relevance can be maintained for each portion of an input passage just
as described above. Therefore, we decided not to evaluate passage retrieval
against our approach. Also, we leave the integration for future work.

INTEGRATION WITH TEXT FILTERING

Besides the filtering of portions of text, the efficiency and effectiveness of
pipelines can also be influenced by filtering complete texts or documents that

3 PrpeLINE DEsioN 139

meet certain constraints, while discarding others. In Section 2.4, we have al-
ready pointed out that such kind of text filtering has been applied since the
early times in order to determine candidate texts for information extraction.
As such, text filtering can be seen as a regular text classification task.

Usually, the classification of candidate texts and the extraction of rele-
vant information from these texts are addressed in separate stages of a text
mining application (Cowie and Lehnert, 1996; Sarawagi, 2008). However,
they often share common text analyses, especially in terms of preprocess-
ing, such as tokenization or part-of-speech tagging. Sometimes, features for
text classification are also based on information types like entities, as holds
e.g. for the main approach in our project ARGUANA (cf. SEcTION 2.3) as well
as for related works like (Moschitti and Basili, 2004). Given that the two
stages are separated, all common text analyses are performed twice, which
increases run-time and produces redundant or inconsistent output.

To address these issues, Beringer (2012) has analyzed the integration of
text classification and information extraction pipelines experimentally in his
master’s thesis written in the context of the thesis at hand. In particular,
the master’s thesis investigates the hypothesis that the later filtering is per-
formed within an integrated pipeline, the higher its effectiveness but the
lower its efficiency will be (and vice versa).

While existing works implicitly support this hypothesis, they largely fo-
cus on effectiveness, such as Lewis and Tong (1992) who compare text fil-
tering at three positions in a pipeline. In contrast, Beringer (2012) explicitly
evaluates the efficiency-effectiveness tradeoff, focusing on the INreExBA pro-
cess (cf. SEcTION 2.3) that has original been proposed in (Stein et al., 2005):
Informational texts like reports and news articles are first filtered from a col-
lection of input texts. Then, forecasts are extracted from the informational
texts. To realize this process, the algorithm cLr from (Wachsmuth and Bu-
jna, 2011) for language function analysis (cf. SEcTION 2.3) is integrated in dif-
ferent positions of the optimized pipeline IT; that we use in Section 3.1. The
later cLr is scheduled in the integrated pipeline Hg?l)fa, the more information
is accessed for text classification, but the later the filtering of text portions
starts, too. The input control operates on the sentence level, which matches
the analyses of all employed algorithms. Therefore, observed effectiveness
differences must be caused by the text filtering stage. For this scenario,
Beringer (2012) performs several experiments with variations of I13 ;. .

Here, we exemplarily look at the main results of one of these experiments.
The experiment has been conducted on the union of the test sets from the
ReveNUE corpus and from the music part of the LFA-11 corpus, both of
which are described in Arpenpix C. This combination is not perfectly ap-

140 3.6 TrADING EFrICIENCY FOR EFFECTIVENESS IN AD-HOC TEXT MINING

text filtering forecast extraction
85%
80%

,
"o.,, .
%0

75%

70%

c
26
8w

[*]
? 0

65% + ; ; ; ; ; L 5s . =2
SSE STO, ETI TPO, EMO ENE SSE STO, ETI TPO, EMO ENE
last algorithm before CLF last algorithm before CLF

F1GuRE 3.22: [llustration of the effectiveness of (a) filtering candidate input texts and
(b) extracting forecasts from these texts in comparison to the run-time in seconds
of the integrated text analysis pipeline II ;. depending on the position of the text
filtering algorithm cLrin IT; ;.. The figure,is based on results from (Beringer, 2012).

propriate for evaluation, both because the domain difference between the
corpora makes text classification fairly easy and because the music texts
contain no false positives with respect to the forecast extraction task at all.
Still, it suffices to outline the basic effects of the pipeline integration.

Fi1GURE 3.22 plots the efficiency and effectiveness of Hgbl)fa for different po-
sitions of crLF in the pipeline. The run-times have been measured on a 3.3
GHz Intel Core i5 Windows 7 system with 8 GB memory. According to Fic-
URE 3.22(a), spending more run-time improves the accuracy of text filtering
in the given case, at least until the application of cvLr after TP05.>> This in
turn benefits the recall and, thus, the Fi-score of extracting forecasts, which
are raised up to 0.59 and 0.64 in FiGURE 3.22(b), respectively.?

The observed results indicate that integrating text filtering and text ana-
lysis provides another means to trade efficiency for effectiveness. As in our
experiments, the relevant portions of the filtered texts can then be main-
tained by our input control. We do not analyze the integration in detail in
this thesis. However, we point out that the input control does not prevent
text filtering approaches from being applicable, as long as it does not start to
restrict the input of algorithms before text filtering is finished. Otherwise,
less and diffently distributed information is given for text filtering, which
can cause unpredictable changes in effectiveness, cf. (Beringer, 2012).

Aside from the outlined tradeoff, the integration of the two stages gener-
ally improves the efficiency of text mining. In particular, the more text ana-
lyses are shared by the stages, the more redundant effort can be avoided.

For instance, the Hgbl)fa requires 19.1 seconds in total when ctrr is scheduled

% As shown in FIGURE 3.22(a), the accuracy is already close to its maximum when crF is
integrated after stoy, i.e., when token-based features are available, such as bag-of-words,
bigrams, etc. So, more complex features are not really needed in the end, which indicates
that the classification of language functions is comparably easy on the given input texts.

2While the extraction precision remains unaffected from the position of integration in the
experiment, this is primarily due to the lack of false positives in the LFA-11 corpus only.

3 PrpeLINE DEsioN 141

after Trog, as shown in FIGURE 3.22. Separating text filtering and text ana-
lysis would require to execute the first four algorithms Hg?l)fa double on all
filtered texts, hence taking a proportional amount of additional time (except
for the time taken by crF itself). The numeric efficiency impact of avoiding
redundant operations has not been evaluated in (Beringer, 2012). In the end,
however, the impact depends on the schedule of the employed algorithms
as well as on the fraction of relevant texts and relevant information in these

texts, which leads to the conluding remark of this chapter.

ImpLICATIONS FOR PIPELINE EFFICIENCY

In Section 3.1, we have defined the pipeline optimization problem as two-
tiered, consisting of (1) the selection of a set of algorithms that is optimal
with respect to some quality function and (2) determining a run-time opti-
mal schedule of the algorithms. While it should be clear by itself that dif-
ferent algorithm sets vary in terms of efficiency and effectiveness, we have
only implicitly answered yet why different schedules vary in their run-time.
The reason behind can be inferred directly from the theory of ideal pipeline
design in SecTION 3.1, namely, the optimization potential of scheduling em-
anates solely from the insertion of filtering steps.

By now, we have investigated the efficiency impact of consistently filter-
ing the relevant portions of input texts under the prerequisite that the em-
ployed text analysis pipeline II = (A, 7) is fixed. In accordance with the lazy
evaluation step from SectiON 3.1, the later an algorithm from A is scheduled
in 7, the less filtered portions of text it will process, in general. Since the al-
gorithms in A have different run-times and different selectivities (i.e., they
filter different portions of text), the schedule m hence affects the overall ef-
ficiency of II. This gives rise to the last step in Section 3.1, i.e., to find an
optimal scheduling that minimizes EQuaTiON 3.4.

However, both the run-times and the selectivities of the algorithms are
not predefined, but they depend on the processed input. Under certain cir-
cumstances, it might be reasonable to assume that the run-times behave pro-
portionally (we come back to this in SEcTiON 4.3). In contrast, the selectivities
strongly diverge on different collections or streams of input texts (cf. Fic-
URE 3.20 in SECTION 3.5). Therefore, an optimal scheduling cannot be found
ad-hoc in the sense implied so far in this chapter, i.e., without processing
input texts but based on the text analysis task to be addressed only. As a
consequence, we need to integrate the use of an input control with a mech-
anism that determines a run-time optimal schedule for the input texts at
hand. This is the main problem tackled in the following chapter.

A man who dares to waste one hour of time has not discov-
ered the value of life.

Charles Darwin

Pipeline Efficiency

THE IMPORTANCE OF RUN-TIME EFFICIENCY is still often disregarded in approa-
ches to text analysis tasks, limiting their use for industrial size text mining
applications (Chiticariu et al., 2010b). Search engines avoid efficiency prob-
lems by analyzing input texts at indexing time (Cafarella et al., 2005). How-
ever, this is impossible in case of ad-hoc text analysis tasks. In order both
to manage and to benefit from the ever increasing amounts of text in the
world, we need not only scale existing approaches to the large (Agichtein,
2005), but we also need to develop novel approaches at large scale (Glo-
rot et al., 2011). Standard text analysis pipelines execute computationally
expensive algorithms on most parts of the input texts, as we have seen in
Section 3.1. While one way to enable scalability is to rely on cheap but less
effective algorithms only (Pantel et al., 2004; Al-Rfou” and Skiena, 2012), in
this chapter we present ways to significantly speed up arbitrary pipelines
by up to over one order of magnitude. As a consequence, more effective
algorithms can be employed in large-scale text mining.

In particular, we observe that the schedule of a pipeline’s algorithms af-
fects the pipeline’s efficiency, when the pipeline analyzes only relevant por-
tions of text (as achieved by our input control from Secrtion 3.5). In Skc-
TION 4.1, we show that the optimal schedule can theoretically be found with
dynamic programming. It depends on the run-times of the algorithms and
the distribution of relevant information in the input texts. Especially the lat-
ter varies strongly between different collections and streams of texts, often
making an optimal scheduling too expensive (Section 4.2). In practice, we
thus perform scheduling with informed search on a sample of texts (Sec-

143

OPTIMAL SCHEDULING

144 4.1 IDEAL SCHEDULING FOR LARGE-scALE TEXT MINING

text analysis task

Sections 4.1—4.6
ad-hoc large-scale text analysis pipeline

input
texts

output
information

text analysis algorithms

FIGURE 4.1: Abstract view of the overall approach of this thesis (cf. FIGUre 1.5). All
sections of CHAPTER 4 contribute to the design of large-scale text analysis pipelines.

TION 4.3). In cases where input texts are homogeneous in the distribution of
relevant information, the approach reliably finds a near-optimal schedule
according to our evaluation. In other cases, there is not one single opti-
mal schedule (Section 4.4). To optimize efficiency, a pipeline then needs to
adapt to the input text at hand. Under high heterogeneity, such an adap-
tive scheduling works well by learning in a self-supervised manner what
schedule is fastest for which text (Section 4.5). For large-scale text mining,
a pipeline can finally be parallelized, as we outline in Section 4.6. The con-
tribution of CHAPTER 4 to our overall approach is shown in FIGURE 4.1.

IDEAL SCHEDULING FOR LARGE-sCcALE TExT MINING

As defined in SecTION 3.1, the last step of an ideal pipeline construction and
execution is to optimally schedule the employed text analysis algorithms. In
this section, we present an extended version of content from (Wachsmuth
and Stein, 2012), where we compute the solution to an optimal scheduling us-
ing dynamic programming (Cormen et al., 2009). Given an input control as
introduced in Section 3.5, the most efficient pipeline follows from the run-
times and processed portions of text of the scheduled algorithms. These
values must be measured before, which will often make the solution too
expensive in practice. Still, it reveals the properties of pipeline scheduling
and it can be used to compute benchmarks for large-scale text mining.

Tue ErriciENCY POTENTIAL OF PIPELINE SCHEDULING

As already indicated in Section 3.6, a consequence of equipping a text ana-
lysis pipeline with an input control is that the pipeline’s schedule affects the
pipeline’s efficiency. In particular, the run-time of two pipelines IT; = (A, 71)
and II; = (A, m2) can vary on an input text if they apply the algorithms in
A to different portions of the text. At the same time, II; and II, achieve the

4 PrreLINE EFFICIENCY 145

(a) sample text (b) input of A, input of A, input of A¢
10
10
sentences T MOF ' ' 6 ‘
/4 /4 ‘4
6
jﬁﬂ‘ﬁ:‘;ﬁgy input of A¢ input of A, input of A,

entities

10
-
sentences with]-[
forecasts FOM
4 p A P4

F1GURE 4.2: (a) Venn diagram representation of a sample text with ten sentences,
among which one is a forecast that contains a money and an organization entity.
(b) The sentences of the sample text that need to be processed by each text analysis
algorithm in the pipelines IIyor (top) and IIrom (bottom), respectively.

same effectiveness in the tackled text analysis task, as long as both of them
are admissible (cf. SEcTiON 3.1).

As an example, consider the task to extract all sentences that denote fore-
casts with a money and an organization entity from a single news article,
which is related to our project INrexBA (cf. SEcTION 2.3). Let the article con-
sist of ten sentences, six of which contain money entities. Let two of the six
sentences denote forecasts and let four of them contain organization enties.
Only one of these also spans an organization entity and, so, contains all
information sought for. FIGURE 4.2(a) represents such an article as a Venn
diagram. To tackle the task, assume that three algorithms A,;, Ap, and
Ar for the recognition of money entities, organization entities, and forecast
events are given that have no interdependencies, meaning that all possible
schedules are admissible. For simplicity, let Ay always take t(Aj) =4 ms
to process a single sentence, while Ap and Ar need t(Ap) = t(Ar) =5 ms.
Without an input control, each algorithm must process all ten sentences,
resulting in the following run-time ¢(II, fitering) Of @ respective pipeline:

t(Hno ﬁltering) = 10- t(AM) + 10 - t(Ao) + 10 - t(AF) = 140ms

Now, given an input control that performs filtering on the sentence level, it
may seem reasonable to apply the fastest algorithm A, first, e.g. in a pipe-
line ITyjor = (Am, Ao, Ar). Thisis exactly what our method GREEDYPIPELINE-
LiNEARIZATION from SECTION 3.3 does. As a result, A); is applied to all ten
sentences, Ao to the six sentences with money entities (assuming all entities
are found), and Ar to the four with money and organization entities (ac-
cordingly), as illustrated at the top of Ficure 4.2(b). Hence, we have:

t(Mvor) = 10-t(Ap) +6-t(Ao) +4-t(Ap) = 90ms

DYNAMIC PROGRAMMING

146 4.1 IDEAL SCHEDULING FOR LARGE-scaLE TexT MINING

Thus, the input control achieves an efficiency gain of 50 ms when using
IIyior. However, in according manner, we compute the run-time of a pipe-
line ITrom = (Ar, Ao, Aum), based on the respective number of processed
sentences (cf. bottom of FiGure 4.2(b)) as:

t(Mlpom) = 10-t(Ap) +2-t(Ap) +1-t(Ay) = 64ms

As can be seen, IIyior takes over 40% more time than IIros to process the
article, even though its first algorithm is 25% faster. Apparently, the effi-
ciency gain of using an input control does not depend only on the algo-
rithms employed in a pipeline, but also on the pipeline’s schedule, which
influences the algorithms’ selectivities, i.e., the numbers of portions of text
filtered after each algorithm application (cf. Section 3.1). The efficiency po-
tential of pipeline scheduling hence corresponds to the maximum possible
impact of the input control.

So, optimal scheduling consists in the determination of an admissible
schedule 7* of a given algorithm set A that minimizes EQuarioN 3.4 from
SECTION 3.1, i.e., the sum of the run-times of all algorithms in A on the por-
tions of text they process. This minimization problem is governed by two
paradigms: (1) Algorithms with a small run-time should be scheduled early.
(2) Algorithms with a small selectivity should be scheduled early. Due to
the exemplified recurrent structure of the run-times and selectivities, how-
ever, these paradigms cannot be followed independently, but they require a
global analysis. In the following, we represent this structure in a sequence
model and we address it with dynamic programming. Dynamic program-
ming refers to a class of algorithms that aim to efficiently find solutions to
problems by dividing the problems into smaller subproblems and by solv-
ing recurring subproblems only once (Cormen et al., 2009).

ComrPuTING OPTIMAL SCHEDULES WITH DYNAMIC PROGRAMMING

According to EQuartion 3.4 and to the argumentation above, all admissible
pipelines based on an algorithm set A entail the same relevant portions of an
input text D while possibly requiring different run-times for processing D.
To model these run-times, we consider a pipeline TI) = (A4, ..., A;) with
j algorithms. For j = 1, TIU) = (A;) must always process the whole input
text, which takes t; (D) time. For j > 1, the run-time ¢(I1)) of TI1U) is given
by the sum of (1) the run-time #(TIU =) of 1V~ on D and (2) the run-time
t;(S(IU=1)) of A; on the scope S(IIU~Y) associated to TIV~1). Here, we
reuse the concept of scopes from SecTioN 3.4 to refer to the portions of texts
relevant after applying TIU =Y. Then, we can define ¢(I19)) recursively as:

4 PipELINE EFFICIENCY 147

H(1I0)) =

{tl(D) ifj=1 a1

t(MU=D) +¢,(S(MUY)) otherwise

This recursive definition resembles the one used by the VITERBI ALGORITHM,
which operates on hidden Markov models (Manning and Schiitze, 1999). A
hidden Markov model describes a statistical process as a sequence of states.
A transition from one state to another is associated to some state probability.
While the states are not visible, each state produces an observation with an
according probability. Hidden Markov models have the Markov property,
i.e., the probability of a future state depends on the current state only. On
this basis, the ViTerBI ALGORITHM computes the Viterbi path, which denotes
the most likely sequence of states for a given sequence of observations.

We adapt the ViTersr ALGoriTHM for scheduling an algorithm set A, such
that the Viterbi path corresponds to the run-time optimal admissible pipe-
line IT* = (A, 7*) on an input text D. As throughout this thesis, we restrict
our view to pipelines where no algorithm processes D multiple times. Also,
under admissibility, only algorithms with fulfilled input constraints can be
executed (cf. SEcTiOoN 3.1). Putting both together, we call an algorithm A;
applicable at some position j in a pipeline’s schedule, if A; has not been ap-
plied at positions 1 to j—1 and if all input types A;.C(™) of A; are produced
by the algorithms at positions 1 to j—1 or are already given for D.

To compute the Viterbi path, the original ViTERBI ALGORITHM determines
the most likely sequence of states for each observation and possible state at
that position in an iterative (dynamic programming) manner. For our pur-
poses, we let states of the scheduling process correspond to the algorithms
in A, while each observation denotes the position in a schedule.! According
) from 1 to j
for each combination of a position j € {1,...,m} and an algorithm A4; € A
that is applicable at position j. To this end, we determine the set TIU~1

with all those previously computed pipelines of length j—1, after which A;
()

to the ViTerBI ALGORITHM, We then propose to store a pipeline HZ(.j

is applicable. The recursive function to compute the run-time of II;”’ can be
directly derived from EQuartion 4.1:
) ti(D) ifj=1
) = min (¢(I;) + ¢;(S(I;))) otherwise (4.2)
II; € IIG-1)

As can be seen, the scheduling process does not have Markov property, be-
cause the run-time t(HEJ)) of an algorithm A; € A at some position j de-

IDifferent from (Wachsmuth and Stein, 2012), we omit to explicitly define the underlying
model here for a more focused presentation. The adaptation works even without the model.

VITERBI ALGORITHM

HIDDEN MARKOV MODELS

MARKOV PROPERTY

VITERBI PATH

APPLICABLE

148 4.1 IDEAL SCHEDULING FOR LARGE-scaLE TexT MINING

OPTIMALPIPELINESCHEDULING({ A1, . . ., A }, D)

1: foreachi € {1,...,m} do
2: if A; is applicable in position 1 then

3: Pipeline HEU — (A)

4: Run-time t(Hl(-l)) +— ti(D)

5 Scope s@M) +~ Si(D)

6: foreach j € {2,...,m} do

7: foreachi € {1,...,m} do

8: Pipelines TIV—1 < {I1I~" | A; is applicable after II "}
9: if IIV—Y £ () then
10: Pipeline Hgf_l) + argmin (¢(IL) 4 t:(SIL)))

m enG-1

11: Pipeline I+ I/~ || (4))
12: Run-time ¢(T1)) = ¢(I1/ ") + (S ™))
13: Scope S(ITYV) « Si(STY ™))

14: return arg min t(HE’"))
(™, i e {1,...,m}

Pseupocobk 4.1: The optimal solution to the computation of a pipeline based on an
algorithm set {4, ..., A,,} with a run-time optimal schedule on an input text D.

pends on the scope it is executed on. Hence, we need to keep track of the
values t(HZ(])) and S (HZ(])) for each pipeline HEJ) during the computation

process. After computing all pipelines Hgm) based on the full algorithm

set A = {A;,..., Ay}, the optimal schedule 7* of A on the input text D is
(m))y

Pseupocopk 4.1 shows our adaptation of the ViTersr ALGoRrITHM. In lines 1

(1) js stored for every algorithm A; € A that is already ap-

7

the one of the pipeline TI\"™ with the lowest run-time #(II

to 5, a pipeline II
plicable given D only. The run-time t(HEl)) and the scope S (Hgl)) of Hgl) are
set to the respective values of A;. Next, lines 6 to 13 incrementally compute
) of length j for each algorithm A; that is applicable at all in
position j. Here, the set TIV~1) is computed in line 8. If TTV~1) is not empty
(which implies the applicability of A;), lines 9 to 11 then create 11!

pending A; to the pipeline H,(j ~Y that is best in terms of Equartion 4.2.2 The

)

a pipeline Hij
7) b _
y ap
run-time and the scope of Hl(.j are computed accordingly (lines 12 and 13).
After the final iteration, the fastest pipeline Hl(-m)

an optimal solution (line 13). A trellis diagram that schematically illustrates
the described operations for A; at position j is shown in FIGURE 4.3.

of length m is returned as

2D_if'ferent from the pseudocode in (Wachsmuth and Stein, 2012), we explicitly check here
if ITY~Y is not empty. Apart from that, the pseudocodes differ only in terms of namings.

4 PipELINE EFFICIENCY 149

1 position j-1 position j

A (L H(I1,67) +
: e 3 t(S(L*))
A, (applicable) l_[k(i'”
t(ILE) - S(IL™)
f H(I1e) +
A [H(SILE™) I
: already :
. applied :
A
Am 1
: anﬂ}cyaetzle :
Am pp! 1

Ficure 4.3: Trellis diagram visualization of the method OpriMALPIPELINESCHEDU-

LING, showing the determination of the run-time optimal pipeline Hz(-j) from posi-
tion 1 to j. For illustration purposes, the algorithms A,,..., A,, are ordered ac-
cording to their applicability after the pipelines of length j—1.

PROPERTIES OF THE PROPOSED SOLUTION TO PIPELINE SCHEDULING

In (Wachsmuth and Stein, 2012), we have sketched the basic idea of how to
prove that the presented scheduling approach computes an optimal solu-
tion. Now, we provide a formal proof of the correctness of the approach.
Then, we continue with its complexity and with practical implications.

Correctness In the proof, we consider only algorithm sets that are consis-
tent and that have no circular dependencies, as defined in Section 3.3. These
properties ensure that an admissible schedule exists for a given algorithm
set A = {A;,...,A,}. Asusual in dynamic programming, the optimality
of the pipeline ngm) returned by oPTIMALPIPELINESCHEDULING for A and for
an input text D then follows from the optimal solution to all subproblems.
Here, this means the optimality of all computed pipelines Hz(j) because Hgm)
is then optimal for the full algorithm set A. The following lemma states that
each Hz(j) is run-time optimal under all admissible pipelines that are based

on the same algorithm set and that end with the same algorithm:

Lemma 4.1. Let A ={Ay,..., Ay} bea consistent algorithm set without circular
dependencies and let D be a text. Let ng) = (Agj),)= (A1, ..., Aj_1, A;) with
AZ(.j JC A be any pipeline that oPTIMALPIPELINESCHEDULING(A,, D) computes. Then
for all admissible pipelines T1,\7) = <A§j),) = (A, ..., A, A;), we have:

() < o)
Proof. We show the lemma by induction over the length j. For j = 1, each

pipeline i

, created in line 3 of OPTIMALPIPELINESCHEDULING consists only of
the algorithm A;. As there is only one pipeline of length 1 that ends with 4;,

150 4.1 IDEAL SCHEDULING FOR LARGE-scaLE TexT MINING

Hgl) = H;(l) holds for all i € {1,...,m} and, so, Hgl) is optimal. Therefore,
we hypothesize that the lemma is true for an arbitrary but fixed length j—1,
and we prove by contradiction that, in this case, it also holds for j. For this
purpose, we assume the opposite:

MY = AV) = (A5, A Ay 1) > ()

According to EQuATION 4.1, this inequality can be rewritten as follows:
HIIUD) 4 (SMUY)) > #(IrUY) 4 t(SATUY)Y)

By definition, the pipelines TIV ") and IT'U—1) employ the same algorithm
set AU—1) = Agj) \ {A4;}. Since both pipelines are admissible, they entail the
same relevant portions of text, i.e., S(ITU~1) = S(IT'U=1). Therefore, the
run-time of algorithm A; must be equal on S(ITV~1) and S(IT'V-1), so we
remain with the following inequality:

t@U=Yy > ()

I'U~Y must end with a different algorithm A’;_, than A; ; in IIU~Y, be-
G)
1

of oPTIMALPIPELINESCHEDULING. For the same reason, IT'V~) cannot belong

cause otherwise IT;”) would not be created from IIU~Y in lines 10 and 11
to the set TIU~1) computed in line 8. Each pipeline in TIU~1) is run-time
optimal according to the induction hypothesis, including the one that ends
with A%, (if such a pipeline exists). But, then, 11U~ cannot be optimal.
This means that the assumed opposite must be wrong. O

Based on the truth of Lemma 4.1, we show the correctness of opTIMAL-
PIPELINESCHEDULING, as represented by THEOREM 4.1:

THEOREM 4.1. Let A = {Ay,..., Ap} be a consistent algorithm set without cir-
cular dependencies and let D be a text. Then, the pipeline (A, r) returned by a
call of oPTIMALPIPELINESCHEDULING(A, D) is run-time optimal on D under all
admissible pipelines (A, 1), ..., (A, m), n > 1.

(m)

Proof. We first point out the admissibility of each pipeline II;
Pseupocopk 4.1. Both in line 3 and in line 11, only applicable algorithms
are added to the end of the created pipelines Hgm). By definition of appli-
cability (see above), all input requirements of an applicable algorithm are
fulfilled. Therefore, all pipelines Hgm)

As a consequence, LEmma 4.1 implies that the pipeline computed in the
last iteration of lines 6 to 13 of OPTIMALPIPELINESCHEDULING is run-time opti-
mal under all admissible pipelines of length m that end with A;. Since no
algorithm is added twice under applicability, each 1™ contains the com-

plete algorithm set A. The fastest of these pipelines is taken in line 13. [

returned by

must be admissible.

4 PrrELINE EFFICIENCY 151

Complexity Knowing that the approach is correct, we now come to its com-
putational complexity. As in CHAPTER 3, we rely on the O-notation (Cormen
et al., 2009) to capture the worst-case run-time of the approach. Given an
arbitrary algorithm set A and some input text D, Pseunocopk 4.1 iterates ex-
actly |A| times over the |A| algorithms, once for each position in the sched-
ule to be computed. In each of these |A|? loop iterations, a pipeline Hfj)

is determined based on at most |A|—1 other pipelines Hl(j -, resulting in

O(]A|?) operations. For each ng) the run-time t(HZ(-j)) and the scope S (Hl(j))
are stored. In practice, these values are not known beforehand, but they
need to be measured when executing Hl(j) onits input. In the worst case, all
algorithms in A have an equal run-time ¢ (D) on D and they find relevant
information in all portions of text, i.e., S;(D) = D for each algorithm A4; € A.
Then, all algorithms must indeed process the whole text D, which leads to

an overall upper bound of
l oprivaL PIPELINESCHEDULING (A7 D) = O(’AP “TA (D)) (43)

Moreover, while we have talked about a single text D up to now, a more
reasonable input will normally be a whole collection of texts in practice.?
This underlines that our theoretical approach is not made for practical ap-
plications in the first place: Since each algorithm employed in a text analysis
pipeline IT = (A, 7) processes its input at most once, even without an input
control the run-time of IT is bound by O(|A| - ta (D)) only.

Besides the unrealistic nature of the described worst case, however, the
value |A|? in EQuATION 4.3 ignores the fact that an algorithm is, by defini-
tion, applicable only once within a schedule and only if its input require-
ments are fulfilled. Therefore, the real cost of OPTIMALPIPELINESCHEDULING
will be much lower in practice. Also, instead of scheduling all |A| single al-
gorithms, the search space of possible schedules can usually be significantly
reduced by scheduling the filter stages that result from our method for op-
timal pipeline design (cf. SectiON 3.1). We give an example in the following
case study and then come back to the practical benefits of orTiMALPIPELINE-
ScHEDULING in the discussion at the end of this section.

Cask StupY OF IDEAL PIPELINE SCHEDULING

We now apply the proposed solution to optimal scheduling to a concrete al-
gorithm set for an information need in the context of our project INFEXBA (cf.
SectiON 2.3) on two different text corpora. Our goal is to once give exper-

*Notice that using more than one text as input does not require changes of opriMaLP1PE-
LINESCHEDULING, since we can simply assume that the texts are given in concatenated form.

152 4.1 IDEAL SCHEDULING FOR LARGE-scALE TExT MINING

imental evidence that different input texts may lead to different run-time
optimal schedules. An analysis of the reasons behind follows in SEcTiON 4.2.
Details on the source code used here is found in AppENDIX B.4.

Information Need We consider the extraction of all forecasts on organiza-
tions with a time and a money entity. An example that spans all relevant
information types is the following: “IBM will end the first-quarter 2011 with
$13.2 billion of cash on hand and with generated free cash flow of $0.8 billion.”* For
our input control from Section 3.5, the information need can be formalized
as the scoped query v* = Sentence[Forecast(Time, Money, Organization)].>

Algorithm Set To produce the output sought for in 7*, we use the entity
recognition algorithms eT1, EMO, and ENE as well as the forecast event detec-
tor rro. To fulfill their input requirements, we additionally employ three
preprocessing algorithms, namely, ssg, stog, and tro;. All algorithms oper-
ate on the sentence level (cf. AprEnDIX A for further information). During
scheduling, we implicity apply the lazy evaluation step from Section 3.1 to
create filtering stages, i.e., each preprocessor is scheduled as late as possible
in all pipelines. Instead of filtering stages, we simply speak of the algorithm
set A = {ETI, EMO, ENE, RFO} in the following without loss of generality.

Text Corpora As in SecTioN 3.5, we consider both our RevenuE corpus (cf.
Arprenpix C.1) and the CoNLL-2003 dataset (cf. Appenpix C.4). For lack of
alternatives to the employed algorithms, we rely on the German part of the
CoNLL-2003 dataset this time. We process only the training sets of the two
corpora. These training sets consist of 21,586 sentences (REVENUE CORPUS)
and 12,713 sentences (CoNLL-2003 dataset), respectively.

Experiments We run all pipelines ng)
ecution of oPTIMALPIPELINESCHEDULING, ten times on both text corpora using
a 2 GHz Intel Core 2 Duo MacBook with 4 GB memory. For each Hl(j), we
measure the averaged overall run-time t(HEj)). In our experiments, all stan-
dard deviations were lower than 1.0 seconds on the REVENUE corpus and
0.5 seconds on the CoNLL-2003 dataset. Below, we omit them for a concise

presentation. For similar reasons, we state only the number of sentences in

, which are computed within the ex-

the scopes S (HZ(-j)) of all ng), instead of the sentences themselves.

Input Dependency of Pipeline Scheduling FiGure 4.4 illustrates the appli-
cation of oPTIMALPIPELINESCHEDULING for the algorithm set A to the two con-

“Taken from http://ibm.com/investor/1qll/press.phtml, accessed on May 21, 2014.

>We note here once that some of the implementations in the experiments in CHAPTER 4
do not use the exact input control approach presented in CHAPTER 3. Instead, the filtering
of relevant portions of text is directly integrated into the employed algorithms. However,
as long as only a single information need is addressed and only one degree of filtering is
specified, there will be no conceptual difference in the obtained results.

4 PrpELINE EFFICIENCY 153

Revenue
@ corpus 3 4

ETI,RFO.ENE,EMO

51.38s 215snt.

EMO (Em

0) (ETI, EMO) (ETI, RFO, EMO)
40 16s 6111snt 40 72s 38185nt 44.00s 889snt.
ET (eT) (EMO, ETI) (EMO, ENE, ETI)
33 40s 81055nt 43195 38185nt 65.97s 953snt.
ENE (EN (EMO, ENE) (ETI, RFO, ENE)
91 63s 4801snt 64 77s 14455nt 49.60s 623snt.
RFO (ETI, EMO, RFO)
0) %

1

(ETI,RFO,EMO,ENE)

EMO.ENE,ETI,RFO

66.37s 215snt.

(ETI, RFO, EMO) 1
19.53s 33snt.

(EMO, ENE, ETI) L
20.32s ant%

41.83s 2294 snt. 45.76s 889snt.
(b) CoNLL- 2003

dataset

3 4

E)
EMO (EM (ETI, EMO)
18 54s 354snt 17 76s 82snt.
ETI (ETI) (EMO, ETI)
16 24s 16093nt 18 71s 82snt.
ENE (ENE) (EMO, ENE)
48 03s 181 95nt 20 32s 48snt.

19.015 555snt. 18.03s 33snt. 18.43s 2snt.

(ETI, EMO, ENE)
18.34s 9snt.

(ETI,EMO,RFO,ENE)

F1GURE 4.4: Trellis illustrations of opTIMALPIPELINESCHEDULING for the algorithm set
A ={ET1, EMO, ENE, RFO} On the training set of (a) the REVENUE corpus and (b) the Ger-

man CoNLL-2003 dataset. Below each pipeline I1”, the run-time (11" is given in

seconds next to the number of sentences (snt.) in S (HZ(-])). The bold arrows denote
the Viterbi paths resulting in the run-time optimal pipelines (Et1, RFO, EMO, ENE) and
(ETI, EMO, RFO, ENE), respectively.

sidered corpora as trellis diagrams. The bold arrows correspond to the re-
spective Viterbi paths, indicating the optimal pipeline ng) of each length j.
Given all four algorithms, the optimal pipeline takes 48.25 seconds on the
ReveENUE corpus, while the one on the CoNLL-2003 dataset requires 18.17
seconds. ErIis scheduled first and ENE is scheduled last on both corpora,
but the optimal schedule of Emo and rro differs. This emphasizes the input-
dependency of the run-time optimality of a schedule.

One main reason behind lies in the selectivities of the employed algo-
rithms: On the REVENUE corpus, 3813 sentences remain relevant after apply-
ing H](EM)O = (ETI, EMO) as opposed to 2294 sentences in case of Hl(m)) = (ETI, RFO).
Conversely, only 82 sentences of the CoONLL-2003 dataset are filtered after
applying 112}, whereas 555 sentences still need to be analyzed after e,
Altogether, each admissible pipeline H§4) based on the complete algorithm
set A classifies the same 215 sentences (1.0%) of the REVENUE corpus as rele-

vant, while not more than two sentences of the CoONLL-2003 dataset (0.01%)

154 4.1 IDEAL SCHEDULING FOR LARGE-scaLE TexT MINING

are returned to address v*.® These values originate in different distributions
of relevant information, as we discuss in detail in SEcTION 4.2.

While the algorithms’ selectivities impact the optimal schedule in the de-
scribed case, the efficiency of scheduling eI first primarily emanates from
the low run-time of er1. On the CoNLL-2003 dataset, for instance, the op-

timal pipeline H](Ei),a schedules 11 before Emo, although much less sentences

remain relevant after Hg,[)o = (emo) than after HQE = (et1). Applying eI and
EMO in sequence is even faster than applying emo only. This would become
important in case of parallelization, as we discuss in SEcTiON 4.6. Even more
clearly, ENE alone takes 91.63 seconds on the REveNUE corpus and 48.03 sec-
onds on the CoNLL-2003 dataset, which underlines the general efficiency

impact of scheduling, when using an input control (cf. SEction 3.5).

DiscussioN ofF THE PROPOSED SOLUTION TO PIPELINE SCHEDULING

On the previous pages, we have stressed the efficiency potential of schedul-
ing the algorithms in a text analysis pipeline, which arises from equipping
the pipeline with the input control from Section 3.5. We have provided a
theoretical solution to optimal scheduling and, hence, to the second part of
the pipeline optimization problem defined in Section 3.1. Our approach
optimizes the run-time efficiency of a given set of algorithms without com-
promising their effectiveness by maximizing the impact of the input control.
It works irrespective of the addressed information need as well as of the lan-
guage and other characteristics of the input texts to be processed.

For information extraction, both Shen et al. (2007) and Doan et al. (2009)
present scheduling approaches that rely on similar concepts as our in-
put control, such as dependencies and distances between relevant portions
of text. These works improve efficiency based on empirically reasonable
heuristics. While they have algebraic foundations (Chiticariu et al., 2010a),
both approaches are limited to rule-based text analyses (cf. SEcTiON 2.4 for
details). Our approach closes this gap by showing how to optimally sched-
ule any set of text analysis algorithms. However, it cannot be applied prior
to pipeline execution, as it requires to keep track of the run-times and rele-
vant portions of texts of all possibly optimal pipelines. These values must
be measured, which makes the approach expensive.

As such, the chosen dynamic programming approach is not meant to
serve for practical text mining applications, although it still represents an

®As can be seen, the numbers of sentences at position 4 do not vary between the different
pipelines for one corpus. This offers practical evidence for the commutativity of employing
independent algorithms within an admissible pipeline (cf. SEction 3.1).

4 PrrELINE EFFICIENCY 155

efficient way to compute benchmarks for more or less arbitrary text analysis
tasks.” Rather, it clarifies the theoretical background of empirical findings
on efficient text analysis pipelines in terms of the underlying algorithmic
and linguistic determinants. In particular, we have shown that the optimal-
ity of a pipeline depends on the run-times and selectivities of the employed
algorithms on the processed input texts. In the next section, we investigate
the characteristics of collections and streams of input texts that influence
pipeline optimality. On this basis, we then turn to the development of effi-
cient practical scheduling approaches.

Tue ImpPacT OF RELEVANT INFORMATION IN INPUT TEXTS

The case study in the previous section already shows that the run-time op-
timality of an input-controlled pipeline depends on the given collection or
stream of input texts. In the following, we provide both formal and exper-
imental evidence that the reason behind lies in the distribution of relevant
information in the input texts, which governs the portions of text filtered by
the input control after each execution of an algorithm (cf. Section 3.5). Con-
sequently, the determination of an optimal schedule requires to estimate the
algorithms’ selectivities, which we approach in Section 4.3. As above, this
section reuses content from (Wachsmuth and Stein, 2012).

FORMAL SPECIFICATION OF THE IMPACT

When we speak of relevant information in the thesis at hand, we always
refer to information that can be used to address one or more information
needs, each defined as a set of information types C. Accordingly, with the
distribution of relevant information, we mean the distribution of instances of
each information type C' € C in the input texts to be processed. More pre-
cisely, what matters in terms of efficiency is the distribution of instances of
all types in C found by some employed algorithm set, because this infor-
mation decides what portions of the texts are classified as relevant and are,
thus, filtered by the input control. We quantify this distribution in terms of
density as opposed to relative frequency:

The relative frequency of an information type C in a collection or a stream
of input texts D is the average number of instances of C' found per portion

"Different from our input control, the dynamic progrmaming approach covers only our
basic scenario from SectION 1.2, where we seek for a single set of information types C. While
relevant in practice, we skip the possibly technically complex extension to more than one set
for lack of expected considerable insights. The integration of different pipelines sketched in
the properties part of Section 3.3 indicates, though, what to pay attention to in the extension.

DISTRIBUTION OF
RELEVANT INFORMATION

CLASSIFIED AS RELEVANT

RELATIVE FREQUENCY

DENSITY

156 4.2 THE ImpaCT OF RELEVANT INFORMATION IN INPUT TEXTS

of text in D (of some specified text unit type, cf. Section 3.4). This frequency
can affect the efficiency of algorithms that take instances of C' as input. Al-
though its impact is definitely worth analyzing, in the given context we are
primarily interested in the efficiency impact of filtering. Instead, we there-
fore capture the density of an information type C' in D, which we define as
the fraction of portions of text in D in which instances of C are found.?

To illustrate the difference between frequency and density, assume that
relations of a type IsMarriedTo(Person, Person) shall be extracted from a given
text D with two portions of text (say, sentences). Let three person names be
found in the first sentence, while none is found in the second one. Then
the type Person has a relative frequency of 1.5 in D but a density of 0.5. The
frequency affects the average number of candidate relations for extraction.
In contrast, the density implies that relation extraction needs to take place
on 50% of the given sentences only, which is what we are up to.

Now, consider the general case that some text analysis pipeline Il = (A,)
is given to address an information need C on a text D. The density of each
information type from C in D directly governs what portions of D are fil-
tered by our input control after the execution of an algorithm in A. De-
pending on the schedule 7, the resulting run-times of all algorithms on the
filtered portions of text then sum up to the run-time of II. Hence, it might
seem reasonable to conclude that the fraction of those portions of D, which
pipeline II classifies as relevant, impacts the run-time optimality of 7. In
fact, however, the optimality depends on the portions of D classified as not
relevant, as follows from THEOREM 4.2:

THEOREM 4.2, Let IT* = (A,) be run-time optimal on a text D under all admis-
sible text analysis pipelines based on an algorithm set A, and let S(D) C D denote
a scope containing all portions of D classified as relevant by I1*. Let S(D') C D’
denote the portions of any other input text D' classified as relevant by IT*. Then I1*
is also run-time optimal on (D\S(D)) U S(D").

Proof. In the proof, we denote the run-time of a pipeline II on an arbitrary
scope S as tri(S). By hypothesis, the run-time ty- (D) of IT* = (A, 7*) is
optimal on D, i.e., for all admissible pipelines II' = (A, 7’), we have

tn-(D) < tw(D). (4.4)

As known from SectioN 3.1, for a given input text D, all admissible text
analysis pipelines based on the same algorithm set A classify the same por-
tions S(D) C D as relevant. Hence, each portion of text in S(D) is processed

8Besides, an influencing factor of efficiency is the length of the portions of text, of course.
However, we assume that, on average, all relative frequencies and densities equally scale
with the length. Consequently, both can be seen as an implicit model of length.

4 PrrELINE EFFICIENCY 157

by every algorithm in A, irrespective of the schedule of the algorithms. So,
the run-time of two pipelines II; = (A, ;) and IIy = (A, m2) on S(D) is al-
ways equal (at least on average):

tm, (S(D)) = 1, (S(D)) (4.5)

Since we do not put any constraints on D, EQuartioN 4.5 also holds for D’
instead of D. Combining EqQuatioN 4.5 with INEQuUALITY 4.4, we can thus
derive the correctness of THEOREM 4.2 as follows:

tn-((D\S(D)) U S(D")) tn-(D) — tn=(S(D)) + tn=(S(D"))

(4-4)

INE

tw (D) — tn=(S(D)) + tu=(S(D))
tw (D) — tw(S(D)) + tw(S(D")
t ((D\S(D)) U S(D")) O

(4-5)

>
&

THEOREM 4.2 states that the portions of text S(D) classified as relevant by a
text analysis pipeline have no impact on the run-time optimality of the pipe-
line. Consequently, differences in the efficiency of two admissible pipelines
based on the same algorithm set A must emanate from applying the algo-
rithms in A to different numbers of irrelevant portions of texts. We give
experimental evidence for this conclusion in the following.

EXPERIMENTAL ANALYSIS OF THE IMPACT

In order to stress the impact of the distribution of relevant information, we
now present controlled experiments that show how the run-time efficiency
of a text analysis pipeline and its possible run-time optimality behave under
changing densities of the relevant information types.

Pipelines In the experiments, we employ the same algorithm set as we did
at the end of SectioN 4.1. Again, we apply lazy evaluation in all cases, al-
lowing us to consider the four algorithms et1, EMO, ENE, and rFo only. Based
on these, we investigate the efficiency of two pipelines, II; and IIy:

IT; = (ETI, RFO, EMO, ENE) Iy = (EMO, ETI, RFO, ENE)

As shown in the case study of Section 4.1, II1 denotes the run-time op-
timal pipeline for the information need C = {Forecast, Time, Money, Organi-
zation} on the training set of the ReveNUE corpus. In contrast, I, represents
an efficient alternative on texts with few money entities.

Text Corpora To achieve different distributions of the set of relevant infor-
mation types C, we have created artificially altered versions of the training

158 4.2 THE ImpaCT OF RELEVANT INFORMATION IN INPUT TEXTS
(a) Changing the number of (b) Changing the number of (c) Changing the number of
relevant sentences random irrelevant sentences ¢ s specific irrelevant sentences
33 6 °* 2
3.22 e
. 553 2885

307
g 26
24

2.3

2.0

average run-time in ms / sentence

density of relevant information types

Ficure 4.5: Interpolated curves of the average run-times per sentence of the pipe-
lines II; = (gt1, RFO, EMO, ENE) and I, = (Emo, ET1, RFO, ENE) under different densities
of the relevant information types in modified training sets of the REVENUE corpus.
The densities were created by duplicating or deleting (a) relevant sentences, (b) ran-
dom irrelevant sentences, and (c) irrelevant sentences with money entities.

set of the ReveNUE corpus. In particular, we have modified the original cor-
pus texts by random duplicating or deleting

(a) relevant sentences, which contain all relevant information types,
(b) irrelevant sentences, which miss at least one relevant type,

(c) irrelevant sentences, which contain money entities, but which miss
at least one other relevant type.

In case (a) and (b), we created text corpora, in which the density of the whole
set Cis 0.01, 0.02,0.05, 0.1, and 0.2, respectively. In case (c), it is not possible
to obtain higher densities than a little more than 0.021 from the training set
REVENUE corpus, because under that density, all irrelevant sentences with
money entities have been deleted. Therefore, we restrict our view to five
densities between 0.009 and 0.021 in that case.

Experiments We have processed all created corpora ten times with both
II; and Il on a 2 GHz Intel Core 2 Duo MacBook with 4 GB memory. Due
to the alterations, the corpora differ significantly in size. For this reason, we
compare the efficiency of the pipelines in terms of the average run-times per
sentence. ApPENDIX B.4 outlines how to reproduce the experiments.

The Impact of the Distribution of Relevant Information FiGurke 4.5 plots
the run-times as a function of the density of C. In line with THEOREM 4.2,
FiGURE 4.5(a) conveys that changing the number of relevant sentences does
not influence the absolute differences of the run-time of II; and II,.° In

“Minor deviations occur on the processed corpora, since we have changed the number
of relevant sentences as opposed to the number of sentences that are classified as relevant.

4 PrrELINE EFFICIENCY 159

contrast, the gap between the curves in FIGURE 4.5(b) increases proportion-
ally under growing density, because the two pipelines spend a proportional
amount of time processing irrelevant portions of text. Finally, the impact of
the distribution of relevant information becomes explicit in FIGURE 4.5(c): II;
is faster on densities lower than about 0.018, but I1; outperforms II; under a
higher density (0.021).1° The reason for the change in optimality is that, the
more irrelevant sentences with money entities are deleted, the less portions
of text are filtered after emo, which favors the schedule of II5.

Altogether, we conclude that the distribution of relevant information can
be decisive for the optimal scheduling of a text analysis pipeline. While
there are other influencing factors, some of which trace back to the efficiency
of the employed text analysis algorithms (as discussed in the beginning of
this section), we have cancelled out many of these factors by only duplicat-
ing and deleting sentences from the REVENUE corpus itself.

PrAcTiCcAL RELEVANCE OF THE IMPACT

For specific text analysis tasks, we have already exemplified the efficiency
potential of pipeline scheduling in Section 3.1 and the input dependency in
SecTION 4.1. A general quantification of the practical impact of the distribu-
tion of relevant information seems hardly possible, because it depends on
the processed input texts and the employed algorithms. As an indicator of
its relevance, however, we offer evidence here that distributions of informa-
tion tend to vary much more significantly between different collections and
streams of texts than the run-times of text analysis algorithms.

To obtain some degree of generality, we resort to standard information
types from information extraction. In particular, we consider the three
very common entity types Person, Location, and Organization, whose impor-
tance is underlined by their central role in the CoNLL-2003 sHARED Task on
named entity recognition (Tjong Kim Sang and Meulder, 2003). FIGURE 4.6
compares the densities of these types in six text corpora that differ in lan-
guage, topic diversity, and genre diversity among others. The shown val-
ues are computed based on the output information created by the pipeline
ITene = (SSE, sTO2, TPO1, PCH, ENE). For details on the employed algorithms,
the executed code, and all corpora, see AppenDICES A, B.4, and C.

For all three entity types, the observed values cover a wide spectrum, e.g.
ranging from 0.07 to 0.41 in case of Location. In the classic BRown corpus,

The declining curves in FIGURE 4.5(c) seem counterintuitive. The reason is that, in the
news articles of the REVENUE corpus, sentences with money entities often contain other rel-
evant information like time entities, too. So, while duplicating irrelevant sentences of this
kind reduces the density of C, the average time to process these sentences is rather high.

160 4.2 THE ImpaCT OF RELEVANT INFORMATION IN INPUT TEXTS

density English 0.41 German
0.4
0.35
0.31 0.26
0.3 0.3
0.27
0.25 0.25
0.21
0.2 0.19 0.18
0.05 0.14 c 014 015
0.12 = = e 0.1 0.12
0.1] o : 0.09
o 0.07
o |
Brown CoNLL-2003 CoNLL-2003 Wikipedia 10k Revenue LFA-11
corpus (English) (German) sample (German) corpus smartphone
L J L J L J L J
diverse topics diverse topics, focused topics, focused topics,
and genres one genre one genre diverse genres

FIGURE 4.6: Illustration of the densities of person, organization, and location en-
tities in the sentences of two English and four German collections of texts. All
densities are computed based on the results of Il = (SSE, sSTO2, TPO;, PCH, ENE).

which aims to serve as a representative sample of American English, per-
son names are densest (0.25), while locations are of upmost importance in
the mixed classic news paper articles from the CoNnLL-2003 datasets of both
given languages.!! Compared to these, the densities in the processed sam-
ple of 10,000 articles from the German WikipepIA appear small. One reason
behind may be that WikipeD1A also covers topics where the considered entity
types do not play a leading role. Finally, both our Revenue corpus and the
smartphone part of our LFA-11 corpus show an extraordinarily high pro-
portion of sentences with organization names. Here, the comparably lower
values of the LFA-11 corpus certainly result from the fact that it represents
a web crawl of blog posts and, hence, also contains completely irrelevant
texts. Altogether, FIGURE 4.6 suggests that the distribution of relevant infor-
mation can and does vary significantly in all respects in practice.

Now, TaBLE 4.1 lists the run-times per sentence of all algorithms in ITgy.
Especially because of different average sentence lengths in the six corpora,
the run-times of the algorithms do vary, e.g. between 0.042 ms and 0.059 ms
in case of sto,. However, the standard deviations of the run-times averaged
over all corpora (bottom line of TaBLE 4.1) all lie in the area of about 5%
to 15% of the respective run-time. In contrast to the measured densities in
the six corpora, these variations are apparently small, which means that the
algorithms’ run-times are affected from the processed input only little.!?

"Notice that the employed named entity recognition algorithm, Eng, has been trained on
the CoNLL-2003 datasets, which partly explains the high densities in these corpora.

20f course, there exist algorithms whose run-time per sentence will vary more signifi-
cantly, namely, if the run-times scale highly overproportionally in the length of the processed
sentences, such as for syntactic parsers. However, some of the algorithms evaluated here at
least have quadratic complexity, indicating that the effect of sentence length is limited.

4 PipELINE EFFICIENCY 161

Text corpus t(sse)t o t(stoz): o t(tro1)t o tlpcH): o t(ENE)E: o

BrowN corruUs 0.041 +.002 0.055 £.001 0.955 £.008 1.070 +.008 2.254 +.028
CoNLL-2003 (en) 0.031 £.003 0.042 £.000 0.908 £.010 0.893 £.011 1.644 +.003
CoNLL-2003 (de) 0.045 £.003 0.057 £.001 1.121 £.006 0.977 £.007 2.626 +.005
Wikipepia 10k (de) 0.053 £.001 0.059 +.000 1.031 +.009 1.059 £+.008 2.612 +.021
REVENUE coOrPUS 0.041 £.002 0.050 +.001 0.927 £.004 0.917 £.006 2.188 £.005
LFA-11 smartphone 0.042 +£.003 0.054 £.001 1.039 £.009 0.967 £.008 2.338 £.009

Average 0.042 £.007 0.053 +.006 0.997 £.081 0.980 +.072 2.277 +-.360

TasLE 4.1: The average run-time ¢ in milliseconds per sentence and its standard
deviation ¢ for every algorithm in the pipeline Il = (SSE, STO2, TPO;, PCH, ENE)
on each evaluated text corpus. In the bottom line, the average of each algorithm’s
run-time is given together with the standard deviation from the average.

So, to summarize, the evaluated text corpora and information types sug-
gest that the run-times of the algorithms used to infer relevant information
tend to remain rather stable. At the same time, the resulting distributions
of relevant information may completely change. In such cases, the practical
relevance of the impact outlined above becomes obvious, since, at least for
algorithms with similar run-times, the distribution of relevant information
will directly decide the optimality of the schedule of the algorithms.!?

IMPLICATIONS OF THE IMPACT

This section has made explicit that the distribution of relevant information
in the input texts processed by a text analysis pipeline (equipped with the
input control from SectioN 3.5) impacts the run-time optimal schedule of
the pipeline’s algorithms. This distribution can vary significantly between
different collections and streams of texts, as our experiments have indicated.
In contrast, the average run-times of the employed algorithms remain com-
parably stable. As a consequence, it seems reasonable to rely on run-time
estimations of the algorithms, when seeking for an efficient schedule.

For given run-time estimations, we have already introduced a greedy
pipeline scheduling approach in Section 3.3, which sorts the employed al-
gorithms (or filter stages, to be precise) by their run-time in ascending or-
der. Our experimental results in the section at hand, however, imply that the
greedy approach will fail to construct a near-optimal schedule under certain

BThe discussed example may appear suboptimal in the sense that our entity recognition
algorithm ENE relies on Stanrorp NER (Finkel et al., 2005), which classifies persons, loca-
tions, and organizations jointly and, therefore, does not allow for scheduling. However, we
merely refer to the standard entity types for illustration purposes, since they occur in almost
every collection of texts. Besides, notice that joint approaches generally conflict with the first
step of optimal pipeline design, maximum decomposition, as discussed in SEcTiON 3.1.

43

OPTIMIZED SCHEDULING

162 4.3 OPTIMIZED SCHEDULING VIA INFORMED SEARCH

conditions, namely, when the densities of the information types produced
by faster algorithms are much higher than of those produced by slower al-
gorithms. Since reasonable general estimates of the densities seem infeasi-
ble according to our analysis, we hence need a way to infer the distribution
of relevant information from the given input texts, in cases where run-time
efficiency is of high importance (and, thus, optimality is desired).

A solution for large-scale text mining scenarios is to estimate the selectiv-
ities of the employed algorithms from the results of processing a sample of
input texts. For information extraction, samples have been shown to suffice
for accurate selectivity estimations in narrow domains (Wang et al., 2011).
Afterwards, we can obtain a schedule that is optimal with respect to the es-
timations of both the run-times and the selectivities using our adaptation
of the VITERBI ALGORITHM from SECTION 4.1. More efficiently, we can also
directly integrate the estimation of selectivities in the scheduling process
by addressing optimal scheduling as an informed search problem (Russell
and Norvig, 2009). In particular, the ViTERBI ALGORITHM can easily be trans-
formed into an A* best-first search (Huang, 2008), which in our case then
efficiently processes the sample of input texts.

In the next section, we propose an according best-first search scheduling
approach, which uses a heuristic that is based on the algorithms” run-time
estimations. We provide evidence that it works perfectly as long as the dis-
tribution of relevant information does not vary significantly in different in-
put texts. In other cases, a schedule should be chosen depending on the text
at hand for maintaining efficiency, as we discuss in Sections 4.4 and 4.5.

OPTIMIZED SCHEDULING VIA INFORMED SEARCH

We now develop a practical approach to the pipeline scheduling problem
from SectiON 3.1 for large-scale scenarios. The approach aims to efficiently
determine the run-time optimal schedule of a set of text analysis algorithms
for a collection or a stream of input texts. To this end, it processes a sample
of texts in an informed best-first search manner (Russell and Norvig, 2009),
relying on run-time estimations of the algorithms. Our evaluation indicates
that such an optimized scheduling robustly finds a near-optimal schedule on
narrow-domain corpora. In terms of efficiency, it outperforms the greedy
pipeline linearization from Section 3.3 among others. The idea behind has
been sketched in (Wachsmuth et al., 2013a), from which we reuse some con-
tent. While Melzner (2012) examines the use of informed search for pipeline
scheduling in his master’s thesis, we fully revise his approach here. Assuch,
this section denotes a new contribution of the thesis at hand.

4 PipELINE EFFICIENCY 163

MODELING PIPELINE SCHEDULING AS AN INFORMED SEARCH PROBLEM

We consider the problem of scheduling an algorithm set A with a defined
partial schedule 7. 7 explicitly defines all ordering constraints between the
algorithms in A that follow from their input and output information types.
This is the situation resulting from our algorithm selection approach in Sec-
TION 3.3. There, we have argued that scheduling should take almost zero-
time in case of ad-hoc text mining, where a fast response time is of upmost
priority in terms of efficiency. In contrast, we here target at large-scale text
mining, where we seek to process a potentially huge collection or stream of
texts as fast as possible. Under this goal, we claim (and offer evidence later
on) that it makes sense to perform scheduling on a sample of texts, given
that only relevant portions of text are processed (as our input control from
SecTION 3.5 ensures). Instead of a sample, we speak of an input text D in the
following without loss of generality.!* Section 4.1 has revealed that it will
often be too expensive to actually compute the optimal schedule. Therefore,
we propose to address scheduling as an informed search problem in order
to efficiently obtain an at least near-optimal schedule.

The term informed search (also often called heuristic search) denotes a gen-
eral and fundamental technique from artificial intelligence that aims at effi-
ciently finding solutions to problems by exploiting problem-specific knowl-
edge (Russell and Norvig, 2009). Informed search stepwise generates the
nodes of a directed acyclic search graph, in which leaf nodes define solu-
tions, while each path from the graph’s root node to a leaf prescribes how
to solve the given problem.!®> Accordingly, nodes correspond to partial so-
lutions, and edges to actions that solve subproblems. For many informed
search problems, an edge is associated to a step cost of performing the re-
spective action. The aggregation of all step costs involved in the generation
of a node results in the path cost of the associated partial solution, which is
called solution cost in case of leaf nodes. A leaf node with minimum solution
cost hence represents the optimal solution to the tackled problem.

With respect to scheduling, we define each solution to be a text analy-
sis pipeline (A,) with an admissible schedule 7 (cf. SEctiON 3.1). In this
regard, an optimal solution for an input text D is given by the run-time opti-
mal pipeline (A, 7*) on D under all admissible pipelines based on A. For in-
formed search, we let each node with depth j in the associated search graph
denote a partial pipeline (AU), 7(1)), where AU) is a subset of A with j al-

“The input text D may e.g. denote the concatenation of all texts from the sample.
15 Depending on the tackled problem, not all leaf nodes represent solutions. Also, some-
times the path to a leaf node represents the solution and not the leaf node itself.

INFORMED SEARCH

SEARCH GRAPH

STEP COST

PATH COST

SOLUTION COST

SEARCH STRATEGY

HEURISTIC

BEST-FIRST SEARCH

ESTIMATED SOLUTION COST

HEURISTIC FUNCTION

164 4.3 OPTIMIZED SCHEDULING VIA INFORMED SEARCH

depth 0 depth 1 /l/ depth j /l/ depth 1Al

(A

]

root node }' <{A1 }’) node : leaf node .(solution)
o
% AL 2> t(¢(AD) \AL t((A™)

path cost U solution cost
t(S(A%) :

L - [|

Ficure 4.7: Illustration of the nodes, actions, and costs of the complete search graph
of the informed search for the optimal schedule 7* of an algorithm set A.

gorithms and 7() is an admissible schedule. The graph’s root is the empty
pipeline (0, #), and each leaf a complete pipeline (A, 7). An edge represents
the execution of an applicable algorithm A; € A on the currently relevant
portions of D. Here, we define applicability exactly like in Section 4.1.16
The run-time of A; represents the step cost, while the path and solution
costs refer to the run-times of partial and complete pipelines, respectively.
FiGuUre 4.7 illustrates all concepts in an abstract search graph. It imitates the
trellis visualization from FiGURE 4.3 in order to show the connection to the
dynamic programming approach from Section 4.1.

However, the search graph will often be even much larger than the re-
spective trellis (in terms of the number of nodes), since an algorithm set A
can entail up to |A|! admissible schedules. To efficiently find a solution, in-
formed search aims to avoid to explore the complete search graph by follow-
ing some search strategy that governs the order in which nodes of the search
graph are generated.!” The notion of being informed refers to the use of
a heuristic within the search strategy. Such a heuristic relies on problem-
specific or domain-specific knowledge specified beforehand, which can be
exploited to identify nodes that may quickly lead to a solution. For schedul-
ing, we consider one of the most common search strategies, named best-first
search, which always generates the successor nodes of the node with the low-
est estimated solution cost first. Best-first search operationalizes its heuristic
in the form of a heuristic function H, which estimates the cost of the cheapest
path from a given node to a leaf node (Russell and Norvig, 2009).

16 Again, we schedule single text analysis algorithms here for a less complex presentation.
To significantly reduce the search space, it would actually be more reasonable to define the
filter stages from SEcTION 3.1 as actions, as we propose in (Wachsmuth et al., 2013a).

7In the given context, it is important not to confuse the efficiency of the search for a pipe-
line schedule and the efficiency of the schedule itself. Both are relevant, as both influence
the overall efficiency of addressing a text analysis task. We evaluate their influence below.

4 PipELINE EFFICIENCY 165

As already mentioned above, the knowledge that we exploit for our
heuristic consists in the average run-times of the employed algorithms, be-
cause the run-times tend to be rather stable among different collections or
streams of texts (cf. SEcTION 4.2). In particular, we assume a vector q of run-
time estimations to be given with one value for each algorithm in A.!® On
this basis, we show below how to approach the best-first search for an opti-
mal schedule 7* in any given informed search scheduling problem:

Informed Search Scheduling Problem An informed search scheduling
problem denotes a 4-tuple (A, 7, q, D) such that

1. Actions. A is an algorithm set to find an optimal schedule 7* for,
2. Constraints. 7 is a partial schedule, 7* must comply with,

3. Knowledge. q € RIAl is a vector with one run-time estimation ¢; for
each algorithm A; € A, and

4. Input. D is the input text, with respect to which 7* shall be optimal.

ScHEDULING TEXT ANALYSIS ALGORITHMS WITH K-BEST A* SEARCH

The most widely used informed best-first search approach is A* search. A*
search realizes the best-first search strategy by repeatedly performing two
operations based on a so called open list, which contains all not yet expanded
nodes, i.e., those nodes without generated successor nodes: First, it com-
putes the estimated solution cost of all nodes on the open list. Then, it gen-
erates all successor nodes of the node with the mininum estimation. To
estimate the cost of a solution that contains some node, A* search relies on
an additive cost function that sums up the path cost of reaching the node
and the estimated cost from the node to a leaf node. The latter is obtained
from the heuristic function #. Given that H is optimistic (i.e., H never over-
estimates costs), it has been shown that the first leaf node generated by A*
search denotes an optimal solution (Russell and Norvig, 2009).

To adapt A* search for pipeline scheduling, we hence need a heuristic
that, for a given partial pipeline (A7), 7)), optimistically estimates the run-
time t((A, 7)) of a complete pipeline (A, 7) that begins with (AU, (1)), As
detailed in SectioNs 3.1 and 4.1, a pipeline’s run-time results from the run-
times and the selectivities of the employed algorithms. While we can resort
to the estimations q for the former, we propose to obtain information about
the latter from processing an input text D. In particular, let S(IT) contain the

8 As in the method GREEDYPIPELINELINEARIZATION from SECTION 3.3, for algorithms with-
out run-time estimations, we can at least rely on default values. GREEDYPIPELINELINEARIZA-
TION can in fact be understood as a greedy best-first search whose heuristic function simply
assigns the run-time estimation of the fastest applicable filter stage to each node.

INFORMED SEARCH
SCHEDULING PROBLEM

A™ SEARCH

OPEN LIST

COST FUNCTION

OPTIMISTIC

166 4.3 OPTIMIZED SCHEDULING VIA INFORMED SEARCH

relevant portions of D after executing a partial pipeline II. Further, let ¢(A)
be the estimation of the average run-time per portion of text of an algorithm
Ain TI, and let A; be the set of all algorithms that are applicable after II.
Then, we define the heuristic function # for estimating the cost of reaching
a leaf node from some node 1T as:'

(I, Ajq) = |S(ID)] - min {g(4) |4 € Ai} (4.6)

The actually observed run-time #(II) of IT and the value of the heuristic func-
tion then sum up to the estimated solution cost ¢(II). Similar to the dynamic
programming approach from SecTioN 4.1, we hence need to keep track of
all run-times and filtered portions of text. By that, we implicitly estimate
the selectivities of all algorithms in A on the input text D at each possible
position in a pipeline based on A.

Now, assume that each run-time estimation ¢4 (A;) is optimistic, meaning
that the actual run-time t;(S(IT)) of A; exceeds ga(A;) on all scopes S(IT). In
this case, II is optimistic, too, because at least one applicable algorithm has
to be executed on the remaining scope S(IT). In the end, however, the only
way to guarantee optimistic run-time estimations consists in setting all of
them to 0, which would render the defined heuristic H useless. Instead, we
relax the need of finding an optimal schedule here to the need of optimiz-
ing the schedule with respect to the given run-time estimations q. Conse-
quently, the accuracy of the run-time estimations implies a tradeoff between
the efficiency of the search and the efficiency of the determined schedule:
The higher the estimations are set, the less nodes A* search will expand on
average, but also the less probable it will return an optimal schedule, and
vice versa. We analyze some of the effects of run-time estimations in the
evaluation below.

Given an informed search scheduling problem (A, 7, q, D) and the de-
fined heuristic %, we can apply A* search to find an optimized schedule.
However, A* search may still be inefficient when the number of nodes on
the open list with similar estimated solution costs becomes large. Here, this
can happen for algorithm sets with many admissible schedules of similar
efficiency. Each time a node is expanded, every applicable algorithm needs
to process the relevant portions of text of that node, which may cause high
run-times in case of computationally expensive algorithms. To control the
efficiency of A* search, we introduce a parameter k that defines the maxi-
mum number of nodes to be kept on the open list. Such a k-best variant of

YFor simplicity, we assume here that there is one type of portions of text only (say, Sen-
tence) without loss of generality. For other cases, we could dinstinguish between instances
of the different types and respective run-time estimations in EQuarion 4.6.

4 PipELINE EFFICIENCY 167

K-BESTA *PIPELINESCHEDULING(A, 7, q, D, k)

1: Pipeline ITg + (0, 0)

2: Scope S(Ilp) «~ D

3: Run-time ¢(Ilp) 0

4: Algorithm set A; —{A; e A| A(A<A)er}

5: Estimated run-time ¢(Ilo) « H(Ilo, Ai, Q)

6: Pipelines Ilopen +— {1}

7: loop

8 Pipeline (A, 7*) < ITopen.poll(arg min (g(II)))
HEMopen

9: if A = A then return (A, 7*)

10: A;+ {A, e A\A |V(A<A)er: AcA}
11: for each Algorithm A; € A; do

12: Pipeline TI; — (AU{A;}, T U{(A<A;) | AcA})
13: Scope S(11;) — Si(S((A, 7))
14: Run-time ¢(11;) — t((A, 7)) + i (S((A, %))
15: Estimated run-time ¢(I1;) <+ ¢(IL;) + H(IL, A;\{A:},q)
16: Mopen + Mopen U {IL}
17: while [Tlopen| > k do Iopen.poll(arg max (¢(II)))
HeMopen

PsEUDOCODE 4.2: k-best variant of A* search for the transformation of a partially
ordered text analysis pipeline (A,) (cf. SecTioN 3.3) into a pipeline (A, 7*), which
is nearly run-time optimal on the given input text D.

A* search considers only the seemingly best k£ nodes for expansion, which
improves efficiency while not guaranteeing optimality (with respect to the
given run-time estimations) anymore.?’ In particular, k thereby provides
another means to influence the efficiency-effectiveness tradeoff, as we also
evaluate below. Setting k to oo yields a standard A* search.

PseUDOCODE 4.2 shows our k-best A* search approach for determining
an optimized schedule of an algorithm set A based on an input text D. The
root node of the implied search graph refers to the empty pipeline IIy and to
the complete input text S(Ily) = D. IIy does not yield any run-time and, so,
the estimated solution cost of Il equals the value of the heuristic H, which
depends on the initially applicable algorithms in A; (lines 1 to 5). Line 6
creates the set Il,., from IIy, which represents the open list. In lines 7
to 17, the partial pipeline (A, 7*) with the currently best estimated solution
cost is iteratively polled from the open list (line 8) and expanded until it
contains all algorithms and is, thus, returned. Within one iteration, line 10
first determines all remaining algorithms that are applicable after (A, 7*)
according to the partial schedule 7. Each such algorithm A; processes the
relevant portions of text of (A, 7*), thereby generating a successor node for

Dk-best variants of A* search have already been proposed for other tasks in natural lan-
guage processing, such as parsing (Pauls and Klein, 2009).

168 4.3 OPTIMIZED SCHEDULING VIA INFORMED SEARCH

the resulting pipeline I1; and its associated portions of texts (line 11 to 13).2!

The run-time and the estimated solution cost of II; are then updated, before
I1; is added to the open list (line 14 to 16). After expansion, line 17 reduces
the open list to the k currently best pipelines.??

PROPERTIES OF THE PROPOSED SCHEDULING APPROACH

The method k-BESTA*PIPELINESCHEDULING works irrespective of the algo-
rithm set A to be applied and the input text D to be processed, given that an
admissible total schedule can be derived from the partial schedule 7 at all.
While the impact of the method depends on the existence and exactness of
the algorithms’ run-time estimations, such estimations should often be easy
to obtain according the observations made in Section 4.2.

Although our proposed approach to optimized scheduling applies to ev-
ery pipeline (A, 7), the presented form of best-first search targets at pipe-
lines that infer only a single set of information types C from input texts (sim-
ilar to our optimal scheduling approach from SectioN 4.1). In particular,
the heuristic in EQuartion 4.6 implicitly assumes that there is one set of cur-
rently relevant portions of text only, which does not hold in tasks that refer
to different information needs at the same time and respective disjunctive
queries (cf. Section 3.4). To a wide extent, an extension of the heuristic to
such tasks is straightforward, because the estimated costs on different por-
tions of text simply sum up. However, it needs to account for cases where
the minimum run-time estimation refers to an algorithm that produces in-
formation types for different information needs. This makes the resulting
heuristic function quite complex and requires to be aware of the respec-
tive information needs underlying a given pipeline (A, 7), which is why we
leave it out here for reasons of simplicity.

Similarly, our approach schedules single text analysis algorithms instead
of complete filter stages obtained from early filtering and lazy evaluation (cf.
SecTiON 3.1) merely to simplify the discussion. As already stated, a resort to
filter stages would, in general, allow for a more efficient search due to an of-
ten significantly reduced search space. In contrast, modeling the processed
sample of texts as a single (concatenated) input text in fact proves benefi-
cial, namely, it enables us to easily find the schedule that is fastest in total. If

Z'In the given pseudocode, we implicitly presume the use of the input control from Skc-
TION 3.5, which makes the inclusion of filters (cf. SEctioN 3.2) obsolete. Without an input
control, applicable filters would need to be preferred in the algorithm set A; for expansion
over other applicable algorithms in order to maintain early filtering.

2Notice that, without line 17, PseunocopE 4.2 would correspond to a standard A* search
approach that follows all possibly optimal search paths.

4 PipELINE EFFICIENCY 169

more than one text would be processed, different schedules might be found,
which entails the additional problem of inferring the fastest schedule in to-
tal from the fastest schedules of all texts.

Correctness Under the described circumstances, the standard A* search
variant of x-BEsTA*PIPELINESCHEDULING (Which emanates from setting & to co
or, alternatively, from skipping line 17 of Pseupocopk 4.2) can be said to
be correct in that it always finds an optimal solution, as captured by the
following theorem. Like in the proof in SEcTioN 4.1, we refer to consistent
algorithm sets without circular dependencies (cf. SEcTioN 3.3) here:*

THeoReM 4.3. Let (A, 7, q, D) be an informed search scheduling problem with a
consistent algorithm set A that has no circular dependencies. If all estimations in
q are optimistic on each portion of the text D, then the pipeline (A, *) returned by
a call of x-BESTA*PIPELINESCHEDULING(A, 7, q, D, 00) is run-time optimal on D
under all admissible pipelines based on A.

Proof. We only roughly sketch the proof, since the correctness of A* search
has already often been shown in the literature (Russell and Norvig, 2009).
As clarified above, optimistic run-time estimations in q imply that the em-
ployed heuristic H is optimistic, too. When k-BESTA* PIPELINESCHEDULING re-
turns a pipeline (A, 7*) (pseudocode line 9), the estimated solution cost
q((A, 7)) of (A, 1) equals its run-time ¢((A, 7*)), as all algorithms have
been applied. At the same time, no other pipeline on the open list has a
lower estimated solution cost according to line 8. By definition of #, all es-
timated solution costs are optimistic. Hence, no pipeline on the open list
can entail a lower run-time than (A, 7*), i.e., (A, 7*) is optimal. And, since
algorithms from A are added to a pipeline on the open list in each iteration
of the outer loop in Pseupocobk 4.2, (A, 7*) is always eventually found. [J

Complexity Given that k-BEsTA*PIPELINESCHEDULING works correctly, the
question remains for what input sizes the effort of processing a sample of
texts is worth spending in order to optimize the efficiency of a text analysis
process. Naturally, this size depends on the efficiency of the method. Before
we evaluate the method’s run-time of our approach for different pipelines,
collections of texts, and k-parameters, we derive its worst-case run-time in
terms of the O-calculus (Cormen et al., 2009) from its pseudocode. To this
end, we again first consider A* search with k set to infinity.

Following the respective argumentation in SectioN 4.1, in the worst case
the complete text D must be processed by each algorithm in A, while all

2Besides being correct, A* search has also been shown to dominate other informed
search approaches, meaning that it generates the minimum number of nodes to reach a leaf
node (Russell and Norvig, 2009). We leave out an according proof here for lack of relevance.

170 4.3 OPTIMIZED SCHEDULING VIA INFORMED SEARCH

algorithms are always applicable and take exactly the same run-time ¢4 (D)
on D. As a consequence, the schedule of a pipeline does not affect the pipe-
line’s run-time and, so, the run-time is higher the longer the pipeline (i.e.,
the number of employed algorithms). Therefore, lines 7 to 17 generate the
whole search graph except for the leaf nodes, because line 9 directly returns
the pipeline of the first reached leaf node (which corresponds to a pipeline
of length |A[). Since all algorithms can always be applied, there are |A|
pipelines of length 1, |A|-(|A|—1) pipelines of length 2, and so forth. Hence,
the number of generated nodes is

Al + |A]-(JA|=1) + ... + |A[-(A|-1)-...-2 = O(/A]) (@47)

Mainly, a single node generation requires to measure the run-time of pro-
cessing the input text as well as to estimate the remaining costs using the
heuristic function H. The latter depends on the number of algorithmsin A;,
which is bound by |A|. Since O(|A[!)-|A| = O(]A]!) , the asymptotic worst-
case run-time of k-BESTA*PIPELINESCHEDULING with k£ = oo is

tA*PIPELINESCHEDULING(A7 D) = O(|A|‘ : tA(D)) (48)

Avoiding this worst case is what the applied best-first search strategy aims
for in the end. In addition, we can control the run-time with the param-
eter k. In particular, k changes the products in EQuation 4.7. Within each
product, the last factor denotes the number of possible expansions of a node
of the respective length, while the multiplication of all other factors results
in the number of such nodes to be expanded. This number is limited to &,
which means that we can transform EQuaATiON 4.7 into

Al + k-(JA|[-1) + ... + k-2 = O(k-|A]P) (4.9)

Like above, a single node generation entails costs that largely result from
ta(D) and at most |A|. As a result, we obtain a worst case run-time of

tk—BESTA*PIPELINESCHEDULING(A7 D) = O(k : |A‘2 : (tA (D)+ ’AD) (410)

In the following, we demonstrate how the run-time of optimized scheduling
behaves in practice for different configurations.

EvALUuATION OF OPTIMIZED SCHEDULING

We now evaluate our k-best A* search approach for optimized pipeline
scheduling in different text analysis tasks related to our information extrac-
tion case study INFEXBA (cf. SEcTiON 2.3). In particular, on the one hand
we explore in what scenarios the additional effort of processing a sample

4 PrrELINE EFFICIENCY 171

of input texts is worth being spent. On the other hand, we determine the
conditions under which our approach achieves to find a run-time optimal
pipeline based on a respective training set. Details on the source code used
in the evaluation are given in ArPENDIX B.4.

Corpora As in SEcTION 4.1, we conduct experiments on our REVENUE CORPUS
described in ArpenDix C.1 as well as on the German dataset of the CoNLL-
2003 SHARED TAsK described in Appenpix C.4. First, we process different sam-
ples of the training sets of these corpora for obtaining the algorithms’ run-
time estimations as well as for performing scheduling. Then, we execute
the scheduled pipelines on the union of the respective validation and test
sets in order to measure their run-time efficiency.

Queries We consider three information needs of different complexity that
we represent as queries in the form presented in SectiON 3.4:

v = Financial(Money, Forecast(Time))
2 = Forecast(Time, Money, Organization)

v3 = Forecast(Revenue(Resolved(Time), Money, Organization))

v1 and 72 have already been analyzed in Sections 3.5 and 4.1, respectively.
In contrast, we introduce 3 here, which we also rely on when we analyze
efficiency under increasing heterogeneity of input texts in SEcTioN 4.5. 73
targets at revenue forecasts that contain a resolvable time information, a
money value, and an organization name. A simple example for such a fore-
acst is "Apple’s annual revenues could hit $400 billion by 2015”. We require all
information of an instance used to address any of the queries to lie within
a sentence, i.e., the degree of filtering is Sentence in all cases.

Pipelines To address 71, 72, and 73, we assume the following pipelines to
be given initially. They employ different algorithms from AppeEnDIX A:

II; = (ssE, sTO3, TPO9, ETI, EMO, RFO, RFI)
ITy = (sSE, STO9, TPO2, PCH, ENE, EMO, ETI, RFO)
IT3 = (SSE, STO9, TPO9, PCH, ENE, EMO, ETI, NTI, RRE3, RFO)

Each of the three pipelines serves as input to all evaluated approaches, i.e.,
the respective pipeline is simply seen as an algorithm set with a partial
schedule, for which an optimized schedule can then be computed. The al-
gorithms in IT; allow for only 15 different admissible schedules, whereas I1;
entails 84 and Il even 1638 admissible schedules.

Baselines We compare our approach to three baseline approaches. All
approaches are equipped with our input control from Section 3.5 and, thus,
process only relevant portions of text in each analysis step. We informally

172 4.3 OPTIMIZED SCHEDULING VIA INFORMED SEARCH

define the three baselines that we look at here by the rules they follow to
obtain a schedule, when given a training set:

1. Fixed baseline. Do not process the training set at all. Remain with
the schedule of the given text analysis pipeline.

2. Greedy baseline. Do not process the training set at all. Schedule the
given algorithms according to their run-time estimation in an increas-
ing and admissible order, as proposed in Section 3.3.

3. Optimal baseline. Process the training set with all possible admissi-
ble schedules by stepwise executing the given algorithms in a breadth-
first search manner (Cormen et al., 2009). Choose the schedule that is

run-time optimal on the training set.?*

The standard baseline is used to highlight the general efficiency potential
of scheduling when filtering is performed, while we analyze the benefit of
processing a sample of texts in comparison to the greedy baseline. The last
baseline is called “optimal”, because it guarantees to find the schedule that
is optimal on a training set. However, its brute-force nature contrasts the
efficient process of our informed search approach, as we see below.
Different from CHAPTER 3, we omit to construct filter stages here (cf. Sec-
TION 3.1), but we schedule the single text analysis algorithms instead. This
may affect the efficiency of both the greedy baseline and our k-best A*
search approach, thereby favoring the optimal baseline to a certain extent.
Anyway, it enables us to simplify the analysis of the efficiency impact of
optimized scheduling, which is our main focus in the evaluation.

Experiments Below, we measure the absolute run-times of all approaches
averaged over ten runs. We break these run-times down in the schedul-
ing time on the training sets and the execution time on the combined val-
idation and test sets in order to analyze and compare the efficiency of the
approaches in detail. All experiments are conducted on a2 GHz Intel Core 2
Duo Macbook with 4 GB memory.?®

Efficiency Impact of k-best A* Search Pipeline Scheduling First, we an-
alyze the efficiency potential of scheduling a pipeline for each of the given
queries with our k-best A* search approach in comparison to the optimal
baseline. To imitate realistic circumstances, we use run-time estimations

*The optimal baseline generates the complete search graph introduced above. It can be
seen as a simple alternative to the optimal scheduling approach from SectioN 4.1.

»Sometimes, the optimal baseline and our approaches return different pipelines in dif-
ferent runs of the same experiment. This can happen when the measured run-time of the
analyzed pipelines are very close to each other. Since such behavior can also occur in prac-
tical applications, we simply average the run-times of the returned pipelines.

4 PipELINE EFFICIENCY

173

v Training on

20-best A* search
Scheduling time Execution time

Optimal baseline
Scheduling time Execution time

Y1 1 text 128s+ 0.1s 13.7s+ 0.8s 143s+ 0.1s 13.6s+ 0.5s
10 texts 15.5s+ 0.1s 13.5s+ 03s 183s+ 0.0s 129s+ O0.1s

20 texts 184s+ 0.2s 12.7s+ 03s 223s+ 0.1s 12.6s+ 03s

50 texts 26.3s+ 0.6s 12.6s+ 0.3s 37.0s+ 04s 12.6s+ 0.2s

100 texts 65.0s + 1.3s 13.2s+ 0.2s 1173s+ 3.3s 12.5s+ 0.2s

Y2 1 text 204s+ 03s 171s+ 13s 273s+ 0.1s 16.5s+ 0.5s
10 texts 25.0s + 0.3s 15.1s+ 03s 495s+ 0.1s 152s+ 04s

20 texts 30.6s+ 0.5s 152s+ 04s 717s+ 0.1s 15.0s+ 03s

50 texts 44.0s+ 14s 14.7s+ 0.2s 139.0s+ 2.2s 14.7s+ 0.3s

100 texts 984s+ 2.0s 15.7s+ 04s 6174s+ 1.6s 15.7s+ 04s

v3 1 text 61.8s + 0.6s 16.3s+ 0.8s 4481s+ 62s 17.6s+ 0.7s
10 texts 93.3s+ 1.5s 159s+ 0.8s 8249s+ 87s 16.0s* 0.5s

20 texts 1054s+ 2.7s 15.7s+ 03s 11905s+ 6.1s 15.5s+ 0.3s

50 texts 169.4s + 23s 154s+ 03s 2488.6s+109s 169s+ 0.8s

100 texts 507.2s £ 104s 15.5s+ 0.3s 15589.1s +£52.6s 179s+ 0.4s

TaBLE 4.2: Comparison between our 20-best A* search approach and the optimal
baseline with respect to the scheduling time and execution time on the REVENUE
corrus for each query v and for five different numbers of training texts.

obtained on one corpus (the CoNLL-2003 dataset), but schedule and exe-
cute all pipelines on another one (the REVENUE corpus). Since it is not clear
in advance, what number of training texts suffices to find an optimal sched-
ule, we perform scheduling based on five different training sizes (with 1, 10,
20, 50, and 100 texts). In contrast, we delay the analysis of the parameter k of
our approach to later experiments. Here, we set k to 20, which has reliably
produced near-optimal schedules in some preliminary experiments.

TaBLE 4.2 opposes the scheduling times and execution times of the two
evaluated approaches as well as their standard deviations. In terms of
scheduling time, the k-best A* search approach significantly outperforms
the optimal baseline for all queries and training sizes.2® For v1, k exceeds
the number of admissible schedules (see above), meaning that the approach
equals a standard A* search. Accordingly, the gains in scheduling time ap-
pear rather small. Here, the largest difference is observed for 100 training
texts, where informed search is almost two times as fast as the optimal base-
line (65.0 vs. 117.3 seconds). However, this factor goes up to over 30 in case
of 3 (e.g. 507.2 vs. 15589.1 seconds), which indicates the huge impact of
informed search for larger search graphs. At the same time, it fully com-
petes with the optimal baseline in finding the optimal schedule. Moreover,

%Partly, our approach improves over the baseline even in terms of execution time. This,
however, emanates from a lower system load and not from finding a better schedule.

174 4.3 OPTIMIZED SCHEDULING VIA INFORMED SEARCH

Fixed baseline
Greedy baseline
Optimal baseline

1-best A* search
5-best A* search
10-best A* search
20-best A* search
100-best A* search

query v,

Fixed baseline
Greedy baseline

Optimal baseline 71.7H

1-best A* search
5-best A* search
10-best A* search
20-best A* search
100-best A* search

query v,

Fixed baseline
Greedy baseline

Optimal baseline 1190.5 -

1-best A* search
5-best A* search
10-best A* search
20-best A* search
100-best A* search

query v,

61.4 1
109.9 -
144.9

—--

|

0 10 20 30 40 50 60 70 80 e
average run-time in seconds

FiGure 4.8: Illustration of the execution times (medium colors on the left) and
the scheduling times (light colors on the right) as well as their standard devia-
tions (small black markers) of all evaluated approaches on the REVENUE corrus for
each of the three addressed queries and 20 training texts.

we observe that, on the REVENUE corpus, 20 training texts seem sufficient
for finding a pipeline with a near-optimal execution time that deviates only
slightly in different runs. We therefore restrict our view to this training size
in the remainder of the evaluation.

Efficiency Impact of Optimized Scheduling Next, we consider the ques-
tion under what conditions it is worth spending the additional effort of pro-
cessing a sample of input texts. In particular, we evaluate the method x-
BESTA*PIPELINESCHEDULING for different values of the parameter £ (1, 5, 10,
20, and 100) on the ReveNUE corrus (with estimations obtained from the
CoNLL-2003 dataset again) for all three queries. We measure the schedul-
ing time and execution time for each configuration and compare them to
the respective run-times of the three baselines.

FiGURE 4.8 shows the results separately for each query. At first sight, we
see that the execution time of the fixed baseline is significantly worse than
all other approaches in all cases, partly being even slower than the total

4 PrrELINE EFFICIENCY 175

training validation and test extrapolation
3 .
- s-best A' seartll.—g==~
o 100 eI T - eline
e _ - se

g T reedy PO T
£ 61.9 e == e seareh
© B - e T T e 1-best A* S
.g 50/ sz Il
< 43.1 31.0 _o=TT
2 le

1.4 | :

-20 0 366 386 processed texts 1460

FiGure 4.9: The total run-times of the greedy baseline and two variants of our k-
best A* search approach for addressing 73 as a function of the number of processed
texts. The dashed parts are extrapolated from the run-times of the approaches on
the 366 texts in the validation and test set of the REVENUE corpus.

time of both scheduling and execution of the k-best A* search approaches.
In case of 1, the greedy baseline is about 13% slower than the optimal base-
line (14.2 vs. 12.6 seconds). In contrast, all evaluated k values result in the
same execution time as the optimal baseline, indicating that the informed
search achieves to find the optimal schedule.?” Similar results are also ob-
served for 7, except for much higher scheduling times. Consequently, 1-
best A* search can be said to be most efficient with respect to v; and ~, as
it requires the lowest number of seconds for scheduling in both cases.

However, the results discussed so far render the processing of a sample
of input texts for scheduling questionable, because the greedy baseline per-
forms almost as good as the other approaches. The reason behind is that
the run-times of the algorithms in II; and II, differ relatively more than the
associated selectivities (on the ReveNue corpus). This situation turns out to
be different for the algorithms in II3. For instance, the time resolver N1 is
faster than some other algorithms (cf. ApPENDIX A.2), but entails a very high
selectivity, because of a low number of not resolvable time entities. In accor-
dance with this fact, the bottom part of FIGURE 4.8 shows that our approach
clearly outperforms the greedy baselines when addressing query 73, e.g. by
a factor of around 2 in case of k£ = 20 and k£ = 100. Also, it denotes an example
where, the higher the value of £, the better the execution time of k-best A*
search (with respect to the evaluated values). This demonstrates the benefit
of a real informed best-first search.

Still, it might appear unjustified to disregard the scheduling time when
comparing the efficiency of the approaches. However, while we experiment
with small text corpora, in fact we target at large-scale text mining scenar-
ios. For these, FIGURE 4.9 exemplarily extrapolates the total run-times of two

ZNotice that the standard deviations in FIGURE 4.8 reveal that the slightly better looking
execution times of our k-best A* search approaches are not significant.

176

4.3 OPTIMIZED SCHEDULING VIA INFORMED SEARCH

Estimations on Scheduling on Execution on

20-best A* search Greedy baseline

REVENUE cOrRPUS REVENUE CORPUS REVENUE CORPUS 16.1s £0.2s 21.5s+1.3s
CoNLL-2003 | | 15.8s £ 0.4s 304s+13s
Revenue corrus CoNLL-2003 | 16.8s £0.1s 2155+ 13s
CoNLL-2003 | | 17.0s £0.2s 30.4s+13s
RevenuE corrus ReveNUE corrus CoNLL-2003 6.5s £0.1s 6.0s £09s
CoNLL-2003 | | 6.5s+0.1s 82s+0.5s
ReveNuUE corrus CoNLL-2003 | 515+ 0.0s 6.0s+09s
CoNLL-2003 | | 515 +0.1s 82s+0.5s

TaBLE 4.3: The average execution times in seconds with standard deviations of ad-
dressing the query 73 using the pipelines scheduled by our 20-best A* search ap-
proach and the greedy baseline depending on the corpora on which (1) the algo-
rithms’ run-time estimations are determined, (2) scheduling is performed (in case
of the 20-best A* search approach), and (3) the pipeline is executed.

k-best A* search approaches and the greedy baseline for 3, assuming that
the run-times grow proportionally to those on the 366 texts of the validation
and test set of the ReveNUE corpus. Given 20 training texts, our approach
actually saves time beginning at a number of 386 processed texts: There,
the total run-time of 1-best A* search starts to be lower than the execution
time of the greedy baseline. Later on, 5-best A* search becomes better, and
so on. Consequently, our hypothesis already raised in SecTioN 3.3 turns out
to be true for this evaluation: Given that an information need must be ad-
dressed ad-hoc, a zero-time scheduling approach (like the greedy baseline)
seems more reasonable, but when large amounts of text must be processed,
performing scheduling based on a sample of texts is worth the effort.

Input Dependency of Optimized Scheduling Lastly, we investigate in how
far the given input texts influence the quality of the pipeline constructed
through optimized scheduling. In particular, we evaluate all possible com-
binations of using the Revenue corpus and the CoNLL-2003 dataset as input
for the three main involved steps: (1) Determining the run-time estimations
of the pipeline’s algorithms, (2) scheduling the algorithms, and (3) execut-
ing the scheduled pipeline. To see the impact of the input, we address only
the query, where our k-best A* search approach is most successful, i.e., 7ys.
We compare the approach to the greedy baseline, which also involves step
(1) and (3). This time, we leave both k and the number of training texts fixed,
setting each of them to 20.

TaBLE 4.3 lists the results for each corpus combination. A first observation
matching our argumentation from SecTioN 4.2 is that the efficiency impact of
our approach remains stable under the different run-time estimations: The
resulting execution times are exactly the same for the respective configura-

4 PrrELINE EFFICIENCY 177

tions on the CoNLL-2003 dataset and are also very similar on the ReveNUE
corrus. In contrast, the greedy baseline is heavily affected by the estima-
tions at hand. Overall, the execution times on the two corpora differ largely
because only the REVENUE corpus contains many portions of text that are
relevant for 3. The best execution times are 16.1 and 5.1 seconds, respec-
tively, both achieved by the informed search approach. For the CoNLL-2003
dataset, however, we see that scheduling based on inappropriate training
texts can have negative effects, as in the case of the REvENUE corpus, where
the efficiency of 20-best A* search significantly drops from 5.1 to 6.5 sec-
onds. In practice, this gets important when the input texts to be processed
are heterogeneous, which we analyze in the following sections.

DiscussioN oF OPTIMIZED SCHEDULING

This section has introduced our practical approach to optimize the sched-
ule of a text analysis pipeline. Given run-time estimations of the employed
algorithms, it aims to efficiently find a pipeline schedule that is run-time
optimal on a sample of input texts. The approach can be seen as a mod-
ification of the dynamic programming approach from Section 4.1, which
incrementally builds up and compares different schedules using informed
best-first search. It is able to trade the efficiency of scheduling for the effi-
ciency of the resulting schedule through a pruning of the underlying search
graph down to a specified size k.

The presented realization of an informed best-first search in the method
K-BESTA *PIPELINESCHEDULING is far from optimized yet. Most importantly, it
does not recognize nodes that are dominated by other nodes. For instance,
if there are two nodes on the open list, which represent the partial pipe-
lines (A1, A2) and (A», A1), then we already know that one of these is more
efficient for the two scheduled algorithms. A reasonable solution is to let
nodes represent algorithm sets instead of pipelines, which works because
all admissible schedules of an algorithm set entail the same relevant por-
tions of text (cf. SEctioN 3.1). In this way, the search graph becomes much
smaller, still being a directed acyclic graph but not a tree anymore (as in
our realization). Whereas we tested the efficiency of our approach against a
breadth-first search approach (the optimal baseline), it would then be fairer
to compete with the optimal solution from SectiON 4.1, which applies sim-
ilar techniques. The efficiency of scheduling could be further improved by
pruning the search graph more early, e.g. by identifying very slow schedules
on the first training texts (based on certain thresholds) and then ignoring
them on the other texts. All such extensions are left to future work.

4.4

TEXT HETEROGENEITY

178 4.4 THE ImpacT OF THE HETEROGENEITY OF INPUT TEXTS

In our evaluation, the optimization of schedules has sped up pipelines by
factor 4. When the employed algorithms differ more strongly in efficiency,
even gains of more than one magnitude are possible, as exemplified in Sec-
TION 3.1. Also, we have demonstrated that scheduling on a sample of texts
provides large benefits over our greedy approach from Skction 3.3, when
the number of processed texts becomes large, which we focus on in this
chapter. In contrast, as hypothesized in CHaPTER 3, the additionally spent
effort will often not be compensable in ad-hoc text mining scenarios.

While k-best A* search appears to reliably find a near-optimal schedule
if the training and test texts are of similar kind, we have seen first evidence
that the efficiency of the optimized schedules may significantly drop when
the texts behave different, i.e., when the distribution of relevant information
changes as discussed in SEcTION 4.2. In the following, we consider situations
where such changes are highly frequent, because the input texts are of het-
erogeneous types or domains that cannot be fully anticipated. As a result,
it does not suffice to choose a schedule based on a sample of texts, but we
need to schedule algorithms depending on the input text at hand.

TuaE ImpPacT OF THE HETEROGENEITY OF INPUT TEXTS

The developed informed search approach appears perfectly appropriate to
obtain efficient text analysis pipelines, when the distribution of relevant in-
formation in the input texts is rather stable. Conversely, in cases where the
distribution significantly varies across texts, efficiency may be limited, be-
cause the optimality of a pipeline’s schedule then depends on the input text
athand. In this section, we first outline effects of such text heterogeneity based
on concrete examples. Then, we present a measure to quantify text hetero-
geneity and we compare the measure’s behavior on different collections of
texts. For that, we reuse a discussion from (Wachsmuth et al., 2013b). Be-
fore we design an approach to maintain efficiency on heterogeneous texts in
SECTION 4.5, we sketch how to decide in advance whether a fixed schedule
suffices, partly based on considerations from (Mex, 2013).

EXPERIMENTAL ANALYSIS OF THE IMPACT

To begin with, we exemplify possible efficiency effects caused by the vari-
ance of a collection or stream of texts regarding the distribution of relevant
information. We have already seen differences between collections with re-
spect to this distribution in Section 4.2. However, there may also be signifi-
cant variations between the texts within a corpus, even in seemingly homo-

4 PrrELINE EFFICIENCY 179

CoNLL-2003 dataset REVENUE corpus
Admissible pipeline II t(II) +o #best t(II) o #best
Iy = (ETI, EMO, RFO, ENE) 18.17s 4+ 0.38s 154 49.63s +0.93s 155
I = (ETI, EMO, ENE, RFO) 18.43s +0.50s 77 59.04s 4+ 1.00s 17
II3 = (EMO, ETI, RFO, ENE) 19.12s +0.43s 76 51.67s 4+092s 127
T4 = (EMO, ETI, ENE, RFO) 19.29s +0.40s 35 61.06s =+ 1.06s 11
II5 = (ET1, RFO, EMO, ENE) 19.65s +0.40s 71 48.25s +0.85s 295
Il = (EMO, ENE, ETI, RFO) 20.31s +0.40s 96 66.37s +0.29s 13
117 = (ET1, RFO, ENE, EMO) 21.24s +043s 33 51.38s +094s 130
TIs = (ETI, ENE, RFO, EMO) 2428s 4+ 0.54s 7 66.41s +1.20s 3
Iy = (ETI, ENE, EMO, RFO) 25.00s 4+0.96s 4 67.68s +1.18s 1
1110 = (ENE, ETI, RFO, EMO) 49.74s +098s 0 97.25s +1.63s 0
T111 = (ENE, ETI, EMO, RFO) 49.78s 4+ 0.85s 0 98.83s +1.85s 0
I112 = (ENE, EMO, ETI, RFO) 50.05s 4+ 1.09s 0 99.61s =+ 1.61s 0
gold standard 16.50s +0.07s 553 4528s +042s 752

TABLE 4.4: The run-time ¢(II) with standard deviation ¢ of each admissible pipe-
line IT based on the given algorithm set A on both processed corpora in comparison
to the gold standard. #best denotes the number of texts, I is most efficient on.

geneous narrow-domain corpora. To illustrate this, we refer to the experi-
mental set-up from SecTION 4.1 again:

Algorithms and Corpora We construct pipelines from the algorithm set
A = {ET1, EMO, ENE, RFO} as well as some preprocessing algorithms that are
always delayed according to the lazy evaluation paradigm from SectioN 3.1.
These pipelines then process the training set of the CoNLL-2003 dataset or
the REVENUE corpus, respectively (for more details, see SECTION 4.1).

Experiments On each corpus, we measure the absolute run-times of all
12 possible admissible pipelines II;, . . ., II13 based on A, averaged over ten
runs on a 2 GHz Intel Core 2 Duo MacBook with 4 GB memory (the source
codeis detailed in AppENDIX B.4). In addition, we count how often each pipe-
line performs best (on average) and we compare the pipelines” run-times to
the gold standard (cf. SEcTiON 2.1), which we define here as the sum of the
run-times that would result from applying on each input text at hand the
pipeline IT* € {II;, ..., II;2} that is most efficient on that text.

Optimality under Heterogeneity The results are listed in Table 4.4, ordered
by the run-times on the CoNLL-2003 dataset. As known from SectION 4.1,
the pipeline (et1, RFO, EMO, ENE) dominates the evaluation on the REVENUE
corpus, taking only ¢(II5) = 48.25 seconds and being most efficient on 295 of
the 752 texts. However, three other pipelines also do best on far more than
a hundred texts. So, there is not one single optimal schedule at all. A simi-
lar situation can be observed for the CoNLL-2003 dataset, where the second
fastest pipeline, IIy, is still most efficient on 77 and the sixth fastest, Ilg, even

180 4.4 THE ImpacT OF THE HETEROGENEITY OF INPUT TEXTS

on 96 of the 553 texts. While the best fixed pipeline, II;, performs well on
both corpora, I and Il fail to maintain efficiency on the REvENUE corpus,
with e.g. Il being almost 50% slower than the gold standard. Although the
gold standard significantly outperforms all pipelines on both corpora at a
very high confidence level (say, 30), the difference to the best fixed pipelines
may seem acceptable. However, the case of II; and Il shows that a slightly
different training set could have caused the optimized scheduling from Sec-
TION 4.3 to construct a pipeline whose efficiency is not robust to changing
distributions of relevant information. We hypothesize that such a danger
gets more probable the higher the text heterogeneity of a corpus.?®

To deal with text heterogeneity, the question is whether and how we can
anticipate it for a collection or a stream of texts. Intuitively, it appears rea-
sonable to assume that text heterogeneity relates to the mixing of types,
domains, or according text characteristics, as is typical for the results of an
exploratory web search. However, the following example from text classi-
fication suggests that there is not only dimension that governs the hetero-
geneity. In text classification tasks, the information sought for is the final
class information of each text. While the density of classes naturally will
be 1.0 in all cases (given that different classes refer to the same informa-
tion type), what may vary is the distribution of those information types that
serve as input for the final classification. For instance, our sentiment analy-
sis approach developed in the ARGUANA project (cf. SEcTION 2.3) relies on the
facts and opinions in a text. For our ARGUANA TRIPADVISOR CORPUS (cf. Ap-
PENDIX C.2) and for the SENTIMENT ScALE pATASET from (Pang and Lee, 2005),
we illustrate the distribution of these types in FIGURE 4.10.%

As can be seen, the distribution of relevant information in the ARGUANA
TRIPADVISOR CORPUS remains nearly identical among its three parts.*’ The
corpus compiles texts of the same type (user reviews) and domain (hotel),
but different topics (hotels) and authors, suggesting that the type and do-
main play a more important role. This is supported by the different densi-
ties of facts, positive, and negative opinions in the SENTIMENT SCALE DATASET,

which is comprised of more professional reviews from the movie domain.?!

% Also, larger numbers of admissible schedules make it harder to find a robust pipeline,
since they allow for higher efficiency gaps, as we have seen in the evaluation of Section 4.3.

PIn (Wachsmuth et al., 2014a), we observe that the distributions and positions of facts
and opinions influence the effectiveness of sentiment analysis. As soon as a pipeline re-
stricts some analysis to certain portions of text only (say, to positive opinions), however, the
different distributions will also impact the efficiency of the pipeline’s schedule.

0Gince the distributions are computed based on the self-created annotations here, the
values for the ARGUANA TriPADVISOR corPUS differ from those in Aprenpix C.2.

*In the given case, the density and relative frequency of each information type (cf. Sec-
TION 4.2) are the same, since the information types define a partition of all portions of text.

4 PrreLINE EFFICIENCY 181

(a) ArguAna TripAdvisor corpus

Complete corpus

Training set Validation set Test set

negative
opinions

positive
opinions

objective facts

(b) Sentiment Scale dataset

Geli s eaple Author a Author b Author ¢ Author d

Ficure 4.10: Distribution of positive opinions, negative opinions, and objective
facts in (a) our ARGUANA TrRIPADVISOR cOrRPUS and its different parts as well as in
(b) the SENTIMENT ScALE DATASET from (Pang and Lee, 2005) and its different parts.
All distributions are computed based on the classification results of the pipeline
(SsE, sTO3, TPO1, PDU, CSB, CSP). See APPENDICES A and B.4 for details.

However, the four parts of the SENTIMENT ScALE DATASET show a high varia-
tion. Especially the distribution of facts and opinions in Author d deviates
from the others, so the writing style of the texts seems to matter, too. We
conclude that it does not suffice to know the discussed characteristics for a
collection or a stream of texts in order to infer its heterogeneity. Instead, we
propose to quantify the differences between the input texts as follows.

QUANTIFICATION OF THE ImpACT

Since we consider text heterogeneity with the aim of achieving an efficient
text analysis irrespective of the input texts at hand, we propose to directly
quantify text heterogeneity with respect to the differences that actually im-
pact the efficiency of a text analysis pipeline equipped with our input con-
trol from SectiON 3.5, namely, variations in the distribution of information
relevant for the task at hand (as revealed in SectioN 4.2). That means, we
see text heterogeneity as a task-dependent input characteristic.

In particular, we measure the heterogeneity of a collection or a stream
of input texts D here with respect to the densities of all information types
C1,...,Cc| in D that are referred to in an information need C. The reason
is that an input-controlled pipeline analyzes only portions of text, which
contain instances of all information types produced so far (cf. Section 3.5).
As a consequence, differences in a pipeline’s average run-time per portion of

AVERAGED DEVIATION

182 4.4 THE ImpacT OF THE HETEROGENEITY OF INPUT TEXTS

text result from varying densities of C1, . . ., C|g in the processed texts.? So,
the text heterogeneity of D can be quantified by measuring the variance of
these densities in C. The outlined considerations give rise to a new measure
that we call the averaged deviation:

Averaged Deviation Let C = {C1,...,C|c} be an information need to be
addressed on a collection or a stream of input texts D, and let o;(D) be the
standard deviation of the density of C; € Cin D, 1 < ¢ < |C|. Then, the

averaged deviation of C in D is
C|

D(C|D) = ’(13| " (D) (4.11)
i=1

Given a text analysis task, the averaged deviation can be estimated based on
a sample of texts. Different from other sampling-based approaches for effi-
ciency optimizations, like (Wang et al., 2011), it does not measure the typical
characteristics of input texts, but it quantifies how much these characteris-
tics vary. By that, the averaged deviation reflects the impact of the input
texts to be processed by a text analysis pipeline on the pipeline’s efficiency,
namely, the higher the averaged deviation, the more the optimal pipeline
schedule will vary on different input texts.

To illustrate the defined measure, we refer to Person, Location, and Or-
ganization entities again, for which we have presented the densities in two
English and four German text corpora in SectioN 4.2. Now, we determine
the standard deviations of these densities in order to compute the associated
averaged deviations (as always, see AppENnDIX B.4 for the source code). Ta-
BLE 4.5 lists the results, ordered by increasing averaged deviation.>®> While
the deviations behave quite orthogonal to the covered topics and genres,
they seem connected to the quality of the texts in a corpus to some extent.
Concretely, the REvENUE corpPus and BrowN corpus (both containing a care-
fully planned choice of texts) show less heterogeneity than the random sam-
ple of Wikipep1A articles and much less than the LFA-11 web crawl of smart-
phone blog posts. This matches the intuition of web texts being heteroge-
neous. An exception is given by the values of the CoNLL-2003 datasets,
though, which rather suggest that high deviations correlate with high den-
sities (cf. FIGURE 4.5). However, the LFA-11 corpus contradicts this, having
the lowest densities but the second highest averaged deviation (18.4%).

*Notice that even without an input control the number of instances of the relevant infor-
mation types can affect the efficiency, as outlined at the beginning of Section 4.2. However,
the density of information types might not be the appropriate measure in this case.

#Some of the standard deviations of organization entities in TABLE 4.5 and the associated
averaged deviations exceed those presented in (Wachsmuth et al., 2013c). This is because
there we use a modification of the algorithm exg, which rules out some organization names.

4 PipELINE EFFICIENCY 183

Person Organization Location Averaged

Text corpus Topics Genres entities entities entities deviation
REVENUE CORrRPUS focused one +11.1% + 16.0% +10.9% 12.7%
BrowN corrus diverse diverse 4+ 17.6% +11.1% +12.7% 13.8%
Wikipepia 10k (de) diverse one + 15.9% + 14.1% + 16.0% 15.3%
CoNLL-2003 (de) diverse one =+ 18.4% + 18.1% + 16.6% 17.7%
LFA-11 smartphone focused one + 16.6% + 23.4% + 15.3% 18.4%

CoNLL-2003 (en) diverse diverse =+ 27.6% + 25.5% + 26.8% 26.7%

TaBLE 4.5: The standard deviations of the densities of person, organization, and
location entities from FIGURE 4.5 (cf. SEcTION 4.2) as well as the resulting averaged
deviations, which quantify the text heterogeneity in the respective corpora. All
values are computed based on the results of Il = (SSE, STO2, TPO1, PCH, ENE).

Altogether, the introduced measure does not clearly reflect any of the text
characteristics discussed above. For efficiency purposes, it therefore serves
as a proper solution to compare the heterogeneity of different collections or
streams of texts with respect to a particular information need. In contrast,
it does not help to investigate our hypothesis that the danger of losing effi-
ciency grows under increasing text heterogeneity, because it leaves unclear
what a concrete averaged deviation value actually means. For this purpose,
we need to estimate how much run-time is wasted by relying on a text ana-
lysis pipeline with a fixed schedule.

PrAacTicAL RELEVANCE OF THE IMPACT

For a single input text, our optimal solution from SectioN 4.1 determines
the run-time optimal text analysis pipeline. However, most practical text
analysis tasks require to process many input texts, which may entail differ-
ent optimal pipelines, as the conducted experiments have shown. For this
reason, we now develop an estimation of the efficiency loss of executing
a pipeline with a fixed schedule on a collection or a stream of input texts
as opposed to choosing the best pipeline schedule for each input text. The
latter denotes the gold standard defined above.

To estimate the gold standard run-time, we adopt an idea from the mas-
ter’s thesis of Mex (2013) who analyzes the efficiency-effectiveness tradeoff
of scheduling multi-stage classifiers. Such classifiers can be seen as a gener-
alization of text analysis pipelines (for single information needs) to arbitrary
classification problems. Mex (2013) sketches a method to compare the effi-
ciency potential of different scheduling approaches in order to choose the
approach whose potential lies above some threshold. While this method in-
cludes our estimation, we greatly revise the descriptions from (Mex, 2013)
in order to achieve a simpler but also a more formal presentation.

184 4.4 THE ImpacT OF THE HETEROGENEITY OF INPUT TEXTS

D= (4 g d)
A td) £(d) t(d,)
A td) t(d) t(d,)
A= .
A
A\A
A, t,(d,) = t.(d) = t.(d,)
tes(D) = tesld) L teeld) o+ L+ teeld)

Ficure 4.11: Illustration of computing the gold standard run-time ¢¢s(D) of an al-
gorithm set A = {44,...,4,,} on a sample of portions of texts D = (dy,...,d,)
for the simplified case that the algorithms in A have no interdependencies.

We estimate the efficiency impact induced by text heterogeneity on a
sample of texts D for a given algorithm set A = {4;,..., A;,}. Technically,
the impact can be understood as the difference between the run-time t*(D)
of an optimal (fixed) pipeline IT* = (A, 7*) on D and the run-time ¢5(D)
of the gold standard Gs. While we can measure the run-time of an (at least
nearly) optimal pipeline using our scheduling approach from SecTioN 4.3,
the question is how to compute ¢ (D). To actually obtain s, we would need
to determine the optimal pipeline for each single text in D. In contrast, its
run-time can be found much more efficiently, as shown in the following. For
conciseness, we restrict our view to algorithm sets that have no interdepen-
dencies, meaning that all schedules of the algorithms are admissible. For
other cases, a similar but more complex computation can be conducted by
considering filter stages (cf. SectioN 3.1) instead of single algorithms.

Now, to compute the run-time of cs for an algorithm set A without in-
terdependencies, we consider the sample D as an ordered set of n > 1
portions of text (di,...,d,). We process every d; € D with each algo-
rithm A; € A in order to measure the run-time ¢;(d;) of A; on d; and to de-
termine whether A; classifies d; as relevant (i.e., whether d; contains all re-
quired output information produced by A;). As we know from SecTiON 4.2,
a portion of text can be disregarded as soon as an applied algorithm belongs
to the subset A; C A of algorithms that classify d; as irrelevant. Thus, we
obtain the gold standard’s run-time t.s(d;) on d; from only applying the
fastest algorithm A, € A, if such an algorithm exists:

min{tk(dj) | Ay € Aj} if A; # 0

tes(d;)) = {4 m
() > tr(dy) otherwise
k=1

(4.12)

4 PipELINE EFFICIENCY 185

As a matter of fact, the overall run-time of the gold standard on the sample
of texts D results from summing up all run-times tq(d;):

tcs(D) = Ztcs(dj) (4-13)
j=1

The computation of t.s(D) is illustrated in FIGURE 4.11. Given ts(D) and the
optimal pipeline’s run-time ¢*(D), we finally estimate the efficiency impact
of text heterogeneity in the collection or stream of texts represented by the
sample D as the fraction of run-time that can be saved through scheduling
the algorithms depending on the input text, i.e., 1 — t*(D) /tes(D).>*

IMPLICATIONS OF THE IMPACT

In many text analysis tasks, the greedy scheduling approach from Sec-
TION 3.3 and the optimized scheduling approach from Secrion 4.3 will suc-
cessfully construct very efficient text analysis pipelines. However, the ex-
periments in this section indicate that text heterogeneity can cause a sig-
nificant efficiency loss, when relying on a pipeline with a fixed schedule.
Moreover, performing scheduling on heterogeneous texts involves the dan-
ger of choosing a far from optimal schedule in the first place. We suppose
that this danger becomes especially important where input texts come from
different sources as in the world wide web. Moreover, streams of texts can
undergo substantial changes, which may affect the distribution of relevant
information and, hence, the efficiency of an employed pipeline.

In order to detect heterogeneity, we have introduced the averaged devi-
ation as a first measure that quantifies how much input texts vary. While
the measure reveals differences between collections and streams of texts, its
current form (as given in EQuartioN 4.11) leaves unclear how to compare av-
eraged deviation values across different information needs. One possible
solution is to normalize the values. Such a normalization could work either
in an external fashion with respect to a reference corpus or in an internal
fashion with respect to the tackled task, e.g. to a situation where all admis-
sible schedules of the given algorithms achieve the same efficiency. Here,
we have taken another approach, namely, we have developed an estimation
of the efficiency loss of tackling text analysis tasks with a fixed pipeline.

*In cases where performing an optimized scheduling in the first place seems too expen-
sive, also t*(D) could be approximated from the run-times modeled in FIGURE 4.11, e.g. by
computing a weighted average of some lower bound ¢(r8) and upper bound ¢(us). For in-
stance, ¢(LB) could denote the lowest possible run-time when the first j algorithms of II* are
fixed and ¢(rB) the highest on. The weighting then may follow from the average number of
algorithms in A ;. For lack of new insights, we leave out according calculations here.

4.5

ADAPTIVE SCHEDULING

186 4.5 ADAPTIVE SCHEDULING VIA SELF-SUPERVISED ONLINE LEARNING

To put it the other way round, the estimated efficiency loss represents the
optimization potential of choosing the schedule of a pipeline depending on
the input text at hand. On this basis, a pipeline designer can decide whether
it seems worth spending the additional effort of realizing such an adaptive
scheduling. In the next section, we first present an according approach.
Then, we evaluate the importance of adaptive scheduling for maintaining
efficiency under increasing text heterogeneity.

ADAPTIVE SCHEDULING VIA SELF-SUPERVISED ONLINE LEARNING

To maintain efficiency on heterogeneous collections and streams of input
texts, we now present another approach to pipeline scheduling for large-
scale scenarios. The idea is to adapt a pipeline to the input texts by pre-
dicting and choosing the run-time optimal schedule depending on the text.
Since run-times can be measured during processing, the prediction can be
learned self-supervised (cf. SEction 2.1). Learning in turn works online,
because each processed text serves as a new training instance (Witten and
Frank, 2005). We conduct several experiments in order to analyze when
the approach is necessary in the sense of this chapter’s introductory Dar-
win quote, i.e., when it avoids wasting a significant amount of time (by us-
ing a fixed schedule only). This section reproduces the main contributions
from (Wachsmuth et al., 2013b) but it also provides additional insights.

MODELING PIPELINE SCHEDULING AS A TEXT CLASSIFICATION PROBLEM

Given a collection or a stream of input texts D to be processed by an al-
gorithm set A, we aim for an adaptive scheduling of A, i.e., to automatically
determine and choose the run-time optimal pipeline IT*(P) = (A, 7*(P)) for
each input text D € D. Again, we refer to pipelines here that analyze only
relevant portions of text, implying that a pipeline’s schedule affect the pipe-
line’s efficiency (cf. SEcTiON 4.1). Let IT={II;, ..., II; } be the set of candidate
pipelines to choose from. Then, then our aim is to find a mapping D — II
that minimizes the overall run-time of A on D. Hence, pipeline scheduling
can be understood as a text classification problem (cf. SEction 2.1).

In this regard, the number of classes & has a general upper bound of |A|!.
To maximize the effectiveness of A on the information needs it addresses,
however, we again consider only admissible pipelines (where the input con-
straints of all algorithms are met), as defined in Section 3.1. Moreover, there
are possible ways to restrict IT to a reasonable selection. For instance, the
results from the previous sections suggest that it e.g. may make sense to first

4 PipELINE EFFICIENCY 187

prefix pipeline T, = (Ap,e,np,g scheduling model main pipelines TT ={TT+, ..., TTi}

text D feature vector x main pipeline [T® = (A, i) output information

()= =m .=+) -)~ (mH,..=)

main pipeline TT' = (A,
-

F1GURE 4.12: Illustration of the overall pipeline when addressing pipeline schedul-
ing as a text classification problem. Based on the results a prefix pipeline, a learned
scheduling model decides what main pipeline to choose for the input text D at hand.

determine optimized pipelines for different samples of input texts and then
let each of these become a candidate pipeline. In the following, we simply
expect some k£ < |A|! candidate pipelines to be given.

Now, the determination of an optimal pipeline IT*(”) € II for an input
text D € D requires to have information about D. For text classification, we
represent this information in the form of a feature vector x (cf. SecTion 2.1).
Before we can find D — II, we therefore need a mapping D — x, which in
turn requires a preceding analysis of the texts in D.% Let pre = (Apre, Tpre)
be the pipeline that realizes this text analysis. For distinction, we call I,
the prefix pipeline and each I € IT a main pipeline. Under the premise that all
algorithms from A .. N A have been removed from the main pipelines, the
prefix pipeline can be viewed as the fixed first part of an overall pipeline,
while each main pipeline denotes one of the possible second parts. The
results of I1,,.. for an input text D € D lead to the feature values x(D), which
can then be used to choose a main pipeline II € IT for D.

PREFIX PIPELINE

MAIN PIPELINE

Concretely, we propose to realize the mapping from feature values to
main pipelines as a statistical model obtained through machine learning on
a set of training texts Dp. The integration of such a scheduling model into scuepuLiNG MODEL
the overall pipeline is illustrated in FIGURE 4.12. We formalize our aim of
ﬁl’ldil’lg a mapping D—Ilasan adaptive scheduling problem: ADAPTIVE SCHEDULING PROBLEM

Adaptive Scheduling Problem An adaptive scheduling problem denotes
a 4-tuple (1L, IT, D7, D) such that

1. Prefix pipeline. II,,. is a pipeline to process each input text with,

2. Main pipelines. II is a set of pipelines based on the same algorithm
set, of which one is to be chosen to process each input text after II,,,.,

3. Training Set. D is a set of texts for learning a scheduling model that
maps a text to the main pipeline to be chosen for that text,

4. Input. D is a collection or a stream of texts to apply the model to.

%We discuss the question what information to use and what features to compute later on.
*In the evaluation below, the training set D7 simply constitutes a sample from D.

REGRESSION MODEL

ONLINE LEARNING

188 4.5 ADAPTIVE SCHEDULING VIA SELF-SUPERVISED ONLINE LEARNING

LeEARNING TO PrREDICT RUN-TIMES SELF-SUPERVISED AND ONLINE

The standard approach to address a text classification problem is to learn a
classifier in a supervised manner on known training instances, i.e., on texts
with known class values (cf. SEction 2.1). Often, the creation of an according
training set D requires a manual labeling of class values, making super-
vised learning time-consuming and cost-intensive. An adaptive scheduling
problem consists in the prediction of the main pipelines with the lowest run-
times, though. These run-times can be measured automatically, namely, by
observing the execution of the pipelines. In case input texts are available,
this enables the resort to self-supervised learning, which means to gener-
ate and learn from training instances without supervision (cf. Section 2.1),
thus rendering manual labeling obsolete. Moreover, run-times denote nu-
meric values from a metric scale. Instead of classifying the optimal sched-
ule, we therefore propose to address adaptive scheduling problems with
self-supervised statistical regression (cf. SEcTioN 2.1).

In particular, given a problem (II,,., IT, D7, D), we propose to learn one
separate regression model Y (II) on Dr for each main pipeline II € II. To
this end, all texts in D7 are processed by I, in order to compute feature
values x(P) (for some defined feature vector representation x) as well as by
all main pipelines in order to measure their run-times.)(II) specifies the
mapping from the feature values x(P) of an arbitrary input text D to the
estimated average run-time ¢(II) of the respective pipeline II per portion of
text from D (of some defined size, e.g. one sentence).?” Given the regression
models, the scheduling model to be realized then simply chooses the main
pipeline with the lowest prediction for each input text from D.

A positive side effect of the self-supervised approach is that the feature
values x(P) of each input text D together with the observed run-time ¢(II) of
a pipeline II that processes D serve as a new training instance. Accordingly,
the regression error is given by the difference between ¢(II) and ¢(II). As
a consequence, the regression models can be updated in an online learning
mannet, incrementally processing and learning from one training instance
at a time (Witten and Frank, 2005). This, of course, works only for the regres-
sion model of the chosen pipeline IT*(”) whose run-time has been observed.
Only an explicit training set D7 can thus ensure that all regression models
are trained sufficiently. Still, the ability to continue learning online is de-
sired, as it enables our approach not only to adapt to Dr, but also to the
collection or stream of input texts D while processing it.

¥By considering the run-time per portion of text (say, per sentence), we make the regression
of a run-time independent from the length of the input text D at hand.

4 PipELINE EFFICIENCY 189

ADAPTIVEPIPELINESCHEDULING(IL,., IT, D7, D)

1: for each Main Pipeline IT € IT do
2: Regression model Y(IT) < iNITIALIZEREGRESSIONMODEL()

3: for each Input text D € D7 do

4 II,re.process(D)

5 Feature values x(P) < coMPUTEFEATUREVALUES(II,re, D)
6: for each Main Pipeline IT € IT do

7 Run-time ¢(II) <« IL.process(D)

8 UPDATEREGRESSIONMODEL (Y (IT), x(P), t(II))

9: for each Input text D € D do
10: IT,re.process(D)

11: Feature values x(P) < coMPUTEFEATUREVALUES(I1,re, D)
12: for each Main Pipeline IT € IT do
13: Estimated run-time ¢(IT) < Y(IT).predictRunTime(x "))

14: Main pipeline IT*") - arg minp .y (¢(II))
15 Run-time ¢(IT*?)) < II*") .process(D)
16: uppATEREGRESsIONMopEeL(Y (IT*(P)), x(P) ¢(11*(P)))

PSEUDOCODE 4.3: Learning the fastest main pipeline IT*(?) € IT self-supervised for
each input text D from a training set D7 and then predicting and choosing IT*(")
depending on the input text D € D at hand while continuing learning online.

ADAPTING A PIPELINE’S SCHEDULE TO THE INPUT TEXT

Altogether, our considerations of addressing an adaptive scheduling prob-
lem (IL,., I, D7, D) with self-supervised online learning allow us to adapt
the schedule of a set of algorithms A to each processed input text. We op-
erationalize the outlined approach in two phases:

1. Training phase. On each text D € Dr, execute the prefix pipeline I1,,,..
and each main pipeline IT € IT. Update the regression model of each II
with respect to the results of II,,.. and the run-time ¢(II) of IT on D.

2. Update phase. On each text D € D, execute 1I,,.. and predict a run-
time ¢(IT) for each II € TI. Execute the main pipeline IT*(?) with the
lowest prediction and update its regression model with respect to the
results of I1,,,. and the observed run-time ¢(IT*(")) of I1*(®) on D.

Pseubpocopk 4.3 shows our adaptive pipeline scheduling approach. Lines 1
and 2 initialize the regression model Y(II) of each main pipeline II. All re-
gression models are then trained incrementally on each input text D € Dy
in lines 3 to 8. First, feature values are computed based on the results
of I, (lines 3 and 4). Then, the run-times of all main pipelines on D are
measured in order to update their regression models. Lines 9 to 16 process
the input texts in D. After feature computation (lines 9 and 10), the regres-
sion models are applied to obtain a run-time estimation ¢(II) for each main

190 4.5 ADAPTIVE SCHEDULING VIA SELF-SUPERVISED ONLINE LEARNING

pipeline IT on the current input text D (Lines 11 to 13). The fastest-predicted
main pipeline IT*(P) is then chosen to process D in lines 14 and 15. Finally,
line 16 updates the regression model Y(IT*(P)) of I1*(P),

PROPERTIES OF THE PROPOSED SCHEDULING APPROACH

Like the scheduling approaches introduced in preceding sections (cf. Sec-
TION 3.3, 4.1, and 4.3), the proposed adaptive scheduling works for arbitrary
text analysis algorithms and collections or streams of input texts. Moreover,
it does not place any constraints on the information needs to be addressed,
but it works for any set of candidate main pipelines, which are equipped
with our input control from SecTioN 3.5 or which restrict their analyses to
relevant portions of text in an according manner.

Different from the other scheduling approaches, however, the adaptive
scheduling approach as given in Pseupocopk 4.3 defines a method scheme
rather than as a concrete method. In particular, by now we have neither
talked at all about what features to be computed for the prediction of the
run-times (pseudocode line 5), nor have we exactly specified how to learn
the regression of run-times on top of the features.

With respect to regression, the pseudocode suggests to apply a learning
algorithm, which can process training instances individually as opposed to
process all training instances as a batch (Witten and Frank, 2005). Other-
wise, the incremental update of the regression models in each iteration of
the outer for-loops would be highly inefficient. In contrast, there exists no
particular clue for how to represent a text for the purpose of pipeline run-
time prediction. Generally, such a feature representation must be efficiently
computable in order to avoid spending more time for the predictions than
can be saved through scheduling later on. At the same time, it should cap-
ture characteristics of a text that precisely model the run-time complexity
of the text. In our experiments below, we aim to fulfill these requirements
with a number of task-independent features. Afterwards, we discuss the
limitations of our approach and outline possible alternatives.

Correctness As a consequence of the schematic nature of our approach,
we cannot check its correctness in the algorithmic sense, i.e., whether it
halts with the correct output (Cormen et al., 2009). Only the termination
of ADAPTIVEPIPELINESCHEDULING is obvious (given that Dy, and D are finite).
Anyway, in the end statistical approaches are hardly ever correct, as they
generalize from sample data (cf. Section 2.1 for details).

Complexity Because of the schematic nature, it is also not possible to com-
pute the asymptotic worst-case run-time of ADAPTIVEPIPELINESCHEDULING.

4 PrrELINE EFFICIENCY 191

Instead, we roughly quantify the required run-times on Dy and D here.
Besides the numbers of input texts in D7 and D, Pseupocopk 4.3 shows
that further relevant input sizes are the number of input texts in Dy and D
as well as the number of main pipelines in II. In contrast, the size of the
prefix pipeline I, the feature vector x, and each regression model)/ (II)
of a main pipeline I €II can be assumed as constant.

For the training set, let ¢..(D7), tf.(Dr), and t,¢4(D7) denote the times
spent for II,,., feature computation, and the updates of regression models,
respectively. In addition to these operations, each text is processed by every
main pipeline in IT. In the worst case, all main pipelines take the same run-
time on each input text and, hence, the same run-time ¢,,4i,, (D7) on D7. So,
we estimate the training time of ADAPTIVEPIPELINESCHEDULING as

ttrain(DTyn) S tpre(DT) + tfc(DT) + ‘H’ : (tmain(DT)+treg(DT)) (414)

Correspondingly, we make the following estimate for the update phase
of apaprTIVEPIPELINESCHEDULING. Here, we do not differentiate between the
run-times of a prediction and of the update of a regression model:

tupdate(D, II) < tpre(D) + te(D) + timain(D) + (|TI+1) - treg(Dr) (4.15)

In the evaluation below, we do not report on the run-time of the training
phase, since we have already exemplified in SectioN 4.3 how training time
amortizes in large-scale scenarios. INEQUALITY 4.14 stresses, though, that the
training time grows linearly with the size of IL. In principle, the same holds
for the run-time of the update phase because of the factor (|II|4+1)-t,.q(D7)
in INEQuALITY 4.15. However, our results presented next indicate that the
regression time does not influence the overall run-time significantly.

EVALUATION OF ADAPTIVE SCHEDULING

We now evaluate several parameters of our adaptive scheduling approach
on text corpora of different heterogeneity. In the evaluation, we investigate
the hypothesis that the impact of online adaptation on a pipeline’s efficiency
gets higher under increasing text heterogeneity. For this purpose, we rely
on a controlled experiment setting that is described in the following. For
information on the source code of the experiments, see AprPENDIX B.4.

Text Analysis Task We consider the extraction of all information that fulfills
the query 3 = Forecast(Revenue(Resolved(Time), Money, Organization)), which
we have already introduced in Section 4.3. As throughout this chapter, we
address this task as a filtering task, meaning that only relevant portions of

192 4.5 ADAPTIVE SCHEDULING VIA SELF-SUPERVISED ONLINE LEARNING

Time Money Organization Statement Forcast Averaged
Text corpus entities entities entities events events deviation
Do +19.1% +198% £19.3% +71% +3.8% 13.8%
D, +22.5% +191% +21.6% +7.8% +£5.9% 15.4%
D, + 24.6% +204% £22.4% +8.9% +6.7% 16.6%
D3 +25.9% +223% £25.0% + 10.6% + 8.5% 18.5%

TABLE 4.6: The standard deviations of the densities of all information types from C
in the four evaluated text corpora as well as the resulting averaged deviations. All
values are computed from the results of a non-filtering pipeline based on A.

texts are processed in each step (cf. Sections 3.4 and 3.5). Here, we set the
degree of filtering to Sentence.

Corpora For a careful analysis of our hypothesis, we need comparable col-
lections or streams of input texts that refer to different levels of text het-
erogeneity. Most existing corpora for information extraction tasks are too
small to create reasonable subsets of different heterogeneity like those used
in the evaluations above, i.e., the Revenue corpus (cf. Appenpix C.1) and
the CoNLL-2003 dataset (cf. AppEnDIX C.4). An alternative is given by web
crawls. Web crawls, however, tend to include a large fraction of completely
irrelevant texts (as indicated by our analysis in SEcTION 4.2), which conceals
the efficiency impact of scheduling.

We therefore decided to create partly artificial text corpora Dy, ..., D3
instead. Dg contains a random selection of 1500 original texts from the Rev-
ENUE corrUs and the German CoNLL-2003 dataset. The other three consist
of both original texts and artificially modified versions of these texts, where
the latter are created by randomly duplicating one sentence, ensuring that
each text is unique in every corpus: D1 is made up of the 300 texts from Dy
with the highest differences in the density of the information types relevant
for v3 as well as 1200 modified versions. Accordingly, D, and D3 are cre-
ated from the 200 and 100 highest-difference texts, respectively. Where not
stated otherwise, we use the first 500 texts of each corpus for training and
the remaining 1000 for testing (and updating regression models).

By resorting to modified duplicates, we limit our approach to a certain
extent in learning features from the input texts. However, we gain that we
can capture the impact of adaptive scheduling as a function of the text het-
erogeneity, which we quantify using the averaged deviation measure from
SECTION 4.4. Table 4.6 lists the exact deviations of the densities of all relevant
information types in the sentences of each of the four corpora.

Algorithms and Pipelines To address the query 73, we rely on a set of nine
text analysis algorithms (details on these are provided in APPENDIX A):

4 PrrELINE EFFICIENCY 193

A ={s104, TPO], PCH, ETI, EMO, ENE, RRE9, RFO, NTI }

In the prefix pipeline Il = (sto1, TPO;, PcH), we employ the tokenizer stoy,
the part-of-speech tagger Tpo1, as well as the chunker pci.3® The remaining
six algorithms become part of the main pipelines. While these algorithms
allow for 108 admissible schedules, we restrict our view to only three main
pipelines in order to allow for a concise presentation and a clear interpre-
tation of the obtained results.? In particular, we have selected the follow-
ing main pipelines 11, II5, and II3 based on some preliminary experiments.
They target at very different distributions of relevant information while be-
ing comparably efficient:

ITy = (ETI, RFO, EMO, RRE2, NTI, ENE)
Il = (ETI, EMO, RFO, NTI, ENE, RRE3)

II3 = (EMO, ETI, RFO, ENE, RRE2, NTI)

Self-Supervised Learning For learning to predict the main pipeline’s run-
times, we represent all texts with features computed from the results of IL,.
For generality, we consider only features that neither require a preceding
run over the training set nor exploit knowledge about the given corpora
and main pipelines. Our standard feature set consists of three types:

1. Lexical statistics. The average and maximum number of characters in
a token and of the tokens in a sentence of the input text as well as the
numbers of tokens and sentences.

2. Algorithm run-times. The average run-time per sentence of each al-
gorithm in IT,,..

3. Part-of-speech tags. The frequency of all part-of-speech tags distin-
guished by the algorithm tro;.

In addition, we evaluate two further types in the feature analysis below,
which attempt to capture general characteristics of entities:

4. Chunk n-grams. The frequency of each possible unigram and bigram
of all chunk tags distinguished by pch.

5. Regex matches. The frequencies of matches of a regular expression
for arbitrary numbers and of another one for upper-case words.

*¥In (Wachsmuth et al., 2013c), we state that the prefix pipeline in this evaluation consists
of two algorithms only. This is because, we use a combined version of Tro; and pcH, there.

¥The main benefit of considering all 108 main pipelines would be to know the overall
efficiency potential of scheduling the algorithms in A. An according experiment can be
found in (Wachsmuth et al., 2013c), but it is omitted here, because according values have
already been presented in different evaluations from CHAPTER 3 and CHAPTER 4.

194 4.5 ADAPTIVE SCHEDULING VIA SELF-SUPERVISED ONLINE LEARNING

To allow for online learning, we trained linear regression models with the
WEka 3.7.5 implementation (Hall et al., 2009) of the incremental algorithm
StocHasTic GRADIENT DESCENT (cf. SECTION 2.1). In all experiments, we let
the algorithm iterate 10 epochs over the training set, while its learning rate
was set to 0.01 and its regularization parameter to 0.00001.%

Baselines The aim of adaptive scheduling is to achieve optimal efficiency
on collections or streams of input texts where no single optimal schedule
exists. In this regard, we see the optimal baseline from SecTiON 4.3, which
determines the run-time optimal fixed pipeline (I, II*) on the training
set and then chooses this pipeline for each test text, as the main competi-
tor. Moreover, we introduce another baseline to assess whether adaptive
scheduling improves over trivial non-fixed approaches:

Random baseline. Do not process the training set at all. For each test
text, choose one of the fixed pipelines (pseudo-) randomly.

Finally, we oppose all approaches to the gold standard, which knows the op-
timal main pipeline for each text beforehand. Together with the optimal
baseline, the gold standard implies the optimization potential of adaptive
scheduling on a given collection or stream of input texts (cf. SEcTION 4.4).

Experiments In the following, we present the results of a number of effi-
ciency experiments that were conducted on 2 GHz Intel Core 2 Duo Mac-
Book with 4 GB memory. We omit to report on effectiveness, since all main
pipelines are equally effective by definition. The pipelines’ efficiency is mea-
sured as the run-time in milliseconds per sentence, averaged over ten runs.
For reproducability, all run-times and their standard deviations were saved
in a file in advance. In the experiments, we then loaded the precomputed
run-times instead of executing the pipelines.*!

Efficiency Impact of Adaptive Scheduling We evaluate adaptive schedul-
ing on the test sets of each corpus Dy, . . . , D3 after training on the respective
training sets. FIGURE 4.13 compares the run-times of the main pipelines of
our approach to those of the two baselines and the gold standard as a func-
tion of the averaged deviation. The shown confidence intervals visualize
the standard deviations o, which range from 0.029 to 0.043 milliseconds.
On the least heterogeneous corpus Do, we achieve an average run-time
of 0.98 ms per sentence through adaptive scheduling. This is faster than the

“In preceding experiments, we tested one other online learning algorithm, namely, an
artificial neural network. Mostly, StocHAsTIC GRADIENT DESCENT performed better.

#For lack of relevance in our discussion, we leave out an analysis of the effects of relying
on precomputed run-times here. In (Wachsmuth et al., 2013c), we offer evidence that the
main effect is a significant reduction of the standard deviations of the pipelines’ run-times.

4 PrrELINE EFFICIENCY 195

1.06

random
baseline

1.02
14 o098 1.00

0.95

optimal

0.851 0.5 baseline

adaptive 0.73

scheduling
0.62

gold standard
13.8% (D,) 15.4% (D, 16.6% (D) 18.5% (D)
averaged deviation (text heterogeneity)

run-time in ms per sentence

Ficure 4.13: Interpolated curves of the main pipelines’ average run-times of both
baselines, our adaptive scheduling approach, and the gold standard under increas-
ing averaged deviation, which represents the heterogeneity of the processed texts.
The background areas denote the 95% confidence intervals (+ 20).

random baseline (1.06 ms), but slower than the optimal baseline (0.95 ms)
at a low confidence level. On all other corpora, our approach also outper-
forms the optimal baseline, providing evidence for the growing efficiency
impact of adaptive scheduling under increasing text heterogeneity. At the
averaged deviation of 18.5% on D3, adaptive scheduling clearly succeeds
over both baselines, whose main pipelines take 37% and 40% more time on
average, respectively. There, the optimal baseline does not choose the main
pipeline, which performs best on the test set. This matches our hypothe-
sis from SecTiON 4.4 that higher text heterogeneity may cause a significant
efficiency loss when relying on a fixed schedule.

Altogether, the curves in FIGURE 4.13 emphasize that only our adaptive
scheduling approach manages to stay close to the gold standard on all cor-
pora. In this respect, one reason for the seemingly weak performance of our
approach on Dy lies in the low optimization potential of adaptive schedul-
ing on that corpus: The optimal baseline takes only about 12% more time on
average than the gold standard (0.95 ms as opposed to 0.85 ms). This indi-
cates very small differences in the main pipelines’ run-times, which renders
the prediction of the fastest main pipeline both hard and quite unnecessary.
In contrast, D3 yields an optimization potential of over 50%. In the follow-
ing, we analyze the effects of these differences in detail.

Run-time and Error Analysis FIGURE 4.14 breaks down the run-times of the
three fixed pipelines, our approach, and the gold standard on Dy and D3
according to INEQuALITY 4.15. On Dj, all fixed pipelines are significantly
slower than our approach in terms of overall run-time. The overall run-
time of our approach is largely caused by the prefix pipeline and the main
pipelines, while the time spent for computing the above-mentioned stan-
dard feature types 1-3 (0.03 ms) and for the subsequent regression (0.01 ms)

196 4.5 ADAPTIVE SCHEDULING VIA SELF-SUPERVISED ONLINE LEARNING

on corpus D, on corpus D;
s 0.65 (Meres TT4) 0.51 &
A 0.65 (TMores TT2) 0.51 o
+ 0.65 (Mores TTa) 0.51 -
e adaptive L
o~ 0:65 scheduling 0:51 = ANy
regression features main pipeline prefix pipeline d prefix pipeline main pipeline features regression
go =
' -+ 0.85 : : 0.65 ' standard 0.'51 : 0.62 ' '
1.6 1.2 0.8 0.4 0 0 0.4 0.8 1.2 1.6

run-time in ms per sentence

Ficure 4.14: The average run-times per sentence (with standard deviations) of the
three fixed pipelines, our adaptive scheduling approach, and the gold standard on
the test sets of Dy and D3. Each run-time is broken down into its different parts.

is almost negligible. This also holds for Dy where our approach performs
worse only than the optimal fixed pipeline (I, IT;).

(ITppe, I11) is the fastest pipeline on 598 of the 1000 test texts from Dy,
whereas (Il,.,) and (I, II3) have the lowest run-time on 229 and 216
texts, respectively (on some texts, the pipelines are equally fast). In contrast,
our approach takes IIy (569 times) more often than II; (349) and I3 (82),
which results in an accuracy of only 39% for choosing the optimal pipeline.
This behavior is caused by a mean regression error of 0.45 ms, which is
almost half as high as the run-times to be predicted on average and, thus,
often exceeds the differences between them. However, the success on D3
does not emanate from lower regression errors, which are in fact 0.24 ms
higher on average. Still, the accuracy is increased to 55%. So, the success
must result from larger differences in the main pipelines’ run-times.

One reason behind can be inferred from the average run-time per sen-
tence of II,,. in FIGURE 4.14, which is significantly higher on D; (0.65 ms)
than on D3 (0.51 ms). Since the run-times of all algorithms in II,,.. scale
linearly with the number of input tokens, the average sentence length of Dg
must exceed that of D3. Naturally, shorter sentences tend to contain less
relevant information. Hence, many sentences can be discovered as being ir-
relevant after few analysis steps by a pipeline that schedules the respective
text analysis algorithms early.

Learning Analysis The observed regression errors bring up the question of
how suitable the employed feature set is for learning adaptive scheduling.
To address this question, we built a separate regression model on the train-
ing sets of Dg and D3, respectively, for each of the five distinguished feature
types in isolation as well as for combinations of them. For each model, we
then measured the resulting mean regression error as well as the classifi-
cation accuracy of choosing the optimal main pipeline. In TaBLE 4.7, we

4 PrrELINE EFFICIENCY 197

Regression error Accuracy Regression time

Feature type Dy Ds Dy D3 Do Ds

1 Lexical statistics 0.60ms 0.78 ms 59% 50% 0.03 ms 0.02 ms

2 Average run-times 0.62ms 1.34ms 47% 38% <0.01ms <0.01 ms

3 Part-of-speech tags 0.48ms 0.69 ms 34% 58% 0.03ms 0.02ms

4 Chunk n-grams 0.58 ms 0.70 ms 43% 58% 0.04ms 0.03ms

5 Regex matches 0.46 ms 0.74 ms 4% 27% 0.16 ms 0.13 ms
1-3 Standard features 0.45ms 0.69 ms 39% 55% 0.05 ms 0.04 ms
1-5 All features 0.45ms 0.54 ms 47% 42% 0.19 ms 0.24 ms

TaBLE 4.7: The average regression time per sentence (including feature computation
and regression), the mean regression error, and the accuracy of choosing the optimal
pipeline for each input text in either Dy or D3 for different feature types.

compare these values to the respective regression time, i.e., the run-time per
sentence spent for feature computations and regression.

In terms of the mean regression error, the part-of speech tags and regex
matches perform best among the single feature types, while the average
run-times fail completely, especially on D3 (1.34 ms). Still, the accuracy of
the average run-times is far from worst, indicating that they sometimes pro-
vide meaningful information. The best accuracy is clearly achieved by the
lexical statistics.*?> Obviously, none of the single feature types dominates
the evaluation. The set of all features outperforms both the single types
and the standard features in most respects. Nevertheless, we use the stan-
dard features in all other experiments, because they entail a regression time
of only 0.04 to 0.05 milliseconds per sentence on average. In contrast, the
regex matches e.g. need 0.16 ms alone on Dy, which exceeds the difference
between the optimal baseline and the gold standard on D¢ and, thus, ren-
ders the regex matches useless in the given setting.

The regex matches emphasize the need for efficiently computable fea-
tures that we discussed above. While the set of standard features fulfills
the former requirement, it seems as if none of the five feature types really
captures the text characteristics relevant for adaptive scheduling.*3

Alternatively, though, the features may also require more than the 500
training texts given so far. To rule out this possibility, we next analyze the
performance of the standard features depending on the size of the training
set. FIGURE 4.15 shows the main pipelines’ run-times for nine training sizes

“The low inverse correlation of the mean regression error and the classification accu-
racy seems counterintuitive, but it indicates the limitations of these measures: E.g., a small
regression error can still be problematic if run-times differ only slightly, while a low classi-
fication accuracy may have few negative effects in this case.

“We have also experimented with other task-independent features, especially further reg-
ular expressions, but their benefit was low. Therefore, we omit to report on them here.

REGRESSION TIME

198 4.5 ADAPTIVE SCHEDULING VIA SELF-SUPERVISED ONLINE LEARNING

[}
o
g n
c 1.05 i
§ 1.03 random baseline (1.06)
w11 0.98 .)
I 0.95 adaptive scheduling 0.96
- -
£ optimal baseline (0.95)
£ 091
)
£
E gold standard (0.85)
2038
1 500 1000 2000 5000 training size

FIGURE 4.15: The average run-time per sentence of the main pipelines of the two
baselines, our adapative scheduling approach, and the gold standard on the test
set of Dy as a function of the training size.

between 1 and 5000. Since the training set of Dy is limited, we have partly
performed training on duplicates of the texts in Dy (modified in the way
sketched above) where necessary. Adaptive scheduling does better than the
random baseline but not than the optimal baseline on all training sizes ex-
cept for 1. The illustrated curve minimally oscillates in the beginning. After
its maximum at 300 training texts (1.05 ms), it then declines monotonously
until it reaches 0.95 ms at size 1000. From there, the algorithm mimics the
optimal baseline, i.e., it chooses II; on about 90% of the texts.

While the observed learning behavior may partly result from overfitting
the training set in consequence of using modified duplicates, it also under-
lines that the considered features simply do not suffice to always find the
optimal pipeline for each text. Still, more training decreases the danger of
being worse than without adaptive scheduling.

In addition, our approach continues learning in its update phase, as we
finally exemplify. FIGURE 4.16 plots two levels of detail of the learning curve
of the employed regression models on 15,000 modified duplicates of the
texts from Dy.** Here, only one text is used for an initial training. As the
bold curve highlights, the mean regression error decreases on the first 4000
to 5000 texts to an area between 0.35 ms and 0.45 ms, where it stays most
of the time afterwards. Although the light curve reveals many outliers, we
conclude that online learning apparently works well.

DiscussioN OoF ADAPTIVE SCHEDULING

In this section, we have developed a pipeline scheduling approach that
aims to achieve optimal run-time efficiency for a set of text analysis algo-
rithms (equipped with the input control from SectioN 3.5) on each input

*The curves in FIGURE 4.16 represent the differences between the predicted and the ob-
served run-times of the main pipelines that are actually executed on the respective texts.

4 PrrELINE EFFICIENCY 199

o
)
a

0,56

o
3
a

0:48
mean (0.43)

0.40

o
w
o

0.37,

regression error in ms
o
»
(9]

o
)
a

1000 5000 10,000 15,000 jnput text

F1GURE 4.16: The mean regression error for the main pipelines chosen by our adap-
tive scheduling approach on 15,000 modified versions of the texts in Dy with train-
ing size 1. The values of the two interpolated learning curves denote the mean of
100 (light curve) and 1000 (bold curve) consecutive predictions, respectively.

text. The approach automatically learns to adapt a pipeline’s schedule to a
processed text without supervision. It targets at text analysis tasks where
the collection or stream of input texts is heterogeneous in the distribution of
relevant information. To assess the efficiency potential of such an adaptive
scheduling in comparison to an optimal fixed schedule, we have already
introduced the necessary means in SECTION 4.4.

Ideally, an adaptive scheduling chooses the fastest admissible pipeline
for each input text without requiring notable additional run-time. In this
case, it denotes the ultimately optimal solution to the pipeline scheduling
problem raised in SectioN 3.1: Since we consider a single text as the smallest
possible input within a text analysis task (cf. SEcTioN 2.2), there is nothing
better to be done to optimize a pipeline’s efficiency without compromising
its effectiveness. Hence, adaptive scheduling always proves beneficial, as it
will at least achieve the efficiency of all other scheduling approaches.

Practically, both an accurate and an efficient prediction of the fastest ad-
missible pipeline denote non-trivial challenges that we have not fully solved
yet, as our experimental results emphasize: While our adaptive scheduling
approach has provided significant improvements on highly heterogeneous
corpora, it has failed to robustly compete with the optimal fixed sched-
ule under lower text heterogeneity. Most obviously, the employed task-
independent feature set seems not to suffice to accurately predict a pipe-
line’s run-time. While there may be important features that we have over-
looked, in the end an accurate prediction seems hard without exploiting
knowledge about the relevant information types.

At least when given computationally expensive text analysis algorithms,
one promising approach to include such knowledge is to employ cheap al-
ternatives to these algorithms in the prefix pipeline (e.g. entity recognizers
based on small lexicons). Such algorithms will often naturally help to esti-
mate the selectivities of the expensive algorithms and, hence, result in more

PARALLELIZATION

MACHINE

200 4.6 PARALLELIZING ExEcUTION IN LARGE-sCALE TExT MINING

accucate run-time predictions. Aside from that, another way to reduce the
prediction errors may be to iteratively schedule each text analysis algorithm
separately. This would allow for more informed features in later predic-
tions, but it would also make the learning of the scheduling much more
complex. Moreover, the introductory example in SEcTiON 4.1 suggests that
the first filter stages in a pipeline tend to be most decisive for the pipeline’s
efficiency. Since the main purpose of this section is to show how to deal
with text heterogeneity in general, we leave according and other extensions
of our adaptive scheduling approach for future work.

As aresult, we close the analysis of the pipeline scheduling problem here.
Throughout this chapter, we have offered evidence that the optimization
of a pipeline’s design and execution in terms of efficiency can drastically
speed up the realized text analysis process. The underlying goal in the con-
text of this thesis is to enable text analysis pipelines to be used for large-
scale text mining and, thus, to work on big data. The analysis of big data
strongly relies on distributed and parallelized processing. In the following,
we therefore conclude this chapter by discussing to what extent the devel-
oped scheduling approaches can be parallelized.

PARALLELIZING EXECUTION IN LARGE-scALE TExT MINING

The approaches developed in this chapter aim to optimize the efficiency of
sequentially executing a set of text analysis algorithms on a single machine.
The next logical step is to parallelize the execution. Despite its obvious im-
portance for both ad-hoc and large-scale text mining, the parallelization of
text analysis pipelines is only disussed sporadically in the literature (cf. Sec-
TION 2.4). In the following, we outline possible ways to parallelize pipelines
and we check how well they integrate with our approaches. For a homoge-
neous machine setting, a reasonable parallelization turns out to be straight-
forward, although some relevant parameters remain to be evaluated.

EFrFecTs OF PARALLELIZING PIPELINE EXECcUTION

When we speak of the parallelization of pipeline execution, we refer to the
distribution of text analysis pipelines over different machines, each of which
being able to execute text analysis algorithms. Here, we consider the basic
case of a homogeneous parallel system architecture, where all machines are
comparably fast and where an algorithm is executed in the same way on
each machine. In contrast, specialized hardware that can execute certain
algorithms very fast is beyond the scope of this thesis.

4 PipELINE EFFICIENCY 201

In SectION 2.4, we have already clarified that text analysis processes are
very amenable to parallelization because different input texts are analyzed
independently in most cases. In general, parallelization may have a number
of purposes, as e.g. surveyed in (Kumar et al., 1994). Not all of these target
at the memory and processing power of an application. For instance, par-
allelization can also be used to introduce redundancy into an application,
which allows a handling of machine breakdowns, thereby increasing the
fault tolerance of an application. While we roughly discuss fault tolerance
below, in the context of pipeline execution we are predominantly interested
in the question to what extent the run-time efficiency of the pipelines result-
ing from our approaches scales under parallelization, i.e., whether it grows
proportionally to the number of available machines. To this end, we qualita-
tively examine possible ways to parallelize pipeline execution with respect
to different efficiency-related metrics.

In particular, we primarily focus on the pipeline execution time, i.e., the
total run-time of all employed pipelines on the (possibly large) collection
or stream of input texts. This run-time is connected to other metrics: First,
some experiments in this chapter have indicated that the memory consump-
tion of maintaining pipelines on a machine matters, namely, a high memory
load lowers the efficiency of text analysis. Second, the impact of paralleliza-
tion depends on the extent to which machine idle times are avoided. In this
regard, machine utilization denotes the percentage of the overall run-time of
a machine, in which it processes text. And third, the distribution of texts
over a network causes communication overhead, which we indirectly cap-
ture as the network time. We assume these three to be most important for the
pipeline execution time and we omit to talk about others accordingly.

Aside from a scalable execution, parallelization can also be exploited to
speed up pipeline scheduling. We analyze the effects of parallelization on
the scheduling time, i.e., the time spent for an optimized scheduling on a sam-
ple of texts, as proposed in SEcTION 4.3 (or for the optimal scheduling in Sec-
TION 4.1) as well as on the training time of our adaptive scheduling approach
from SecTION 4.5. Also, we look at the minimum response time of a pipeline,
which we define as the pipeline’s run-time on a single input text. The min-
imum response time becomes important in ad-hoc text mining, when first
results need to be returned as fast as possible (cf. SEcTioN 3.3).

In the following, we examine four types of parallelization for the scenario
that a single text analysis task is to be addressed on a network of machines
with pipelines equipped with our input control from Secrion 3.5. All ma-
chines are uniform in speed and execute algorithms and pipelines in the
same way. They can receive arbitrary input texts from other machines, an-

FAULT TOLERANCE

PIPELINE EXECUTION TIME

MEMORY CONSUMPTION

MACHINE UTILIZATION

NETWORK TIME

SCHEDULING TIME

TRAINING TIME

MINIMUM RESPONSE TIME

MASTER MACHINE

ANALYSIS PIPELINING

202 4.6 PARALLELIZING ExECUTION IN LARGE-scALE TExT MINING

Analysis Analysis Pipeline Schedule
Metric pipelining parallelization duplication parallelization
Fault tolerance - - 4+ +
Memory consumption ++ ++ o +
Machine utilization - - ++ ++
Network time - - o _
Pipeline execution time + +/- ++ ++
Scheduling time ++ ++ ++ ++
Training time + + ++ ++
Minimum response time o +/- + ++

TaBLE 4.8: Qualitative overview of the expected effects of the four distinguished
types of parallelization with respect to each considered metric. The scale ranges
from very positive [++] over none or hardly any [o] to very negative [--].

alyze the texts, and return the produced output information. We assess the
effects of each type on all metrics introduced above on a comparative scale
from very positive [++] and positive [+] over none or hardly any [o] to negative [-]
and very negative [- —]. TABLE 4.8 provides an overview of all effects.

To illustrate the different types, we consider three machines sy, . .., p2.
o serves as the master machine that distributes input texts and aggregates
output information. Given this setting, we schedule four sample algorithms
related to our case study INFEXBA from SecTioN 2.3: a time recognizer Ar,
a money recognizer Ay, a forecast event detector Ar, and some segmen-
tation algorithm Ag. Let the output of Ag be required by all others and
let Ar additionally depend on Ar. Then, three admissible pipelines exist:
(As, AT7 A]V[, AF), (As, AT7 AF, AM), and (As, AM, AT; AF)

PARALLELIZATION OF TEXT ANALYSES

One of the most classical ways of parallelizing a sequence of actions is to
perform pipelining (Ramamoorthy and Li, 1977). In the given context, this
means to see the machines as an assembly line and, hence, to partition the al-
gorithms employed in a pipeline over the machines. Such an analysis pipelin-
ing allows for parallel execution. When 115 in FIGURE 4.17(a), for example, an-
alyzes some input text, ;11 can already process another text, and p a third
one. While the fault tolerance of analysis pipelining is low as long as no re-
dundancy is introduced [-], it significantly reduces memory consumption
by maintaining only some algorithms on each machine [++]. However, a
machine may have to wait for its predecessor to finish, negatively affecting
its utilization [-]. In addition, input texts need to be sent from machine to
machine, which implies high network times [-—]. Still, a parallel processing
of input texts can often improve the pipeline execution time [+].

4 PipELINE EFFICIENCY 203

parallelization of text analysis algorithms

(a) Analysis pipelining (b) Analysis parallelization

Ho *—><>\ O *——<>\ /<>
m \ / i \ /
He He

parallelization of text analysis pipelines
c) Pipeline duplication (d) Schedule parallelization

; <>\—\:***7<> Ho *<><**7<>

—

b=

by (As)+(A)=(A)~(An) by CA)-(Aw)=(A)
b (A)=(A)~(Ac)~(A) b (A)~(CA~(A)
FiGure 4.17: Parallelizations of four sample text analysis algorithms on three
machines py, ..., p2: (a) different algorithms on different machines in sequence,

(b) different algorithms on different machines in parallel where possible, (c) one
schedule on different machines, (d) different schedules on different machines.

Partitioning the employed algorithms can significantly speed up the
scheduling time of kBEsTA* PIPELINESCHEDULING [++], as the iterative search
node expansion for each applicable algorithm (cf. Pseupocopk 4.2) can eas-
ily be parallelized. Also, processing input texts in parallel benefits the train-
ing time of adaptive scheduling [+]. Conversely, the minimum response
time cannot be reduced [0], as each text is still processed sequentially.*®

Intuitively, it seems beneficial to extend the analysis pipelining by exe-
cuting independent algorithms simultaneously, resulting in an analysis par- anavysis paraLLELIZATION
allelization like in FIGURE 4.17(b). This neither changes the fault tolerance [-]
nor the memory consumption [++], but it reduces the network time to some
extent, since communication is parallelized, too [-]. On the flipside, the
machine utilization can be further decreased, because a machine may cause
idle times on all its parallelized successors [~ —]. Even more importantly, si-
multaneouly executing independent algorithms not necessarily reduces the
pipeline execution time, but can even increase it for input-controlled pipe-
lines [+/-]. Since this claim goes against intuition, we directly specify the
conditions, under which a sequential execution of any two independent al-
gorithms A; and Aj should be preferred. In particular, let ¢, (D) and t2(D)
be the run-times of A; and A on an arbitrary input text D, respectively,
and let S1(D) and S2(D) be the respective resulting relevant portions of D.

#Notice that we assume homogeneous machines here. In case of machines, which are
specialized for certain text analyses, analysis pipelining may entail more advantages.

PIPELINE DUPLICATION

204 4.6 PARALLELIZING ExEcUTION IN LARGE-sCALE TExT MINING

Then, A; should be executed before A, if and only if
ti1(D) + t2(S1(D)) < ta(D) + t1(S2(D)). (4.16)

The same holds for exchanged roles of A; and A;. We have seen an ex-
ample that fulfills INEQUALITY 4.16 in the evaluation of SecTiON 4.1, where
the pipeline (et1, EMO) outperforms the algorithm emo alone. The danger of
losing efficiency (which also exists for the minimum response time [+/-])
generally makes analysis parallelization questionable. While the schedul-
ing time [++] and training time [+] behave in the same way as for analysis
pipelining, other types of parallelization exist that come with only few no-
table drawbacks and with even more benefits, as discussed next.

PARALLELIZATION OF TEXT ANALYSIS PIPELINES

Instead of deploying single algorithms on different machines, the execu-
tion of a text analysis pipeline can also be parallelized by simply deploy-
ing one duplicate of the complete pipeline on each machine, as shown in
FiGure 4.17(c). The redundant nature of such a pipeline duplication is natu-
rally optimal in terms of fault tolerance [++]. Not only because of its sim-
plicity and fault tolerance, pipeline duplication is very prominent in large-
scale text mining (cf. SEcTiON 2.4) and it denotes the built-in type of AracHE
UIMA, called UIMA asyNCHRONOUS scALEOUT.*® Most evidently, this type
of parallelization provides a near 100% machine utilization [++], because a
machine can directly request the next input text from the master machine
itself when the previous text has been processed. At the same time, the
memory consumption per machine remains unaffected [o], and the network
time stays low [0], since each text needs to be sent only once to a machine.
Consequently, the pipeline execution time will largely scale [++].

As each machine employs all algorithms, the scheduling time can again
be significantly improved through parallel search node expansions [++].
Similarly, the training time of adaptive scheduling scales well [++], because
input texts can be processed on different machines (while centrally updat-
ing the mapping to be learned on the master machine). Moreover, pipe-
line duplication can reduce the minimum response time to some extent [+],
even though all machines execute the employed pipeline in the same order.
In particular, our input control allows the duplicated pipelines to process
different portions of an input text simultaneously. To this end, the master
machine needs to execute some kind of prefix pipeline, which segments the

#%UIMA ASYNCHRONOUS SCALEOUT, http://uima.apache.org/doc-uimaas-what.html,
accessed on October 28, 2014.

4 PipELINE EFFICIENCY 205

(a) Parallel processing of the portions of an input text (b) Parallel processing of an input text

B B
o (A= (A=A)=(A)= e (A)=(A)=(A)=(AJgr, O

\= =<7 \E
b (A)~(A)~(Au) b ***
b (A)+-(A)~(Au) b (A)~(A (A)~(A-)

F1GURE 4.18: Parallel processing of a single input text with four sample text analysis
algorithms: (a) The master machine segments the input text into portions of text,
each of which is then processed on one machine. (b) Each machine processes the
whole input text, but schedules the algorithms in a distinct manner.

input text into single portions, whose size is constrained by the largest spec-
ified degree of filtering in the query to be addressed (cf. Section 3.4). The
portions can then be distributed to the available machines. FIGURE 4.18(a)
sketches such an input distribution for our four sample algorithms.

Pipeline duplication appears to be an almost perfect choice, at least when
a single text analysis pipeline is given, as in the case of our optimized
scheduling approach from SectioN 4.3. In contrast, the (ideally) even better
adaptive scheduling approach from SecTiON 4.5 can still cause a high mem-
ory consumption, because every machine needs to maintain all candidate
schedules. A solution is to parallelize the schedules instead of the pipe-
line, as illustrated in FIGURE 4.17(d). Such a schedule parallelization requires scuepuLe paRALLELIZATION
to store only a subset of the schedules on each machine, thereby reducing
memory consumption [+]. The adaptive choice of a schedule (and, hence,
of a machine) for an input text then must take place on the master machine.
Consequently, idle times can occur, especially when the choice is very im-
balanced. In order to ensure a full machine utilization [++], input texts may
therefore have to be reassigned to other machines, which implies a negative
effect on the network time [-]. So, we cannot generally determine whether
schedule parallelization yields a better pipeline execution time than pipe-
line duplication or vice versa [++].

In terms of scheduling time [++] and training time [++], schedule paral-
lelization behaves analog to pipeline duplication, whereas the distribution
of schedules over machines will tend to benefit the minimum response time
on a single input text more clearly [++]: Similar to (Kalyanpur et al., 2011),
a text can be processed by each machine simultaneously (cf. FIGURe 4.18(b)).
As soon as the first machine finishes, the execution can stop to directly re-
turn the produced output information. However, the full potential of such
a massive parallelization is only achieved when all machines are working.
Still, schedule parallelization makes it easy to cope with machine break-
downs in general, indicating a high but not optimal fault tolerance [+].

206 4.6 PARALLELIZING ExEcUTION IN LARGE-sCALE TExT MINING

IMmPLICATIONS FOR PIPELINE ROBUSTNESS

Altogether, our analysis suggests that a parallelized pipeline execution in a
homogeneous machine setting is straightforward, in principle. An easy-to-
manage and effective solution is to replicate the employed pipeline on each
available machine (called pipeline duplication here). The potential of other
parallelization types (e.g. schedule parallelization) comes with significantly
increased management complexity. Of course, we cannot actually quantify
the scalability of a pipeline’s execution time for the distinguished types by
now, because the impact of the overhead from memory load, communica-
tion, and idle times depends on the network and task parameters of the
given setting. Nevertheless, we skip an evaluation of these parameters, be-
cause we do not expect to get considerable scientific insights from it.*” For
similar reasons, we omit to investigate other scenarios that are relevant for
practical text mining applications, such as the parallel execution of several
text analysis tasks at the same time.

Once again, this section has emphasized the benefit of equipping a pipe-
line with an input control for the pipeline’s run-time efficiency. While the
process-oriented view of text analysis from SecTion 3.2 enables ad-hoc text
mining, the formalization of text analysis as a filtering task underlying the
input control (cf. SEcTION 3.4) is the core idea that gives rise to large-scale text
mining. Together with the scheduling approaches developed in this chap-
ter, the two views create the ability to combine ad-hoc and large scale text
mining. For instance, given a large pool of text analysis algorithms, a search
engine could construct a pipeline for an ad-hoc information need, optimize
the pipeline’s efficiency on a sample of input texts, and then process a large
collection or a stream of input texts with the optimized pipeline.

As we motivated in CHAPTER 1, however, sophisticated pipelines will only
find their way into practical text mining applications, when they consis-
tently achieve to produce high-quality information on all (or at least most)
input texts. In CHAPTER 5, we approach such a pipeline robustness through
a focus on the overall structure of the input texts (as opposed to their con-
tent) during analysis. The approach aims especially at tasks from the area
of text classification where a result captures an input text as a whole. In
this regard, the optimization of efficiency through filtering seems counter-
productive, because the less portions of texts are filtered the less output
information is produced. In the end, though, the only consequence is that
the efficiency impact of filtering will be limited in respective cases.

In exemplary tests with the main pipeline in our project ARGUANA (cf. SECTION 2.3), pipe-
line duplication on five machines reduced the pipeline execution time by factor 3.

In making a speech one must study three points: first, the
means of producing persuasion; second, the style, or lan-
guage, to be used; third, the proper arrangement of the vari-
ous parts of the speech.

Aristotle

Pipeline Robustness

THE ULTIMATE PURPOSE OF TEXT ANALYSIS PIPELINES is to infer new information
from unknown input texts. To this end, the algorithms employed in pipe-
lines are usually developed on known training texts from the anticipated
domains of application (cf. SEcTion 2.1). In many applications, however,
the unknown texts significantly differ from the known texts, because a con-
sideration of all possible domains within the development is practically in-
feasible (Blitzer et al., 2007). As a consequence, algorithms often fail to infer
information effectively, especially when they rely on features of texts that
are specific to the training domain. Such missing domain robustness consti-
tutes a fundamental problem of text analysis (Turmo et al., 2006; Daumé and
Marcu, 2006). The missing robustness of an algorithm directly reduces the
robustness of a pipeline it is employed in. This in turn limits the benefit of
pipelines in all search engines and big data analytics applications, where the
domains of texts cannot be anticipated. In this chapter, we present first sub-
stantial results of an approach that improves robustness by relying on novel
structure-based features that are invariant across domains.

Secrion 5.1 discusses how to achieve ideal domain independence in the-
ory. Since the domain robustness problem is very diverse, we then focus on
a specific type of text analysis tasks (unlike in CHAPTERS 3 and 4). In par-
ticular, we consider tasks that deal with the classification of argumentative
texts, like sentiment analysis, stance recognition, or automatic essay grad-
ing (cf. SEcTiON 2.1). In SECTION 5.2, We introduce a shallow model of such
tasks, which captures the sequential overall structure of argumentative texts
on the pragmatic level while abstracting from their content. For instance,

207

DOMAIN ROBUSTNESS

5.1

208 5.1 IDEAL DomAIN INDEPENDENCE FOR HiGH-QuaLITY TEXT MINING

text analysis task

5.1-56.5

input overall output
texts analysis information

text analysis algorithms

FI1GURE 5.1: Abstract view of the overall approach of this thesis (cf. FiGure 1.5). The
main contribution of CHAPTER 5 is represented by the overall analysis.

we observe that review argumentation can be represented by the flow of
local sentiment. Given the model, we demonstrate that common flow pat-
terns exist in argumentative texts (Section 5.3). Our hypothesis is that such
patterns generalize well across domains. In SectioN 5.4, we learn common
flow patterns with a supervised variant of clustering. Then, we use each
pattern as a single feature for classifying argumentative texts from different
domains. Our results for sentiment analysis indicate the robustness of mod-
eling overall structure (other tasks are left for future work). In addition, we
can visually make results more intelligible based on the model (Section 5.5).
Altogether, CHAPTER 5 realizes the overall analysis within the approach of
this thesis, highlighted in Ficure 5.1. Both robustness and intelligibility ben-
efit the use of pipelines in ad-hoc large-scale text mining.

IpEAL DoMAIN INDEPENDENCE FOR HiGH-QuALITY TEXT MINING

In this section, we discuss how to achieve an ideal domain independence
of text analysis pipelines in order to enable high-quality text mining on ar-
bitrary input texts. First, we outline the domain dependence problem of
text analysis. Then, we argue that a pipeline’s domain robustness is mainly
affected by three factors: the training texts the pipeline is developed on,
the features of the texts it relies on, and the way it analyzes the features.
For most text analysis tasks, no silver bullet exists, which optimally handles
these factors. In the thesis at hand, we focus on what features to rely on and
we restrict our view to tasks that aim at classifying argumentative texts.

Tae DoMAIN DEPENDENCE PROBLEM IN TEXT ANALYSIS

Several tasks from information extraction and text classification have been
successfully tackled with text analysis pipelines (cf. CHAPTER 2). The algo-
rithms employed in pipelines are mostly developed based on a set of known

5 PrPELINE ROBUSTNESS 209

training texts. These texts are analyzed manually or automatically in order
to find rules or statistics about certain features of the texts that help to gener-
ally infer the output information (in terms of classes, annotations, etc.) to be
inferred by the respective algorithm from input texts (cf. Section 2.1 for de-
tails). Such a corpus-based development often results in high effectiveness
when the training texts are representative for the input texts the algorithm
shall process later on, i.e., for the algorithm’s domain of application.

The notion of domains is common in related areas like software engineer-
ing, where it captures two respects: (1) The specific concepts of some prob-
lem area and (2) shared software requirements and functionalities that are
key software reuse (Harsu, 2002). While, to our knowledge, no clear defi-
nition of domains exists in text analysis, here the term is used rather in the
first respect, namely, to capture common properties of a set of texts.

Many authors refer to domains in terms of topics, such as (Li et al., 2012a).
However, domains are also distinguished according to other schemes, e.g.
with respect to genres or styles (Blitzer et al., 2007). In our project ARGUANA,
we analyzed the sentiment of reviews (cf. SEcTION 2.3), while some related
approaches rather target at the comment-like texts from Twirter! (Mukher-
jee and Bhattacharyya, 2012). Also, the combination of a topic and a genre
can make up a domain, as in our study of language functions (Wachsmuth
and Bujna, 2011). Others differentiate between authors (Pang and Lee, 2005)
or even see languages as a special case of domains (Prettenhofer and Stein,
2011). In the end, the domain scheme depends on the addressed task.

What the texts from a specific domain share, in general, is that they are as-
sumed to be drawn from the same underlying feature distribution (Daumé
and Marcu, 2006), meaning that similar feature values imply similar out-
put information. Given a training set with texts from a single domain, it is
therefore not clear whether found rules or statistics about a feature repre-
sent properties of texts that are generally helpful to infer output information
correctly or whether they refer to properties that occur only within the spe-
cific domain athand.? Either way, an algorithm can rely on the feature when
being applied to any other set of texts from that domain.

In practice, however, the domain of application is not always the same
as the training domain. Since different domains yield different feature dis-
tributions, an algorithm that relies on domain-specific features is likely to
fail to achieve high effectiveness on texts from the domain of application.
Ficure 5.2 illustrates this domain dependence problem for sample instances
from a classification task with two classes (circles and squares): On the in-

I TWITTER, http://www.twitter.com, accessed on September 4, 2014.
*In software engineering terms, the latter could be seen as some domain-specific language.

DOMAIN

DOMAIN DEPENDENCE

DOMAIN INDEPENDENCE

210 5.1 IDEAL DomAIN INDEPENDENCE FOR HiGH-QuaLITY TEXT MINING

instances from domain A instances from domain B

decision boundary
determined in domain A
and applied in domain B

® several false

o classifications

=]
one false
classification

Xy Xy

Ficure 5.2: [llustration of the domain dependence of text analysis for a two-class
classification task: Applying the decision boundary from domain A in some do-
main B with a different feature distribution (here, for ; and z,) often works badly.

stances of some domain A, a classification model based on the features z;
and z; is determined (visualized as a decision boundary, as introduced in
SecTION 2.1) that leads to few false classifications within that domain. The
shown domain B, however, differs in the distribution of feature values over
the two classes, which causes several false classifications.

Domain dependence is intrinsic to information extraction (Turmo et al.,
2006) and also denotes a fundamental problem in text classification (Wu
et al.,, 2010). E.g., the rule-based extraction of absolute money information
in our project INFEXBA required the existence of currency names or symbols
close to numeric values (cf. SEction 2.3). This works well on news articles,
but it may fail when money information is extracted from informal texts
like blog posts. Similarly, we investigated word-based features for statisti-
cal sentiment analysis in ARGUANA that included topic-specific words like
“cheap”, usually indicating positive sentiment in hotel reviews. In some
other domains (say, film), cheap rather has the opposite polarity.3

As the examples suggest, domain-specific features can be very discrim-
inative within a domain. However, the consequence of relying on them is
that training needs to take place directly in the domain of application in or-
der to achieve effectiveness. This is not only cost-intensive but sometimes
also infeasible, namely, when training data from that domain is too scarce.
Moreover, the use of according algorithms in the wild (where the domains
of input texts are unknown beforehand) naturally appears problematic, ren-
dering their benefit for search engines and big data analytics applications
questionable. In the following, we therefore discuss ways to overcome do-
main dependence and to thereby obtain domain independence.

? According to Blitzer et al. (2008), domain dependence occurs in nearly every application
of machine learning. As exemplified, it is not restricted to statistical approaches, though.

5 PrPELINE ROBUSTNESS 211

REQUIREMENTS OF ACHIEVING PIPELINE DOMAIN INDEPENDENCE

The domain independence of a text analysis pipeline follows from the do-
main independence of the algorithms employed in the pipeline, because it
refers to the performed analyses. According to the discussion above, the de-
velopment of each algorithm can be understood as deriving a model from
a set of training texts that maps features of input texts to output informa-
tion. To obtain an ideally domain-independent algorithm for a given text
analysis task, we argue that three requirements must be fulfilled:

a. Optimal fitting of the model complexity to the text analysis task,

b. optimal representativeness of the training set with respect to all pos-
sible input texts, and

c. optimal invariance of the features across all domains of application.?

A general assumption behind every text analysis task is that some unknown
target function exists, which defines the correct output information for each
input text (cf. SEctiON 2.1). The model derived from the training texts can be
seen as an approximation of the target function for the task at hand. Such
a model may both overfit and underfit the training data (Montavon et al.,
2012). An overfitting model does not only capture relevant but also irrele- overrrrmne
vant properties of the training texts (including noise) rather than general-
izing from the texts. Le., the model complexity is too high. Underfitting in unperrrrmng
turn means to generalize too much by assuming a too simple model, thus
failing to capture certain relevant properties of input texts. Both overfitting
and underfitting weaken the effectiveness of an algorithm on new input
texts. In contrast, an optimal fitting perfectly approximates the complexity orrmar rrrminG
of the target function and, hence, will work on all input texts as effectively
as possible based on the considered training texts and features.
To give an example, the instances from domain A and B in FIGURE 5.2
as a whole suggest that the shown decision boundary underfits the target
function. In particular, the function does not seem to be linear with respect
to z1 and x2. As an alternative, FIGURE 5.3(a) sketches that an appropriate
sigmoid-like decision boundary better fits the classification task across do-
mains, causing only few falsely classified instances.
Optimal fitting is always desired in text analysis, because it implies that
the derivation of the model from the training texts is done appropriately.
Unfortunately, there is no general way of choosing the right model complex-
ity for a text analysis task at hand. While approaches to avoid overfitting

4The used terms come from the area of machine learning (Hastie et al., 2009). However,
our argumentation largely applies to rule-based text analysis approaches as well.

212

(a)

X,

5.1 IDEAL DoMAIN INDEPENDENCE FOR HiGH-QuaLiTy TEXT MINING

instances from domain A and B

e O

better fitting
models improve
classification

» few false
°nm classifications
n . o
" o
[] [L
- o
o
X

(b)
X,

instances from domain A and B

e O
L]
° o o
® o
o} L]
. . o few false
S = e
@ o = classifications
o [
L[]
= °n
u
o
]] " .
more representative
[] [] o L P
o o training sets improve

classification

X

Ficure 5.3: [llustration of two ways of improving the decision boundary from Fic-
URE 5.2 for the domains A and B as a whole: (a) Choosing a model that better fits
the task. (b) Choosing a training set (open icons) that represents both domains.

and underfitting exist (Montavon et al., 2012), in the end the appropriate-

ness of a model depends on the training set it is derived from. This directly

ormvar represenTaTIVENESs l€ads to requirement of optimal representativeness.
The used training set governs the distribution of values of the considered

features and, hence, the quality of the derived model. According to learn-

ing theory (cf. SEcTiON 2.1), the best model is obtained when the training

set is optimally representative for the domain of application. The represen-

tativeness prevents the model from incorrectly generalizing from the train-
ing data. Given different domains of application, the training texts should,
thus, optimally represent all texts irrespective of their domains (Sapkota
et al., 2014). Ficure 5.3(b) shows an alternative training set (open icons) for
the sample instances from domain A and B that adresses this requirement.
As for optimal fitting, it leads to a decision boundary, which causes fewer
false classifications than the one shown in FiGUre 5.2. Among others, we

observe such behavior in (Wachsmuth and Bujna, 2011) after training on a
random crawl of blog posts instead of a focused collection of reviews.
Optimal representativeness is a primary goal of corpus design (Biber
et al., 1998). Besides the problem of how to achieve representativeness, an
optimally representative training set can only be built when enough training
texts are given from different domains. This contradicts one of the basic sce-
narios that motivates the need for domain robustness, namely, that enough
data is given from some source domain, but only few from a target domain.
The domain adaptation approaches summarized in Section 2.4 deal with
this scenario by learning the shift in the feature distribution between do-

mains or by aligning features from the source and the target domain. Hence,
they require at least some data from the target domain for training and, so,
need to assume the domains of application in advance.

5 PrPELINE ROBUSTNESS 213
instances from domain A o) instances from domain B
domain-invariant features
2 benefit robustness "2
[e] °
o © o
always circle class °
o o in both domains
[¢] ® o
a - ° . °
o o
o o® o " n
o ®n °
= always square class " [
o in both domains =
o [} [] =
L]
o
X. domain-specific feature: X,

prevent robustness
always square
class in domain B

always circle
class in domain B

always circle always square
class in domain A class in domain A

F1GURE 5.4: Illustration of the different domain invariance of the features x; and x»
with respect to the instances from domain A and B: Only for z», the distribution of
values over the circle and square remains largely invariant across the domains.

The question is how to develop domain-independent text analysis algo-
rithms without knowing the domains of application. Since an algorithm
cannot adapt to the target domains in this scenario, the only way seems to
derive a model from the training texts that already refrains from any do-
main dependence in the first place. This leads to our notion of optimal in-
variance of features across domains. We call a set of features (optimally)
domain-invariant in a given text analysis task, if the distribution of their val-
ues remains the same (with respect to the output information sought for)
across all possible domains of applications. Accordingly, strongly domain-
invariant features entail similar distributions across domains. For illustra-
tion, FIGURE 5.4 emphasizes the strong domain invariance of the feature x»
in the sample classification task: In both shown domains, high values of
x9 always refer to instances of the circle class, and low values to the square
class, which benefits domain robustness. Only the medium values show dif-
ferences between the domains. In contrast, 1 seems very domain-specific.
The distribution of its values is almost contrary for the two domains.

The intuition behind domain invariance is that the respective features
capture properties of the task to be addressed only and not of the domain
of application. As a consequence, the resort to domain-invariant features
simplifies the above-described requirement of optimal representativeness.
In particular, it limits the need to consider all domains of application since
the feature distribution remains stable across domains. Ideally, a training
set then suffices, which is representative in terms of the distribution of fea-
tures with respect to the task in a single domain.

In practice, optimal invariance will often not be achievable, because a dif-
ferentiation between task-specific and domain-specific properties of texts

OPTIMAL INVARIANCE

DOMAIN-INVARIANT

STRONGLY DOMAIN-INVARIANT

214 5.1 IDEAL DomAIN INDEPENDENCE FOR HiGH-QuaLITY TEXT MINING

requires to know the target function. Still, we believe that strongly domain-
invariant features can be found for many text analysis tasks. While the do-
main invariance of a certain set of features cannot be proven, the robustness
of an algorithm based on the features can at least be evaluated using test
sets from different domains of application. Such research has already been
done for selected tasks. For instance, Menon and Choi (2011) give exper-
imental evidence that features based on function words robustly achieve
high effectiveness in authorship attribution across domains.

Domain-invariant features benefit the domain independence of text ana-
lysis algorithms and, consequently, the domain independence of a pipeline
that employs such algorithms. That being said, we explicitly point out that
the best set of features in terms of domain invariance is not necessarily the
best in terms of effectiveness. In the case of the figures above, for instance,
the domain-specific feature x1 may still add to the overall classification ac-
curacy, when used appropriately. Hence, domain-invariant features do not
solve the general problem of achieving optimal effectiveness in text analy-
sis, but they help to robustly maintain the effectiveness of a text analysis
pipeline when applying the pipeline to unknown texts.

To conclude, none of the described requirements can be realized per-
fectly in general, preventing ideal domain independence in practice. Still,
approaches to address each requirement exist. The question is whether gen-
eral ways can be found to overcome domain dependence, thereby improv-
ing pipeline robustness in ad-hoc large-scale text mining. For a restricted
setting, we consider this question in the remainder of CHAPTER 5.

DoMAIN-INVARIANT FEATURES FOR CLASSIFYING ARGUMENTATIVE TEXTS

The domain dependence of text analysis algorithms and pipelines is mani-
fold and widely discussed in the literature (cf. SectiON 2.4). Different from
the problems of optimizing pipeline design and pipeline efficiency that we
tackled in CraPTERS 3 and 4, domain dependence can hardly be addressed
irrespective of the text analysis task at hand, as it is closely connected to the
actual analysis of natural language text and to the domain scheme relevant
in the task. Therefore, it seems impossible to approach domain dependence
comprehensively within one thesis chapter.

Instead, we restrict our view to the requirement of optimally invariant
features here, which directly influences possible solutions to optimal repre-
sentativeness and optimal fitting, as sketched above. To enable high-quality
text mining, we seek for invariant features that, at the same time, achieve
high effectiveness in the addressed text analysis task. Concretely, we fo-

5.2

5 PrPELINE ROBUSTNESS 215

cus on tasks that deal with the classification of arqumentative texts like es-
says, transcripts of political speeches, scientific articles, or reviews, since
we claim that they are particularly viable for the development of domain-
invariant features: In general, an argumentative text represents a written
form of monological argumentation. For our purposes, such argumentation
can be seen as a regulated sequence of text with the goal of providing per-
suasive arguments for an intended conclusion (cf. SEcTioN 2.4 for details).
This involves the identification of facts about the topic being discussed as
well as the structured presentation of pros and cons (Besnard and Hunter,
2008). As such, argumentative texts resemble the type of speeches Aristotle
refers to in the quote at the beginning of this chapter.

Typical tasks that target at argumentative texts are sentiment analysis,
stance recognition, and automatic essay grading among others (cf. Sec-
TION 2.1). In such tasks, domains are mostly distinguished in terms of topic,
like different product types in reviews or different disciplines of scientific
articles. Moreover, argumentative texts share common linguistic character-
istics in terms of their structure (Trosborg, 1997). Now, according to Aris-
totle, the arrangement of the parts of a speech (i.e., the overall structure of
the speech) plays an important role in making a speech. Putting both to-
gether, it therefore seems reasonable that the following two-fold hypothesis
holds for many tasks that deal with the classification of argumentative texts,
where overall structure can be equated with argqumentation structure:

1. Impact of Structure. The class of an argumentative text is often de-
cided by its overall structure.

2. Invariance of Structure. Features that capture the overall structure of
argumentative texts are often strongly domain-invariant.

The first part of the hypothesis is important, since it suggests that structure-
based features actually help to effectively address a given task. If the second
part turns out to be true, we can in fact achieve a domain-robust classifica-
tion of argumentative texts. We investigate both parts in this chapter.

A STRUCTURE-ORIENTED VIEW OF TEXT ANALYSIS

To investigate whether a focus on the analysis of overall structure benefits
the domain robustness of pipelines for the classification of argumentative
texts, we now model the units and relations in such texts that make up
overall structure from an argumentation perspective. Our shallow model
is based on the intuition that many people organize their argumentation
largely sequentially. The model allows viewing text analysis as the task to

ARGUMENTATIVE TEXT

ARGUMENTATION

OVERALL STRUCTURE

ARGUMENTATION STRUCTURE

STRUCTURE CLASSIFICATION TASK

216 5.2 A STRUCTURE-ORIENTED VIEW OF TEXT ANALYSIS

classify the argumentation structure of input texts, as we exemplify for the
sentiment analysis of reviews. This section partly reuses content and fol-
lows the discussion of (Wachsmuth et al., 2014a), but the model developed
here aims for more generality and wider applicability in text analysis.

TeExT ANALYSIS AS A STRUCTURE CLASSIFICATION TASK

Not only sentiment analysis, but also several other non-standard text clas-
sification tasks (cf. SEcTioN 2.1) directly or indirectly deal with structure.
As an obvious example, automatic essay grading explicitly rates argumen-
tative texts, mostly targeting at structural aspects (Dikli, 2006). In genre
identification, a central concept is the form of texts (Stein et al., 2010). Some
genre-related tasks explicitly aim at argumentative texts, such as the lan-
guage function analysis of texts that we outlined in Section 2.3. Criteria
in text quality assessment of Wikipep1a articles and the like often measure
structure (Anderka et al., 2012), while readability has been shown to be con-
nected to discourse (Pitler and Nenkova, 2008). Arun et al. (2009) rely on
structural clues like patterns of unconsciously used function words in au-
thorship attribution, and similar patterns have been successfully exploited
for plagiarism detection (Stamatatos, 2011).°

According to our hypothesis from Section 5.1, we argue that in these
and related tasks the class of an argumentative text is often decided by the
structure of its argumentation rather than by its content, while the content
adapts the argumentation to the domain at hand. For the classification of
argumentative texts, we reinterpret the basic scenario from Section 1.2 in
this regard by viewing text analysis as a structure classification task:

Given a collection or a stream of argumentative input texts D, pro-
cess D in order to infer class information of some type C from each
text based on the argumentation structure of the text.

This reinterpretation differs more significantly from the definition in Sec-
TION 1.2 than those in SectioNs 3.2 and 3.4, because here the type of output
information to be produced is much more restricted (i.e., text-level class in-
formation).® As such, the reinterpretation may seem unnecessarily limiting.
We apply it merely for a more focused discussion, though. Accordingly, it
should not be misunderstood as an exclusive approach to respective tasks.

°On a different level, overall structure also play a role in sequence labeling tasks like
named entity recognition (cf. Section 2.3). There, many approaches analyze the syntactic
structure of a sentence for the decision whether some candidate text span denotes an entity.

®Notice, though, that all single text classification tasks target at the inference of informa-
tion of one type C only, which remains implicit in the basic senario from Section 1.2.

5 PrPELINE ROBUSTNESS 217

Argumenta
tlve text

successor

Argument D|scourse Semantic
component unlt concept

from from from

Argumenta- Order Dlscourse Semantic
live relation relatlon relatlon relation
Argumentation Structure Content

Ficure 5.5: The proposed metamodel of the structure of an argumentative text (cen-
ter) and its connection to the argumentation (left) and the content (right) of the text.

Apart from that, the reinterpretation appears rather vague, because it leaves
open what is exactly meant by argumentation structure. In the following,
we present a metamodel that combines different concepts from the litera-
ture to define such structure for argumentative texts in a granularity that
we argue is promising to address text classification.

FiGure 5.5 shows the ontological metamodel with all presented concepts.
Similar to the information-oriented view of text analysis in SEctiON 3.4, the
ontology is not used in terms of a knowledge base, but it serves as an anal-
ogy to the process-oriented view in SEctioN 3.2. We target at the center part
of the model, which defines the overall structure of argumentative texts, i.e.,
their argumentation structure. In some classification tasks, structure may
have to be analyzed in consideration of the content referred to in the argu-
mentation of a text. An example in this regard is stance recognition, where
the topic of a stance is naturally bound to the content. First, we thus intro-
duce the left and right part. Given the topic is known or irrelevant, however,
a focus on structure benefits domain robustness, as we see later on.

MODELING THE ARGUMENTATION AND CONTENT OF A TEXT

As stated in SEcTION 5.1, an argumentative text can be seen as the textual
representation of an argumentation. An argumentation aims to give per-
suasive arguments for some conclusion. In the hotel reviews analyzed in
our project ARGUANA (cf. SEcTION 2.3), for instance, authors often justify the
score they assign to the reviewed hotel by sharing their experiences with
the reader. According to Stab and Gurevych (2014a), most argumentation
theories agree that an argumentation consists in a composition of argument arcument componenT

ARGUMENTATIVE RELATION

STANCE

TOPIC

SEMANTIC CONCEPT

SEMANTIC RELATION

TEXT CLASS

218 5.2 A STRUCTURE-ORIENTED VIEW OF TEXT ANALYSIS

components (like a claim or a premise) and argumentative relations between
the components (like the support of a claim by a premise). In contrast, the
concrete types of components and relations differ. E.g., Toulmin (1958) fur-
ther divides premises into grounds and backings (cf. SEcTioN 2.4 for details).
The conclusion of an argumentation may or may not be captured explicitly
in an argument component itself. It usually corresponds to the stance of the
author of the text with respect to the topic being discussed.

The topic of an argumentative text sums up what the content of the text
is all about, such as the stay at some specific hotel in case of the mentioned
reviews. The topic is referred to in the text directly or indirectly by talking
about different semantic concepts. We use the generic term semantic concept
here to cover entities, attributes, and the like, like a particular employee of
a hotel named John Doe or like the hotel’s staff in general. Semantic rela-
tions may exist between the concepts, e.g. John Doe works for the reviewed
hotel. As the examples show, the relevant concrete types of both semantic
concepts and semantic relations are often domain-specific, similar to what
we observed for annotation types in SEcTION 3.2.

An actual understanding of the arguments in a text would be bound to
the contained semantic concepts and relations. In contrast, we aim to de-
termine only the class of an argumentative text given some classification
scheme here. Such a fext class represents meta information about the text,
e.g. the sentiment score of a review or the name of its author. As long as
the meta information does not relate to the topic of a text, loosing domain
independence by analyzing content-related structure seems unnecessary.

Stab and Gurevych (2014a) present an annotation of the structure of ar-
gumentative texts (precisely, of persuasive essays) that relates to the de-
fined concepts. They distinguish major claims (i.e., conclusions), claims,
and premises as argumentation components as well as support and attack
as argumentative relations. Such annotation schemes serve research on the
mining of arguments and their interactions (cf. Section 2.4). The induced
structure may also prove beneficial for text classification, though, especially
when the given classification scheme targets at the purpose of argumenta-
tion (as in the case of stance recognition). However, we seek for a model
that can be applied to several classification tasks. Accordingly, we need to
abstract from concrete classification tasks in the first place.

MODELING THE ARGUMENTATION STRUCTURE OF A TEXT

For the classification of argumentative texts, we propose to model the prag-
matics side of overall structure, i.e., how relevant information is arranged

5 PrPELINE ROBUSTNESS 219

in a text in order to justify the intended conclusion. To this end, we com-
pose abstract concepts in the center part of our metamodel in FIGURE 5.5
that relate to the information structure of argumentative texts. Information
structure defines how information is packaged within and across sentences,
which in turn builds upon discourse structure (cf. SECTION 2.4).

The most recognized model of the discourse structure of a text is given by
the rhetorical structure theory (Mann and Thompson, 1988). Like in that the-
ory, we consider discourse structure as a connection of text parts that are re-
lated through interpretable discourse relations (also called rhetorical relations).
In total, Mann and Thompson (1988) distinguish 23 concrete relation types
that are irrespective of the given task or domain. Among these, some of the
most frequent are e.g. contrast, elaboration, and summary. With respect to
the connected parts, we follow Carlson et al. (2001) who have introduced the
widely-adopted notion of (elementary) discourse units as the minimal build-
ing blocks a text is composed of. In the information-structural view, such
a unit captures a single piece of information relevant within the discourse,
normally packed within a clause or a sentence (Gylling, 2013).

The question is how to model the relevant information in a discourse unit
while abstracting from the unit’s content. Our assumption is that each dis-
course unit plays a role in the argumentation structure of the text it belongs
to with respect to the given classification task. In FIGURE 5.5, we capture the
role in terms of a unit class that can be assigned to a discourse unit. Concrete
unit classes are not domain-specific but task-specific. In Section 5.3 below,
for instance, we model the local sentiment polarity of a discourse unit for
the classification of the global sentiment score of the respective text. Lo-
cal sentiment may also help to infer the stance of an author with respect to
some topic, whereas the language function of a text rather emanates from
the local language functions (Wachsmuth and Bujna, 2011).” In some tasks,
unit classes are ordinal or metric, so there exists an order relation for the unit
classes (say, Positive > Objective > Negative for local sentiment).

Altogether, we model the overall structure of an argumentative text D
for text classification based on the defined concepts in a shallow manner (a
discussion of the shallow model follows at the end of this section). In par-
ticular, we consider an argumentative text as a sequence of n > 1 discourse
units dy, . . ., d,, where each discourse unit d; has a unit class Cy;(d;) from
a task-specific scheme. Moreover, we take the simplifying view that every
two subsequent discourse units d; and d;+1 are connected by a discourse re-
lation of some concrete type Cg. For this reason, we do not speak of the nu-

7 As the examples demonstrate, the scheme of unit classes can, but needs not necessarily,
be related to the scheme of the text class to be inferred.

INFORMATION STRUCTURE

DISCOURSE STRUCTURE

RHETORICAL STRUCTURE THEORY

DISCOURSE RELATION

DISCOURSE UNIT

UNIT CLASS

ORDER RELATION

STRUCTURE CLASSIFICATION TASK
ONTOLOGY

220 5.2 A STRUCTURE-ORIENTED VIEW OF TEXT ANALYSIS

argumentative text D [] —- C(D)

d,
discourse units °

d;

.‘ successor successor '*1

*

discourse relations di,,d)

unit classes Cy(d))

Ficure 5.6: Visualization of our model of the structure of an argumentative text D
for finding its text class C'(D) in some task. D is represented as a sequence of n > 1
discourse units. Each unit d; has a task-specific unit class and discourse relations
of some concrete types to its predecessor d;_; and its successor d; if existing.

cleus and satellite of a discourse relation, like Mann and Thompson (1988),
but we simply specify the relation to be directed, either as Cr(d;, d;+1) or
as CR(di-I—ly dz)
structure that emanates from the abstract concepts. In the following, we
exemplify how to instantiate the metamodel for a concrete task.?

FiGurE 5.6 visualizes the resulting metamodel of overall

DEFINING A STRUCTURE CLASSIFICATION TASK ONTOLOGY

The instantiation of the structure part of the metamodel in FIGURE 5.5 entails
two steps: Given a classification task to be addressed on a set of argumen-
tative texts, the first step is to derive a concrete model for that task from the
metamodel. Such a derivation can be understood as defining a structure clas-
sification task ontology that instantiates the abstract concepts of structure:

Structure Classification Task Ontology A structure classification task on-
tology € is a 2-tuple (C’((JQ) , ng)) such that

1. Unit Classes. C((]Q) is a set of concrete unit classes and

()

2. Relation types. C}," is a set of concrete types of discourse relations.

Once a structure classification task ontology has been defined, the second
step is to actually model the structure of each text, i.e., to create individuals
of the concepts in the concrete model.

The considered types of unit classes and discourse relations directly de-
cide what information to use for analyzing the overall structure of texts in
the task at hand. In contrast, the defined ontology does not distinguish con-
crete types of discourse units, since they can be assumed task-independent.
While also discourse relations are task-independent (as mentioned above),

8Besides different namings, the metamodel can be seen as a generalization of the review
argumentation model from (Wachsmuth et al., 2014a). However, we emphasize here that
the semantic concepts contained in a discourse unit do not belong to the structure.

5 PrPELINE ROBUSTNESS 221

different subsets of the 23 relation types from the rhethorical structure the-
ory may be beneficial in different tasks or even other relation types, such as
those used in the Penn Discourse TreeBank (Carlson et al., 2001).

As an example, we illustrate the two instantiation steps for the sentiment
analysis of reviews, as tackled in our project ARGUANA (cf. SECTION 2.3). Re-
views comprise a positional argumentation, where an author collates and
structures a choice of statements (i.e., facts and opinions) about a prod-
uct or service in order to inform intended recipients about his or her be-
liefs (Besnard and Hunter, 2008). The conclusion of a review is often not
explicit, but it is quantified in terms of an overall sentiment score or the like.
For example, a review from the hotel domain may look like the following:

“We spent one night at that hotel. Staff at the front desk was very nice,
the room was clean and cozy, and the hotel lies in the city center... but
all this never justifies the price, which is outrageous!”

Five statements can be identified in the review: A fact on the stay, followed
by two opinions on the staff and the room, another fact on the hotel’s loca-
tion, and a final opinion on the price. Although there are hence more pos-
itive than negative statements, the argumentation structure of the review
reveals a negative global sentiment, i.e., the overall sentiment to be inferred
in the sentiment analysis of reviews.

In simplified terms, the argumentation structure is given by a sequential
composition of statements with local sentiments on certain aspects of the ho-
tel. FiGUrE 5.7 models the argumentation structure of the example review as
an instance of our metamodel from FiGure 5.5: Each statement represents
a discourse unit whose unit class corresponds to a local sentiment. Here,
we cover the positive and negative polarities of opinions as well as the ob-
jective nature of a fact as classes of local sentiment. They entail the order
relation already mentioned above. The five statements are connected by
four discourse relations. The discourse relations in turn refer to three from
whatever number of discourse relation types.

What Ficure 5.7 highlights is the sequence information induced by our
shallow structure-oriented view of text analysis. In particular, according to
this view an argumentative text implies both a sequence of unit classes and
a sequence of discourse relations. In the remainder of this chapter, we ex-
amine in how far such sequences can be exploited in features for an effective
and domain-robust text analysis. However, FIGURE 5.7 also illustrates that
the representation of a text as an instance of the defined metamodel is te-
dious and space-consuming. Instead, we therefore prefer visualizations in
the style of FIGURE 5.6 from here on.

GLOBAL SENTIMENT

LOCAL SENTIMENT

222

fact 1
:Discourse unit

frck

—
succ.

/o

i

:Discourse unit

5.2 A STRUCTURE-ORIENTED VIEW OF TEXT ANALYSIS

:Argumentative text

pinion
— . . —
suce :Discourse unit Suce)

opinion 1

:& A:m

background elaboration 1
:Background :Elaboration

Vo

——

'
ion 2
O o

elaboration 2
:Elaboration
/

fact 2
:Discourse unit

/

opinion 3

—
succ.

k A;m

contrast
:Contrast

A

:Discourse unit

Background Elaboration Contrast

:Discourse relation

obective 1

:0l
Positive

:Unit class

\ *
pos > obj > neg
:Order relation

Ficure 5.7: Instantiation of the structure part of the metamodel from FIGURE 5.5
with concrete concepts of discourse relations and unit classes as well as with indi-
viduals of the concepts for the example hotel review discussed in the text.

:Discourse relation :Discourse relation

¥
Negative
: class

Di1SCcUSSION OF THE STRUCTURE-ORIENTED VIEW

The metamodel presented in this section defines an abstract view of text
analysis dedicated to tasks that deal with the classification of argumentative
texts. At its heart, it represents the overall structure of a text on the prag-
matic level, namely, as a sequence of interrelated discourse units of certain
types. For a classification task at hand, we propose to instantiate the meta-
model and to then derive features from the resulting concrete model. Since
the metamodel defines a significant abstraction, some information in and
about argumentative texts is covered only implicitly if at all, such as lexi-
cal and syntactic properties. When it comes to the computation of features,
missing information can still be integrated with the structural information
derived from the model, though, if needed. The same holds for information
related to the argumentation and content part of the metamodel.

The main goal of this chapter is to develop more domain-robust text clas-
sification approaches. In this regard, our resort to discourse structure in the
metamodel for supporting domain independence follows related research.
For instance, O Séaghdha and Teufel (2014) hypothesize (and provide evi-
dence to some extent) that the language used in a text to convey discourse

53

5 PrPELINE ROBUSTNESS 223

function is independent of the topical content of the text. Moreover, as ar-
gued, the question of how to represent discourse structure is largely inde-
pendent from the text analysis tasks being addressed.

On the contrary, the concrete unit classes to be chosen for the discourse
units strongly depend on the given task and they directly influence the ef-
fectiveness of all approaches based on the respective model. In particular,
the assumption behind is that the composition of unit classes in a text re-
flects argumentation structure on an abstraction level that helps to solve the
task. What makes the choice even more complex is that a text analysis al-
gorithm is required, in general, to infer the unit classes of discourse units,
since the unit classes are usually unknown beforehand. Such an algorithm
may be domain-dependent again, which then shifts the domain robustness
problem from the text level to the unit level instead of overcoming it. At
least, the shift may go along with a reduction of the problem, as in the case
of modeling local sentiment polarities to reflect global sentiment scores. Also,
later on we discuss what types of fully or nearly domain-independent unit
classes can be used to model argumentation structure and when.

At first sight, the shallow nature of our model of argumentation structure
has shortcomings. Especially, the limitation that discourse relations always
connect neigboring discourse units makes an identification of deeper non-
sequential interactions of the arguments in a text hard. Such interactions are
in the focus of many approaches related to argumentation mining (cf. Sec-
TION 2.4). For text classification, however, we argue that the shallow model
should be preferred over deeper models (as far as the abstraction in our
model proves useful): Under our hypothesis from Section 5.1, the overall
structure of an argumentative text is decisive for its class in several text clas-
sification tasks. By relying on a more abstract representation of these argu-
mentation structures, the search space of possible patterns in the structures
is reduced and, hence, common patterns can be found more reliably. In the
next section, we provide evidence for the impact of such patterns.

TuHe ImpPAcCT OF THE OVERALL STRUCTURE OF INPUT TEXTS

As discussed in SectioN 5.1, one way to improve a pipeline’s domain ro-
bustness is to analyze features of input texts only, whose distribution stays
strongly invariant across domains. For the classification of argumentative
texts, this section motivates our hypothesis that features, which capture
overall structure, qualify as candidates for achieving such invariance. We
present revised versions of empirical findings from (Wachsmuth and Bu-
jna, 2011) and (Wachsmuth et al., 2014b): First, we give evidence that many

224 5.3 THE IMpAcT OF THE OVERALL STRUCTURE OF INPUT TEXTS

commonly used features generalize across domains only fairly. Based on
the model from SectiON 5.2, we then demonstrate that patterns in the overall
structure of argumentative texts exist, which are decisive for classification.
Their domain invariance is examined afterwards in SECTION 5.4.

EXPERIMENTAL ANALYSIS OF THE LIMITED INVARIANCE OF CONTENT AND STYLE

Standard approaches to text classification map an input text to a vector of
lexical and shallow syntactic features, from which class information is in-
ferred with supervised learning (cf. SEcTioN 2.1). Many common features
represent either the content of a text, focusing on the distribution of words
and semantic concepts, or they capture its style, relying on lexical charac-
teristics or syntactic patterns (Stamatatos, 2009). While such features are
effective for narrow-domain texts with explicit class information (Joachims,
2001; Pang et al., 2002), we now provide experimental evidence that they
tend to be insufficient for classifying out-of-domain texts:

Tasks and Domains We consider two tasks that deal with the classifica-
tion of argumentative texts, sentiment analysis and language function ana-
lysis. In terms of sentiment, we distinguish positive, negative, and neutral
polarities for the hotel reviews (H) of our English ARGUANA TRIPADVISOR
corrus (cf. AppEnDIX C.2) and for the film/movie reviews (F) of the English
SENTIMENT ScALE DATASET (cf. ApPENDIX C.4). Similarly, we classify the lan-
guage functions of each input text from both the music (M) and the smart-
phone (S) part of our German LFA-11 corpus (cf. Aprenpix C.3) as being pre-
dominantly personal, commercial, or informational.

Preprocessing Each text is split into sentences and tokens, the latter en-
riched with part-of-speech and phrase chunk tags. For these annotations,
we rely on the respective language-specific versions of the algorithms ssk,
sTO2, TPO1, and pcH. Details on the algorithms are found in AppEnDIX A.

Features Based on the annotations, we evaluate the following 15 feature
types. Each type comprises a number of single features (given in brackets).”
For exact parameters of the feature types, see AppEnDIX B.4. With respect to
the information they capture, the 15 types can be grouped into five sets:

1. Word features, namely, the distribution of frequent token 1-grams (324—
425 features), token 2-grams (112-217), and token 3-grams (64-310),

2. class features, namely, the distribution of class-specific words (8-83) that
occur 3 times as often in one class as in every other (Lee and Myaeng,

"The numbers of features vary depending on the processed training set, because only
distributional features with some minimum occurrence are considered (cf. SEcTION 2.1).

5 PrPELINE ROBUSTNESS 225

2002), some lexicon-based sentiment scores (6), and the distribution
of subjective sentiment words (123-363). The two latter rely on SeEnTI-
WOorDNET (Baccianella et al., 2010), which is available for English only.

3. part-of-speech (POS) features, namely, the distribution of POS 1-
grams (43-52), POS 2-grams (63-178), and POS 3-grams (69-137),

4. phrase features, namely, the distribution of chunk 1-grams (8-16), chunk
2-grams (24-74), and chunk 3-grams (87-300), and

5. stylometry features common in authorship attribution (Stamatatos,
2009), namely, the distribution of character 3-grams (200-451) and of
the most frequent function words (100) as well as lexical statistics (6) like
the number of tokens in the text and in a sentence on average.

Experiments Given the two domains for each of the two considered tasks,
we create classifiers for all feature types in isolation using supervised learn-
ing. Concretely, we separately train one linear multi-class support vector
machine from the LisSVM integration of Weka (Chang and Lin, 2011; Hall
etal., 2009) on the training set of each corpus, optimizing parameters on the
respective validation set.l0 Then, we measure the accuracy of each feature
type on the test sets of the corpora in the associated task in two scenarios:
(1) when training is performed in-domain on the training set of the corpus,
and (2) when training is performed on the training set of the other domain.!!
The results are listed in TabLE 5.1 for each possible combination A2B of a
training domain A and a testing domain B.

Limited Domain Invariance of all Feature Types The token 1-grams per-
form comparably well in the in-domain scenarios (H2H, F2F, M2M, and
S2S), but their accuracy significantly drops in the out-of-domain scenarios
with a loss of up to 25 percentage points. The token 2-grams and 3-grams
behave inconsistent in these respects, indicating that their distribution is not
learned on the given corpora. Anyway, the minimum observed accuracy of
all word features lies below 33.3%, i.e., below chance in three-class classifi-
cation. The class features share this problem, but they seem less domain-
dependent as far as available in the respective scenarios. While the senti-
ment scores and words work well in three of the four sentiment analysis

9The SENTIMENT SCALE DATASET is partitioned into four author datasets (cf. Section C.4).
Here, we use the datasets of author c and d for training, b for validation, and a for testing.

""Research on domain adaptation often compares the accuracy of a classifier in its training
domain to its accuracy in some other test domain (i.e., A2A vs. A2B), because training data
from the test domain is assumed to be scarce. However, this leaves unclear whether an
accuracy change may be caused by a varying difficulty of the task at hand across domains.
For the analysis of domain invariance, we therefore put the comparison of different training
domains for the same test domain (i.e., A2A vs. B2A) in the focus here.

226 5.3 THE IMpAcT OF THE OVERALL STRUCTURE OF INPUT TEXTS

Feature sentiment polarity (en) language function (de) min max
type H2H F2H F2F H2F M2M S2M S2S M2S acc’y loss
Token 1-grams 64% 44% 42% 30% 71% 54% 67% 42% 30% -25
Token 2-grams 50% 46% 40% 65% 51% 48% 69% 20% 20% -49
Token 3-grams 25% 40% 40% 37% 42% 49% 66% 27% 25% -39

Class-specific words 43% 40% 24% 24% 78% 67% 61% 24% 24% -37
Sentiment scores 61% 49% 43% 27% n/a n/a n/a n/a 27% -16
Sentiment words 60% 45% 39% 28% n/a n/a n/a n/a 27% -15

POS 1-grams 57% 44% 39% 36% 72% 53% 58% 40% 36% -19
POS 2-grams 53% 48% 41% 36% 68% 54% 64% 40% 36% -24
POS 3-grams 44% 41% 40% 23% 57% 49% 57% 55% 23% -17
Chunk 1-grams 51% 46% 37% 28% 55% 53% 57% 30% 28% -27
Chunk 2-grams 56% 43% 39% 33% 62% 50% 57% 31% 31% -26
Chunk 3-grams 54% 44% 41% 33% 60% 55% 58% 37% 33% -21
Character 3-grams 53% 51% 38% 24% 62% 52% 63% 39% 24% -24
Function words 60% 44% 43% 37% 79% 61% 62% 49% 37% -18
Lexical statistics 43% 38% 40% 40% 52% 18% 34% 48% 18% -34
All features 65% 40% 49% 40% 81% 59% 73% 48% 40% -25

TaBLE 5.1: Accuracy of 15 common feature types in experiments with 3-class sen-
timent analysis and 3-class language function analysis for eight different scenarios
A2B. Here, A is the domain of the training texts, and B the domain of the test texts,
with A, B € {hotel (H), film/movie (F), music (M), smartphone (S)}. The two right-
most columns shows the minimum observed accuracy of each feature type and the
maximum loss of accuracy points caused by training out of the test domain.

scenarios, the class-specific words tend to be more discriminative for lan-
guage functions with one exception: In M2S, they fail, certainly because
only 11 class-specific words have been found in the music training set.

While similar observations can be made for many of the remaining fea-
ture types, we restrict our view to the best results, all of which refer to fea-
tures that capture style: In terms of domain robustness, the part-of-speech
features are the best group in our experiments with a maximum loss of 17
to 24 points. Especially the POS 1-grams turn out to be beneficial across
domains, achieving high accuracy in a number of scenarios and always im-
proving over chance. Only the function words do better with an accuracy of
at least 37% and a loss of at most 18 points, when trained out of the domain
of application. At the same time, the function words yield the best accuracy
value under all single feature types with 79% in case of M2M.

The reasonable benefit of function words across domains matches results
from the above-mentioned related work in authorship attribution (Menon
and Choi, 2011). However, TaBLE 5.1 also conveys that neither the function
words nor any other of the 15 content and style feature types seem strongly
domain-invariant. In addition, the bottom line of the table makes explicit

5 PrPELINE ROBUSTNESS 227

We spent one night at that hotel. Staff at the front desk was very nice, the room was clean and cozy,

T

:1 :2 ‘,,,,,,,,,,,,,,,,,:3
positive (pos) i ° °

objective (obj) @ L >
! statement
negative (neg)

5,

and the hotel lies in the city center... but all this never justifies the price, which is outrageous!

Ficure 5.8: Illustration of capturing the structure of a sample hotel review as a local
sentiment flow, i.e., the sequence of local sentiment in the statements of the review.

that these types do not suffice to achieve high quality in the evaluated clas-
sification tasks, although the combination of features at least performs best
in all in-domain scenarios. For out-of-domain scenarios, we hence need to
find features that are both effective and domain-robust.

StATISTICAL ANALYSIS OF THE IMPACT OF TASK-SPECIFIC STRUCTURE

In order to achieve high effectiveness across domains, features are needed
that model properties of texts, which are specific to the task being addressed
and not to the domain of application. In the chapter at hand, we focus on
the classification of argumentative texts. To obtain domain-invariant fea-
tures for such texts, our hypothesis is that we can exploit their sequential
argumentation structure, as captured in our model from SectioN 5.2. Before
we turn to the question of domain invariance, however, we first provide ev-
idence that such structure can be decisive for text classification. For this
purpose, we refer to the sentiment analysis of hotel reviews again.

As stated in SEcTION 5.2, the argumentation structure of a review can be
represented by the sequence of local sentiment classes in the review. We
distinguish between positive (pos), negative (neg), and objective (obj). Fol-
lowing Mao and Lebanon (2007), we call the sequence the local sentiment
flow. For instance, the local sentiment flow of the example review from
SEcTION 5.2 is visualized in FiGUre 5.8. It can be seen as an instance of the
structure classification task ontology from SectioN 5.2, in which discourse
relations are ignored. Not only in the example review, the local sentiment
flow of a review impacts the review’s global sentiment, as we now demon-
strate. For a careful distinction between the frequency and the composition
of local sentiment, we hypothesize three dependencies:

1. The global sentiment of a review correlates with the ratio of positive
and negative opinions in the review.

2. The global sentiment of a review correlates with the polarity of opin-
ions at certain positions of the review.

LOCAL SENTIMENT FLOW

228 5.3 THE IMpAcT OF THE OVERALL STRUCTURE OF INPUT TEXTS

100 (a) all statements (b) statements in tittes (c) first statements (d) last statements
‘o

80%
60%
40%
20%

0%

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 score

Ficure 5.9: (a) The fractions of positive opinions (green), objective facts (dark gray),
and negative opinions (red) in the texts of the ARGUANA TRIPADVISOR CORPUS, sepa-
rated by the sentiment scores between 1 and 5 of the reviews they refer to. (b—d) The
respective fractions for statements at specific positions in the reviews.

3. The global sentiment of a review depends on the local sentiment flow
of the review.

To test the hypotheses, we statistically analyze our ARGUANA TRIPADVISOR
corpus, which contains 2100 reviews from the hotel domain.!? As detailed
in AppenDIx C.2, each review has a title and a body and it has been manu-
ally segmented into facts, positive opinions, and negative opinions that are
annotated as such. Since the corpus is balanced with respect to the reviews’
global sentiment scores between 1 (worst) and 5 (best), we can directly mea-
sure correlations between local and global sentiment in the corpus.

FiGure 5.9(a) illustrates that hypothesis 1 turns out to be true statistically
for our corpus, matching the intuition that, the larger the fraction of positive
opinions, the better the sentiment score, and vice versa: On average, a hotel
review with score 1 is made up of 71% negative and 9.4% positive opinions.
This ratio decreases strictly monotonously under increasing scores down to
5.1% negative and 77.5% positive opinions for score 5. Hence, the impact
of the frequency of local sentiment is obvious. Interestingly, the fraction of
facts remains quite stable close to 20% at the same time.

For the second hypothesis, we compute the distributions of opinions and
facts in the review’s titles as well as in the first and last statements of the re-
view’s bodies. In comparison with FIGURE 5.9(a), the results for the title dis-
tributions in FIGURE 5.9(b) show much stronger gaps in the above-mentioned
ratio with a rare appearance of facts, suggesting that the sentiment polarity
of the title of a hotel review often reflects the review’s global sentiment po-
larity. Conversely, FIGURE 5.9(c) shows that over 40% of all first statements
denote facts, irrespective of the sentiment score. This number may originate
in the introductory nature of first statements. It implies a limited average
impact of the first statement on a hotel review’s global sentiment. So, both
the titles and first statements support the second hypothesis. In contrast, the

!2For information on the source code of the statistical analysis, see APPENDIX B.4.

5 PrPELINE ROBUSTNESS 229

distributions in FIGURE 5.9(d) do not differ clearly from those in FIGURE 5.9(a).
A possible explanation is that the last statements often summarize reviews.
However, they may also simply reflect the average.

The impact of local sentiment at certain positions indicates the impor-
tance of structural aspects of a review. Yet, it does not allow drawing in-
ferences about a review’s overall structure. Therefore, we now come to the
third hypothesis, which refers to local sentiment flows. For generality, we
do not consider a review’s title as part of its flow, since unlike in the Arcu-
ANA TrRIPADVISOR CORPUS many reviews have no title. Our method to test
the hypothesis for the corpus is to first determine sentiment flows that rep-
resent a significant fraction of all reviews in the corpus. Then, we compute
how often these patterns cooccur with each sentiment score.

We do not exactly determine local sentiment flows, though, because of
the varying lengths of reviews: The only five local sentiment flows that rep-
resent at least 1% of the ARGUANA TrRiPADVISOR cORPUS are trivial without
any change in local sentiment, e.g. (pos, pos, pos, pos) or (obj). In principle, a
solution is to length-normalize the flows. We return to this in the context of
our overall analysis in SecTioN 5.4.1> From an argumentation perspective,
length normalization appears hard to grasp. Instead, we move from local
sentiment to changes in local sentiment here. More precisely, we combine
consecutive statements with the same local sentiment, thereby obtaining lo-
cal sentiment segments. We define the sentiment change flow of a review as
the sequence of all such segments in the review’s body.'* In case of the ex-
ample in FiGURre 5.8, for instance, the second and third statement have the
same local sentiment. Hence, they refer to the same segment in the review’s
sentiment change flow, (obj, pos, obj, neg).

In total, our corpus contains reviews with 826 different sentiment change
flows. TaBLE 5.2 lists all those with a frequency of at least 1%. Together, they
cover over one third (34.8%) of all texts. The most frequent flow, (pos), repre-
sents the 161 (7.7%) fully positive hotel reviews, whereas the best global sen-
timent score 5 is indicated by flows with objective facts and positive opin-
ions (table lines 4, 5, and 7). Quite intuitively, (neg, pos, neg) and (pos, neg, pos)
denote typical flows of reviews with score 2 and 4, respectively. In contrast,
none of the listed flows clearly indicates score 3. The highest correlation is
observed for (neg, obj, neg), which results in score 1 in 88.9% of the cases.

13 Alternatively, Mao and Lebanon (2007) propose to ignore the objective facts. Our ac-
cording experiments did not yield new insights except for a higher frequency of trivial flows.
For lack of relevance, we omit to present results on local sentiment flows here, but they can
be easily reproduced using the provided source code (cf. AprenDIx B.4).

In (Wachsmuth et al., 2014b), we name these sequences argumentation flows. In the given
more general context, we prefer a more task-specific naming in order to avoid confusion.

SENTIMENT CHANGE FLOW

DISCOURSE RELATION FLOW

230 5.3 THE IMpAcT OF THE OVERALL STRUCTURE OF INPUT TEXTS

Sentiment change flow Frequency Scorel Score2 Score3 Score4 Score5
1 (pos) 7.7% 1.9% 3.1% 75% 311% 56.5%
2 (obj) 5.3% 3.6% 13.6% 20.0% 33.6% 29.1%
3 (neg) 35% 589% 30.1% 9.6% 1.4% -
4 (pos, obj, pos) 3.0% - - 6.5% 355% 58.1%
5 (obj, pos) 2.7% - 1.8% 7.0% 31.6% 59.6%
6 (pos, neg, pos) 2.1% - 159% 114% 56.8% 15.9%
7 (obj, pos, obj, pos) 1.9% - - 51% 35.8% 59.0%
8 (pos, neg) 1.7% 11.1% 36.1% 33.3% 19.4% -
9 (neg, obj, neg) 1.7% 88.9% 8.3% 2.8% - -
10 (obj, pos, neg, pos) 1.5% - 32% 323% 323% 323%
11 (neg, pos, neg) 1.5% 355% 51.6% 12.9% - -
12 (obj, neg, obj, neg) 1.1% 773% 18.2% 4.5% - -
13 (obj, neg) 1.1% 83.3% 16.7% - - -

TasLE 5.2: The 13 most frequent sentiment change flows in the ARGUANA Trip-
Abpvisor corprus and their distribution over all possible global sentiment scores.

The outlined cooccurrences offer strong evidence for the hypothesis that
the global sentiment of a review depends on the review’s local sentiment
flow. Even more, they imply the expected effectiveness (in the hotel domain)
of a single feature based on a sentiment change flow. In particular, the fre-
quency of a flow can be seen as the recall of any feature that applies only to
reviews matching the flow. Correspondingly, the distribution of a flow over
the sentiment scores shows what precision the feature would achieve in pre-
dicting the scores. However, TABLE 5.2 also reveals that all found flows cooc-
cur with more than one score. Thus, we conclude that sentiment change
flows do not decide global sentiment alone. This becomes explicit for (obj,
pos, neg, pos), which is equally distributed over scores 3 to 5.

StATISTICAL ANALYSIS OF THE IMPACT OF TASK-INDEPENDENT STRUCTURE

The representation of argumentation structure by local sentiment flows ap-
pears rather specific for sentiment analysis. Now, we analyze whether the
more task-independent concepts of our structure-oriented model from Sec-
TION 5.2 help in sentiment analysis, too. For this purpose, we repeat parts
of the last experiment for the discourse relation flow of a review, i.e., the se-
quence of discourse relation types in the review’s body. In case of the ex-
ample review from FiGures 5.7 and 5.8, the discourse relation flow would
be (background, elaboration, elaboration, contrast). Based on another analysis
of the ARGUANA TriPADVISOR cORPUS (that can be reproduced with the same
source code used above), we investigate two hypotheses, one about the dis-
tribution and one about the structure of discourse relations:

5 PrPELINE ROBUSTNESS 231

contrast circumstance concession motivation cause
6.9

6%

4%

2%

0%
° 12345 12345 12345 12345 12 3 4 5 score

Ficure 5.10: The fractions of five types of discourse relations under all discourse re-
lations, separated by the sentiment scores between 1 and 5 of the reviews they refer
to. The discourse relations were found using the algorithm ppr (cf. ApPENDIX A.1).

1. The global sentiment of a review correlates with the frequency of cer-
tain types of discourse relations in the review.

2. The global sentiment of a review depends on the discourse relation
flow of the review.

Unlike local sentiment, discourse relations are not annotated in the Arcu-
AnNAa TrirApvisor corrus. Instead, we processed all texts with our heuristic
discourse parser ppr. PDR distinguishes a subset of 10 discourse relation
types from the rhethorical structure theory (cf. AprENDIX A.1 for details).
Based on the output of ppr, we have computed the distributions of each
discourse relation type over the sentiment scores of the reviews in the cor-
pus in order to check for evidence for the first hypothesis. For brevity, Fic-
URE 5.10 shows only the results of those types that occur in the discourse
change flows, which we discuss below.

FIGURE 5.10 stresses that, in terms of sentiment analysis, one of the most
important discourse relation types is the contrast between discourse units:
Quite intuitively, medium reviews (those with sentiment score 3) yield the
largest fraction of contrast relations (6.9%). This is more than twice as high
as the fraction in the score 5 reviews (3.0%) on average. A sign of rather neg-
ative sentiment in hotel reviews seems the resort to causes, which are often
used to justify statements. Interestingly, circumstance relations (like when
or where something happened) even more behave in this way; they cooccur
3.8 times as often with score 1 than with score 4 or 5. Conversely, motivation
relations (e.g. indicated by second person voice) appear more frequently in
medium and positive hotel reviews, and concession (e.g. indicated by the
connective “although”) play a particular role in score 4 reviews.

The outlined correlations between frequencies of discourse relations and
global sentiment support hypothesis 1. The remaining question is whether
the overall structure of discourse relations in the text is decisive, as cap-
tured by hypothesis 2. Analog to above, we again consider changes in the
discourse relation flows, resulting in discourse change flows, which would be biscourse crance rLow

232 5.3 THE IMpAcT OF THE OVERALL STRUCTURE OF INPUT TEXTS

Discourse change flow Frequency Score1l Score?2 Score3 Score4 Score5
(contrast) 25.2% 15.7% 28.1% 255% 18.3% 12.5%
(circumstance) 3.7% 44.2% 299% 52% 104% 10.4%
(contrast, circumstance) 1.9% 35.0% 22.5% 225% 10.0% 10.0%
(circumstance, contrast) 1.5% 375% 21.9% 12.5% 15.6% 12.5%
(contrast, circumstance, contrast) 1.0% 45.0% 25.0% 15.0% 10.0% 5.0%
(concession) 2.6% 16.4% 12.7% 309% 27.3% 12.7%
(contrast, concession) 1.4% 30.0% 23.3% 133% 26.7% 6.7%
(concession, contrast) 1.3% 17.9% 21.4% 28.6% 25.0% 7.1%
(motivation) 2.4% 15.7% 59% 17.6% 19.6% 41.2%
(contrast, motivation) 1.3% 14.3% 17.9% 35.7% 143% 17.9%
(motivation, contrast) 1.0% 273% 22.7% 22.7% 13.6% 13.6%
(cause) 1.3% 11.1% 33.3% 11.1% 259% 18.5%

TaBLE 5.3: The 12 most frequent discourse change flows in the ARGUANA Trip-
Abpvisor corrus (when ignoring sequence and elaboration relations) and their dis-
tribution over all possible global sentiment scores. The relations were found using
the discourse parser ppr (cf. APPENDIX A).

(background, elaboration, contrast) for our example review. However, not co-
incidentally, we have left out both elaboration and sequence in FIGURE 5.10.
Together, these two types make up over 80% of all discourse relations, ren-
dering it hard to find common flows with other (potentially more relevant)
types. Thus, we ignore elaboration and sequence relations in the determina-
tion of the most frequent discourse change flows.

Table 5.3 shows the distributions of sentiment scores for all such 12 dis-
course change flows that represent at least 1% of the reviews in the Arcu-
ANa TrirApvisor corrus each and 44.6% of the corpus reviews in total.
The flows are grouped according to the contained discourse relation types.
This is possible because only contrast cooccurs with other types in the listed
flows, certainly due to the low frequency of the others.

About every fourth review (25.2%) contains only contrast relations (except
for sequences and elaborations). Compared to FIGURE 5.10, such reviews
differ from an average review with contrast relations, having their peak at
score 2 (28.1%). Similar observations can be made for (cause). The found
flows with circumstance relations suggest that discourse change flows do not
influence sentiment scores: No matter if a contrast is expressed before or af-
ter a circumstance, the respective review tends to be negative mostly. How-
ever, this is different for concession and motivation relations. E.g., a motiva-
tion in isolation leads to score 4 and 5 in over 60% of the cases, whereas the
flow (contrast, motivation) most often cooccurs with score 3. (motivation, con-
trast) even speaks for a negative review on average. An explanation might

5 PrPELINE ROBUSTNESS 233

be that readers shall be warned right from the beginning in case of negative
hotel experiences, while recommendations are rather made at the end.

Altogether, we see that the correlations between scores and flows in Ta-
BLE 5.3 are not as clear as for the sentiment change flows. While the existence
of certain discourse relations obviously affects the global sentiment of the
hotel reviews, their overall structure seems sometimes but not always deci-
sive for the sentiment analysis of reviews.

IMPLICATIONS OF THE INVARIANCE AND IMPACT

Features that model the content of a text are extensively used in text clas-
sification (Aggarwal and Zhai, 2012). In case of argumentative texts, many
approaches also rely on style features (Stamatatos, 2009). In this section, we
have first offered evidence for the domain dependence of typical content
and style features in the classification of argumentative texts. As an alter-
native, we have then analyzed two ways to capture the overall structure
of such texts (reviews, specifically): sentiment change flows and discourse
change flows. The former relies on task-specific information, while the lat-
ter capture discourse structure. We argue that both can be seen as shallow
models of argumentation structure that abstract from content.

The revealed existence of patterns in the sentiment change flows and dis-
course change flows of hotel reviews that cooccur with certain sentiment
scores demonstrates the impact of modeling argumentation structure. In
addition, the abstract nature of the two types of flows brings up the possi-
bility that the found or similar flow patterns generalize well across domains.
For these reasons, we hence concretize our hypothesis from Section 5.1 by
supposing that features, which are based on according flow patterns, help
to achieve (1) domain robustness and (2) high effectiveness in text analysis
tasks that deal with the classification of argumentative texts.

Different from the sentiment analysis of reviews, however, at least the re-
sort to local sentiment flows does not generalize well to all such tasks. E.g.,
scientific articles only sporadically contain sentiment at all, making respec-
tive features useless for classification. Still, we assume that local sentiment
flows have correspondences in other classification tasks, which hence allow
for corresponding unit class flows. To this end, our structure-oriented view
from SectION 5.2 needs to be concretized adequately for the task at hand.
A few examples for such instantiations have already been sketched in Sec-
TION 5.2. The discourse change flows may be more generally beneficial, but
the experiments above suggest that the impact of analyzing discourse struc-
ture also may be lower than of analyzing task-specific unit classes.

FLOW PATTERN

UNIT CLASS FLOW

5.4

234 5.4 FEATURES FOR DOMAIN INDEPENDENCE VIA SUPERVISED CLUSTERING

As motivated, the focus on argumentation structure targets at the de-
velopment of text analysis algorithms, which improve the robustness and
intelligibility of the pipeline they are employed in. In this regard, we inves-
tigate the benefits of modeling such structure in Sections 5.4 and 5.5. Since
the two types of change flows in the form considered here still depend on
the length of the analyzed texts to some extent, they may not be optimal for
cross-domain text analysis, though. Below, we therefore introduce a novel
alternative way of identifying typical overall structures of argumentative
texts. It allows computing the similarity between arbitrary texts and, hence,
does not require to detect exactly the same patterns across domains.

Either way, our analysis of the ARGUANA TrRIPADVISOR CORPUS in this sec-
tion shows that structure-based features are not always decisive for text clas-
sification alone. To enable high-quality text mining, a combination with
other feature types may thus be required. Candidates have already been
presented, namely, some of the content and style features as well as the dis-
tribution of unit classes and discourse relations. We evaluate below in how
far their integration affects domain robustness and effectiveness.

FEATURES FOR DOMAIN INDEPENDENCE VIA SUPERVISED CLUSTERING

Based on our structure-oriented model from SectioN 5.2, we now develop
statistical features that aim for an effective classification of argumentative
texts across domains. First, we learn a set of common patterns of the overall
structure of such texts through supervised clustering. In the sense of the
overall analysis from FIGURE 5.1, we then use each such flow pattern as a
similarity-based feature for text classification. We detail and evaluate an
according analysis for sentiment scoring, reusing content from (Wachsmuth
et al., 2014a). Our results suggest that the considered flow patterns learned
in one domain generalize to other domains to a wide extent.

APPROACHING STRUCTURE CLASSIFICATION AS A RELATEDNESS PROBLEM

As motivated in SectioN 5.2, we propose to address the classification of ar-
gumentative texts as a structure classification task, where we refer to the
overall structure of the texts. To the best of our knowledge, no approach to
explicitly capture overall structure has been presented in the surrounding
field so far (cf. Section 2.4). Even local sentiment flows (Mao and Lebanon,
2007), which define the starting point of some analyses in this chapter, cap-
ture sentiment at different positions of a text only: Each flow value is repre-
sented by an individual feature. Hence, classification algorithms will natu-

5 PrPELINE ROBUSTNESS 235

rally tend to assign positive weights to all values (or proceed accordingly if
no weights are used), thereby disregarding the flow as a whole.

In contrast, we now develop a novel feature type that achieves to make
the overall structure of argumentative texts measurable by addressing struc-
ture classification as a relatedness problem, i.e., by computing how similar the
overall structure of a text is to a common set of known patterns of overall
structure. The idea behind resembles explicit semantic analysis (Gabrilovich
and Markovitch, 2007), which measures the semantic relatedness of texts.
Explicit semantic analysis represents the meaning of a text as a weighted
vector of semantic concepts, where each concept is derived from a WikipepIA
article. The relatedness of two texts then corresponds to the similarity of
their vectors, e.g. measured using the cosine distance (cf. SEcTiON 2.1).

Since we target at overall structure, we rely on our model from Section 5.2
instead of semantic concepts. In particular, in line with our analyses from
SecTION 5.3, we propose to capture the overall structure of an argumentative
text in terms of a specific unit class flow or of the discourse relation flow of
a text. From here on, we summarize all concrete types of unit classes (e.g.
local sentiments, language functions, etc.) and the discourse relation type
under the term flow type, denoted as Ct. Hence, every flow can be seen as a
sequence of instances of the respective type:

Flow The flow f of a text of some concrete flow type C¢ denotes the se-
quence of instances of Cf in the text.

Based on flows, we define the patterns of overall structure we seek for:

Flow Pattern A flow pattern f* denotes the average of a set of similar length-
normalized flows F' = {f,... i}, [F| > 1, of some concrete flow type.

Analog to deriving semantic concepts from Wikipepia articles, we deter-
mine a set of flow patterns F* = {f}", ..., £ } |F*| > 1, of some flow type Ct
from a training set of argumentative texts. Unlike the semantic concepts,
however, we aim for common patterns that represent more than one text.
Therefore, we construct F** from flow clusters that cooccur with text classes.
Each pattern is then deployed as a single feature, whose value corresponds
to the similarity between the pattern and a given flow. The resulting feature
vectors can be used for statistical approaches to text classification, i.e., for
learning to map flows to text classes (cf. SEction 2.1). In the following, we
detail the outlined process and we exemplify it for sentiment scoring.

LEARNING PATTERNS OF OVERALL STRUCTURE WITH SUPERVISED CLUSTERING

We assume to be given a set of training texts Dy and an associated set Cr
containing the text class of each text in Dr. To obtain common flow patterns

RELATEDNESS PROBLEM

EXPLICIT SEMANTIC ANALYSIS

FLOW TYPE

FLOW

FLOW PATTERN

236 5.4 FEATURES FOR DOMAIN INDEPENDENCE VIA SUPERVISED CLUSTERING

(a) local sentiment flow and discourse relation flow
positive (1.0) (] []
objective (0.5) 7Y ® >
1 5)
negative (0.0) ([J
discourse relation Background (B) Elaboration (E) Elaboration (E) Contrast (C)
(b) normalized local sentiment flow and normalized discourse relation flow
positive (1.0) o © e o o o 5
objective (0.5) —o—e—=8—® o1 - -
1 ® 18
negative (0.0) Sl g e o

discourse relation B B B B E E E E E E E E E C C C C

Ficure 5.11: (a) Illustration of the local sentiment flow and the discourse flow of
the sample text from SecTioN 5.3. (b) Length-normalized versions of the two flows
for length 18 (local sentiment) and 17 (discourse relations), respectively.

of some flow type Ct, we first need to determine the respective flow of each
text in Dy. Usually, instances of C¢ are not annotated beforehand. Conse-
quently, a text analysis pipeline II¢ is required that can infer C¢ from D7.1°
The output of II¢ directly leads to the flows. As an example, FIGURE 5.11(a)
depicts flows of two types for the sample text from Section 5.3: the local
sentiment flow already shown in Ficure 5.8 as well as the discourse rela-
tion flow of the sample text with all occurring types of discourse relations
including elaboration (unlike the discourse change flows in SectioN 5.3).

The length of a flow follows from the number of discourse units in a
text (cf. SEcTiON 5.2), which varies among input texts in most cases. To assess
the similarity of flows, we thus convert each flow into a length-normalized
version. The decision what length to be used resembles the optimal fitting
problem sketched in Section 5.1: Short normalized versions may oversim-
plify long flows, losing potentially relevant flow type information. Long
versions may capture too much noise in the flows. A reasonable normalized
length should therefore be chosen in dependence of the expected average
or median length of the texts to represented.

Besides the length, normalization brings up the question of whether and
how to interpolate values, at least in case of ordinal or metric flow types. For
instance, local sentiment could be interpreted as a numeric value between
0.0 (negative) and 1.0 (positive) with 0.5 meaning objective or neutral. In
such cases, an interpolation seems beneficial, e.g. for detecting similarities
between flows like (1.0, 0.5, 0.0) and (1.0, 0.0). For illustration, FiGure 5.11(b)
shows normalized versions of the flows from FiGure 5.11(a). There, some
non-linear interpolation is performed for the local sentiment values, while

15In the evaluation at the end of this section, we present results on the extent to which the
effectiveness of inferring Ct affects the quality of the features based on the flow patterns.

5 PrPELINE ROBUSTNESS 237

the nominal discourse relation types are duplicated for lack of reasonable
alternatives. The chosen normalized lengths are exemplary only.

Once the set of all normalized flows F' has been created from Dy, flow
patterns can be derived. As usual for feature computations (cf. Section 2.1),
however, it may be reasonable to discard rare flows before (say, flows that
occur only once in the training set) in order to avoid capturing noise.

Now, our hypothesis behind flow patterns is that similar flows entail the
same or, if applicable, similar text classes. Here, the similarity of two length-
normalized flows is measured in terms of some adequate similarity func-
tion (cf. Section 2.1). For instance, the (inverse) Manhattan distance may
capture the similarity of the metric local sentiment flows. In case of dis-
course relation flows, we can at least compute the fraction of matches. With
respect to the chosen similarity function, flows that construct the same pat-
tern should be as similar as possible and flows that construct different pat-
terns as dissimilar as possible. Hence, it appears reasonable to partition the
set ' using clustering (cf. Section 2.1) and to then derive flow patterns from
the resulting clusters.

In particular, we propose to perform supervised clustering, which can be
understood as a clustering variant, where we exploit knowledge about the
training text classes to ensure that all obtained clusters have a certain purity.
In accordance with the original purity definition (Manning et al., 2008), here
purity denotes the fraction of those flows in a cluster, whose text class equals
the majority class in the cluster. This standard purity assumes exactly one cor-
rect class for each flow, implying that a flow alone decides the class, which
is not what we exclusively head for (as discussed in Section 5.2). At least
larger classification schemes speak for a relaxed purity definition. For exam-
ple, our results for sentiment scores between 1 and 5 in SEcTION 5.3 suggest
to also see the dominant neighbor of the majority score as correct. Either
way, based on any measure of purity, we define supervised flow clustering:

Supervised Flow Clustering Given a set of flows F' with known classes, de-
termine a clustering F = { I}, ..., Fig|} of I with ULi‘l F;=Fand F;NF;=0
for F; # F; € F, such that the purity of each F; € F lies above some threshold.

We seek for clusters with a high purity, as they indicate specific classes,
which matches the intuition behind the flow patterns to be derived. At the
same time, the number of clusters should be small in order to achieve a high
average cluster size and, thus, a high commonness of the flow patterns. An
easy way to address both requirements is to rely on a hierarchical cluster-
ing (cf. SEctION 2.1), Wwhere we can directly choose a flat clustering F with
a desired number |F| of clusters through cuts at appropriate nodes in the

SUPERVISED CLUSTERING

PURITY

STANDARD PURITY

RELAXED PURITY

SUPERVISED FLOW CLUSTERING

SENTIMENT FLOW PATTERN

DISCOURSE FLOW PATTERN

238 5.4 FEATURES FOR DOMAIN INDEPENDENCE VIA SUPERVISED CLUSTERING

relaxed purit 0.8 0.889
at highes?cutg [hd

highest cuts
with relaxed
purity =0.8

hierarchical
flow clustering

text classes of |_

samplefows 1 1 1 3 1 3 3 3 2 3 4 4 3 3 4 5 5 4 5 5

flow clusters cluster for cluster for cluster for cluster for
at highest cuts class 1 class 3 and 4 class 4 and 5 class 5

Ficure 5.12: [llustration of hierarchically clustering a set of 20 sample flows, repre-
sented by their associated text classes between 1 and 5. The example relaxed purity
threshold of 0.8 leads to cuts in the hierarchy that create four flow clusters.

construction of a sentiment flow pattern

(a)

positive (1.0) -6 ®--0 O o

L& Sy °
- [Foss ®

objective (0.5) —o—e __‘_, e =l e >

negative (0.0) Tm L--0-9--8
(b) construction of a discourse flow pattern
discourse relation B B B B E E E E E E E E E C C C C
discourse relation B B B B B B E E E E E C C C E E E
discourse relation E E E E E E E E E E E C € € € cCc cC

majority B B B B E E E E E E E C cC Cc Cc C

Ficure 5.13: Sketch of the construction of (a) a sentiment flow pattern (dashed curve)
from two length-normalized sample local sentiment flows (circles and squares) and
(b) a discourse flow pattern (bold) from three according discourse relation flows.

binary tree of the associated hierarchy. To minimize the number of clus-
ters, we then search for all cuts closest to the tree’s root that create clusters
whose purity lies above the mentioned threshold. FiGure 5.12 exemplifies
the creation for the relaxed purity defined above and a threshold of 0.8.
The centroid of each flow cluster, i.e., the mean of all contained flows,
finally becomes a flow pattern, if it is made up of some minimum number of
flows. FIGURE 5.13(a) sketches the resulting construction of a sentiment flow
pattern for two sample local sentiment flows of normalized length. Since we
consider local sentiment as a metric classification scheme here, each value
of the flow pattern can in fact represent the average of the flow values. In
contrast, for nominal flow types, a possible alternative is to use the majority
flow type in according patterns. FIGURE 5.13(b) illustrates this for a discourse
flow pattern derived from three sample discourse relation flows.
Altogether, the high-level process of deriving common flow patterns
from a training set D is summarized in Pseupocopk 5.1. There, lines 1
to 7 determine the set of training flows F'. To this end, a given text analysis
pipeline Il¢ infers instances of the flow type Cf from all texts in D (line 3).

5 PrPELINE ROBUSTNESS 239

DETERMINEFLOWPATTERNS(D 7, CT, C¥, Ilf)

1: Training flows F' < ()

2: foreachi e {1,...,|Dr|} do

3 II¢.process(Dr[i])

4 Flow f < Dr[i].getOrderedFlowClasses(C¥)
5: f <+ NorMALIZEFLow(f)

6 a «— FU{{{,Cr[i])}

7. F <— RETAINSIGNIFICANTFLOWS(F')

8

: Flow patterns F'* + ()
9: Clusters F PERFORMSUPERVISEDFLOWCLUSTERING(F")
10: F < RETAINSIGNIFICANTFLOWCLUSTERS(F')
11: for each Cluster F; € F do F'* < F* U F}.getCentroid()
12: return F*

Pseupocobk 5.1: Determination of a common set of flow patterns ™ from a set
of training texts D7 and their associated known text classes Cr. The patterns are
derived from flows of the type C¢ that is in turn inferred with the pipeline I¢.

Next, the sequences of instances in each text is converted into a normalized
flow f (lines 4 and 5). In combination with the associated text class Cr[i], f is
stored as a training flow (line 6). After all such flows have been computed,
only those are retained that occur some significant number of times (line 7).
The flow patterns F* are then found by performing the presented cluster-
ing method (line 9) and retaining only clusters of some significant minimum
size (line 10). Each pattern is given by the centroid of a cluster (line 11).

UsING THE LEARNED PATTERNS AS FEATURES FOR TEXT CLASSIFICATION

Although we use the notion of an overall analysis as a motivation, our goal
is not to develop a new text classification method. Rather, we propose the
derived flow patterns as a new feature type to be used for classification.
Typically, text classification is approached with supervised learning, i.e., by
deriving a classification model from the feature representations of training
texts with known classes. The classification model then allows classifying
the representations of unknown texts (cf. Section 2.1).

After the set of common flow patterns F’* has been determined, the next
step is hence to compute one training feature vector for each text from the
above-processed sets D7 and Ct. In order to capture the overall structure of
a text, we measure the similarity of its normalized flow to each flow pattern
in F* using the same similarity function as for clustering (see above). As
a result, we obtain a feature vector with one similarity value for each flow
pattern. FIGURE 5.14 sketches two views of the similarity computations for
a sample flow: On the left, the vector view with the cluster centroids that

240 5.4 FEATURES FOR DOMAIN INDEPENDENCE VIA SUPERVISED CLUSTERING

(@)% (b) e o o o
3 3 T ‘ ‘ ‘ ‘ T flow pattern of class 1
flowpanern g T T T Teaigeerorey e

flow pattern of = of class 5 i Ol Ayaa
class3and4 3 flow
3 ® flow flow pattern of class 5

12 I 5 5 =Rt e e e A

1. -4 AT SLATHENEY

flow pattern 1 4 flow pattern of ° | ‘ ‘ ‘

of class 1 class 4 and 5 ® el
X4 flow

Ficure 5.14: Two illustrations of measuring the similarity (here, the inverse Man-
hattan distance) of an unknown flow to the flow patterns resulting from the clusters
in Ficure 5.12: (a) 2D plot of the distance of the flow’s vector to the cluster centroids.
(b) Distances of the values of the flow to the values of the respective patterns.

CREATETRAININGFEATUREVECTORS(D 1, CT, Ct, Ilg, F'*)

1: Training vectors X <« ()

2: foreachi € {1,...,|Dr|} do

3: IT¢.process(Dr[i])

Flow f < Dr[i].getOrderedFlowClasses(C')

f <+ NorMaLizeFLow(f)

Feature values x() <+ 0

for each Flow Pattern f* € F* do
Feature value z(¥ < coMpUTESIMILARITY(f, £)
<@ x () I 2@

10 X — X U{(x",Crl])}

11: return X

Pseupocobk 5.2: Creation of a training feature vector for every text from a training
set Dr with associated text classes Cr. Each feature value denotes the similarity of
a flow pattern from F* to the text’s flow of type C¢ (inferred with the pipeline Il¢).

represent the flow patterns, mapped into two dimensions (for illustration
purposes) that correspond to the positions in the flow. And, on the right,
the flow view with the single values of the flows and flow patterns.

PsEUDOCODE 5.2 presents how to create a vector for each text in D7 based
on the flow patterns F*. Given the normalized flow f of a text (lines 3 to 5),
one feature value is computed for each f* € I'* by measuring the similarity
between f and f* (lines 8 and 9). The combination of the ordered set of
feature values and the text class C7[i] defines the vector (line 10).1°

ProOPERTIES OF THE PROPOSED FEATURES FOR DOMAIN INDEPENDENCE

In general, the introduced feature type itself is applicable to arbitrary tasks
from the area of text classification (a discussion of a transfer to other tasks

!$For clarity, we have included the computation of flows both in Pseupocope 5.1 and in
Pseupocobk 5.2. In practice, the flow of each text can be maintained during the whole pro-
cess of feature determination and vector creation and, thus, needs to be computed only once.

5 PrPELINE ROBUSTNESS 241

follows at the end of this section). It works irrespective of the type, lan-
guage, or other properties of the input texts being processed, since it out-
sources the specific analysis of producing the flow type Cf to the employed
text analysis pipeline IIf. Nevertheless, our feature type explicitly aims to
serve for approaches to the classification of argumentative texts, because it
relies on our hypothesis that the overall structure of a text is decisive for
the class of a text, which will not hold for all other text classification tasks,
e.g. not for topic detection (cf. SEction 2.1). While the feature type can cope
with all kinds of flow types as exemplified, we have indicated that nominal
flow types restrict its flexibility.

Correctness Similar to the scheduling approach in Section 4.5, the two
presented pseudocodes (Pseupocopes 5.1 and 5.2) define method schemes
rather than concrete methods. As a consequence, again we cannot prove
correctness here. Anyway, the notion of correctness generally does not re-
ally make sense in the context of feature computations.

In particular, besides the flow type Ct that is defined as part of the input,
both the realized processes in general and the flow patterns in specific are
schematic in that they imply a number of relevant parameters:

1. Normalization. How to normalize flows and what length to use.
Similarity. How to measure the similarity of flows and clusters.
Purity. How to measure purity and what purity threshold to ensure.

Clustering. How to perform clustering and what algorithm to use.

O RN

Significance. How often a flow must occur to be used for clustering,
and how large a cluster must be to be used for pattern construction.

For some parameters, reasonable configurations may be found conceptually
in regard of the task at hand. Others should rather be found empirically.
With respect to the question of how to perform clustering, we have clar-
ified that the benefit of a supervised flow clustering lies in the construction
of common flow patterns that cooccur with certain text classes. A regular
unsupervised clustering may also achieve commonness, but it may lose the
cooccurrences. Still, there are scenarios where the unsupervised variant can
make sense, e.g. when rather few input texts with classes are available, but
a large number of unknown texts. Then, semi-supervised learning could be
conducted (cf. Section 2.1) where flow patterns are first derived from the
unknown texts and cooccurrences thereafter from the known texts.
Although we see the choice of a concrete clustering algorithm as part of
the realization, above we propose to resort to hierarchical clustering in or-
der to be able to easily find flow clusters with some minimum purity. An

242 5.4 FEATURES FOR DOMAIN INDEPENDENCE VIA SUPERVISED CLUSTERING

alternative would be to directly compute a flat clustering and then retain
only pure clusters. While such an approach provides less control about
the obtained flow patterns, it may significantly improve run-time: Many
flat clustering algorithms scale linearly with the number of objects to be
clustered, whereas most common hierarchical clustering algorithms are at
least quadratic (Manning et al., 2008). This brings us to the computational
complexity of using flow patterns as features for text classification as de-
scribed. As far as possible, we now estimate the asymptotic run-time of the
schematic pseudocodes in terms of the O-calculus (Cormen et al., 2009).

The main input size of DETERMINEFLOWPATTERNS in PSEUDOCODE 5.1 is the
number of texts in Dy (both the number of flows in F' and the number of
clusters in F are restricted by |Dr|). The complexity of two operations of
the method cannot be quantified asympotically, namely, the analysis of the
pipeline Il¢ in line 3 and the computation of a clustering F in line 9. We
denote their overall run-times on D7 as t¢(D7) and tg(Dr7), respectively.
The run-times of all remaining operations on the flows and clusters depend
on the length of the flows only. In the worst-case, the length of all flows is
the same but different from the normalized length. We denote this length
as |f,qz| here. The remaining operations are executed either at most once
for each text (like normalization) or once for all texts (like retaining signifi-
cant flows), resulting in the run-time O(|Dr| - |f,,42]). Altogether, we thus
estimate the run-time of DETERMINEFLOWPATTERNS as:

tDETERMINEFLOWPATTERNS(DT) = tf(DT) + tF(DT) + O(‘DT’ ' ‘fmaac’) (51)

In terms of asymptotic run-times, CREATETRAININGFEATUREVECTORS (cf. PsEuU-
pocoDk 5.2) differs only in two respects from pETERMINEFLOWPATTERNS: First,
no clustering takes place there, and second, similarities need to be com-
puted between each text and every flow pattern. Under the reasonable as-
sumption that the normalized length of the flows and flow patterns is con-
stant, however, the second difference does not play a role asymptotically.

Hence, the run-time of cREATETRAININGFEATUREVECTORS is:!”

tCREATETRAININGFEATUREVECTORS(DT) = 75f(])T) + O(|DT| . ’fma:pD (52)

In practice, the most expensive operation will often be the clustering in pe-
TERMINEFLOWPATTERNS for larger numbers of input texts. The goal of this
chapter is not to optimize efficiency, which is why we do not evaluate run-
times in the following experiments, where we employ the proposed fea-

171f the flow of each text from Dy is computed only once during the whole process (see
above), INequaLITY 5.2 would even be reduced to O(|Dr| - [fnaz])-

5 PrPELINE ROBUSTNESS 243

tures in an according overall analysis. However, we return to the efficiency
of feature computation, when we discuss the overall analysis in the context
of ad-hoc large-scale text mining at the end of this section.

EvALUATION OF THE PROPOSED FEATURES FOR DOMAIN INDEPENDENCE

A comprehensive evaluation of the effectiveness and domain robustness of
flow patterns in the classification of argumentative texts would require to
analyze several classification tasks, flow types, and domains. As as initial
step, we now investigate the sentiment scoring of reviews. We use local sen-
timent as the flow type, which appears promising according to the results in
Secrion 5.3. To stress the domain dependence problem of text classification,
we look at two highly different topical review domains, hotel (H) and film (F).
For information on the source code of the evaluation, see AppEnDIX B.4. De-
scriptions and effectiveness estimations of all algorithms mentioned in the
following are found in ApPENDIX A.

Argumentative Texts Our experiments are based on two English review
corpora: First, our ARGUANA TriPADVISOR cOrRPUS (cf. AppENDIX C.2) with
2100 hotel reviews and an average review length of 14.8 subsentence-level
discourse units (produced with the algorithm ppu). And second, the SEnTI-
MENT SCALE DATASET (cf. ApPENDIX C.4) with about 5000 film reviews and an
average length of 36.1 discourse units, where we assume each sentence to
denote one unit. The former is split into training, validation, and test texts,
while the latter consists of four separated datasets, one for each review au-
thor (4, b, c and d). We preprocess all reviews with the algorithms ssE, stos,
and pos;. For generality, we ignore the reviews’ titles, because our features
target at arbitrary argumentative texts, including those without a title.

Text Classes Each hotel review has a sentiment score between 1 (worst)
and 5 (best). The film reviews come with two sentiment scales. We rely on
the scale from 0 (worst) to 2 (best), so we can logically map the scale of the
hotel reviews to it for a domain transfer. In particular, scores 1 and 2 are
mapped to 0, score 3 to 1, and score 4 and 5 to 2.

Unit Classes We distinguish the three local sentiment classes already used
above, namely, positive (1.0), objective (0.5), and negative (0.0). For both do-
mains, we trained the algorithms css and csp to first classify the subjectiv-
ity of the discourse units and then the polarity of the subjective discourse
units. The hotel reviews contain ground-truth local sentiment annotations,
i.e., every discourse unit is annotated as an objective fact, a positive opin-
ion, or a negative opinion. For training css and csp in the film domain, we
additionally acquired the SusjecTiviTY DATASET and the SENTENCE POLARITY

244 5.4 FEATURES FOR DOMAIN INDEPENDENCE VIA SUPERVISED CLUSTERING

DATASET (cf. ApPENDIX C.4). The resulting distributions of local sentiment in
the two review corpora has already been shown in FIGURE 4.10 (SECTION 4.4).
They give a hint on how different the two evaluated domains are.

Flows Based on either the ground-truth or the self-created annotations, we
computed the local sentiment flow of each review. To construct sentiment
flow patterns, all flows were length-normalized with non-linear interpola-
tion and subsequent sampling. We used length 30 in case of the hotel re-
views and length 60 in case of the film reviews, in order to represent most
of the original flows without loss.

Flow Patterns For supervised clustering, we have developed a basic ag-
glomerative hierarchical clusterer. After some tests with different settings,
we decided to measure flow and cluster similarity using group-average link
clustering (Manning et al., 2008) based on the Manhattan distance between
the normalized flows. In terms of purity, we resort to the relaxed purity for
the sentiment scale of the hotel reviews and the original purity for the film
reviews, both with a threshold of 0.8. The centroids of all resulting clusters
with at least three flows become a sentiment flow pattern.

Features Given the unit classes and the normalized flow of each review,
we computed features for the prediction of the review’s sentiment score.
Besides the flow patterns, we examine a selection of features in the sense
of baselines that participated in our experiments in Section 5.3 or that are
derived from the obtained results. For a concise presentation, we combine
some of them in the following feature types, each of which comprising a

number of single features (given in brackets).'

1. Content and style features (1026 to 2071 features). The distributions
of word and part-of-speech 1-grams, 2-grams, and 3-grams as well as
of all character 3-grams in the text. Lexical statistics of the text and six
word-based average sentiment scores (cf. SECTION 5.3).

2. Local sentiment distributions (50 to 80 features). The frequencies of
all local sentiment classes in the text, of series of the same class, and of
changes from one class to another. Also, the local sentiment at specific
positions like the first and last two units, the average local sentiment,
and the original local sentiment flow from (Mao and Lebanon, 2007).

3. Discourse relation distributions (64 to 78 features). The distribution
of all ten discourse relation types extracted by our heuristic discourse

'8 As in SecTioN 5.3, the numbers of features vary depending on the training set, because
we take only those features whose frequency in the training texts exceeds some specified
threshold (cf. SEction 2.1). For instance, a word unigram is taken into account only if it
occurs in at least 5% of the hotel reviews or 10% of the film reviews, respectively.

5 PrPELINE ROBUSTNESS 245

parser ppR as well as of frequent combinations of a relation type and
the local sentiment classes it relates, e.g. contrast(positive, negative).'’

4. Sentiment Flow Patterns (16 to 86 features). The similarity of the nor-
malized flow of the text to each flow pattern, as proposed above.

Experiments Based on the four feature types, we evaluate the accuracy of
a supervised classification of sentiment scores within and across domains.
Concretely, we use different combinations of the employed corpora to train
and test the algorithm css on subsets of all feature types. css learns a map-
ping from feature values to scores using a linear support vector machine (cf.
ArpPENDIX A.1 for details). To this end, we first processed the respective train-
ing set to determine the concrete features of each type. Then, we computed
values of these features for each review. In the in-domain tasks, we opti-
mized the cost parameter of css during training. For the classification across
domains, we relied on the default parameter value, because an optimization
with respect to the training domain does not make sense there. After train-
ing, we measure accuracy on the respective test set.

In case of the hotel reviews, we trained and optimized css on the training
set and the validation set of the ARGUANA TRIPADVISOR CORPUS, respectively.
On the film reviews, we performed 10-fold cross-validation (cf. SEcTiON 2.1)
separately on the dataset of each review author, averaged over five runs.
By that, we can directly compare our results to those of Pang and Lee (2005)
who published the SENTIMENT ScALE DATASET. In particular, we consider their
best support vector machine approach here, called 0va.?’

Effectiveness within each Domain First, we report on the in-domain tasks.
For the hotel domain, we provide accuracy values once with respect to the
sentiment scale from 1 to 5 and once with respect the mapped scale from 0
to 2. In addition, we compare the theoretically possible accuracy to the prac-
tically achieved accuracy by opposing the results on the ground-truth lo-
cal sentiment annotations of the ARGUANA TRIPADVISOR CORPUS to those on
our self-created annotations. For the film domain, we can refer only to self-
created annotations. All results are listed in TABLE 5.4.

In the 5-class scenario on the ground-truth annotations of the hotel re-
views, the local sentiment distributions and the sentiment flow patterns are

“In (Wachsmuth et al., 2014a), we also evaluate the local sentiment on specific domain
concepts in the given text. For lack of relevance, we leave out respective experiments here.

2We evaluate only the classification of scores for a focused discussion. In general, a more
or less metric scale like sentiment scores suggests to use regression (cf. SECTION 2.1), as we
have partly done in (Wachsmuth et al., 2014a). Moreover, since our evaluation does not aim
at achieving maximum effectiveness in the first place, for simplicity we do not explicitly in-
corporate knowledge about the neighborship between classes here, e.g. that score 1 is closer
to score 2 than to score 3. An according approach has been proposed by Pang and Lee (2005).

246 5.4 FEATURES FOR DOMAIN INDEPENDENCE VIA SUPERVISED CLUSTERING

Hotel (5-class) Hotel (3-class) Film (3-class)

Feature Type Corpus Self Corpus Self a b ¢ d
1 Content and style features 43% 43% 59% 59% 69% 57% 72% 58%
2 Local sentiment distributions 52% 42% 76% 70% 50% 48% 62% 51%
3 Discourse relation distibutions 48% 41% 76% 65% 50% 47% 61% 50%
4 Sentiment flow patterns 51% 40% 73% 63% 52% 49% 63% 51%
2-4 Argumentation feature types 51% 44% 76% 71% 53% 48% 65% 51%
1-4 All four feature types 54% 48% 78% 70% 68% 57% 72% 58%

ova (Pang and Lee, 2005) - - - - 62% 57% 73% 62%

TaBLE 5.4: Accuracy of all evaluated feature types in 5-class and 3-class sentiment
analysis on the test hotel reviews of the ARGUANA TrIPADVISOR CORPUS based on
ground-truth annotations (Corpus) or on self-created annotations (Self) as well as in
3-class sentiment analysis on the film reviews of author 4, b, cand d in the SENTIMENT
ScaLe paTaser. The bottom line compares our approach to (Pang and Lee, 2005).

best under all single feature types with an accuracy of 52% and 51%, respec-
tively. Combining all types boosts the accuracy to 54%. Using self-created
annotations, however, it significantly drops down to 48%. The loss of fea-
ture types 2 to 4 is even stronger, making them perform slightly worse than
the content and style features (40%—42% vs. 43%). These results seem not
to match with (Wachsmuth et al., 2014a), where the regression error of the
argumentation features remains lower on the self-created annotations. The
reason behind can be inferred from the 3-class hotel results, which demon-
strate the effectiveness of modeling argumentation for sentiment scoring:
There, all argumentation feature types outperform feature type 1. This in-
dicates that at least the polarity of their classified scores is often correct, thus
explaining the low regression errors.

On all four film review datasets, the sentiment flow patterns classify
scores most accurately among the argumentation feature types, but their
effectiveness still remains limited.?! The content and style features domi-
nate the evaluation, which again gives evidence for the effectiveness of such
features within a domain (cf. SectioN 5.3). Compared to ova, our classifier
based on all feature types is significantly better on the reviews of author a
and a little worse on two other datasets (¢ and d).

We conclude that the proposed feature types are competitive, achieving
similar effectiveness than existing approaches. In the in-domain task, the
sentiment flow patterns do not fail, but they also do not excel. Their main
benefit lies in their strong domain invariance, as we see next.

*'We suppose that the reason behind mainly lies in the limited accuracy of 74% of our
polarity classifier csp in the film domain (cf. ArpEnDIX A.2), which reduces the impact of all
features that rely on local sentiment.

5 PrPELINE ROBUSTNESS 247

accuracy on hotel reviews

70
59 -10 -11 -8 65

i
60% 16 -12
19

-1915-18
40% e
20%

0%

1. Content and style 2. Local sentiment 3. Discourse relation 4. Sentiment flow 1.-4. All four
features distributions distributions patterns feature types

Ficure 5.15: Accuracy of the evaluated feature types on the test hotel reviews in
the ARGUANA TriIPADVISOR CORPUS based on self-created annotations with training
either on the training hotel reviews (H2H) or on the film reviews of author 4, b, c,
or d in the SentiMeNnT ScaLe paraser (F,2H, F,2H, F.2H, and F;2H).

Effectiveness across Domains We now offer evidence for our hypothesis
from SectiON 5.1 that features like the sentiment flow patterns, which cap-
ture overall structure, improve the domain robustness of classifying argu-
mentative texts. For this purpose, we apply the above-evaluated classifiers
trained in one domain to the reviews of the respective other domain. Differ-
ent from (Wachsmuth et al., 2014a), we here consider not only the transfer
from the hotel to the film domain, but also the other way round.

For the transfer to the hotel domain, FIGURE 5.15 shows the accuracy loss
of each feature type resulting from employing either of the four film datasets
instead of hotel reviews for training (given in percentage points). With a few
exceptions, feature types 1 to 3 fail in these out-of-domain scenarios. Most
significantly, the content and style features lose 13 (F,2H) to 19 percentage
points (F,2H), but the local sentiment and discourse relation distributions
seem hardly more robust. As a consequence, the accuracy of all four feature
types in combination is compromised severely. At the same time, the sen-
timent flow patterns maintain effectiveness across domains, losing only 4
to 10 points through out-of-domain training. This supports our hypothe-
sis. Still, the local sentiment distributions compete with the sentiment flow
patterns in the resulting accuracy on the hotel reviews.

However, this is different when we exchange the domains of training and
application, as illustrated in FiGUrE 5.16. There, the local sentiment distribu-
tions denote the second worst feature type when training them on the hotel
reviews. Their accuracy is reduced by up to 22 percentage points (H2F,),
resulting in values around 40% on all film datasets. Only the content and
style features seem more domain-dependent with drastic drops between 18
and 41 points. In contrast, the accuracy of the discourse relation distribu-
tions and especially of the sentiment flow patterns provide further evidence
for the truth of our hypothesis. They remain almost stable on three of the
four film datasets. Only in the out-of-domain scenario H2F;, they also fail

248 5.4 FEATURES FOR DOMAIN INDEPENDENCE VIA SUPERVISED CLUSTERING

accuracy on film reviews

60%
40%
20%

0%

. tand style 2. Local sentiment 3. Discourse relation 4. Sentiment flow 1.-4. All four
features distributions distributions patterns feature types

Ficure 5.16: Accuracy of the evaluated feature types on the film reviews of author
a, b, ¢, and d in the SENTIMENT ScALE DATASET in 10-fold cross-validation on these
reviews (F,2F,, Fy2F,, F.2F., and F;2F;) or with training on the training hotel re-
views of the ARGuANA TripApvisor corrus (H2F,,, H2F;,, H2F., and H2F,).

(a) ArguAna TripAdvisor corpus (scale 1-5)

positive (1.0) score 2-3 (based on 24 flows)

score 5-4 (based on 226 flows)

objective (0.5)

negative (0.0)

(b) Sentiment Scale dataset, author ¢ (scale 0-2) (c) Sentiment Scale dataset, author d (scale 0-2)
score 1 score 1

10 o2 (7 flows) 1.0 Zcﬁg‘jvg (15 flows)

05 —F——— A e 05 o ﬂ/\

1 . /60
AY) score 0
: (16 flows)

score 0 ¥

0.0 (11 flows) 0.0

Ficure 5.17: (a) The three most common sentiment flow patterns in the training
set of the ARGUANA TrRIPADVISOR cOrpruUs, labeled with their associated sentiment
scores. (b—c) The according sentiment flow patterns for all possible scores of the
texts of author c and d in the SENTIMENT ScALE DATASET, respectively.

with the sentiment flow patterns being worst. Apparently, the argumenta-
tion structure of the film review author d, which is reflected by the found
sentiment flow patterns, must differ from the others.

Insights into Sentiment Flow Patterns In Ficure 5.17(a), we plot the most
common sentiment flow pattern for each possible sentiment score among
those 38 patterns that we found in the training set of the ARGUANA Trip-
Apvisor corprus (based on self-created annotations). As depicted, the pat-
terns are constructed from the local sentiment flows of up to 226 texts. Be-
low, Ficures 5.17(b—c) show the respective patterns for author c and d in the
SENTIMENT ScALE DATASET. One of the 75 patterns of author c results from 155
flows, whereas all 41 patterns of author d represent at most 16 flows.

With respect to the shown sentiment flow patterns, the film reviews yield
less clear sentiment but more changes of local sentiment than the hotel re-
views. While there appears to be some similarity in the overall argumenta-
tion structure between the hotel reviews and the film reviews of author c,

5 PrPELINE ROBUSTNESS 249

two of the three patterns of author d contain only little clear sentiment at
all, especially in the middle parts. We have already indicated the dispar-
ity of the author d dataset in FIGURE 4.10 (SECTION 4.4). In particular, 73%
of all discourse units in the ARGUANA TrRIPADVISOR CORPUS are classified as
positive or negative opinions, but only 37% of the sentences of author d.
The proportions of the three other film datasets at least range between 58%
and 67%. These numbers also serve as a general explanation for the limited
accuracy of the argumentation feature types 1 to 3 in the film domain.

A solution to improve the accuracy and domain invariance of modeling
argumentation structure might be to construct sentiment flow patterns from
the subjective statements only or from the changes of local sentiment, which
we leave for future work. Here, we conclude that our novel feature type does
not yet solve the domain dependence problem of classifying argumentative
texts, but our experimental sentiment scoring results suggest that it denotes
a promising step towards more domain robustness.

DiscussioN oF THE FEATURES FOR DoMAIN INDEPENDENCE

In this section, we have pursued the main goal of this chapter, i.e., to develop
a novel feature type for the classification of argumentative texts whose dis-
tribution is strongly domain-invariant across the domains of the texts. The
feature type relies on our structure-oriented view of text analysis from Sec-
TION 5.2. For the first time, it captures the overall structure of an argumenta-
tive text by measuring the similarity of the flow of the text to a set of learned
flow patterns. Our evaluation of sentiment scoring supports the hypothesis
from SectioN 5.1 that such a focus on overall structure benefits the domain
robustness of text classification. In addition, the obtained results give evi-
dence for the intuition that people often simply organize an argumentation
sequentially, which denotes an important linguistic finding.

However, the effectiveness of the proposed flow patterns is far from opti-
mal yet. Some possible improvements have been revealed by the provided
insight into sentiment flow patterns. Also, a semi-supervised learning ap-
proach on large numbers of texts (as sketched above) may result in more
effective flow patterns. Besides, further domain-invariant features might
help, whereas we have seen that the combination with domain-dependent
features reduces domain robustness.

With respect to domain robustness, we point out that the evaluated senti-
ment flow patterns are actually not fully domain-independent. Concretely,
they still require a (possibly domain-specific) algorithm that can infer local
sentiment from an input text, although this seems at least a somewhat eas-

KERNEL FUNCTION

CONVOLUTIONAL KERNEL

250 5.4 FEATURES FOR DOMAIN INDEPENDENCE VIA SUPERVISED CLUSTERING

ier problem. To overcome domain dependence, a solution may be to build
patterns from more general information. For instance, Section 5.3 indicates
the benefit of discourse relations in this regard. Within one language, an-
other approach is to compute flow patterns based on the function words in a
text, which can be understood as an evolution of the function word n-grams
used in tasks like plagiarism detection (Stamatatos, 2011).

Apparently, even the evaluated sentiment scoring task alone implies sev-
eral directions of research on flow patterns. An investigation of all of them
would greatly exceed the scope of this thesis. In general, further classifica-
tion tasks are viable for analyzing the discussed or other flow types, partic-
ularly those that target at argumentative texts. Some are mentioned in the
preceding sections, like automatic essay grading or language function ana-
lysis. Moreover, while we restrict our view to text classification here, other
text analysis tasks may profit from modeling overall structure.

In the area of information extraction, common approaches to tasks like
named entity recognition or relation extraction already include structural
features (Sarawagi, 2008). There, overall structure must be addressed on a
different level (e.g. on the sentence level). A related approach from relation
extraction is to classify candidate entity pairs using kernel functions. Ker-
nel functions measure the similarity between graphs such as dependency
parse trees, while being able to integrate different feature types. Especially
convolutional kernels aim to capture structural information by looking at sim-
ilar graph substructures (Zhang et al., 2006). Such kernels have also proven
beneficial for tasks like semantic role labeling (cf. SEcTION 2.2).

As in the latter cases, the deeper the analysis, the less shallow patterns of
overall structure will suffice. With respect to argumentative texts, a task of
increasing prominence that emphasizes the need for more complex models
is a full argumentation analysis, which seeks to understand the arguments
in a text and their interactions (cf. Section 2.4 for details). In the context
of ad-hoc large-scale text mining, we primarily aim for comparably shallow
analyses like text classification. Under this goal, the resort to unit class flows
and discourse relation flows provides two advantages: One one hand, the
abstract nature of the flows reduces the search space of possible patterns,
which facilitates the determination of patterns that are discriminative for
certain text classes (as argued at the end of SEction 5.2). On the other hand,
computing flows needs much less time than complex analyses like pars-
ing (cf. SEcTION 2.1). This becomes decisive when processing big data.

Our analysis of Pseupocopes 5.1 and 5.2 indicates that the scalability of
our feature type rises and falls with the efficiency of two operations, though:
(1) Computing flows and (2) clustering them. The first depends on the effort

55

5 PrPELINE ROBUSTNESS 251

of inferring all instances of the flow type of the flow patterns (including pre-
processing steps). The average run-times of the algorithms css and csp em-
ployed here give a hint of the increased complexity of performing sentiment
scoring in the presented way (cf. AppEnDIX A.2). Other flow types may be
much cheaper to infer (like function words), but also much more expensive.
Discourse relations, for instance, are often obtained through parsing. Still,
efficient alternatives exist (like our lexicon-based algorithm ppr), indicat-
ing the usual tradeoff beween efficiency and effectiveness (cf. SEcTiON 3.1).
With respect to the second (clustering), we have discussed that our hierar-
chical approach may be too slow for larger numbers of training texts and
we have outlined flat clusterers as an alternative. Nevertheless, clustering
tends to represent the bottleneck of the feature computation and, thus, of
the training of an according algorithm.

Anyway, training time is not of upmost importance in the scenario we tar-
get at, where we assume the text analysis algorithms to choose from to be
given in advance (cf. SEctioN 1.2). This observation conforms with our idea
of an overall analysis from Section 1.3: The determination of features takes
place within the development of an algorithm A7 that produces instances
of a set of text classes C7. At development time, A7 can be understood as
an overall analysis: It denotes the last algorithm in a pipeline Il7 for infer-
ring Ct while taking as input all information produced by the preceding
algorithms in II7. Once Ar is given, it simply serves as an algorithm in the
set of all available algorithms. In the end, our overall analysis can hence be
seen as a regular text analysis algorithm for cross-domain usage. Besides
the intended domain robustness, such an analysis provides the benefit that
its results can be explained, as we finally sketch in Section 5.5.

ExpLAINING REsuLTs IN HiIGH-QuALITY TEXT MINING

A text analysis pipeline that robustly achieves sufficient effectiveness irre-
spective of the domain of the input texts qualifies for being used in search
engines and big data analytics applications. Still, the end user acceptance of
an according application may be limited, if erroneous analysis results can-
not be explained (Lim and Dey, 2009). In this section, we outline that both
general knowledge about a text analysis process and specific information of
our feature type from SectioN 5.4 allow for automatic result explanations. A
first user study based on a prototypical sentiment scoring application indi-
cates the intelligibility of the explanations. We conclude that intelligibility
denotes the final building block of high quality in text mining.

INTELLIGIBILITY

EXPLANATION

TRUST

UNDERSTANDING

SPEED

SOUNDNESS

COMPLETENESS

252 5.5 ExpLaINING Resurts IN HiGH-QuaLITY TEXT MINING

INTELLIGIBLE TEXT ANALYSIS THROUGH EXPLANATIONS

The intelligibility of an application can be seen as the application’s ability to
make transparent what information it has from where and what it does with
that information (Bellotti and Edwards, 2001). One way to approach intel-
ligibility is to automatically provide explanations to the user of an applica-
tion. We use the term explanation to refer to a (typically visual) presentation
of information about the application’s behavior. The goal of intelligibility
and, thus, of giving explanations is to increase a user’s acceptance of an ap-
plication. The acceptance is largely affected by the trust a user has in the cor-
rectness of the presented information as well as by the user’s understanding
of how the results of an application have come up (Lim and Dey, 2009). At
the same time, the speed in which users can process the information pro-
vided via an interface always matters (Gray and Fu, 2001).

In the context of text analysis pipelines, an understanding of the reasons
behind results is not trivial, because the results often emerge from a process
with several complex and uncertain decisions about natural language (Das
Sarma et al., 2011). We hypothesize that intelligibility can be supported by
explaining this process. Below, we show how to generally explain arbitrary
text analysis processes, reusing ideas from our approach to ad-hoc pipeline
construction (cf. Section 3.3). Especially in the area of text classification,
the decisive step is the mapping from features to a text class, though. While
most approaches output only a class label (cf. SEcTioN 2.4 for details), we can
use the flow patterns from SectioN 5.4 to intuitively explain a classification
decision, as we sketch afterwards.?

In the discussion, we follow Kulesza et al. (2013) who analyze the ben-
efit of explanations of an application depending on their soundness and
completeness. Here, soundness describes how truthful the presented infor-
mation reflects what the application does, whereas completeness refers to the
extent to which the information reflects all relevant aspects of the applica-
tion. The authors found that explanations, which are both highly sound
and highly complete, are most trusted by users. Still, such explanations en-
tail the danger that important information is overlooked. According to the
results of the authors, a reduced completeness tends to maintain trust, but
it often causes a slower and worse understanding of what is happening.
Reducing soundness enables simplification, thus often speeding up the un-
derstanding, but it lowers the trust for lack of enough information.

ZBesides explanations, a common approach to improve intelligibility in tasks like infor-
mation extraction, which we do not detail here, is to support verifiability, e.g. by linking
back to the source documents from which the returned results have been inferred.

5 PrPELINE ROBUSTNESS 253

EXPLANATION OF ARBITRARY TEXT ANALYSIS PROCESSES

We consider the scenario that a text analysis pipeline IT = (A, 7) has pro-
cessed an input text to produce instances of a set of information types C (in
the sense of annotations with features, cf. Section 3.2). The goal is to au-
tomatically explain the text analysis process that is realized to create some
specific target instance of any information type from C. For this purpose,
we now outline how to reuse the partial order induced by the interdepen-
dencies between the algorithms in A, which we exploited in Section 3.3.

In particular, we propose to construct a directed acyclic explanation graph
that illustrates the process based on the produced information. Each node
in the graph represents an annotation with its features. The root node cor-
responds to the target instance. An edge between two nodes denotes a de-
pendency between the respective annotations. Here, we define that an an-
notation of type C; € C depends on an annotation of type C5 € C, if the
annotations overlap and if the algorithm in A, which produces C; as out-
put, requires C3 as input. In addition to the dependencies, every node is
assigned properties of the algorithms in A that have been used to infer the
associated annotation types and features, e.g. estimations of the algorithms’
quality. Only nodes belong to the explanation graph the target instance di-
rectly or indirectly depends on.

As an example, let the following pipeline I, be given to assign a senti-
ment score to the sample text from SectioN 5.2:

IIsco = (SSE, STO2, TPO1, PDU, CSB, CSP, PDR, CSS)

css classifies sentiment scores based on the local sentiment flow of a text
derived from the output of css and csp as well as discourse relations be-
tween local sentiments extracted with ppr (cf. SectioN 5.4). Using the input
and output types of the eight employed algorithms listed in ApPENDIX A.1
and the estimations of their quality from AppeENDIX A.2, we can automati-
cally construct the explanation graph in Ficure 5.18. There, each layer sub-
sumes the instances of one information type (e.g. token with part-of-speech),
including the respective text spans (e.g. “We”) and possibly associated val-
ues (e.g. the part-of-speech tag PP).2> Where available, a layer is assigned
the estimated accuracies of all algorithms that have inferred the associated
type (e.g. 98% and 97% of sto; and TrO;, respectively).?* With respect to the
shown dependencies, the explanation graph has been transitively reduced,
such that no redundant dependencies are maintained.

BFor clarity, we omit the text span in case of discourse relations in FIGURE 5.18. Relation
types can easily be identified, as only they point to the information they are dependent on.

Although I, employs ppu, FIGURE 5.18 contains no discourse unit annotations. This is
because each discourse unit is classified as being a fact or an opinion by css afterwards.

EXPLANATION GRAPH

254 5.5 ExpLAaNING Resurts IN HigH-QuaLity Text MINING

sentiment . 3 out of 5 ;
with score = We spent one mfght at that hotel. Staff at the front desk was very nice, the room was clean and cozy,
a48% and the hotel lies in the city center... but all this never justifies the price, which is outrageous!
discourse , i
relation background elaboration elaboration contrast
n/a /\
opinion with positive positive negative
polarity Staff at the front the room was but all this never justifies
a 78%, 80% deskwas very nice, clean and cozy, the price, which is outrageous!
fact e spent one night and the hotel lies
ar8% at that hotel! in the city center...
token with '/\‘
part-of-speech PP VVD DT NN VBD JJ CC JJ , JJ NN
298%, 97% Ve spent the room was clean and cozy - outrageous !
sentence \ x o \ & x l J / ’/ / ’/
aosy, Wespent one night Staff at the front desk was very nice, the room was clean and cozy, and the hotel
at that hotel. lies in the city center... but all this never justifies the price, which is outrageous!

Ficure 5.18: Illustration of an explanation graph for the sentiment score of the sam-
ple text from SectioN 5.2. The dependencies between the different types of output
information as well as the accuracy estimations (a) are derived from knowledge
about the text analysis pipeline that has produced the output information.

The sketched construction of explanation graphs is generic, i.e., it can be
performed for arbitrary text analysis pipelines and information types. We
have realized the construction on top of the ApacHe UIMA framework (cf.
SecTIONS 3.3 and 3.5) as part of a prototypical web application for sentiment
scoring described in Appenpix B.3.2 However, an explanation graph tends
to be meaningful only for pipelines with deep hierarchical interdependen-
cies. This typically holds for information extraction rather than text classifi-
cation approaches (cf. SEction 2.2), but the given example emphasizes that
according pipelines also exist within text classification.

In terms of an external view of text analysis processes, explanation
graphs are quite sound and complete. Only few information abouta process
is left out (e.g., although not common, annotations sometimes depend on
annotations they do not overlap with). Still, the use of explanation graphs in
the presented form may not be adequate for explanations, since some of the
contained information is rather technical (e.g. part-of-speech tags). While
such details might help to achieve the trust of users with a computational
linguistics or similar background, their benefit for average users seems lim-
ited. In our prototype, we thus simplify the explanation graphs. Among
others, we group different part-of-speech tags (e.g. common noun (NN) and
proper noun (NE)) under meaningful terms (e.g. noun) and we add edges

BWithin Apacue UIMA, the algorithms’ interdependencies can be inferred from the de-
scriptor files of the primitive analysis engine employed in an aggregate analysis engine. For
properties like the quality estimations, we rely on a fixed notation in the description field of
the respective descriptor file, just as we have done in the expert system from SectIoN 3.3.

5 PrPELINE ROBUSTNESS 255

between independent but fully overlapping nodes (cf. AppenDIX B.3 for ex-
amples). The latter reduces soundness, but it makes the graph more easy to
conceive. Besides, FIGURE 5.18 indicates that explanation graphs can become
very large, which makes their understanding hard and time-consuming. To
deal with the size, our prototype reduces completeness by displaying only
the first layers in an overview graph and the others in a detail graph. Nev-
ertheless, long texts make the resort to explanation graphs questionable.

In terms of an internal view, the expressiveness of explanation graphs is
rather low because of their generic nature. Concretely, an explanation graph
provides no information about how the target instance emanates from the
annotations it depends on. As mentioned above, the decisive step of most
text classification approaches (and also many information extraction algo-
rithms) is the feature computation, which remains implicit in an explana-
tion graph. General information in this respect could be specified via ac-
cording properties of the employed algorithm, say “features: lexical and shal-
low syntactic” in case of css. For input-specific information, however, the
actually performed text analysis must be explained. This is easy for our
overall analysis from SectION 5.4, as we discuss next.

ExPLANATION OF THE CLASS OF AN ARGUMENTATIVE TEXT

We now close our investigation of the classification of argumentative texts
by exemplifying how to explain a determined text class based on our
structure-oriented model from Section 5.2. For the related explicit semantic
analysis approach, Gabrilovich and Markovitch (2007) point out that an im-
portant benefit of modeling the natural concepts from Wikipepia as individ-
ual features is that the approach can be easily explained to users. Similarly,
we argue that the unit class flows introduced in Section 5.3 and the flow
patterns from SecTioN 5.4 provide all information needed to automatically
create intuitive explanations in argumentation-related tasks.

For illustration, FIGURE 5.19 shows two exemplary ways of using the in-
formation captured in our model to visually explain the sentiment score of
a sample text, which should be 3 out of 5 here (or a little less than 3 in case
of real-valued scores). Many other visualizations are possible, e.g. a combi-
nation of a text and a flow similar to FIGURE 5.8 (cf. SEcTION 5.2).

The highlighted text in FIGURE 5.19(a) aims to increase the speed of con-
ceiving that positive and negative sentiment is quite balanced. Given that
the underlying scoring approach is restricted to the distribution of local sen-
timent (maybe complemented with lexical features), the abstraction of re-
flecting global sentiment by the length of positive and negative text spans

256 5.5 ExpLAaNING Resurts IN HigH-QuaLity Text MINING

(a) highlighting of local sentiment in the text

We spent one night at that hotel. Staff at the front desk was very nice, the room was clean and cozy,
and the hotel lies in the city center...
score 3 (2.69)

(b) comparing the local sentiment flow of the text to similar flow patterns

ositive (1.0 -
’ o R ® /,/.—«\ common pattern with score 3-4 _
objective (0.5) ———— o — @ >
- _'score 3 (2.69)
negative (0.0) common pane?n with score 2-3 = .

Ficure 5.19: Two possible visual explanations for the sentiment score of the sample
text from FIGURE 5.3 based on our model from Section 5.2: (a) Highlighting all local
sentiment. (b) Comparison to the most similar sentiment flow patterns.

seems sound and not very incomplete. In contrast, FIGURE 5.19(b) puts more
focus on structure. By comparing the local sentiment flow of the text to
common flow patterns, it directly visualizes the feature type developed in
SECTION 5.4. If few patterns are much more similar to the flow than all oth-
ers, the visualization serves as a sound and rather complete explanation of
that feature type. Given that a user believes the patterns are correct, there
should hence be no reason for mistrusting such an explanation.

To summarize, we claim that certain feature types can be explained ad-
equately by visualizing our model. However, many text classification ap-
proaches combine several features, like the one evaluated in SEcTiON 5.4. In
this case, both the soundness and the completeness of the visualizations will
be reduced. To analyze the benefit of explanations in a respective scenario,
we conducted a first user study in our project ARGUANA using the crowd-
sourcing platform Amazon MecHanicaL Turk?®, where so called workers
can be requested to perform tasks. The workers are paid a small amount of
money if the results of the tasks are approved by the requester. For a concise
presentation, we only roughly outline the user study here.

The goal of the study was to examine whether explanations (1) help to
assess the sentiment of a text and (2) increase the speed of assessing the sen-
timent. To this end, each task asked a worker to classify the sentiment score
of 10 given reviews from the ARGUANA TriPADVISOR CORPUS (cf. SEcTION C.2),
based on presented information of exactly one of the following three types
that we obtained from our prototypical web application (cf. SEction B.3):

1. Plain text. The review in plain text form.

2. Highlighted text. The review in highlighted text form, as exemplified
in FIGURE 5.19(a).

26 AMazoN MecuanicaL TUrk, http: //www.mturk . com, accessed on November 11, 2014.

5 PrPELINE ROBUSTNESS 257

Presented information 1 2 3 4 5 All tasks Fastest 25%
1 Plain text 1.7 25 31 39 43 488.5s 2169s
2 Highlighted text 16 22 28 38 44 361.7 s 85.8 s
3 Plain text + local sentiment flow 1.7 22 28 37 43 775.0s 182.6s

TaBLE 5.5: The average sentiment score classified by the AMazon MecHaNIcAL TURK
workers for all reviews in the ARGUANA TrRiPADVISOR cORPUS Of each score between 1
and 5 depending on the presented information as well as the time the users took for
classifying 10 reviews averaged over all tasks or over the fastest 25%, respectively.

3. Plain text + local sentiment flow. The review in plain text form with
the associated local sentiment flow shown below the text.?”

All 2100 reviews of the ARGUANA TRIPADVISOR cORPUS Were classified based
on each type by three different workers. To prevent flawed results, two
check reviews with unambiguous sentiment (score 1 or 5) were put among
every 10 reviews. We accepted only tasks with correctly classified check
reviews and we reassigned rejected tasks to other workers. Altogether, this
resulted in an approval rate of 93.1%, which indicates the quality of the con-
ducted crowdsourcing. TasLE 5.5 lists the aggregated classification results
separately for the reviews of each possible sentiment score (in the center) as
well as the seconds required by a worker to perform a task, averaged over
all tasks and over the fastest 25% of the tasks (on the right).

The average score of a TRIPADVISOR review lies between 3 and 4 (cf. Ap-
PENDIX C.2). As TaBLE 5.5 shows, these “weak” sentiment scores were most
accurately assessed by the workers based on the plain text, possibly because
the focus on the text avoids a biased reading in this case. In contrast, espe-
cially the highlighted text seems to help to assess the other scores. At least
for score 2, also the local sentiment flow proves beneficial. In terms of the re-
quired time, the highlighted text clearly dominates the study. While type 3
speeds up the classification with respect to the fastest 25%, it entails the
highest time on average. The latter result is not unexpected, because of the
complexity of understanding two instead of one visualization.

IMmrLICATIONS FOR AD-HOC LARGE-SCcALE TEXT MINING

This section has roughly sketched that knowledge about a text analysis pro-
cess as well as information obtained within the process can be used to im-
prove the intelligibility of the pipeline that realizes the process. In partic-
ular, both our process-oriented view of text analysis from Secrion 3.2 and

ZUnfortunately, flow patterns were omitted, as they are not visualized in our application.

258 5.5 ExpLAaNING Resurts IN HigH-QuaLity Text MINING

our structure-oriented view from SecTiON 5.2 can be operationalized to au-
tomatically provide explanations for a pipeline’s results.

The presented explanation graphs give general explanations of text ana-
lysis processes that come at no cost (except for the normally negligible time
of constructing them). They can be derived from arbitrary pipelines. For
a deeper insight into the reasons behind some result, we argue that more
specific explanations are needed that rely on task-specific information. We
have introduced two exemplary visual explanations in this regard for the
sentiment scoring of argumentative texts. At least the intelligibility of high-
lighting local sentiment has been underpinned in a first user study, whereas
we leave an evaluation of the explanatory benefit of flow patterns for future
work. In the end, the creation of explanations requires research in the field
of information visualization, which is beyond the scope of this thesis.

Altogether, this chapter has made explicit the difficulty of ensuring high
quality in text mining. Concretely, we have revealed the domain depen-
dence of the text analysis pipelines executed to infer certain information
from input texts as a major problem. While we have successfully addressed
one facet of improving the domain robustness of pipelines to a certain ex-
tent, our findings indicate that perfect robustness will often be impossible to
achieve. In accordance with that, our experiments have underlined the fun-
damental challenge of high effectiveness in complex text analysis tasks (cf.
SectiON 2.1). Although approaches to cope with limited effectiveness exist,
like the exploitation of redundancy (cf. SEctiON 2.4), the effectiveness of an
employed text analysis pipeline will always affect the correctness of the re-
sults of the associated text mining application. Consequently, we argue that
the intelligibility of a text analysis process is of particular importance, as it
may increase the end user acceptance of erroneous results.

Moreover, in the given context of ad-hoc large-scale text mining (cf. Sec-
TION 1.2), the correctness of results can be verified at least sporadically be-
cause of the sheer amount of processed data. Hence, a general trust in the
quality of a text analysis pipeline seems necessary. Under this premise, in-
telligibility denotes the final building block of high quality text mining aside
from a robust effectiveness and efficiency of the performed analyses.

We can only see a short distance ahead, but we can see plenty
there that needs to be done.

Alan Turing

Conclusion

THE ABILITY OF PERFORMING TEXT MINING AD-HOC IN THE LARGE has the potential
to essentially improve the way people find information today in terms of
speed and quality, both in everyday web search and in big data analytics.
More complex information needs can be fulfilled immediately, and previ-
ously hidden information can be accessed. At the heart of every text mining
application, relevant information is inferred from natural language texts by
a text analysis process. Mostly, such a process is realized in the form of a
pipeline that sequentially executes a number of information extraction, text
classification, and other natural language processing algorithms. As a mat-
ter of fact, text mining is studied in the field of computational linguistics,
which we consider from a computer science perspective in this thesis.

Besides the fundamental challenge of inferring relevant information ef-
fectively, we have revealed the automatic design of a text analysis pipeline
and the optimization of a pipeline’s run-time efficiency and domain robust-
ness as major requirements for the enablement of ad-hoc large-scale text
mining. Then, we have investigated the research question of how to exploit
knowledge about a text analysis process and information obtained within
the process to approach these requirements. To this end, we have devel-
oped different models and algorithms that can be employed to address in-
formation needs ad-hoc on large numbers of texts. The algorithms rely on
classical and statistical techniques from artificial intelligence, namely, plan-
ning, truth maintenance, and informed search as well as supervised and
self-supervised learning. All algorithms have been analyzed formally, im-
plemented as software, and evaluated experimentally.

259

6.1

260 6.1 CoNTRIBUTIONS AND OPEN PROBLEMS

In SectION 6.1, we summarize our main findings and their contributions
to different areas of computational linguistics. We outline that they have
both scientific and practical impact on the state of the art in text mining.
However, far from every problem of ad-hoc large-scale text mining has been
solved or even approached at all in this thesis. In the words of Alan Turing,
we can therefore already see plenty there that needs to be done in the given
and in new directions of future research (Section 6.2). Also, some of our
main ideas may be beneficial for other problems from computer science or
even from other fields of application, as we finally sketch at the end.

CoNTRIBUTIONS AND OPEN PROBLEMS

This thesis presents the development and evaluation of approaches that ex-
ploit knowledge and information about a text analysis process in order to
effectively address information needs from information extraction, text clas-
sification, and comparable tasks ad-hoc in an efficient and domain-robust
manner.! In this regard, our high-level contributions refer to an automatic
pipeline design, an optimized pipeline efficiency, and an improved pipeline
robustness, as motivated in CHAPTER 1. After introducing relevant founda-
tions, basic definitions, and case studies, CHAPTER 2 has summarized that
several successful related approaches exist, which address similar problems
as we do. Still, we claim that the findings of this thesis improve the state of
the art for different problems, as we detail in the following.?

ENABLING AD-HOC TEXT ANALYSIS

In CHAPTER 3, we first discuss how to design a text analysis pipeline that
is optimal in terms of efficiency and effectiveness. Given a formal speci-
fication of available text analysis algorithms, which has become standard
in software frameworks for text analysis (cf. SEcTiON 2.2), we can define an
information need to be addressed and a quality prioritization to be met in
order to allow for a fully automatic pipeline construction. We have realized
an according engineering approach with partial order planning (and a sub-
sequent greedy linearization), implemented in a prototypical expert system
for non-expert users (cf. AppEnDIX B.1). After showing the correctness and
asymptotic run-time complexity of the approach, we have offered evidence
that pipeline construction takes near-zero time in realistic scenarios.

Here, addressing an information need means to return all information found in given
input texts that is relevant with respect to a defined query or the like (cf. SEcTiON 2.2).

?As clarified in SEcTION 1.4, notice that many findings attributed to this thesis here have
already been published with different co-authors in papers of the author of this thesis.

6 CONCLUSION 261

To our knowledge, we are thereby the first to enable ad-hoc text analysis
for unanticipated information needs and input texts.> Some minor prob-
lems of our approach remain for future work, like its current limitation to
single information needs. Most of these are of technical nature and should
be solvable without restrictions (see the discussions in Sections 3.2 and 3.3
for details). Besides, a few compromises had to be made due to automa-
tion, especially the focus on either effectiveness or efficiency during the se-
lection of algorithms to be employed in a pipeline. Similarly, the flipside of
constructing and executing a pipeline ad-hoc is the missing opportunity of
evaluating the pipeline’s quality before using it.

OrTIMALLY ANALYZING TEXT

Our main finding regarding an optimal pipeline design in CHAPTER 3 refers
to an often overseen optimization potential: By restricting all analyses to
those portions of input texts that may be relevant for the information need
athand, much run-time can be saved while maintaining effectiveness. Such
an input control can be efficiently operationalized for arbitrary text analysis
pipelines with assumption-based truth maintenance based on the depen-
dencies between the information types to be inferred. Different from related
approaches, we thereby assess the relevance of portions of text formally. We
have proven the correctness of this approach, analyzed its worst-case run-
time, and realized it in a software framework on top of the industry standard
Aracue UIMA (cf. AppeENDIX B.2).

Every pipeline equipped with our input control is able to process input
texts optimally in that all unneccessary analyses are avoided. Alternatively,
it can also trade its run-time efficiency for its recall by restricting analysis
to even smaller portions of text. In our experiments with information ex-
traction, only roughly 40% to 80% of an input text needed to be processed
by an employed algorithm on average. At the same time, the effort of main-
taining relevant portions of text seems almost negligble. The benefit of our
approach will be limited in tasks where most portions of text are relevant,
as is often the case in text classification. Also, the input restriction does
not work for some algorithms, namely those that do not stepwise process
portions of a text separately (say, sentence by sentence). Still, our approach
comes with hardly any notable drawback, which is why we argue in favor
of generally equipping all pipelines with an input control.

*The notion of unanticipated information needs refers to combinations of information
types that may have never been sought for before. Still, algorithms that can infer the sin-
gle types from input texts need to be either given in advance or created on-the-fly.

262 6.1 CoNTRIBUTIONS AND OPEN PROBLEMS

OprTIMIZING ANALYSIS EFFICIENCY

The use of an input control gives rise to the efficiency impact of optimizing
the schedule of a text analysis pipeline, as we have comprehensively inves-
tigated in CHAPTER 4. We have shown formally and experimentally that,
in theory, optimally scheduling a pipeline constitutes a dynamic program-
ming problem, which depends on the run-times of the employed algorithms
and the distribution of relevant information in the input texts. Especially the
latter may vary significantly, making other scheduling approaches more ef-
ficient in practice. In order to decide what approach to take, we provide a
first measure of the heterogeneity of texts with regard to this distribution.
Under low heterogeneity, an optimal fixed schedule can reliably and effi-
ciently be determined with informed best-first search on a sample of input
texts. This approach, the proof of its correctness, and its evaluation denote
fully new contributions of this thesis.* For higher heterogeneity, we have de-
veloped an adaptive approach that learns online and self-supervised what
schedule to choose for each text. Our experiments indicate that we thereby
achieve being close to the theoretically best solution in all cases.

With our work on the optimization of efficiency, we support the applica-
bility of text analysis pipelines to industrial-scale data, which is still often
disregarded in research. The major gain of optimizing a pipeline’s sched-
ule is that even computationally expensive analyses like dependency pars-
ing can be conducted in little time, thus often allowing for more effective
results. In our experiments, the run-time of information extraction was im-
proved by up to factor 16 over naive approaches and by factor 2 over our
greedy linearization named above. These findings conform with related re-
search while being more generally applicable. In particular, all our schedul-
ing approaches apply to arbitrary text analysis algorithms and to input texts
of any type and language. They target at large-scale scenarios, where spend-
ing additional time for analyzing samples of texts is worth the effort, like in
big data analytics. Conversely, when the goal is to respond to an informa-
tion need ad-hoc, the greedy linearization should be preferred.

Some noteworthy aspects of pipeline optimization remain unaddressed
here. First, although our input control handles arbitrary pipelines, we have
considered only single information needs (e.g. forecasts with time informa-
tion). An extension to combined needs (e.g. forecasts and declarations) will
be more complicated, but is straightforward in principle as sketched. Next,
we evaluated our approaches on large datasets, but not in real big data sce-

*The approach is correct given that we have optimistic estimations of the algorithms’
run-times. Then, it always finds a schedule that is optimal on the sample (cf. SEcTION 4.3).

6 CoNCLUSION 263

narios. Among others, big data requires to deal with huge memory con-
sumption. While we are confident that such challenges even increase the
impact of our approaches on a pipeline’s efficiency, we cannot ultimately
rule out the possibility that they revert some achieved efficiency gains. Sim-
ilarly, streams of input texts have been used for motivation in this thesis,
but their analysis is left for future work. Finally, an open problem refers to
the limited accuracy of predicting pipeline run-times within our adaptive
scheduling approach, which prevents an efficiency impact of the approach
on real data of low heterogeneity. Possible solutions have been discussed in
SectioN 4.5. However, we do not deepen them in this thesis, since we have
presented successful alternatives for low heterogeneity (cf. SecTiON 4.3).

RoBusTtLy CLASSIFYING THE OVERALL STRUCTURE OF TEXT

In CHAPTER 5, we have turned our view to the actual analysis performed by
a pipeline. In particular, we have investigated how to improve the domain
robustness of an effective text analysis in tasks that deal with the classifi-
cation of argumentative texts (like reviews or essays). Our general idea is
that a focus on the overall structure instead of the content of according texts
benefits robustness. For reviews, we have found that common overall struc-
tures exist, which cooccur with certain sentiment. Here, overall structure is
modeled as a sequential flow of either local sentiments or discourse rela-
tions, which can be seen as shallow representations of concepts from argu-
mentation theory. Using a supervised variant of clustering, we have deter-
mined common flow patterns in the reduced search space of shallow over-
all structures. We exploit the flow patterns as features for machine learning
approaches to text classification. In sentiment scoring experiments, these
features have turned out to be strongly invariant across reviews from very
different domains (hotel and film), losing less than five percentage points
of accuracy in the majority of out-of-domain tasks.

Our approach contributes to research on domain-robust text classifica-
tion. It targets at non-standard classification tasks where the structure of a
text matters. Because of our restriction to the classification of review senti-
ment, however, we cannot assess yet as to whether our findings generalize
to other tasks. Moreover, while our robustness results are very promising,
the effectiveness of the considered features is still improvable. We have dis-
cussed possible improvements in SEcTION 5.4, such as the use of other infor-
mation in the flow or the resort to semi-supervised learning.

Besides text classification, our findings also give linguistic insights into
the way people argue in argumentative texts. On the one hand, the sequen-

264 6.2 ImpLICcATIONS AND OUTLOOK

tial flows we found model overall structure from a human perspective and,
thus should be intuitively understandable, such as (positive, negative, posi-
tive). On the other hand, different from all existing approaches we know,
the developed feature type captures the structure of a text in overall terms.
We believe that these results open the door to new approaches in other areas
of computational linguistics, especially in those related to argumentation.
We detail the implications of our approach in the following.

ImpLICATIONS AND OUTLOOK

With respect to our research question from Section 1.3, the contributions of
this thesis emphasize that a text analysis process can be improved in differ-
ent respects using knowledge about the process (like formal algorithm spec-
ifications) as well as information obtained within the process (like observed
algorithm run-times). Although we have omitted to fully integrate all our
single approaches, we now discuss in how far their combination enables ad-
hoc large-scale text mining, thereby coming back to our original motivation
of enhancing today’s information search from Section 1.1. Then, we close
this thesis with an outlook on arising research questions in the concerned
research field as well as in both more and less related fields.

TowarDps ApD-HOC LARGE-ScALE TExT MINING

As we have stressed in SectioN 1.3, the overall approach of this thesis aims
to make the design and execution of text analysis pipelines more intelligent.
Our underlying motivation is to enable search engines and big data analy-
tics to perform ad-hoc large-scale text mining, i.e., to return high-quality re-
sults inferred from large numbers of texts in response to information needs
stated ad-hoc. The output of pipelines is structured information, which de-
fines the basis for the results to be returned. Therefore, we have addressed
the requirements of (1) designing pipelines automatically, (2) optimizing
their efficiency, and (3) improving their robustness, as summarized above.
The fundamental effectiveness problem of text analysis remains challenging
and the definition of “large-scale” is not clear in general. Anyway, as far as
we got, our findings underline that we have successfully enabled ad-hoc text
mining, significantly augmented capabilities in large-scale text mining, and
at least provided an important step towards high-quality text mining.
However, not all of the single approaches are applicable or beneficial in
every text analysis scenario. In particular, the optimization of efficiency
rather benefits information extraction, while our approach to pipeline ro-

6 CoNCLUSION 265

bustness targets at specific text classification tasks. The latter even tends to
be slower than standard text classification approaches, although it at least
avoids performing deep analyses. In contrast, all approaches from CHap-
TERS 3 and 4 fit together perfectly. Their integration will even solve remain-
ing problems. For instance, the restriction of our pipeline construction ap-
proach to single information needs is easy to manage when given an input
control (cf. SEcTiON 3.3). Moreover, there are scenarios where all approaches
have an impact. E.g., a sentiment analysis based only on the opinions of a
text allows for automatic design, optimized scheduling, and the classifica-
tion of overall structure. In addition, we have given hints in SEcTiON 5.4 on
how to transfer our robustness approach to further tasks.

We realized all approaches on top of the standard software framework for
text analysis, ApacHE UIMA. A promising step still to be taken is their de-
ployment in widely-recognized platforms and tools. In Section 3.5, we have
already argued that a native integration of our input control within Aracug
UIMA would minimize the effort of using the input control while benefit-
ing the efficiency of many text analysis approaches based on the framework.
Similarly, applications like U-ComparEg, which serves for the development
and evaluation of pipelines (Kano et al., 2010), may in our view greatly ben-
efit from including the ad-hoc pipeline construction from Secrion 3.3 or the
scheduling approaches from Sections 4.3 and 4.5. We leave these and other
deployments for future work. The same holds for some important aspects of
using pipelines in practical applications that we have analyzed only roughly
here, such as the parallelization of pipeline execution (cf. SEcTioN 4.6) and
the explanation of pipeline results (cf. SEction 5.5). Both fit well to the ap-
proaches we have presented, but still require more investigation.

We conclude that our contributions do not fully enable ad-hoc large-scale
text mining yet, but they define essential building blocks for achieving this
goal. The decisive question is whether academia and industry in the con-
text of information search will actually evolve in the direction suggested in
this thesis. While we can only guess, the superficial answer may be “no”,
because there are too many possible variations of this direction. A more
nuanced view on today’s search engines and the lasting hype around big
data, however, reveals that the need for automatic, efficient, and robust text
mining technologies is striking: Chiticariu et al. (2010b) highlight their im-
pact on enterprise analytics, and Etzioni (2011) stresses the importance of
directly returning relevant information as search results (cf. Section 2.4 for
details). Hence, we are confident that our findings have the potential of im-
proving the future of information search. In the end, leading search engines
show that this future has already begun (Pasca, 2011).

266 6.2 IMmpLICATIONS AND OUTLOOK

OurTtsIiDE THE Box

This thesis deals with the analysis of natural language texts from a pure text
mining perspective merely. As a last step, we now give an outlook on the
use of our approaches for other tasks from computational linguistics, from
other areas of computer science, and even from outside these fields.

In computational linguistics, one of the most emerging research areas of
the last years is argumentation mining (Habernal et al., 2014). IBM claims
that debating technologies, which can automatically construct and oppose
pro and con arguments, will be the “next big thing” after their famous ques-
tion answering tool Watson.? With our work on argumentation structure,
we contribute to the development of such technologies. Our analysis of the
overall structure of argumentative texts may, for instance, be exploited to
retrieve the candidates for argument identification. Also, it may be adapted
to assess the quality of an argumentation. The flow patterns at the heart of
our approach imply several future research directions themselves and may
possibly be transferred to other text analysis tasks, as outlined at the end of
SEcTION 5.4. For a deeper analysis of argumentation, other ways to capture
argumentation structure than flow patterns are needed. E.g., deep syntac-
tic parsing (Ballesteros et al., 2014) and convolutional kernels (Moschitti and
Basili, 2004) could be used to learn tree-like argumentation structures.

The derivation of an appropriate model that generates certain sequential
information from example sequences (like the flows) is addressed in data
mining. A common approach to detect system anomalies is to search for se-
quences of discrete events that are improbable under a previously learned
model of the system (Aggarwal, 2013). While recent work emphasizes the
importance of time information for anomaly detection (Klerx et al., 2014),
the relation to our computation of similarities between flows in a text re-
mains obvious. This brings up the question whether the two approaches
can benefit from each other, which we leave for future work.

Aside from text analysis, especially our generic approaches to pipeline
design and execution should be transferrable to other problems. While we
have seen in SEcTION 4.6 that our scheduling approaches relate to but do not
considerably affect the classical pipelining problem from computer archi-
tecture (Ramamoorthy and Li, 1977), many other areas of computer science
deal with pipeline-like architectures and processes.

An important example is computer graphics, where the creation of a 2D
raster from a 3D scene to be displayed on a screen is performed in a ren-

°IBM DeBatinG TECHNOLOGIES group, http: //researcher.watson.ibm. com/researcher/
view_group.php?id=5443, accessed on November 26, 2014.

6 CoNCLUSION 267

dering pipeline (Angel, 2008). Similar to our input control, pipeline stages
like clipping decide what parts of a scene are relevant for the raster. While
the ordering of the high-level rendering stages is usually fixed, stages like a
shader compose several programmable steps whose schedule strongly im-
pacts rendering efficiency (Arens, 2014). A transfer of our approaches seems
possible, but it might put other parameters in the focus, since the execution
of a pipeline is parallelized on a specialized graphics processing unit.

Another related area is software engineering. Among others, recent soft-
ware testing approaches deal with the optimization of test plans (Giildali
et al., 2011). Here, an optimized scheduling can speed up detecting some
defined number of failures or achieving some defined code coverage. Ac-
cordingly, approaches that perform an assembly-based method engineering
based on situational factors and a repository of services (Fazal-Baqaie et al.,
2013) should, in principle, be viable to automation with an adaptation of the
pipeline construction from Section 3.3. Further possible applications reach
down to basic compiler optimization operations like list scheduling (Cooper
and Torczon, 2011). The use of information obtained from training input
is known in profile-guided compiler optimization (Hsu et al., 2002) where
such information helps to improve the efficiency of program execution, e.g.
by optimizing the scheduling of checked conditions in if-clauses.

Even outside computer science, our scheduling approaches may prove
beneficial. An example from the real world is an authentication of paintings
or paper money, which runs through a sequence of analyses with different
run-times and numbers of found forgeries. Also, we experience in everyday
life that scheduling affects the efficiency of solving a problem. For instance,
the number of slices needed to cut some vegetable into small cubes depends
on the ordering of the slices and the form of the vegetable. Moreover, the ab-
stract concept of adaptive scheduling from Section 4.5 should be applicable
to every performance problem where (1) different solutions to the problem
are most appropriate for certain situations or inputs and (2) where the per-
formance of a solution can be assessed somehow.

Altogether, we summarize that possible continuations of the work de-
scribed in this thesis are manifold. We hope that our findings will inspire
new approaches of other researchers and practitioners in the discussed
fields and that they might help anyone who encounters problems like those
we approached. With this in mind, we close the thesis with a translated
quote from the German singer Andreas Front: “What you learn from that is up
to you, though. I hope at least you have fun doing so.”®

8“Was Du daraus lernst, steht Dir frei. Ich hoffe nur, Du hast Spafi dabei.” from the song “Spaf3
dabei”, http://andreas-front.bplaced.net/blog/, accessed on December 21, 2014.

Text Analysis Algorithms

THE EVALUATION OF THE DESIGN AND EXECUTION OF TEXT ANALYSIS PIPELINES re-
quires the resort to concrete text analysis algorithms. Several of these algo-
rithms are employed in the experiments and case studies on our approaches
to enable ad-hoc large-scale text mining from CHAPTER 3 to 5. Some of them
have been developed by ourselves, while others refer to existing software
libraries. In this appendix, we give basic details on the functionalities and
properties of all employed algorithms and on the text analyses they per-
form. First, we describe all algorithms in a canonical form (AppPENDIX A.1).
Then, we present evaluation results on their efficiency and effectiveness as
far as available (ArPEnDIX A.2). Especially, the measured run-times are im-
portant in this thesis, because they directly influence the efficiency impact
of our pipeline optimization approaches, as discussed.

ANALYSES AND ALGORITHMS

In CHAPTER 3 to 5, we refer to every employed text analysis algorithm mostly
in terms of its three letter acronym (used as the algorithm’s name) and the
concrete text analysis it realizes. The first letter of every acronym stands
for the type of text analysis it belongs to, and the others abbreviate the con-
crete analysis. The types have been introduced in Section 2.1. Now, we
sketch all covered text analyses and we describe for each employed algo-
rithm (1) how it performs the respective analysis, (2) what information it
requires and produces, and (3) what input texts it is made for. An overview
of the algorithms” input and output types is given in TABLE A.1.

269

270

A.1 ANALYSES AND ALGORITHMS

Name Input types C("")

Output types C(°*t)

CLF Sentence, Token.pos, (Time), (Money) LanguageFunction.class
CsB DiscourseUnit, Token.pos Opinion, Fact
csp Opinion, Token.pos Opinion.polarity
css Sentence, Token.pos, Opinion.polarity, Sentiment.score
Fact, (Product), (ProductFeature)
ENE Sentence, Token.pos/.chunk Person, Location, Organization
EMO Sentence Money
ETI Sentence Time
NTI Sentence, Time Time.start, Time.end
PCH Sentence, Token.pos/.lemma Token.chunk
PDE; Sentence, Token.pos/.lemma Token.parent/.role
PDE; Sentence, Token.pos/.lemma Token.parent/.role
pDR Sentence, Token.pos, Opinion.polarity DiscourseRelation.type
ppu Sentence, Token.pos DiscourseUnit
RFO Sentence, Token.pos /.lemma, Time Forecast.time
REI Money, Forecast Financial. money/ .forecast
RFU Token, Organization, Time Founded.organization/.time
RRE; Sentence, Token Revenue
RRE; Sentence, Token, Time, Money Revenue
RT™M; Sentence, Revenue, Time, Money Revenue.time/.money
RTMz Sentence, Revenue, Time, Money, Revenue.time/.money
Token.pos/.lemma./parent./.role
SPA - Paragraph
SSE - Sentence
STO; — Token
sTO0o Sentence Token
TLE Sentence, Token Token.lemma
TPO; Sentence, Token Token.pos/.lemma
TPOy Sentence, Token Token.pos

TasLEe A.1: The required input types C(*") and the produced output types C(°"*) of
all text analysis algorithms referred to in this thesis. Bracketed input types indicate
the existence of variations of the respective algorithm with and without these types.

We rely on a canonical form of algorithm description, but we also point

out specific characteristics where appropriate. For an easy look-up, in the

following we list the algorithms in alphabetical order of their names and, by

that, also in alphabetical order of the text analysis types. All algorithms are

realized as ApacHe UIMA analysis engines (cf. SEcTION 3.5) and come with
our software described in AppenpIx B. In case of algorithms that are taken
from existing software libraries, wrappers are provided.

A Text ANALYSIS ALGORITHMS 271

CLASSIFICATION OF TEXT

Text classification is one of the central text analysis types the approaches
in this thesis focus on. It assigns a class from a predefined scheme to each
given text. In our experiments and case studies in CHAPTER 5, we deal with
the classification of both whole texts and portions of text.

Language Functions Language functions target at the question why a text
was written. On an abstract level, most texts can be seen as being predom-
inantly expressive, appellative, or informative (Biihler, 1934). For product-
related texts, we concretized this scheme with a personal, a commercial,
and an informational class (Wachsmuth and Bujna, 2011).

cLF (Wachsmuth and Bujna, 2011) is a statistical classifier, realized as a lin-
ear multi-class support vector machine from the LisSVM integration
of Weka (Chang and Lin, 2011; Hall et al., 2009). It assigns a language
function to a text based on different word, n-gram, entity, and part-of-
speech features (cf. SECTION 5.3). cLF operates on the text level, requir-
ing sentences and tokens as well as, if given, time and money entities
as input and producing the language function classes with assigned
class values. It has been trained on German texts from the music do-
main and the smartphone domain, respectively.

Subjectivity Subjectivity refers to the sentiment-related question whether
a text or a portion of text is subjective (Pang and Lee, 2004). Opinions are
subjective, while facts (including false ones) are seen as objective.

csB (self-implemented) is a statistical classifier, realized as a linear support
vector machine from the LisSSVM integration of Weka (Chang and Lin,
2011; Hall et al., 2009). It classifies the subjectivity of discourse units
based on the contained words, part-of-speech tags, scores from SEnTI-
WOorDNET (Baccianella et al., 2010), and the like. csB operates on the
discourse unit level, requiring discourse units and tokens with part-
of-speech as input and producing one Fact or Opinion annotation for
each discourse unit. It has been trained on English reviews from the
hotel domain and the movie domain, respectively.

Sentiment Polarity The classification of a text or a portion of text as having
either a positive or a negative polarity with respect to some topic is one of
the most common forms of sentiment analysis (Pang et al., 2002).

csp (self-implemented!) is a statistical classifier, realized as a linear sup-
port vector machine from the LisSVM integration of Weka (Chang

"Notice that all algorithms marked as self-implemented have been used in some of our
publications, but have not been described in detail there.

272 A.1 ANALYSES AND ALGORITHMS

and Lin, 2011; Hall et al., 2009). Similar to css, it classifies the polarities
of opinions based on the contained words, part-of-speech tags, scores
from SENTIWORDNET (Baccianella et al., 2010), and the like. csp oper-
ates on the opinion level, requiring opinions and tokens with part-of-
speech as input and producing the polarity feature of each opinion.
It has been trained on English reviews from the hotel domain and the
movie domain, respectively.

Sentiment Scores Sentiment is also often classified as an ordinal or metric
score from a predefined scale (Pang and Lee, 2005). Such sentiment scores
e.g. represent the overall ratings of web user reviews.

css (Wachsmuth et al., 2014a) is a statistical score predictor, realized in
WEeka (Hall et al., 2009) as a linear multi-class support vector machine
with probability estimates and normalization from LiBSSVM (Chang
and Lin, 2011). It assigns a score to a text based on different combi-
nations of local sentiment, discourse relation, domain concept, word,
and part-of-speech features. css operates on the text level, requiring
sentences, opinions, and tokens with part-of-speech as input and pro-
ducing sentiment annotations with scores. It has been trained on En-
glish texts from the hotel and movie domain, respectively.

ENnTITY RECOGNITION

According to Jurafsky and Martin (2009), the term entity is used not only to
refer to names that represent real-world entities, but also to specific types
of numeric information, like money and time expressions.

Money In terms of money information, we distinguish absolute men-
tions (e.g. “300 million dollars”), relative mentions (e.g. “by 10%”), and com-
binations of these.

EMO (self-implemented) is a rule-based money extractor that uses lexicon-
based regular expressions, which capture the structure of money en-
tities. EMO operates on the sentence level, requiring sentence annota-
tions as input and producing money annotations. It works only on
German texts and it targets at news articles.

Named entities In some of our experiments and case studies, we deal with
the recognition of person, organization, and location names. These three
named entity types are in the focus of widely recognized evaluations, such
as the CoONLL-2003 sHARED Task (Tjong Kim Sang and Meulder, 2003).

A Text ANALYSIS ALGORITHMS 273

ENE (Finkel et al., 2005) is a statistical sequence labeling algorithm, real-
ized as a conditional random field in the software library StaANFORD
NER? that sequentially tags words as belonging to an entity of some
type or not. ENE operates on the sentence level, requiring tokens with
part-of-speech and chunk information as input and producing per-
son, location, and organization annotations. It can been trained for
different languages, including English and German, and it targets at
well-formatted texts like news articles.

Time Similar to money entities, we consider text spans that represent pe-
riods of time (e.g. “last year”) or dates (e.g. “07/21/69”) as time entities.

eTI (self-implemented) is a rule-based time extractor that, analog to emo,
uses lexicon-based regular expressions, which capture the structure
of time entities. ETI operates on the sentence level, requiring sentence
annotations as input and producing time annotations. It works only
on German texts, and it targets at news articles.

NORMALIZATION AND RESOLUTION

Normalization denotes the conversion of information (usually, of an entity)
into a machine-processable form. Resolution means the identification of
different references of an entity in a text that belong to the same real-world
entity (Cunningham, 2006). The only type of information to be resolved in
our experiments is time information (in Sections 4.3 and 4.5).

Resolved Time For our purpose, we define resolved time information to
consist of a start date and an end date, both of the form YYYY-MM-DD. Ahn
et al. (2005) distinguish fully qualified, deictic, and anaphoric time informa-
tion in a text. For normalization, some information must be resolved, e.g.
“last year” may require the date the respective text was written on.

NTI (self-implemented) is a rule-based time normalizer that splits a time
entity into atomic parts, identifies missing information, and then
seeks for this information in the surrounding text. NTI operates on
the text level, requiring sentence and time annotations as input and
producing normalized start and end dates as features of time annota-
tions. It works on German texts only and it targets at news articles.

PARrsING

In natural language processing, parsing denotes the syntactic analysis of
texts or sentences in order to identify relations between their different parts.

2Sranrorp NER, http://nlp.stanford.edu/software/CRF-NER.shtml, accessed on
October 15, 2014.

274 A.1 ANALYSES AND ALGORITHMS

In dependency parsing, a part is given by a single word, while constituency
parsing targets at the hierachically structured phrases in sentences (Jurafsky
and Martin, 2009). Similarly, the discourse structure of a text, detailed in
SEcTION 5.2, can be parsed (Marcu, 2000). While a parser typically outputs
a tree structure, also shallow approaches exist that segment a text into their
parts, as in the case of phrase chunking (also called shallow parsing).

Chunks Chunks represent the top-level phrases of a sentence (Jurafsky
and Martin, 2009). Mostly, at least noun, verb, and prepositional phrases
are distinguished. Chunks are usually annotated as tags of tokens. E.g.,
the noun phrase “the moon landing” might be encoded as (B-NP, I-NP, I-NP)
where B-NP denotes the start and each I-NP some other part. Chunks serve
as input to many named entity recognition algorithms.

pcH (Schmid, 1995) is a statistical phrase chunker, realized as a decision-

tree classifier in the TT4y wrapper of the software library TreeTAGGER.?
PCH operates on the sentence level, requiring tokens as input and pro-
ducing the chunk tag features of the tokens. It has been trained on a
number of languages, including English and German, and it targets

at well-formatted texts like news articles.

Dependency Parse Trees The dependency parse tree of a sentence or the
like is often used for features in relation extraction. It defines how the con-
tained tokens syntactically depend on each other. Each token is represented
by one node. Almost always, the root node corresponds to the main verb.
The tree structure can be defined on the token-level by assigning a parent
node to each node except for the root. In addition, a token is usually as-
signed a label that defines the role of the subtree it represents.

pDE; (Bohnet, 2010) is a variant of the statistical dependency parser ppE;
given below, realized in the MATE Toors*
support vector machine and a hash kernel. It uses several features to
identify dependency parse trees without crossing edges. ppE; oper-
ates on the sentence level, requiring sentences and tokens with part-
of-speech and lemma as input and producing the parent and depen-
dency role of each token. It has been trained on German texts and it

as a combination of a linear

targets at well-formatted texts like news articles.

PDEy (Bohnet, 2010) is a statistical dependency parser, realized in the above-
mentioned Mate TooLs as a combination of a linear support vec-
tor machine and a hash kernel. It uses several features to identify

3TT4J, http://code.google.com/p/tt4]j/, accessed on October 15, 2014.
*Marte TooLs, http://code.google.com/p/mate-tools/, accessed on October 16, 2014.

A Text ANALYSIS ALGORITHMS 275

dependency parse trees, including those with crossing edges. ppE;
operates on the sentence level, requiring sentences and tokens with
part-of-speech and lemma as input and producing the parent and
dependency role of each token. It has been trained on a number
of languages, including English and German, and it targets at well-
formatted texts like news articles.

Discourse Units and Relations Discourse units are the minimum build-
ing blocks in the sense of text spans that make up the discourse of a text.
Several types of discourse relations may exist between discourse units, e.g.
23 types are distinguished by the widely-followed rhethorical structure the-
ory (Mann and Thompson, 1988).

PDR (self-implemented) is a rule-based discourse relation extractor that
mainly relies on language-specific lexicons with discourse connectives
to identify 10 discourse relation types, namely, background, cause, cir-
cumstance, concession, condition, contrast, motivation, purpose, sequence,
and summary. PpR operates on the discourse unit level, requiring dis-
course units and tokens with part-of-speech as input and producing
typed discourse relation annotations. It is implemented for English
only and it targets at less-formatted texts like web user reviews.

ppU (self-implemented) is a rule-based discourse unit segmenter that an-
alyzes commas, connectives (using language-specific lexicons), verb
types, ellipses, etc. to identify discourse units in terms of main clauses
with all their subordinate clauses. ppbu operates on the text level, re-
quiring sentences and tokens with part-of-speech as input and pro-
ducing discourse unit annotations. It is implemented for English and
German, and it targets at less-formatted texts like web user reviews.

ReraTioN ExTRACTION AND EVENT DETECTION

In SecTION 3.4, we argue that all relations and events can be seen as relating
two or more entities, often being represented by a span of text. Mostly, they
are application-specific (cf. SectioN 3.2). In this thesis, we consider relations
and events in the context of our case study INFexBA from Secrion 2.3.°

Financial Events In Section 3.5, financial events denote a specific type of
forecasts (see below) that are associated to money information.

>In the evaluation of ad-hoc pipeline construction in SecTion 3.3, we partly refer to algo-
rithms for the recognition of biomedical events. Since the construction solely relies on for-
mal properties of the algorithms, we do not consider the algorithms” actual implementations
and, therefore, omit to talk about them here. The properties can be found in the respective
AraclHE UIMA descriptor files that come with our expert system (cf. AprENDIX B.1).

276

A.1 ANALYSES AND ALGORITHMS

rFI (self-implemented) is a rule-based event detector that naively assumes

each portion of text with a money entity and a forecast event to rep-
resent a financial event. Rr1 can operate on arbitrary text unit levels,
requiring money and forecast annotations as input and producing fi-
nancial event annotations that relate the respective money entities and
forecast events. It works on arbitrary texts of any language.

Forecast Events A forecast is assumed here to be any sentence about the
future with time information.

rRFO (self-implemented) is a statistical event detector, realized as a linear

support vector machine from the LisSVM integration of Weka (Chang
and Lin, 2011; Hall et al., 2009). It classifies candidate sentences with
time entities using several types of information, including part-of-
speech tags and occurring verbs. rro operates on the sentence level,
requiring sentences, tokens with part-of-speech and lemma as input
and producing forecast annotations with set time features. It is imple-
mented for German texts only and it targets at news articles.

Founded Relations A founded relation between an organization entity
and a time entity means that the respective organization was founded at
the respective point in time or in the respective period of time.

RFU (self-implemented) is a rule-based relation extractor that assumes can-

didate pairs within the same portion of text to be related if the portion
contains indicator words of the founded relation (from a language-
specific lexicon). RFU can operate on arbitrary text unit levels, re-
quiring organization and money annotations as input and producing
founded relation annotations with features for the associated entities.
It is implemented for both German and English texts of any kind.

Statement on Revenue Events According to (Wachsmuth et al., 2010), we
define a statement on revenue as a portion of text with information about
the development of the revenues of a company or branch over time.

RRE] (Wachsmuth et al., 2010) is a rule-based event detector that uses a

language-specific lexicon with terms indicating revenue to classify
whether a sentence denotes a statement on revenue. RRE; Operates
on the sentence level, requiring sentences and tokens as input and
producing statement on revenue annotations. It is implemented for
German texts only and it targets at news articles.

A Text ANALYSIS ALGORITHMS 277

RRE2 (Wachsmuth et al., 2010) is a statistical event detector, realized as
a linear support vector machine from the LiBSVM integration of
WExka (Chang and Lin, 2011; Hall et al., 2009). It classifies candidate
sentences with time and money entities using several types of infor-
mation, including language-specific lexicons. RrrE; operates on the
sentence level, requiring sentences, tokens, time entities, and money
entities as input and producing statement on revenue annotations. It
is implemented for German texts only and it targets at news articles.

Time/Money Relations The relations between time and money entities that
we consider here refer to all according pairs where both entities belong to
the same statement on revenue.

rRTM; (self-implemented) is a rule-based relation extractor that simply ex-
tracts the closest pairs of time and money entities (in terms of the
number of characters). It operates on the sentence level, requiring sen-
tences, time and money entities as well as statements on revenue as
input and producing the time and money features of the latter. TrRm;
works only on arbitrary texts of any language.

RTM: (self-implemented) is a statistical relation extractor, realized as a linear
support vector machine from the LisSVM integration of Weka (Chang
and Lin, 2011; Hall et al., 2009). It classifies relations between candi-
date pairs of time and money entities based on several types of in-
formation. rRTM» operates on the sentence level, requiring sentences,
tokens with all features, time and money entities as well as statements
on revenue as input and producing the time and money features of the
latter. It works for German texts only and it targets at news articles.

SEGMENTATION

Segmentation means the sequential partition of a text into single units. In
this thesis, we restrict our view to lexical and shallow syntactic segmenta-
tions in terms of the following information types.

Paragraphs We define a paragraph here syntactically to be a composition
of sentences that ends with a line break.

spa (self-implemented) is a rule-based paragraph splitter that looks for
line breaks that indicate paragraph ends. spa operates on the charac-
ter level, requiring only plain text as input and producing paragraph
annotations. It works on arbitrary texts of any language.

Sentences The sentences of a text segment the text into basic meaningful
grammatical units.

278 A.1 ANALYSES AND ALGORITHMS

ssE (self-implemented) is a rule-based sentence splitter that analyzes
whitespaces, punctuation and quotation marks, hyphenation, el-
lipses, brackets, abbreviations (based on a language-specific lexicon),
etc. ssE operates on the character level, requiring only plain text as in-
put and producing sentence annotations. It is implemented for Ger-
man and English and it targets both at well-formatted texts like news
articles and less-formatted texts like web user reviews.

Tokens In natural language processing, tokens denote the atomic lexical
units of a text, i.e., words, numbers, symbols, and the like.

sto; (Aracue UIMAS®) is a rule-based tokenizer that simply looks for white-
spaces and punctuation marks. sto; operates on the character level,
requiring only plain text as input and producing token and sentence
annotations. It works on arbitrary texts of all languages that use the
mentioned character types as word and sentence delimiters.

stoz (self-implemented) is a rule-based tokenizer that analyzes white-
spaces, special characters, abbreviations (based on a language-specific
lexicon), etc. sToz operates on the sentence level, requiring sentences
as input and producing token annotations. It is implemented for Ger-
man and English and it targets both at well-formatted texts like news
articles and less-formatted texts like web user reviews.

TAGGING

Under the term tagging, we finally subsume text analyses that add informa-
tion to segments of a text, here to tokens in particular.

Lemmas A lemma denotes the dictionary form of word (in the sense of a
lexeme), such as “be” for “am”, “are”, or “be” itself. Lemmas are of particu-
lar importance for highly inflected languages like German and they serve,

among others, as input for many parsers (see above).

TLE (Bjorkelund et al., 2010) is a statistical lemmatizer, realized as a large
margin classifier in the above-mentioned Mate Toots, that uses sev-
eral features to find the shortest edit script between the lemmas and
the words. TLE operates on the sentence level, requiring tokens as
input and producing the lemma features of the tokens. It has been
trained on a number of languages, including English and German,
and it targets at well-formatted texts like news articles.

SUIMA WhHirspace TOKeNIZER, http://uima.apache.org/sandbox.html, accessed on
October 14, 2014.

A Text ANALYSIS ALGORITHMS 279

Part-of-speech Tags Parts of speech are the linguistic categories of tokens.
In “Let the fly fly!”, for instance, the first “fly” is a noun and the second
a verb. Mostly, more specific part-of-speech tags are assigned to tokens,
like common nouns as opposed to proper nouns. Although some universal
part-of-speech tagsets have been proposed (Petrov et al., 2012), most ap-
proaches rather rely on language-specific tagsets, such as the widely-used
STTS TacSer’ for German consisting of 53 different tags.

TPO1 (Schmid, 1995) is a statistical part-of-speech tagger, realized with the
same decision-tree classifier of the TREETAGGER as pcH above. TPO; Op-
erates on the sentence level, requiring sentences and tokens as input
and producing both part-of-speech and lemma features of the tokens.
It has been trained on a number of languages, including English and
German, and it targets at well-formatted texts like news articles.

TPOy (Bjorkelund et al., 2010) is a statistical part-of-speech tagger, realized
as a large margin classifier in the above-mentioned Mate Toots, that
uses several features to classify the part-of-speech of each token. Tro;
operates on the sentence level, requiring sentences and tokens as input
and producing the part-of-speech features of the tokens. It has been
trained on a number of languages, including English and German,
and it targets at well-formatted texts like news articles.

EvaLuaTioN REesuLTs

The impact of all main approaches developed in CHAPTER 3 to 5 is affected by
the run-time efficiency and/or the effectiveness of the employed text ana-
lysis algorithms. In particular, both the algorithm selection of ad-hoc pipe-
line construction (Section 3.3) and the informed search pipeline schedul-
ing (SecTION 4.3) rely on run-time estimations of the algorithms, the former
also on effectiveness estimations. The efficiency gains achieved by our input
control from SectioN 3.5 and by every scheduling approach from CHAPTER 4
result from differences in the actually observed algorithm run-times. And,
finally, the effectiveness and robustness of our features for text classifica-
tion in SEctioN 5.4 depends on the effectiveness of all algorithms used for
preprocessing. For these reasons, we have evaluated the efficiency and ef-
fectiveness of all employed algorithms as far as possible. TabLE A.2 shows
all results that we provide here with reference to the text corpora they were
computed on. The corpora are described in AppenDIX C.

7STTS TacSer, http://www.sfs.uni-tuebingen.de/resources/stts-1999.pdf, ac-
cessed on October 16, 2014.

280 A.2 EvavLuatioN ResuLrs

ErFiciENcYy ResuLTs

In terms of efficiency, TasLE A.2 shows the average run-time per sentence of
each algorithm. We measured all run-times in either five or ten runs on a 2
GHz Intel Core 2 Duo MacBook with 4 GB RAM, partly using the complete
respective corpus, partly its training set only.

As can be seen, there is a small number of algorithms whose run-times
greatly exceed those of the others. Among these, the most expensive are
the two dependency parsers, ppE; and ppE;. Common dependency pars-
ing approaches are of cubic computational complexity with respect to the
number of tokens in a sentence (Covington, 2001), although more efficient
approaches have been proposed recently (Bohnet and Kuhn, 2012). Still,
the importance of employing dependency parsing for complex text analysis
tasks like relation extraction is obvious (and, here, indicated by the different
Fi-scores of rtmz and RT™;). The use of such algorithms particularly empha-
sizes the benefit of our pipeline optimization approaches, as exemplified in
the case study of Section 3.1.

Besides, we point out that, while we argue in SectioN 4.2 that algorithm
run-times remain comparably stable across corpora (compared to distribu-
tions of relevant information), a few outliers can be found in TaBLE A.2.
Most significantly, RrRe2 has an average run-time per sentence of 0.81 mil-
liseconds on the REVENUE corpus, but only 0.05 milliseconds on the CoNLL-
2003 dataset. The reason behind is that the latter contains only a very small
fraction of candidate statements on revenue that contain both a time and a
money entity. Consequently, the observed differences rather give another
indication of the benefit of filtering only relevant portions of text.

EFFECTIVENESS RESULTS

The effectiveness values in TaBLe A.2 were obtained on the test sets of
the specified corpora in all cases except for those on the SENTIMENT ScaALE
DATASET, the SuBJECTIVITY DATASET, and the SENTENCE POLARITY DATASET. The
latter are computed using 10-fold cross-validation in order to make them
comparable to (Pang and Lee, 2005). All results are given in terms of the
quality criteria, we see as most appropriate for the respective text analy-
ses (cf. SectioN 2.1 for details). For lack of required ground-truth annota-
tions, we could not evaluate the effectiveness of some algorithms, such as
PDR. Also, for a few algorithms, we analyzed a small subset of the REvENUE
corprus manually to compute their precision (Tt and EMo) or accuracy (sse
and stoy). With respect to the effectiveness of the algorithms from existing
software libraries, we refer to the according literature.

A Text ANALYSIS ALGORITHMS 281

We have added information on the number of classes where accuracy val-
ues do not refer to a two-class classification problem. In case of css on the
SENTIMENT SCALE DATASET, We specify an interval for the accuracy values, be-
cause they vary depending on which of the four datasets of the corpusis an-
alyzed (cf. AprEnDIx C.4). The perfect effectiveness of ppu on the ARGUANA
TripADVISOR cORPUS is due to the fact that ppu is exactly the algorithm used
to create the discourse unit annotations of the corpus (cf. AppEnDIX C.2).

Name Efficiency

Effectiveness

Evaluation on

CLF 0.65 ms/snt. a 82% (3 classes) LFA-11 corrus (music)
0.53 ms/snt. a 69% (3 classes) LFA-11 corrus (smartphone)
CSB 22.31 ms/snt. a 78% ARGUANA TRIPADVISOR CORPUS
- a 91% SUBJECTIVITY DATASET
CSP 6.96 ms/snt. a 80% ARGUANA TRIPADVISOR CORPUS
- a 74% SENTENCE POLARITY DATASET
css 0.53 ms/snt. a48% (5 classes) ARGUANA TRIPADVISOR CORPUS
0.86 ms/snt. a57%-72% (3 classes) =~ SENTIMENT SCALE DATASET
EMO 0.68 ms/snt. p0.99,r0.95, f; 0.97 REVENUE corrPuUS
0.59 ms/snt. — CoNLL-2003 (de)
ENE 2.03 ms/snt. . REVENUE corrus
2.03 ms/snt. of. Finkel et al. (2005) CoNLL-2003 (de)
ETI 0.36 ms/snt. p0.91,r0.97, f; 0.94 REVENUE corPUs
0.39 ms/snt. — CoNLL-2003 (de)
NTI 1.21 ms/snt. — REVENUE CORPUS
0.39 ms/snt. - CoNLL-2003 (de)
TCH 0.97 ms/snt. . REVENUE corrus
0.88 ms/snt. of. Schmid (1995) CoNLL-2003 (de)
PDE; 166.14 ms/snt. REVENUE CORPUS
PDE9 54.61 ms/snt. of Bohnet (2010) REVENUE corrus
PDR 0.11 ms/snt. — ARGUANA TRIPADVISOR CORPUS
PDU 0.13 ms/snt. a 100.0% ARGUANA TRIPADVISOR CORPUS
RFI <0.01 ms/snt. — REVENUE corPUS
<0.01 ms/snt. — CoNLL-2003 (de)
RFO 0.27 ms/snt. a 93% REVENUE corrus
0.27 ms/snt. — CoNLL-2003 (de)
RFU 0.01 ms/snt. p0.71 REVENUE corruUs
0.01 ms/snt. p0.88 CoNLL-2003 (de)
RRE] 0.03 ms/snt. p0.86,r 0.93, f1 0.89 REVENUE corruUSs
RRE> 0.81 ms/snt. p0.87,r0.93, f1 0.90 REVENUE corPuUSs
0.05 ms/snt. - CoNLL-2003 (de)
RTM1 0.02 ms/snt. p0.69,r0.88, f1 0.77 REVENUE corrus
RTM3 10.41 ms/snt. p0.75,r 0.88, f; 0.81 REVENUE corrus
SPA <0.01 ms/snt. — REVENUE corPUS
<0.01 ms/snt. — CoNLL-2003 (de)
SSE 0.04 ms/snt. a 95% REVENUE CORPUS
0.04 ms/snt. — CoNLL-2003 (de)
STO; 0.04 ms/snt. — REVENUE CORPUS
STO9 0.06 ms/snt. a 98% REVENUE CORPUS
0.06 ms/snt. — CoNLL-2003 (de)
TLE 11.12 ms/snt. cf. Bjérkelund et al. (2010) REVENUE CORPUS
TPO 0.94 ms/snt. . REVENUE cOorPUS
' 0.97 ms/snt. of. Schmid (1995) CoNLL-2003 (de)
TPO2 10.75 ms/snt. cf. Bjorkelund et al. (2010) RevVENUE corpUs

TasLE A.2: Evaluation results on the run-time efficiency (in milliseconds per sen-
tence) and the effectiveness (as precision p, recall r, F;-score f}, and accuracy a) of
all text analysis algorithms referred to in this thesis on the specified text corpora.

Software

THE OPTIMIZATION OF PIPELINE DESIGN AND EXECUTION that we discuss in the
thesis at hand provides practical benefits only when working fully auto-
matically. In the context of the thesis, prototypical software applications
have been developed that allow the usage and evaluation of all parts of our
approach to enable ad-hoc large-scale text mining. This appendix presents
how to work with these applications, all of which are given in the form
of Java source code. In AprenpIx B.1, we begin with the expert system for
ad-hoc pipeline construction from SectioN 3.3. Then, AprENDIX B.2 sketches
how to use our software framework that realizes the input control presented
in SectioN 3.5. Afterwards, we outline how to reproduce the results of all
experiments and case studies of this thesis using the developed applica-
tions. All source code comes together with instructions and some sample
text analysis algorithms and pipelines. It is split into different projects that
we refer to below. As of end of 2014, the code should be accessable at least
for some years at http://is.upb.de/?id=wachsmuth (under Software).1

AN ExPERT SYSTEM FOR AD-HOC PIPELINE CONSTRUCTION

In this appendix, we detail the usage of the expert system PipreLiNE XPS, pre-
sented in SectioN 3.3. The expert system was implemented by Rose (2012)
as part of his master’s thesis. It provides a graphical user interface for the
specification of text analysis tasks and quality prioritizations. On this basis,
PreeLINE XPS constructs and executes a text analysis pipeline ad-hoc.

n case you encounter problems with the link, please contact the author of this thesis.

283

284 B.1 AN ExPERT SysTEM FOR AD-HOC P1PELINE CONSTRUCTION

GETTING STARTED

Installation The expert system refers to the project XPS of the provided
software. By default, its annotation task ontology (cf. SEcTioN 3.2) com-
prises the algorithms and information types of the EfXTools project. When
using the integrated development environment EcLipse?, Java projects can
be created from the respective top-level folders, taking each of them as a
root directory. Otherwise, an according procedure has to be performed.

General Information Our expert system PrpELINE XPS can be seen as a
first prototype, which still may have some bugs and which tends not to be
robust to wrong inputs and usage. Therefore, the instructions presented
here should be followed carefully.

Launch Before the first launch, an option has to be adjusted if not using
Winpows as the operating system: In the file ./XPS/conf/xps.properties, the
line starting with xps.treeTaggerModel, which belongs to the operating
system at hand, must be commented in, while the respective others must be
commented out. The file Main.launch in the folder XPS can then be run in
order to launch the expert system. At first start, no annotation task ontology
is present in the system. After pressing OK in response to the appearing
popup window, a standard ontology is imported. When starting again, the
main window Pipeline XPS should appear as well as an Explanations window
with the message Pipeline XPS has been started.

User Interface Ficure B.1 shows the prototypical user interface of the im-
plemented expert system from (Rose, 2012). Here, a user first sets the di-
rectory of an input text collection to be processed and chooses a quality
prioritization. Then, the user specifies an information need by repeatedly
choosing annotation types with active features (cf. Section 3.2).> The ad-
dition of types to filter beneath does not replace the on-the-fly creation of
filters from the pseudocode in FiGure 3.1, but it denotes the definition of
value constraints.* Once all is set, pressing Start XPS leads to the ad-hoc
construction and execution of a pipeline. Afterwards, explanations and re-
sults are given in separate windows. We rely on this user interface in our
evaluation of ad-hoc pipeline construction in Section 3.3. In the following,
we describe how to interact with the user interface in more detail.

2ECLIPSE, http://www.eclipse.org, accessed on October 20, 2014.

? According to the properties of PIPELINEPARTIALORDERPLANNING from SECTION 3.3, the ex-
pert system can construct pipelines for single information needs only. An integration with
the implementation of the input control from Section 3.5 (cf. ApPENDIX B.2) would allow a
handling of different information needs at the same time, but this is left for future work.

“Different from our model in SecTioNn 3.2, the user interface separates the specifications
of information types and value constraints. Still, these inputs are used equally in both cases.

B SorTwaRrE 285

000 Pipeline XPS
Input text collection
Set input directory: /CICLING-13/Code/EfXTools /data/RevenueCorpus /xmi Browse “ Only construct pipelines 000 Explanations
—Pipeline XPS has been started... N
Quality criteria for algorithm selection ~Time spent for normalization: 1 ms C

Initialize planning stage
(F-Measure, AverageSentenceResponseTime, Precision) &
(F-Measure, AverageSentenceResponseTime, Recall START PLANNING >>>

(F-Measure, Precision, AverageSentenceResponseTime) Subgoals left: [Type de.upb.bionlp.Regulation - A
Choose quality priorization: -Meastre, Recall, AverageSentenceResponseTime) Choosing next subgoal

(Precision, AverageSentenceResponseTime, Recall) | Chose subgoal Type de.upb.bionip.Regulation - 4

(Precision, F-Measure, AverageSentenceResponseTime)| | Selecting action that solves subgoal

(Recall, AverageSentenceResponseTime, Precision) >>> LOOKING FOR BEST ALGORITHM OF [Kernel(|
(Recall, F-Measure, AverageSentenceResponseTime) v)

Warning: No perfectly suitable quality order was {
>>> GET BEST ALGORITHM FOR: Precision

ErpilE ~|>>> No algortihm has quality criterion Precision!
5 f Ji BioNLP Pipeli >>> GET BEST ALGORITHM FOR: AverageSentenc(
e 0 IONLF Fipeline >>> Compute costs for RECauseExtractor
~1>>> Costs computed for RBCauseExtractor: 0.72
Information need ~ |>>> Compute costs for SVMCauseExtractor
>>> Costs computed for SVMCauseExtractor: 56
de.upb.bionlp.Event 2 >>> Compute costs for KernelCauseExtractor
de.upb.bionlp.GeneExpression 0 >>> Costs computed for KernelCauseExtractor: &
de.upb.bionlp.Localization >>> BEST ALGORITHM IS RBCausextractor |y
de.upbbioni ey -
Choose information type: | &P " 70! (“Addtype) (" Removeall types) <O >
de.upb.bionip.Positive Regulation
de.upb.bionlp.Protein 000 Calculating results...
de.upb.bionlp.ProteinCatabolism |y Please wait while calculating results_.
de.upb.bionlp.PositiveRegulation: site [] theme [] csite [] cause ¥ (Add this goal And now the results:

Value constraints _IFound 1 results.
de.upb.bionlp.Binding T site 1. Name = BioNLP Pipeline.AverageSentenceResponseTime

de.upb.bionlp.Entity (0) theme 1. EfXSentenceSplitter
de.upb.bionlp. Event csite TR 2. EfXTokenizer
de.upb.bionlp.GeneExpression cause 3. LexiconPosRegDetector (+ filter)
Type to filter: (oo ealzation Filter. gum?‘arﬂ\mr Add filter Remove all filters. o e e s

de.upb.bionlp. Negative Regulation ateFiter 5. MateToolsLemmatizer
de.upb.bionip.Phosphorylation g ;A\?’:‘;LDDISEDS?‘QQEL .
de.upb.bionlp.PositiveRegulation v g osphorylationDetector

- a - 8. RBCauseExtractor (+ filter)

Textilter RegexToMatch [Eo-VP16 java.lang.String (_Add this filter)

Import ontology Start XPS

Ficure B.1: Screenshot of the prototypical user interface of our expert system Pipe-
LINE XPS that realizes our approach to ad-hoc pipeline construction and execution.

UsING THE EXPERT SYSTEM

The PrreLiNe XPS user interface in FiGure B.1 is made up of the following
areas, each of which including certain options that can or have to be set in
order to start pipeline construction and execution:

Input text Collection Via the button Browse, a directory with the input texts
to be processed (e.g., given as XMI files) can be set. If the checkbox Only
construct pipelines is activated, pipeline execution will be disabled. Instead,
an AracHe UIMA aggregate analysis engine is then constructed and stored
in an according descriptor file in the directory ./XPS/temp/.

Quality Criteria for Algorithm Selection According to Section 3.3, a qual-
ity prioritization needs to be chosen from the provided choice. Exactly
those prioritizations are given that are illustrated in the quality model in
Ficure 3.11, although the namings slightly differ in the expert system.

Output Files In the area Output files, a name for the pipeline to be con-
structed can be specified. This name becomes the file name of the associated
Aracte UIMA analysis engine descriptor file.

Information Needs To set the information need C to be addressed by the
pipeline, the following three steps need to be performed once for each in-
formation type C € C:

1. Select a type from the list and click on the Add type button.

286 B.1 AN ExperT SysTEM FOR AD-HOC PIPELINE CONSTRUCTION

2. Choose attributes for the added type by marking the appearing check-
boxes (if the added type has attributes at all).

3. Press the button Add this type.

Value Constraints The area Value constraints allows setting one or more
filters that represent the value constraints to be checked by the pipeline to
be constructed. For each filter, the following needs to be done:

1. In the Type to filter list, select the type to be filtered.
Select one of the appearing attributes of the selected type.
Select one of the three provided filters.
Insert the text to be used for filtering.

Press the button Add this filter.

AR R N

Start XPS When all types and filters have been set, Start XPS constructs and
executes a pipeline for the specified information need and quality prioriti-
zation. Logs are shown in the console of EcLipse as well as in the Explana-
tions window. A Calculating results... window appears where all results are
shown when the pipeline execution is finished. The results are also written
to a file ./XPS/pipelineResults/resultOfPipeline-<pipelineName»timestamp>.txt.
All created pipeline descriptor files can be found in the ./XPS/temp/ direc-
tory, while the filter descriptor file are stored in /XPS/temp/filter/.

Import Ontology By default, a sample ontology with a specified type sys-
tem, an algorithm repository, and the built-in quality model described in
SEcTION 3.3 are set as the annotation task ontology to rely on. When press-
ing the button Import ontology, a window appears where an ApacHe UIMA
type system descriptor file can be selected as well as a directory in which to
look for the analysis engine descriptor files (i.e., the algorithm repository).
After pressing Import Ontology Information, the respective information is im-
ported into the ontology and PrpeLINE XPS is restarted.”

ExPLORING THE SOURCE CODE OF THE EXPERT SYSTEM

XPS and EfXTools denote largely independent Java projects. In case the de-
fault ontology is employed, though, the former accesses the source code and
AracHe UIMA descriptor files of the latter. In the following, we give some
information on both projects. For more details, see AppEnDIX B.4.

°In case other analysis engines are imported, errors may occur in the current implemen-
tation. The reason is that there is a hardcoded blacklist of analysis engine descriptor files
that can be edited in the class de.upb.mrose.xps.application. ExpertSystemFrontendData (EcLipsE
compiles this class automatically when starting the expert system the next time.

B SorTwaRE 287

XPS The source code of the project XPS consists of four main pack-
ages: All classes related to the user interface of PrreLiNe XPS belong to
the package de.upb.mrose.xps.application, while the management of annota-
tion task ontologies and their underlying data model are realized by the
classes in de.upb.mrose.xps.knowledgebase and de.upb.mrose.xps.datamodel. Fi-
nally, de.upb.mrose.xps.problemsolver is responsible for the pipeline construc-
tion. Besides, some further packages handle the interaction with classes
and descriptors specific to ApacHe UIMA. For details on the architecture
and implementation of the expert system, we refer to (Rose, 2012).

EfXTools EfXTools is the primary software project containing text analysis
algorithms and text mining applications developed within our case study
InrFEXBA described in Section 2.3. A large fraction of the source code and as-
sociated files is not relevant for the expert system, but partly plays a role in
other experiments and case studies (cf. AppENDIX B.4 below). The algorithms
used by the expert system can be found in all sub-packages of the package
de.upb.efxtools.ae. The related ApacHe UIMA descriptor files are stored in
the folders desc, desc38, desc76, where the two latter represent the algorithm
repositories evaluated in Section 3.3. Text corpora like the REVENUE cor-
pUs (cf. AppENDIX C.1) are given in the folder data.

Libraries The folder /ib of XPS contains the following freely available Java
libraries, which are needed to compile the associated source code:®

AvracHE JENA, http://jena.apache.org

AracHE Logyy, http://logging.apache.org/log4j/2.x/

AracHE LUCENE, http://lucene.apache.org

APACHE XERCES, http://xerces.apache.org

JGraPH, http://sourceforge.net/projects/jgraph

StAX, http://stax.codehaus.org

TacSoup, http://ccil.org/~cowan/XML/tagsoup

WoobsTtox, http://woodstox.codehaus.org

Similarly, the algorithms in EFXTools are based on the following libraries:

Aracue CommoNs, http://commons.apache.org/pool/
AracHE UIMA, http://uima.apache.org

ICUyy, http://site.icu-project.org

LiBSVM, http://www.csie.ntu.edu.tw/~ cjlin/libsvm
Marte TooLs, http://code.google.com/p/mate-tools

6 All libraries accessed on October 21, 2014. The same holds for the libraries in EFXTools.

288 B.2 A SorrwarRe FRAMEWORK FOR OrTiMAL PIPELINE EXECUTION

StaNFORDNER, http://nlp.stanford.edu/software/CRF-NER. shtml

TrREETAGGER, http://www.ims.uni-stuttgart.de/projekte/
corplex/TreeTagger/

TT4J, http://code.google.com/p/tt4j/

WEKkA, http://www.cs.waikato.ac.nz/~ ml/weka/

B.2 A SoFfrwARE FRAMEWORK FOR OprTiMAL PIPELINE EXECUTION

In this appendix, we sketch how to use the FiLtering FRamMEwORK introduced
in SectioN 3.5. The FiterinG FRaMEWORK has been implemented by the au-
thor of this thesis as an extension of the ApacHe UIMA framework. It allows
equipping arbitrary text analysis pipelines with an input control. It auto-
matically ensures that each algorithm employed in a pipeline analyzes only
portions of input texts that are relevant for a specified information need,
thus achieving an optimal pipeline execution.

GETTING STARTED

Installation The FiLTerING FRAMEWORK corresponds to the project IE-as-a-
Filtering-Task of the provided software. When using the above-mentioned
integrated development environment EcLipsE, a Java project can simply be
created taking the respective folder as the root directory.

Overview [E-as-a-Filtering-Task subsumes six folders:

src The source code, consisting of the framework and some sample algo-
rithms and applications.

conf Lexica and models used by the algorithms.
data Some sample text corpora.

desc The descriptors of the AracHe UIMA analysis engines of the sample
algorithms as well as of the associated type system.

doc The javadoc documentation of the source code.

lib The Aracue UIMA library used by the framework as well as other li-
braries for the algorithms.

Quick Start For a first try of the filtering framework, the class QuickStart-
Application in the source code package efxtools.sample.application can be ex-
ecuted with the Java virtual machine parameters -Xmx1000m -Xms1000m.
This starts the extraction of relevant information for the query v; on the
ReVENUE corpUs (cf. SECTION 3.5). During the processing of the corpus, some
output is printed to the console. After processing, the execution terminates
and performance results are printed to the console.

B SorTwaRE 289

UsING THE FRAMEWORK

The source code of the FiterinG FRamMEwORK has been designed with a fo-
cus on easy integration and minimal additional effort. In order to use the
framework for applications, the following needs to be done:

Application Within an application based on AracHe UIMA, only the fol-
lowing two additional lines of code are needed. They define the scoped
query and create the scope TMS (cf. SEcTION 3.5 for details):

AScopedQuery query =
new EfXScopedQuery(myTypeSystem, myQueryString);

ScopeTlMS. createScopeTMS (query, myAggregateAEDesc);

Here, both the application-specific type system myTypeSystem and the
aggregate analysis engine description myAggregateAEDesc are available
through the Apacue UIMA framework. In the provided reference imple-
mentation, the scoped query is given as a text string myQueryString that
is parsed in the class EfXScopedQuery of the Fitering FRameEwork.” Ex-
ample queries can be found in the sample applications in the package efx-
tools.sample (information on the source code is given below).

Analysis Engines The determination, generation, and filtering of scopes
are automatically called from the method process(JCas) that is invoked by
the AracHe UIMA framework on every primitive analysis engine for each
text. For this reason, the abstract class FilteringAnalysisEngine in the package
efxtools filtering overrides the process method and instead offers a method
process(JCas, Scope). While it is still possible to use regular primitive
analysis engines in the FiLTERING FRAMEWORK, an analysis engine that shall
restrict its analysis to scopes of a text should inherit from FilteringAnalysis-
Engine and implement the newly offered method. Typically, with only mi-
nor changes a regular primitive analysis engine can be converted into a fil-
tering analysis engine. For examples, see the provided sample algorithms.

Analysis Engine Descriptors In order to ensure a correct annotation and
filtering, it is important to thoroughly define the input and output capabil-
ities of all employed primitive and aggregate analysis engines. Examples
can be found in the subdirectories of the directory desc.

"Notice that, in its prototypical form, the framework checks only the existence of anno-
tation types during filtering while ignoring whether possibly required features have been
set explicity. For some specific queries, this may prevent the framework from performing
filtering as much as would be possible.

B.3

290 B.3 A WEB APPLICATION FOR SENTIMENT SCORING AND EXPLANATION

ExPLORING THE SOURCE CODE OF THE FRAMEWORK

The source code of the FiLtering FRaMEwWORK in the folder src contains two
main packages, efxtools.filtering and efxtools.sample. The former consists of
all classes that actually refer to the framework, whereas the latter contains
a number of sample algorithms and applications, including those that are
used in the experiments in SEcTioN 3.5.

The Filtering Framework The FiLteriNG FRAMEWORK in efxtools filtering re-
alizes the assumption-based truth maintenance system described in Sec-
TION 3.5. It consists of only nine classes, most of which implement the classes
in FIGURE 3.19 and are named accordingly. The code was thoroughly docu-
mented with javadoc comments to make it easily understandable.
Sample Algorithms The package efxtools.sample.ae contains a selection of
the algorithms from Appenpix A. These algorithms have been slightly mod-
ified such that they rely on an input control. As such, they represent exam-
ples of how to realize a FilteringAnalysisEngine in the FILTERING FRAMEWORK.
Sample Applications The package efxtools.sample.application contains a
number of applications that illustrate how to use the FiLTeriNG FRAMEWORK
in general. In particular, the package contains classes for the four queries
that we address in the experiments from Section 3.5. Information on how
to reproduce the results of these experiments is given in ApPEnDIX B.4.
Libraries The folder lib contains the following freely available Java libraries,
which are needed to run and compile the provided source code:®

Aracue ComMmoNs, http://commons . apache.org/pool/

Aracue UIMA, http://uima.apache.org

LiBSVM, http://www.csie.ntu.edu.tw/~ cjlin/libsvm

StaNFORDNER, http://nlp.stanford.edu/software/CRF-NER. shtml

TREETAGGER, http://www.ims.uni-stuttgart.de/projekte/

corplex/TreeTagger/
TT4J, http://code.google.com/p/tt4j/
WEKkA, http://www.cs.waikato.ac.nz/~ ml/weka/

A WEB APPLICATION FOR SENTIMENT SCORING AND EXPLANATION

This appendix describes the prototypical web application for predicting and
explaining sentiment scores that we refer to in Section 5.5. The applica-
tion has been developed within the project ARGuANA (acknowledgments
are given below). It can be accessed at http://www.arguana.com..

8 All libraries accessed on October 20, 2014. For the FiLTERING FRAMEWORK, only APACHE
UIMA is required. The other libraries are used for the sample algorithms and applications.

B SorrwaRE 291

GETTING STARTED

The web application accesses a webservice to predict a sentiment score be-
tween 1 (worst) and 5 (best) for an English input text. The webservice re-
alizes the output analysis from CrHaPTER 5, including the use of the feature
type developed in Section 5.4 and the creation of explanation graphs from
SectioN 5.5. While any input text can be entered by a user, the application
targets at the analysis of hotel reviews.

Before prediction, the application processes the entered text with a pipe-
line of several text analysis algorithms. In addition to the feature types con-
sidered in the evaluation of SecTiON 5.4, it also extracts hotel names and
aspects and it derives features from the combination of local sentiment and
the found names and aspects. Unlike the evaluated sentiment scoring ap-
proach, prediction is then performed using supervised regression (cf. Sec-
TION 2.1). Afterwards, the application provides different visual explana-
tions of the prediction, as described in the following.

USING THE APPLICATION

Ficure B.2 shows the user interface of the application consisting of the fol-
lowing five areas. Only the first area is shown in the beginning, while the
others are displayed after an input text has been analyzed.

Input Text to Be Analyzed Here, a user can enter an arbitrary input text.
After choosing either the shortened or the full overview graph style (see be-
low), pressing Analyze sends the input text to the webservice.

Analyzed Text When the webservice has returned its results, this area
shows a segmentation of the input text into numbered discourse units. Each
discourse unit is marked as being a fact (gray background), a positive opin-
ion (green background), or a negative opinion (red background).

Global Sentiment Here, the predicted sentiment score is visualized in the
form of a star rating with the exact value given in brackets.

Local Sentiment Flow This area depicts the local sentiment flow of the
input text as defined in Section 5.3. In addition, each value of the flow is
labeled with the hotel names and aspects found in the associated discourse
unit. By clicking on one of the values, a detail view of the explanation graph
is displayed in the area below, as illustrated in Ficure B.3.

Explanation graph Finally, a variant of the explanation graph sketched in
Fi1GuURE 5.18 (SECTION 5.5) is visualized in the bottom area. In particular, dis-
course relations, facts (marked as objective), and opinions are all aggregated
in the same layer. Moreover, the visualization pretends that the facts and

292 B.3 A WEB APPLICATION FOR SENTIMENT SCORING AND EXPLANATION

o006 ArguAna - Argumentation Analysis
<] » | [+ [® hup://demo.resolto.com/arguana/#result < KQ- Google
_ArgwAna
Argumentation Analysis in Customer Opinion Mining
Input text to be analyzed

[We spent one night at that hotel. Staff at the front desk was very nice, the room was clean and cozy, and the hotel lies in the city center... but all this
mever justifies the price, which is outrageous!

Overview graph style: [shortened i3] Done. Runtime: 453 ms (Details)

Analyzed text Back o top

1We spent one night at that [T 2%, at the [ENE: = was very nice, >the [was clean and cozy, “and the [T lies
i thcit certer.. * SR~ SRS
Global sentiment

ke (2.95)

Local sentiment flow

Staff room

positive -

hotel

objective:
rice
negative -
1 2 3 4 5

Explanation graph Show this graph in a popup

night at that hotel. Stafat the ..
ifies the price, which s outrageous!

We spent one night a hat hotel. 7" staf at thofront desk was very nics, the room was cloan and cozy, and the hotal es n

hotel Staft front desk room

Back to top

Ficure B.2: Screenshot of the main user interface of the prototypical web applica-
tion for the prediction and explanation of the sentiment score of an input text.

opinions depend on the found hotel names and aspects (labeled as products
and product features) to achieve a more simple graph layout. Given that the
full overview graph style has been selected, the explanation graph includes
tokens with simplified part-of-speech tags as well as sentences besides the
outlined information. Otherwise, the tokens and sentences are shown in
the mentioned detail view only.

ExPLORING THE SOURCE CODE

The source code of the application can be found in the project Argu-
Ana, except for the source code of the user interface, which is not part
of the provided software. The packages com.arquana.explanation and
com.arguana.server contain the source code of the creation of explanation

B.g

B SorTwarg 293

positive
Staff at the front desk was very nice,

Staff at the front desk was very nice, the room was ...
.. this never justifies the-price, which is ouirageousi

Ficure B.3: Screenshot of the detail view of the explanation graph of a single dis-
course unit in the prototypical web application.

graphs and the webservice, respectively. All employed algorithms can be
found in the subpackages of com.arguana.efxtools.ae, whereas the used text
analysis pipeline is represented by the descriptor file HotelTextScoreRegres-
sionPipeline.xml in the folder desc/aggregate-ae.

ACKNOWLEDGMENTS

The development of the application was funded by the GErmaN FEDERAL
Ministry oF EpucatioN AND ResearcH (BMBF) as part of the project Argu-
ANa described in Secrion 2.3. The application’s user interface was imple-
mented by the Resorto INFORMATIK GwmBH?, based in Herford, Germany. The
source code for predicting scores and creating explanation graphs was de-
veloped by the author of this thesis together with a research assistant from
the Wesis grour!? of the Baunaus UniversitaTr WEmMAR, Martin Trenkmann.
The latter also realized the webservice underlying the application.

SouRrce CopE OF ALL ExPERIMENTS AND CASE STUDIES

Finally, we now shortly present how to reproduce all experiments and case
studies of this thesis. First, we give basic information on the provided soft-
ware and the processed text corpora. Then, we point out how to perform
an experiment or case study and where to find additional information.

SOFTWARE

As already stated at the beginning of Appenpix B, the provided software
is split into different projects. These projects have been created in differ-
ent periods of time between 2009 and 2014. As the thesis at hand does not
primarily target at the publication of software, the projects (including all
source code and experiment data) are not completely uniform and partly
overlap. In case, any problems are encountered when reproducing certain
results, please contact the author of this thesis.

YRESOLTO INFORMATIK GwmsH, http://www.resolto.com, accessed on October 17, 2014.
1OWEBIs Group, http: //wuw.webis. de, accessed on October 17, 2014.

204 B.4 Source Copk oF ALL EXPERIMENTS AND CASE STUDIES

Three of the projects have already been described in AppenpicEs B.1
and B.2, namely, EfXTools, XPS, and IE-as-a-Filtering-Task. Also, the fourth
and last project has been named (in AppenDIx B.3). Itis given in the top-level
folder ArguAna of the provided software. ArguAna contains all algorithms
and applications from our case study ARGUANA (cf. SEcTION 2.3) that are rel-
evant for this thesis. This folder is organized similar to those of the projects
EfXTools and IE-as-a-Filtering-Task.

Depending on the experiment or case study, source code of one of the
four projects has to be executed in order to reproduce the according results.
More details are given after the following notes on the processed corpora.

Text CorRPORA

The top-level folder corpora consists of the three text corpora that we cre-
ated ourselves in the last year and that are described in Appenpix C.1 to C.3.
Each of them already comes in the format that is required to reproduce the
experiments and case studies.

For the processed existing corpora (cf. Appenpix C.4), we provide con-
version classes in the projects. In particular, the CoNLL-2003 dataset can
be converted (1) into XMI files with the class CoNLLToXMIConverter in the
package de.upb.efxtools.application.convert found in the project EfXTools and
(2) into plain texts with the CoNLL03Converter in efxtools.sample.application
of IE-as-a-Filtering-Task. For the SENTIMENT ScALE DATASET and the related
sentence subjectivity and polarity datasets, three accordingly named XMI
conversion classes can be found in the package com.arguana.corpus.creation
of ArguAna. Finally, the Brown Corrus is converted using BrownCorpusTo-
PlainTextConverter from de.upb.efxtools.application.convert in EfXTools.

ExPERIMENTS AND CASE STUDIES

Instructions and Results Detailed descriptions on how to reproduce the
results of all experiments and case studies are given in the top-level folder
experiments. This folder has one sub-folder for each section of the thesis at
hand that presents an evaluation or the like. Every sub-folder includes one
or more plain text instruction files that contain a step-by-step description
on how to reproduce the respective results and what classes of which of the
four projects to use for this purpose.!! In many cases, parameter configu-
rations for the respective experiments and case studies can be found below
the instructions. Also, further information is given where necessary.

"Eor sections with different separated experiments, another level of sub-folders is added.

B SorrwaRE 295

Besides the instruction files, every sub-folder contains a folder results
with files that show the output of the executed classes, tested parameters,
or similar result information. In case of machine learning experiments con-
ducted in the WEeka toolkit (Hall et al., 2009), there is also a folder arff-files
that contains all feature files of the evaluated text corpora.

Example As an example, browse through the sub-folder experiments_4_3
and open the file instructions.txt. At the top, this files shows the three steps
needed to perform any of the experiments on the informed search schedul-
ing approach from Section 4.3 as well as some additional notes. Below, an
overview of the parameters to be set in the associated Java class is given
as well as the concrete parameter specifications of each experiment. In the
folder results, several plain text files can be found that are named according
to the table or figure from SecTioN 4.3 the respective results appear in. In
addition, the file algorithm-run-time-estimations.txt gives an overview of the
run-time estimations, the informed search strategy relies on.

Memory Some of the text analysis algorithms employed in the experiments
require a lot of heap space during execution, mostly because of large ma-
chine learning models. As a general rule, we propose to allocate 2 GB heap
space in all experiments and case studies. If EcLipsk is used to compile and
run the respective code, memory can be assigned to every class with a main
method under Run... > Run Configurations. There, insert the virtual
machine arguments -Xmx2000m -Xms2000m in the tab Arguments. In case a
class is run from the console, simply type the following to achieve the same
effect: javac <myClass>.java -Xmx2000m -Xms2000m.

Run-times Depending on the experiment, the reproduction of results may
take anything between a number of seconds and several hours. Notice that
many of our experiments measure run-times themselves. During their ex-
ecution, nothing else should be done with the executing system (as far as
possible). This includes the deactivation of energy saving modes, screen
savers, and so on. Moreover, all run-time experiments include a warm-up
run, ignored in the computation of the results, because pipelines based on
AracHE UIMA tend to be somewhat slower in the beginning.

Text Corpora

THE DEVELOPMENT AND EVALUATION OF TEXT ANALYSIS ALGORITHMS and pipelines
nearly always relies on text corpora, i.e., collections of texts with known
properties (cf. Section 2.1 for details). For the approach to enable ad-hoc
large-scale text mining discussed in the thesis at hand, we have processed
and analyzed three text corpora that we published ourselves as well as a
few existing text corpora often used by other researchers in the field. This
appendix provides facts and descriptions on each employed corpus that are
relevant for the understanding of the case studies and experiments in CHAP-
TER 3 to 5. We begin with our corpora in Appenpix C.1 to C.3, the REVENUE
corrus, the ARGUANA TriPADVISOR corrus, and the LFA-11 corpus. After-
wards, we shortly outline the other employed corpora (Arpenpix C.4).

Tue Revenue Corrus

First, we outline the corpus that is used most often in this thesis to evaluate
the developed approaches, the REVENUE corpus. The REVENUE cOrPUS con-
sists of 1128 German online business news articles, in which different types
of statements on revenue have been manually annotated together with all
information needed to make them machine-processable. The purpose of the
corpus is to investigate both the structure of sentences on financial criteria
and the distribution of associated information over the text. The corpus has
been introduced in (Wachsmuth et al., 2010), from which we reuse some
content, but we provide more details here. It is free for scientific use and
can be downloaded at http://infexba.upb.de.

297

298 C.1 TuEe Revenue Corprus

Source Training Validation Complete
websites set and test set corpus
http:/ /www.produktion.de 127 12 139
http:/ /www.heise.de 127 12 139
http:/ /www.golem.de 117 12 129
http:/ /www.wiwo.de 112 11 123
http:/ /www.boerse-online.de 100 11 111
http:/ /www.spiegel.de 93 11 104
http:/ /www.capital.de 76 11 87
http:/ /www.tagesschau.de - 73 73
http:/ /www.finanzen.net - 37 37
http:/ /www.http:/ /www.vdma.org - 37 37
http:/ /de.news.yahoo.com - 37 37
http:/ /www.faz.net - 19 19
http:/ /www.vdi.de - 16 16
http:/ /www.zdnet.de - 13 13
http:/ /www.handelsblatt.com - 13 13
http:/ /www.zvei.org - 11 11
http:/ /www.sueddeutsche.de - 7 7
http:/ /boerse.ard.de - 7 7
http:/ /www.it-business.de - 5 5
http:/ /www.manager-magazin.de - 5 5
http:/ /www.sachen-machen.org - 5 5
http:/ /www.swissinfo.ch - 4 4
http:/ /www.hr-online.de - 1 1
http:/ /nachrichten.finanztreff.de - 1 1
http:/ /www.tognum.com - 1 1
http:/ /www.pcgameshardware.de - 1 1
http:/ /www.channelpartner.de - 1 1
http:/ /www.cafe-future.net - 1 1
http:/ /www.pokerzentrale.de - 1 1
Total 752 188 each 1128

TasLE C.1: Numbers of texts from the listed websites in the complete REVENUE cORr-
pUs as well as in its training set and in the union of its validation and test set.

COMPILATION

The RevENUE corpus consists of 1128 German news articles from the years
2003 to 2009. These articles were manually selected from 29 source websites
by four employees of a company from the semantic technology field (see
acknowledgments below). TasLk C.1 lists the distribution of websites in the
corpus. As shown, we created a split of the corpus, in which two third of
the texts constitute the training set and one sixth refers to the validation and
test set each. In order to simulate the conditions of developing and applying
text analysis algorithms, the training texts were randomly chosen from the
seven most represented websites only, while the validation and test data
both cover all 29 sources. As a result, the training set of the corpus consists

C Text CorPORA 299

Type Training set Validation set Test set Complete
Forecasts 306 (224%) 113 (312%) 104 (30.0%) 523 (25.2%)
Declarations 1060 (77.6%) 249 (68.8%) 243 (70.0%) 1552 (74.8%)

All statements 1366 (100.0%) 362 (100.0%) 347 (100.0%) 2075 (100.0%)

TasLe C.2: Distribution of statements on revenues in the different parts of the Rev-
ENUE CORPUS, separated into the distributions of forecasts and of declarations.

of 752 texts with a total of 21,586 sentences, while the validation and test set
sum up to 188 texts each with 5751 and 6038 sentences, respectively.

ANNOTATIONS

In each text of the REVENUE corpus, annotation of text spans are given on the
event level and the entity level, as sketched in the following.

Event Level Every sentence with explicit time and money information that
represents a statement on the revenue of an organization or market is anno-
tated as either a forecast or a declaration. If a sentence comprises more than
one such statement on revenue, it is annotated multiple times.

Entity Level In each statement, the time expression and the monetary expres-
sion are marked as such (relative money information is preferred over abso-
lute amounts in case they are separated). Accordingly, the subject is marked
within the sentence if available, otherwise its last mention in the preceding
text. The same holds for optional entities, namely, a possible referenced point
a relative time expression refers to, a trend word that indicates whether a
relative monetary expression is increasing or decreasing, and the author of
a statement. All annotated entities are linked to the statement on revenue
they belong to. Only entities that belongs to a statement are annotated.

TasLE C.2 gives an overview of the statements on revenue in the corpus.
Altogether, 2,075 statements are annotated. The varying distributions of
forecast and declarations give a hint that the validation and test set differ
significantly from the training set.

ExAaMPLE

Ficure C.1 shows a sample text from the REVENUE corpus with one state-
ment on revenue, in particular a forecast. Besides the required time and
monetary expressions, the forecast spans an author mention as well as a
trend indicator of the monetary expression. Other relevant information is
spread across a text, namely, the organization the forecast is about as well
as a reference date that is needed to resolve the time expression.

300 C.1 Tue Revenue Corrus

Loewe AG: Vorliufige Neun-Monats-Zahlen
Reference point

Kronach, 6. November 2007 --- Das Ergebnis vor Zinsen und Steuern (EBIT) des Loewe Konzerns konnte in den ersten
Organization

9 Monaten 2007 um 41% gesteigert werden. Vor diesem Hintergrund hebt die Loewe AG ihre EBIT-Prognose fiir das
Author Time expression

laufende Geschiftsjahr auf 20 Mio. Euro an. Beim Umsatz strebt Konzernchef Rainer Hecker fiir das Gesamtjahr ein

Trend Monetary expression Forecast
hoher als urspriinglich geplantes Wachstum von 10% auf ca. 380 Mio. Euro an. (...)

Ficure C.1: [llustration of a sample text from the REvenut corpus. Each statement
on revenue that spans a time expression and a monetary expression is manually
marked either as a forecast or as a declaration. Also, different types of information
needed to process the statement are annotated.

ANNOTATION PROCESS

Two employees of the above-mentioned company manually annotated all
texts from the corpus. They were given the following main guideline:

“Search for sentences in the text (including its title) that contain state-
ments about the revenues of an organization or market with explicit
time and money information. Annotate each such sentence as a fore-
cast (if it is about the future) or as a declaration (if about the past).
Also, annotate the following information related to the statement:

o Author. The person who made the statement (if given).

e Money. The money information in the statement (prefer relative
over absolute information in case they are separated).

e Subject. The organization or market, the statement is about (an-
notate a mention in the statement if given, otherwise the closest
in the preceding text).

o Trend. A word that makes explicit whether the revenues increase
or decrease (if given).

o Time. The time information in the statement.

e Reference point. A point in time, the annotated time informa-
tion refers to (if given).”

In addition, each type of information to be annotated was explained in detail
and exemplified for a number of cases below the guideline. When the an-
notation of the first texts had been finished, we clarified possible misunder-
standings with the employees and, then, added some further examples. Af-
terwards, the employees annotated the remaining texts. Annotations were
created with the CAS Eprror! provided by Apacue UIMA.

!CAS Eprror, http://uima.apache.org/toolsServers, accessed on October 17, 2014.

C Text CorPORA 301

Inter-Annotator Agreement Each text is annotated only once. To compute
inter-annotator agreement, however, a preceding pilot study with respect
to the annotation of statements on revenue yielded substantial agreement,
as indicated by the value 0.79 of the measure Cohen’s Kappa (Fleiss, 1981).

FiLEs

The ReVENUE corPUs comes as a packed tar.gz archive (6 MB compressed;
32 MB uncompressed). The content of each contained news article comes
as unicode plain text with appended source URL for access to the HTML
source code. Annotations are given in a standard XMI file preformatted for
the ApacHe UIMA framework.

ACKNOWLEDGMENTS

The creation of the ReveNUE corrus was funded by the GErRMAN FEDERAL
Ministry oF Epucarion anD ResearcH (BMBF) as part of the project In-
FEXBA, described in Section 2.3. The corpus was planned by the author
of this thesis together with a research assistant from the above-mentioned
WEeBIs Group of the Baunaus UNiversiTAT WEIMAR, Peter Prettenhofer. The
described process of manually selecting and annotating the texts in the cor-
pus was conducted by the Resorro INFormaTIK GMBH, also named above.

Tae ARGUANA TriPADvVISOR CORPUS

In this appendix, we describe the compilation, annotation, and formatting
of the ARGUANA TRIPADVISOR CORPUS, i.e., a collection of 2,100 manually an-
notated hotel reviews, balanced with respect to the reviews’ overall ratings.
In addition, nearly 200,000 further reviews are provided without manual
annotations. The text corpus serves for the development and evaluation of
approaches that analyze the sentiment and argumentation of web user re-
views. This appendix reuses content from (Wachsmuth et al., 2014b), where
we extensively present the design of the corpus. While we largely restrict
our view to facts about the corpus here, more details on the reasons behind
some design decisions are found in that publication. The corpus is free for
scientific use and available at http://www.arguana. com.

COMPILATION

The ARGUANA TrIPADVISOR CORPUS is based on a highly balanced subset of a
dataset originally used for aspect-level rating prediction (Wang et al., 2010).

302 C.2 THE ARGUANA TriPADVISOR CORPUS

(a) #reviews (b) amount
75k 40%

104,442

Other

50k 30%

Punta Cana
San Francisco
Barcelona

Honolulu

20%
10%

Amsterdam
Florence
Paris

25k

Berlin
Seattle
New York
Hong Kong
Boston
Sydney
Los Angeles
Singapore

0%

0 location 1 2 3 4 5 score

Ficure C.2: (a) Distribution of the locations of the reviewed hotels in the original
TripADvisor dataset from Wang et al. (2010). The ARGUANA TRIPADVISOR CORPUS
contains 300 annotated texts of each of the seven marked locations. (b) Distribution
of the overall ratings of the reviews in the original dataset between 1 and 5.

The original dataset contains nearly 250,000 crawled English hotel reviews
from the travel website TriPADvIsOR? that refer to 1850 hotels from over 60
locations. Each review comprises a text, a set of numerical ratings, and some
metadata. The quality of the texts is not perfect in all cases, certainly due
to crawling errors: Some line breaks have been lost, which hides a number
of sentence boundaries and, sporadically, also word boundaries. The distri-
butions of locations and overall ratings in the original dataset is illustrated
in Ficure C.2. Since the reviews of the covered locations are more or less
randomly crawled, the distribution of overall ratings can be assumed to be
representative for TRiPADvIsOR in general.

Our sampled subset consists of 2,100 reviews balanced with respect to
both location and overall rating. In particular, we selected 300 reviews
of seven of the 15 most-represented locations in the original dataset each,
60 for every overall rating between 1 (worst) and 5 (best). This supports
an optimal training for machine learning approaches to rating prediction.
Moreover, the reviews of each location cover at least 10, but as few as pos-
sible hotels, which is beneficial for opinion summarization approaches.

To counter location-specific bias, we propose a corpus split with a train-
ing set containing the reviews of three locations, and both a validation set
and a test set with two of the other locations. TasLe C.3 lists details about
the balanced compilation and the split.

ANNOTATIONS

The reviews in the dataset from (Wang et al., 2010) have a title and a body
and they include different ratings and metadata. We maintain all this in-
formation as text-level and syntax-level annotations in the ARGUANA Trip-
Abpvisor corpus. In addition, the corpus is enriched with annotations of lo-
cal sentiment at the discourse level and domain concepts at the entity level:

2TRIPADVISOR, http://www.tripadvisor.com, accessed on October 17, 2014.

C Text CorPORA 303

Set Location Hotels Score1 Score2 Score3 Score4 Scoreb5 3
training ~ Amsterdam 10 60 60 60 60 60 300
Seattle 10 60 60 60 60 60 300
Sydney 10 60 60 60 60 60 300
validation Berlin 44 60 60 60 60 60 300
San Francisco 10 60 60 60 60 60 300
test Barcelona 10 60 60 60 60 60 300
Paris 26 60 60 60 60 60 300
complete all seven 120 420 420 420 420 420 2100

TaBLE C.3: The number of reviewed hotels of each location in the complete ArGu-
AnNa TripADVISOR cOrPUS and in its three parts as well as the number of reviews for
each sentiment score between 1 and 5 and in total.

Text Level Each review comes with optional ratings for seven hotels as-
pects, namely, value, room, location, cleanliness, front desk, service, and business
service, as well as with a mandatory overall rating. We interpret the overall
ratings as global sentiment scores. All ratings are integer values between 1
and 5. In terms of metadata, the ID and location of the reviewed hotel, the
username of the author, and the date of creation are given.

Syntax Level In every review text, the title and body are annotated as such
and they are separated by two line breaks.

Discourse Level All review texts are segmented into single statements that
represent single discourse units. A statement is a main clause together with
all its dependent subordinate clauses (and, hence, a statement spans at most
a sentence). Each statement is classified as being an objective fact, a positive
opinion, or a negative opinion.

Entity Level Two types of domain concepts are marked as product features in
all texts: (1) hotel aspects, like those rated on the text level but also others like
atmosphere, and (2) everything that is called an amenity in the hotel domain,
e.g. facilities like a coffee maker or wifi as well as services like laundry.

TaBLE C.4 lists the numbers of corpus annotations together with some
statistics. The corpus includes 31,006 classified statements and 24,596 prod-
uct features. On average, a text comprises 14.76 statements and 11.71 prod-
uct features. A histogram of the length of all reviews in terms of the number
of statements is given in Ficure C.3(a), grouped into intervals. As can be
seen, over one third of all texts span less than 10 statements (intervals 0-4
and 5-9), whereas less than one fourth spans 20 or more. Ficure C.3(b) visu-
alizes the distribution of sentiment scores for all intervals that cover at least
1% of the corpus. Most significantly, the fraction of reviews with sentiment
score 3 increases under higher numbers of statements.

304 C.2 THE ARGUANA TriPADVISOR CORPUS

Type Total Average + o Median Min Max
Tokens 442 615 210.77 +171.66 172 3 1823
Sentences 24,162 1151 £ 7.89 10 1 75
Statements 31,006 14.76 + 10.44 12 1 96
Facts 6,303 3.00 £ 3.65 2 0 41
Positive opinions 11,786 5.61 £ 5.20 5 0 36
Negative opinions 12,917 6.15 £ 6.69 4 0 52
Product features 24,596 11.71 + 10.03 10 0 180

TasLE C.4: Statistics of the tokens, sentences, manually classified statements, and
manually annotated product features in the ARGUANA TRIPADVISOR CORPUS.

(@) fraction of reviews (b) fraction of scores
30% 100%

80%
60%
40% score 3

20% _ | b

score 1

20%

10%

o

0% A
statements 0-4 5-9 10-14 # statements 40-44

Ficure C.3: (a) Histogram of the number of statements in the texts of the ARGUANA
TrirADVISOR cORPUS, grouped into intervals. (b) Interpolated curves of the fraction
of sentiment scores in the corpus depending on the numbers of statements.

ExaMPLE

Ficure C.4 illustrates the main annotations of a sample review from the cor-
pus. Each text has a specified title and body. In this case, the body spans
nine mentions of product features, such as “location” or “internet access”. It
is segmented into 12 facts and opinions. The facts and opinions reflect the
review’s rather negative sentiment score 2 while e.g. highlighting that the
internet access was not seen as negative. Besides, Ficure C.4 exemplifies the
typical writing style often found in web user reviews like those from Trip-
Apvisor: A few grammatical inaccuracies (e.g. inconsistent capitalization)
and colloquial phrases (e.g. “like 2 mins walk”), but easily readable.

ANNOTATION PROCESS

The classification of all statements in the texts of the ARGUANA TRIPADVISOR
corrus was performed using crowdsourcing, while experts annotated the
product features. Before, the segmentation of the texts into statements was
done automatically using the algorithm ppu (cf. AppEnDIX A). The manual
annotation process is summarized in the following.

Crowdsourcing Annotation The statements were classified using the
crowdsourcing platform AmazoN MecHANICAL Turk that we already relied
on in SectioN 5.5. The task we assigned to the workers here involved the

C Text CorPORA 305

title: |great location, bad service sentiment score: 2 of 5

body: BN TARII IR The location was great, right there at China town, restaurants

everywhere, the monorail station is also nearby. TR LR A IRk Ld ROOmS were however very sniall]

We were given the 1st floor rooms Jand we were right under the monorail track, UGS IR AN I Z18

Service is terrible. I made an enquiry about internet access from the room

Figure C.4: Illustration of a review from the ARGuAna TripPApvisor corrus. Each
review text has a title and a body. It is segmented into discourse-level statements
that have been manually classified as positive opinions (light green background),
negative opinions (mediumred), and objective facts (dark gray). Also, manual an-
notations of domain concepts are provided (marked in bold).

classification of a random selection of 12 statements. After some prelimi-
nary experiments with different task descriptions, the main guideline given
to the workers was the following:

“When visiting a hotel, are the following statements positive, negative,
or neither?”

Together with the guideline, three notes were provided: (1) to choose “nei-
ther” only for facts, not for unclear cases, (2) to pay attention to subtle state-
ments where sentiment is expressed implicitly or ironically, and (3) to pick
the most appropriate answer in controversial cases. The different cases were
illustrated using a carefully chosen set of example statements.

The workers were allowed to work on the 12 statements of a task at most
10 minutes and were paid $0.05 in case of approval. To assure quality, the
tasks were assigned only to workers with over 1000 approved tasks and an
average approval rate of at least 80% on AmazoN MEecHaNICAL TURk. More-
over, we always put two hidden check statements with known and unam-
biguous classification among the statements in order to recognize faked or
otherwise flawed answers. The workers were informed that tasks with in-
correctly classified check statements are rejected. Rejected tasks were re-
assigned to other workers. For a consistent annotation, we assigned each
statement to three workers and then applied majority voting to obtain the
final classifications. Altogether, 328 workers performed 14,187 tasks with an
approval rate of 72.8%. On average, a worker spent 75.8 seconds per task.
Expert Annotation Two experts with linguistic background annotated
product features in the corpus based on the following guideline:

“Read through each review. Mark all product features of the reviewed

hotel in the sense of hotel aspects, amenities, services, and facilities.”
In addition, we specified (1) to omit attributes of product features, e.g. to
mark “location” instead of “central location” and “coffee maker” instead of “in-
room coffee maker”, (2) to omit guest belongings, and (3) not to mark the

306 C.2 THE ARGUANA TriPADVISOR CORPUS

word “hotel” or brands like “Bellagio” or “Starbucks”. Analog to above, we
illustrated the guidelines with the help of some example annotations. After
an initial annotation of 30 reviews, we discussed and revised the annota-
tions produced so far with each expert. Then, the experts annotated the
rest of the corpus, taking about 5 minutes per text on average.

Inter-Annotator Agreement In case of crowdsourcing, we measured
the inter-annotator agreement for all statements in terms of Fleiss’
Kappa (Fleiss, 1981). The obtained value of 0.67 is usually interpreted as
substantial agreement. In detail, 73.6% of the statements got the same clas-
sification from all three workers and 24.7% had a 2:1 vote (4.8% with op-
posing opinion polarity). The remaining 1.7% mostly refer to controversial
statements, such as “nice hotel, overpriced” or “It might not be the Ritz”. We
classified these statements ourselves in the context of the associated review.
To measure the agreement of the product feature annotations, 633 state-
ments were annotated by two experts. In 546 cases, both experts marked
exactly the same spans in the statements as product features. Assuming a
chance agreement probability of 0.5, this results in the value 0.73 of Cohen’s
Kappa (Fleiss, 1981), which again means substantial agreement.

FiLes

The ArRGUANA TrIPADVISOR CORPUS comes as a packed ZIP archive (8 MB
compressed; 28 MB uncompressed), which contains XMI files preformat-
ted for the Aracue UIMA framework just as for the REVENUE corpus in Ap-
PENDIX C.1. Moreover, we converted all those 196,865 remaining reviews
of the dataset from (Wang et al., 2010) that have a correct text and a correct
overall rating between 1 and 5 into the same format without manual annota-
tions but with all TrirAbpvisor metadata. This unannotated dataset (265 MB
compressed; 861 MB uncompressed) can be used both for semi-supervised
learning techniques (cf. Section 2.1) and for large-scale evaluations of rat-
ing prediction and the like. We attached some example applications and a
selection of the text analysis algorithms from AprenDIX A to the corpus. The
applications and algorithms can be executed to conduct the analyses from
SecTION 5.3, thereby demonstrating how to process the corpus.

ACKNOWLEDGMENTS

The creation of the ARGUANA TriPADVISOR corPUs was funded by the GEr-
MAN FEDERAL MINisTRY OF EDUCATION AND RESEarcH (BMBF) as part of the
project ARGUANA, described in Section 2.3. The corpus was planned by
the author of this thesis together with a research assistant from the above-

Cs

C Text CorPORA 307

mentioned WEsis grour of the Baunaus Universitar WEmMAR, Tsvetomira
Palarkska. The latter then compiled the texts of the corpus and realized
and supervised the crowdsourcing annotation process. The expert annota-
tions were added by one assistant from the UNiversiTy oF PADERBORN and
one employee of the Resorro INFOrRMATIK GMBH.

Tue LFA-11 Corrus

Besides the REveNUE corrus and the ARGUANA TRIPADVISOR CORPUS, We Use a
third self-created corpus in some experiments of this thesis, the LFA-11 cor-
pus. The LFA-11 corrus is a collection of 4806 manually annotated product-
related texts that consists of two separate parts, which refer to different
high-level topics, namely, music and smartphones. It serves as a linguis-
tic resource for the development and evaluation of approaches to language
function analysis (cf. SEcTiON 2.3) and sentiment analysis. In the following,
we reuse and extend content from (Wachsmuth and Bujna, 2011), where the
LFA-11 corprus has originally been presented. The corpus is free for scien-
tific use and can be downloaded at http://infexba.upb.de.

COMPILATION

The LFA-11 corpus contains 2713 texts from the music domain as well as
2093 texts from the smartphone domain. The texts of these topical domains
come from different sources and are of very different quality and style:

The music collection is made up of user reviews, professional reviews,
and promotional texts from a social network platform, selected by employ-
ees of a company from the digital asset management industry (see acknowl-
edgments below). These texts are well-written and of homogeneous style.
On average, a music texts span 9.4 sentences with 23.0 tokens on average,
according to the output of our algorithms sse and stos (cf. AprENDIX A.1). In
contrast, the texts in the smartphone collection are blog posts. These posts
were retrieved via queries on a self-made Apracue Lucene® index, which
was built for the SPINN3R corPUs.* SPINN3R aims at crawling and indexing
the whole blogosphere. Hence, the texts in the smartphone collection vary
strongly in quality and writing style. They have an average length of 11.8
sentences but only 18.6 tokens per sentence.

3 ApacHE LUCENE, http://lucene.apache.org, accessed on October 19, 2014.
4SPINN3R corprus, http://www.spinn3r.com, accessed on October 19, 2014.

308 C.3 Tue LFA-11 Corpus

Topic Type Class Training set Validation set Test set

music Language function personal 521 (38.5%) 419 (61.7%) 342 (50.4%)
commercial 127 (9.4%) 72 (10.6%) 68 (10.0%)
informational 707 (52.2%) 188 (27.7%) 269 (39.6%)

(
Sentiment positive 1003 (74.0%) 558 (82.2%) 514 (75.7%)
neutral 259 (19.1%) 82 (12.1%) 115 (16.9%)
negative 93 (6.9%) 39 (5.7%) 50 (7.4%)
(
(
(

Topic relevance true 1327
false 28

97.9%) 673 (99.1%) 662 (97.5%)
21%) 6 (09%) 17 (2.5%)

smartphone Language function personal 546 (52.1%) 279 (53.3%) 302 (57.7%)
commercial 90 (8.6%) 36 (6.9%) 28 (5.4%)
informational 411 (39.3%) 208 (39.8%) 193 (36.9%)

Sentiment polarity positive 205 (19.6%) 110 (21.0%) 84 (16.1%)
neutral 738 (70.5%) 343 (65.6%) 359 (68.6%)
negative 104 (9.9%) 70 (13.4%) 80 (15.3%)
Topic relevance true 561 (53.6%) 307 (58.7%) 287 (54.9%)
false 486 (46.4%) 216 (41.3%) 236 (45.1%)

TasLe C.5: Distributions of the text-level classes in the three sets of the two topical
parts of the LFA-11 corpus for the three annotated types.

ANNOTATIONS

All texts of the LFA-11 corpus are annotated on the text level with respect
to three classification schemes:

Text Level First, the language function of each text is annotated as being pre-
dominantly personal, commercial, or informational (cf. SEcTioN 2.3).5 Sec-
ond, the texts are classified with respect to their sentiment polarity, where
we distinguish positive, neutral, and negative sentiment. And third, the rel-
evance with respect to the topic of the corpus part the text belongs to (music
or smartphones) is annotated as being given (true) or not (false).

In the corpus texts, all three annotations are linked to a metadata annota-
tion that provides access to them. Some texts were annotated twice for inter-
annotator agreement purposes (see the annotation process below). These
texts have two annotations of each type. We created splits for each topic
with half of the texts in the training set and each one fourth in the valida-
tion set and test set, respectively. TasLe C.5 show the class distributions of
language functions, sentiment polarities, and topic relevance. The distribu-
tions indicate that the training, validation, and test sets differ significantly
from each other. In case of double-annotated texts, we used the annotation
of the second employee to compute the distributions. So, the exact frequen-
cies of the different classes depend on which annotations are used.

>The language function annotation is called Genre in the corpus texts. Language func-
tions can be seen as a single aspect of genres (Wachsmuth and Bujna, 2011).

C Text CorPORA 309

[...] How did Alex ask recently when [...] The sitars sound authentically [...]1 “It’s All Too Much”? No, no,
he saw the Kravitz" latest best-of Indian. In combination with the still okay, though an enormous hype
collection: Is it his own liking, the three-part harmonious singing and was made about the seemingly new
voting on his website or the chart the jingle-jangle of the rickenbacker Beatles song for decades. The point
position what counts? Good guitars, they create an oriental flair is that exactly this song “Hey
question. However, in our case, there without losing their Beatlesque Bulldog has already been published
is nothing to argue about: 27 songs, elegance. If that doesn’t make you several times, most recently on a
all were number one. The Beatles. smile! [...] reprint of **Yellow Submarine’’ in
Biggest Band on the Globe. [...] the year 1987. [...]
Language function: personal Language function: commercial Language function: informational
Sentiment polarity: neutral Sentiment polarity: positive Sentiment polarity: neutral
Topic relevance: true Topic relevance: true Topic relevance: true

Ficure C.5: Translated excerpts from three texts of the music part of the LFA-11
corpus, exemplifying one instance of each language function. Notice that the trans-
lation to English may have affected the indicators of the annotated classes.

ExAaMPLE

Ficure C.5 shows excerpts from three texts of the music collection, one out of
each language function class. The excerpts have been translated to English
for convenience purposes. The neutral sentiment of the personal text might
seem inappropriate, but the given excerpt is misleading in this respect.

ANNoOTATION PROCESS

The classification of all texts of the LFA-11 corpus was performed by two
employees of the mentioned company based on the following guidelines:

“Read through each text of the two collections. First, tag the text as be-
ing predominantly personal, commercial, or informational with respect
to the product discussed in the text:

e personal. Use this annotation if the text seems not to be of com-
mercial interest, but probably represents the personal view on the
product of a private individual.

e commercial. Use this annotation if the text is of obvious com-
mercial interest. The text seems to predominantly aim at persuad-
ing the reader to buy or like the product.

e informational. Use this annotation if the text seems not to be of
commercial interest with respect to the product. Instead, it pre-
dominantly appears to be informative in a journalistic manner.”

Second, tag the sentiment polarity of the text:

o neutral. Use this annotation if the text either reports on the prod-
uct without making any positive or negative statement about it
or if the texts is neither positive nor negative, but rather close to
the midth between positive and negative.

Cy

310 C.4 Usep ExistinGg TexT CorRPORA

e negative. Use this annotation if the text reports on the product
in a positive way from an overall viewpoint.

e positive. Use this annotation if the text reports on the product
in a negative way from an overall viewpoint.”

Finally, decide whether the text is relevant (true) or irrelevant (false)

with respect to the topic of the collection (music or smartphones).
As for the corpora described above, we provided a set of examples to illus-
trate each language function, sentiment polarity, and relevance class. After
the annotation of a sample of texts, we clarified misunderstandings with the
employees and we added some insightful examples.

Inter-Annotator Agreement About 20% of the music texts and 40% of the
smartphone texts were tagged twice. The resulting inter-annotator agree-
ment values 0.78 (music) and 0.67 (smartphone) of Cohen’s Kappa (Fleiss,
1981) for the language function annotations constitute substantial agree-
ment. Especially 0.67 is far from perfect, which can make an accurate text
classification hard. Under consideration of the hybridity of language func-
tions (cf. SEcTION 2.3), both kappa values appear to be quite high, though.

FiLEs

The LFA-11 corrus comes as a packed tar.gz archive (5 MB compressed;
35 MB uncompressed). Both the music and the smartphone texts are stored
in a standard UTF-8 encoded XMI file together with their annotations, pre-
formatted for the Apacue UIMA framework.

ACKNOWLEDGMENTS

The creation of the LFA-11 corpus was funded by the GERmMAN FEDERAL MIN-
1sSTRY OF EDUCATION AND RESEarcH (BMBF) as part of the project INFEXBA, de-
scribed in SectiON 2.3. Both parts of the corpus were planned by the author
of this thesis together with a research assistant from the above-mentioned
WEBIs Group, Peter Prettenhofer. The latter gathered the texts of the smart-
phone collection, whereas the music texts were selected by the company
Dicrtar COLLECTIONS VERLAGSGESELLSCHAFT MBH?, based in Hamburg, Ger-
many. This company also conducted the described annotation process.

Usep ExisTING TExT CORPORA

Finally, we provide basic information on all collections of texts referred to in
this thesis that have not been created by ourselves. Concretely, we summa-

*Dicrrar CoLLEcTIONS, http://www.digicol.de, accessed on October 19, 2014.

C Text CorPORA 311

rize the main facts about the purpose and compilation of each collection as
well as about given annotations as far as available. Also, we give references
to where the collection can be accessed.

CoNLL-2003 DaTaseT (ENGLISH AND GERMAN)

The CoNLL-2003 dataset (Tjong Kim Sang and Meulder, 2003) serves for
the development and evaluation of approaches to the CoNLL-2003 sHARED
TAsk on language-independent named entity recognition. It consists of an
English part and a German part. The English part contains 1393 news sto-
ries with different topics. It is split into 946 training texts (12,705 sentences),
216 validation texts (3466 sentences), and 231 test texts (3684 sentences). The
German part contains 909 mixed newspaper articles, split into 553 training
texts (12,705 sentences), 201 validation texts (3068 sentences), and 155 test
texts (3160 sentences). In all texts of both parts, every mention of a person
name, a location name, and an organization name have been manually anno-
tated as an entity of the respective type. Besides, there is a type Misc that
covers entities, which do not belong to these three types.

We process the English part in the experiments with our input control in
Secrion 3.5 and the German part to evaluate all our scheduling appraoches
in SECTIONS 4.1, 4.3, and 4.5. Both parts are analyzed in terms of their dis-
tribution of relevant information (Sections 4.2 and 4.4). The CoNLL-2003
dataset is not freely available. For information on how to obtain this cor-
pus, see http://www.cnts.ua.ac.be/conll12003/ner/, the website of the
CoNLL-2003 sHARED Task (accessed on October 20, 2014).

SENTIMENT SCALE DATASET (AND RELATED DATASETS)

The SEnTIMENT ScALE pDaTASET (Pang and Lee, 2005) is a collection of texts
that has been widely used to evaluate approaches to the prediction of senti-
ment scores. It consists of 5,006 reviews from the movie domain and comes
with two sentiment scales. In particular, each review is assigned one integer
score in the range [0, 3] and one in the range [0, 2]. On average, a review
has 36.1 sentences. The dataset is split into four text corpora according to
the four authors of the reviews: 1770 reviews of author a (Steve Rhodes), 902
reviews of author b (Scott Renshaw), 1307 reviews of author ¢ (James Berar-
dinelli), and 1027 reviews of author d (Dennis Schwartz).

We first analyze the SENTIMENT SCALE DATASET in terms of its distribution
of relevant information in SectioN 4.4. Later, we process the dataset in the
feature experiments in Section 5.3 and the evaluation of our overall analy-
sis (SECTION 5.4), where we rely on the three-class sentiment scale. In the per-

312 C.4 Usep Existing Text CorRPORA

formed experiments, we discarded three reviews of author a and five reviews
of author ¢ due to encoding problems. The dataset can be freely downloaded
at http://www.cs.cornell.edu/people/pabo/movie-review-data (ac-
cessed on October 20, 2014).

In addition to the SENTIMENT SCALE DATASET, we also process the SusjecTiv-
1TY DATASET (Pang and Lee, 2004) and the SENTENCE POLARITY DATASET (Pang
and Lee, 2005) in SecTION 5.4 in order to develop classifiers for sentence sen-
timent. Both are also freely available at the mentioned website. The Susjec-
TIvVITY DATASET contains 10,000 sentences, half of which are classified as sub-
jective and half as objective. Similarly, the SENTENCE POLARITY DATASET con-
tains 5331 positive and 5331 negative sentences. The sentences from these
two datasets are taken from movie reviews.

BrownN Corrus

The Brown corrus (Francis, 1966) has been introduced in the 1960’s as a
standard text collection of present-day American English. It consists of 500
prose text samples of about 2000 words each. The samples are excerpts from
texts printed in the year 1961 that were written by native speakers of Amer-
ican English as far as determinable. They cover a wide range of styles and
varieties of prose. Atahigh level, they can be divided into informative prose
(374 samples) and imaginative prose (126 samples).

We process the BRowN corpus in SEcTIONS 4.2 and 4.4 to show how rel-
evant information is distributed across texts and collections of texts. The
BrowN corpus is free for non-commercial purposes and can be downloaded
athttp://www.nltk.org/nltk_data (accessed on October 20, 2014).

WIKIPEDIA SAMPLE

The German Wikirepia sample that we experiment with consists of the first
10,000 articles from the WikiMeDIA” dump from March 9, 2013, ordered ac-
cording to their internal page IDs. The complete dump contains over 3 mil-
lion WikipeDIA pages, from which 1.8 million pages represent articles that
are neither empty nor stubs or simple lists.

As in the case of the BRowN corpus, we process the WikipEpIA sample in
SecTIONS 4.2 and 4.4 to show how relevant information is distributed across
texts and collections of texts. The dump we rely on is outdated and not avail-
able anymore. However, similar dumps from later dates can be accessed at
http://dumps.wikimedia.org/dewiki (accessed on October 20, 2014).

"WIKIMEDIA, http: //dumps.wikimedia.org, accessed on October 20, 2014.

References

Charu C. Aggarwal. Outlier Analysis. Springer, New York, NY, USA, 2013.

Charu C. Aggarwal and ChengXiang Zhai. A Survey of Text Classification
Algorithms. In Mining Text Data, pages 163-222. Springer US, 2012.

Eugene Agichtein. Scaling Information Extraction to Large Document Col-
lections. Bulletin of the IEEE Computer Society Technical Committee on Data
Engineering, 28:3-10, 2005.

Eugene Agichtein and Luis Gravano. Querying Text Databases for Efficient
Information Extraction. In Proceedings of the 19th International Conference
on Data Engineering, pages 113-124, 2003.

David Ahn, Sisay F. Adafre, and Maarten de Rijke. Extracting Temporal In-
formation from Open Domain Text: A Comparative Exploration. Journal
of Digital Information Management, 3(1):14-20, 2005.

Rami Al-Rfou” and Steven Skiena. SpeedRead: A Fast Named Entity Recog-
nition Pipeline. In Proceedings of the 24th International Conference on Com-
putational Linguistics, pages 51-66, 2012.

Isabelle Alvarez and Sophie Martin. Explaining a Result to the End-User:
A Geometric Approach for Classification Problems. In Proceedings of the
IJCAI 2009 Workshop on Explanation Aware Computing, pages 102-109, 2009.

Sophia Ananiadou and John McNaught. Text Mining for Biology and
Biomedicine. Artech House, Inc., Norwood, MA, USA, 2005.

Sophia Ananiadou, Paul Thompson, and Raheel Nawaz. Enhancing Search:
Events and their Discourse Context. In Proceedings of the 14th International
Conference on Computational Linguistics and Intelligent Text Processing - Vol-
ume 2, pages 318-334, 2013.

Maik Anderka, Benno Stein, and Nedim Lipka. Predicting Quality Flaws
in User-generated Content: The Case of Wikipedia. In 35th International
ACM Conference on Research and Development in Information Retrieval, pages
981-990, 2012.

313

314

Edward Angel. Interactive Computer Graphics: A Top-Down Approach Using
OpenGL. Addison-Wesley Publishing Company, Boston, MA, USA, 5th
edition, 2008.

Stephan Arens. A Dataflow-based Shader Framework for Visualizing Dissections
of the Heart Using Individual Patient Data. Dissertation, University of Pader-
born, 2014.

Rajkumar Arun, Venkatasubramaniyan Suresh, and C. E. Veni Madhavan.
Stopword Graphs and Authorship Attribution in Text Corpora. In Pro-
ceedings of the 2009 IEEE International Conference on Semantic Computing,
pages 192-196, 2009.

Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi,
and Peter F. Patel-Schneider, editors. The Description Logic Handbook: The-
ory, Implementation, and Applications. Cambridge University Press, New
York, NY, USA, 2003.

Stefano Baccianella, Andrea Esuli, and Fabrizio Sebastiani. SentiWordNet
3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion
Mining. In Proceedings of the Seventh International Conference on Language
Resources and Evaluation, pages 2200-2204, 2010.

Miguel Ballesteros, Bernd Bohnet, Simon Mille, and Leo Wanner. Deep-
Syntactic Parsing. In Proceedings of the 25th International Conference on Com-
putational Linguistics: Technical Papers, pages 1402-1413, 2014.

Srinivas Bangalore. Thinking outside the Box for Natural Language Pro-
cessing. In Proceedings of the 13th International Conference on Intelligent Text
Processing and Computational Linguistics, pages 1-16, 2012.

Michele Banko, Michael]J. Cafarella, Stephen Soderland, Matt Broadhead,
and Oren Etzioni. Open Information Extraction from the Web. In Proceed-
ings of the 20th International Joint Conference on Artificial Intelligence, pages
2670-2676, 2007.

Gustavo E. A. P. A. Batista, Ronaldo C. Prati, and Maria Carolina Monard. A
Study of the Behavior of Several Methods for Balancing Machine Learn-
ing Training Data. SIGKDD Explorations Newsletter, 6(1):20-29, 2004.

Victoria Bellotti and Keith Edwards. Intelligibility and accountability: hu-
man considerations in context-aware systems. Human-Computer Interac-
tion, 16(2—4):193-212, 2001.

315

Steffen Beringer. Effizienz und Effektivitdt der Integration von Textklassi-
fikation in Information-Extraction-Pipelines. Master’s thesis, University
of Paderborn, Paderborn, Germany, 2012.

Philippe Besnard and Anthony Hunter. Elements of Arqumentation. The MIT
Press, Cambridge, MA, USA, 2008.

Douglas Biber, Susan Conrad, and Randi Reppen. Corpus Linguistics : In-
vestigating Language Structure and Use. Cambridge University Press, Cam-
bridge, MA, USA, 1998.

Anders Bjorkelund, Bernd Bohnet, Love Hafdell, and Pierre Nugues. A
High-performance Syntactic and Semantic Dependency Parser. In Pro-
ceedings of the 23rd International Conference on Computational Linguistics:
Demonstrations, pages 33-36, 2010.

John Blitzer, Mark Dredze, and Fernando Pereira. Biographies, Bollywood,
Boom-boxes and Blenders: Domain Adaptation for Sentiment Classifica-
tion. In Proceedings of the 45th Annual Meeting of the Association for Compu-
tational Linguistics, pages 440-447, 2007.

John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jenn
Wortman. Learning Bounds for Domain Adaptation. In Advances in Neu-
ral Information Processing Systems 21. MIT Press, 2008.

Bernd Bohnet. Very High Accuracy and Fast Dependency Parsing is not a
Contradiction. In Proceedings of the International Conference on Computa-
tional Linguistics, pages 89-97, 2010.

Bernd Bohnet and Jonas Kuhn. The Best of Both Worlds: A Graph-based
Completion Model for Transition-based Parsers. In Proceedings of the 13th
Conference of the European Chapter of the Association for Computational Lin-
guistics, pages 77-87, 2012.

Bernd Bohnet, Alicia Burga, and Leo Wanner. Towards the Annotation of
Penn TreeBank with Information Structure. In Proceedings of the Sixth Inter-
national Joint Conference on Natural Language Processing, pages 1250-1256,
Nagoya, Japan, 2013.

Karl Biihler. Sprachtheorie. Die Darstellungsfunktion der Sprache. Verlag von
Gustav Fischer, Jena, Germany, 1934.

Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and
Michael Stal. Pattern-oriented Software Architecture: A System of Patterns.
John Wiley & Sons, Inc., New York, NY, USA, 1996.

316

Michael J. Cafarella, Doug Downey, Stephen Soderland, and Oren Etzioni.
KnowlItNow: Fast, Scalable Information Extraction from the Web. In
Proceedings of the Conference on Human Language Technology and Empirical
Methods in Natural Language Processing, pages 563-570, 2005.

Claire Cardie, Vincent Ng, David Pierce, and Chris Buckley. Examining
the Role of Statistical and Linguistic Knowledge Sources in a General-
Knowledge Question-Answering System. In Proceedings of the Sixth Ap-
plied Natural Language Processing Conference, pages 180-187, 2000.

Lynn Carlson, Daniel Marcu, and Mary Ellen Okurowski. Building a
Discourse-tagged Corpus in the Framework of Rhetorical Structure The-
ory. In Proceedings of the Second SIGdial Workshop on Discourse and Dialogue
- Volume 16, pages 1-10, 2001.

Sung-Hyuk Cha. Comprehensive Survey on Distance/Similarity Measures
between Probability Density Functions. International Journal of Mathemat-
ical Models and Methods in Applied Sciences, 1(4):300-307, 2007.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A Library for Support Vec-
tor Machines. ACM Transactions on Intelligent Systems and Technology, 2:
27:1-27:27,2011.

Olivier Chapelle, Bernhard Schlkopf, and Alexander Zien. Semi-Supervised
Learning. The MIT Press, 2006.

Jose M. Chenlo, Alexander Hogenboom, and David E. Losada. Rhetorical
Structure Theory for Polarity Estimation: An Experimental Study. Data
& Knowledge Engineering, 94(B):135-147, 2014.

Nancy Chinchor, David D. Lewis, and Lynette Hirschman. Evaluating Mes-
sage Understanding Systems: An Analysis of the Third Message Under-
standing Conference (MUC-3). Computational Linguistics, 19(3):409-449,
1993.

Laura Chiticariu, Rajasekar Krishnamurthy, Yunyao Li, Sriram Raghavan,
Frederick R. Reiss, and Shivakumar Vaithyanathan. SystemT: An Alge-
braic Approach to Declarative Information Extraction. In Proceedings of the
48th Annual Meeting of the Association for Computational Linguistics, pages
128-137, 2010a.

Laura Chiticariu, Yunyao Li, Sriram Raghavan, and Frederick R. Reiss. En-
terprise Information Extraction: Recent Developments and Open Chal-

317

lenges. In Proceedings of the 2010 International Conference on Management of
Data, pages 1257-1258, 2010b.

Yejin Choi, Eric Breck, and Claire Cardie. Joint Extraction of Entities and
Relations for Opinion Recognition. In Proceedings of the 2006 Conference on
Empirical Methods in Natural Language Processing, pages 431-439, 2006.

Keith D. Cooper and Linda Torczon. Engineering a Compiler. Morgan Kauf-
mann, Burlington, MA, USA, 2011.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms. MIT Press, Cambridge, MA, USA, third
edition, 2009.

Michael A. Covington. A Fundamental Algorithm for Dependency Parsing.
In Proceedings of the 39th Annual ACM Southeast Conference, pages 95-102,
2001.

Jim Cowie and Wendy Lehnert. Information Extraction. Communications of
the ACM, 39(1):80-91, 1996.

Hang Cui, Renxu Sun, Keya Li, Min-Yen Kan, and Tat-Seng Chua. Question
Answering Passage Retrieval using Dependency Relations. In Proceed-
ings of the 28th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 400-407, 2005.

Hamish Cunningham. Information Extraction, Automatic. Encyclopedia of
Language & Linguistics, 4:665-677, 2006.

Anish Das Sarma, Alpa Jain, and Philip Bohannon. Building a Generic De-
bugger for Information Extraction Pipelines. In Proceedings of the 20th
ACM International Conference on Information and Knowledge Management,
pages 2229-2232, 2011.

Hal Daumé, III and Daniel Marcu. Domain Adaptation for Statistical Clas-
sifiers. Journal of Artificial Intelligence Research, 26(1):101-126, 2006.

Thomas H. Davenport. Enterprise Analytics: Optimize Performance, Process,
and Decisions through Big Data. FT Press, Upper Saddle River, NJ, USA,
2012.

Csaba Dezsényi, Tadeusz P. Dobrowiecki, and Tamdas Mészaros. Adaptive
Document Analysis with Planning. Multi-Agent Systems and Applications,
IV:620-623, 2005.

318

Semire Dikli. An Overview of Automated Scoring of Essays. Journal of Tech-
nology, Learning, and Assessment, 5(1), 2006.

Stephen Dill, Nadav Eiron, David Gibson, Daniel Gruhl, R. Guha, Anant
Jhingran, Tapas Kanungo, Sridhar Rajagopalan, Andrew Tomkins,
John A. Tomlin, and Jason Y. Zien. SemTag and Seeker: Bootstrapping
the Semantic Web via Automated Semantic Annotation. In Proceedings of
the 12th International Conference on World Wide Web, pages 178-186, 2003.

AnHai Doan, Jeffrey F. Naughton, Raghu Ramakrishnan, Akanksha Baid,
Xiaoyong Chai, Fei Chen, Ting Chen, Eric Chu, Pedro DeRose, Byron Gao,
Chaitanya Gokhale, Jiansheng Huang, Warren Shen, and Ba-Quy Vuong.
Information Extraction Challenges in Managing Unstructured Data. SIG-
MOD Records, 37(4):14-20, 2009.

Doug Downey, Oren Etzioni, and Stephen Soderland. A Probabilistic Model
of Redundancy in Information Extraction. In Proceedings of the 19th Inter-
national Joint Conference on Artificial Intelligence, pages 1034-1041, 2005.

Geoffrey B. Duggan and Stephen J. Payne. Text Skimming: The Process and
Effectiveness of Foraging through Text under Time Pressure. Journal of
Experimental Psychology: Applied, 15(3):228-242, 2009.

Daniel M. Dunlavy, Timothy M. Shead, and Eric T. Stanton. ParaText: Scal-
able Text Modeling and Analysis. In Proceedings of the 19th ACM Interna-
tional Symposium on High Performance Distributed Computing, pages 344—
347, 2010.

Michael Thomas Egner, Markus Lorch, and Edd Biddle. UIMA GRID: Dis-
tributed Large-scale Text Analysis. In Proceedings of the Seventh IEEE In-
ternational Symposium on Cluster Computing and the Grid, pages 317-326,
2007.

Oren Etzioni. Search Needs a Shake-up. Nature, 476:25-26, 2011.

Anthony Fader, Stephen Soderland, and Oren Etzioni. Identifying Relations
for Open Information Extraction. In Proceedings of the 2011 Conference on
Empirical Methods in Natural Language Processing, pages 1535-1545, 2011.

Masud Fazal-Baqaie, Markus Luckey, and Gregor Engels. Assembly-based
Method Engineering with Method Patterns. In Software Engineering 2013
Workshopband, pages 435444, 2013.

319

David Ferrucci and Adam Lally. UIMA: An Architectural Approach to Un-
structured Information Processing in the Corporate Research Environ-
ment. Natural Language Engineering, 10(3—4):327-348, 2004.

Jenny R. Finkel, Trond Grenager, and Christopher D. Manning. Incorporat-
ing Non-local Information into Information Extraction Systems by Gibbs
Sampling. In Proceedings of the 43nd Annual Meeting of the Association for
Computational Linguistics, pages 363-370, 2005.

Jenny R. Finkel, Christopher D. Manning, and Andrew Y. Ng. Solving the
Problem of Cascading Errors: Approximate Bayesian Inference for Lin-
guistic Annotation Pipelines. In Proceedings of the 2006 Conference on Em-
pirical Methods in Natural Language Processing, pages 618-626, 2006.

Joseph L. Fleiss. Statistical Methods for Rates and Proportions. John Wiley &
Sons, second edition, 1981.

George Forman and Evan Kirshenbaum. Extremely Fast Text Feature Ex-
traction for Classification and Indexing. In Proceedings of the 17th ACM
Conference on Information and Knowledge Management, pages 1221-1230,
2008.

Mark S. Fox and Stephen F. Smith. ISIS: A Knowledge-based System for
Factory Scheduling. Expert Systems, 1:25-49, 1984.

W. Nelson Francis. A Standard Sample of Present-day English for Use with Dig-
ital Computers. Brown University, 1966.

Evgeniy Gabrilovich and Shaul Markovitch. Computing Semantic Related-
ness Using Wikipedia-based Explicit Semantic Analysis. In Proceedings of
the 20th International Joint Conference on Artifical Intelligence, pages 1606—
1611, 2007.

Daniel Gildea and Daniel Jurafsky. Automatic Labeling of Semantic Roles.
Computational Linguistics, 28(3):245-288, 2002.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Domain Adaptation
for Large-Scale Sentiment Classification: A Deep Learning Approach. In
Proceedings of the 28th International Conference on Machine Learning, pages
97-110, 2011.

Thomas Gottron. Content Extraction — Identifying the Main Content in HTML
Documents. PhD thesis, Universitl.t Mainz, 2008.

320

Wayne D. Gray and Wai-Tat Fu. Ignoring Perfect Knowledge In-the-world
for Imperfect Knowledge In-the-head. In Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems, pages 112-119, 2001.

Thomas R. Gruber. A Translation Approach to Portable Ontology Specifi-
cations. Knowledge Acquisition, 5(2):199-220, 1993.

Daniel Gruhl, Laurent Chavet, David Gibson, Joerg Meyer, Pradhan Pat-
tanayak, Andrew Tomkins, and Jason Zien. How to Build a WebFountain
An Architecture for Very Large-scale Text Analytics. IBM Systems Journal,
43(1):64-76, 2004.

Baris Giildali, Holger Funke, Stefan Sauer, and Gregor Engels. TORC: Test
Plan Optimization by Requirements Clustering. Software Quality Journal,
pages 1-29, 2011.

Rahul Gupta and Sunita Sarawagi. Domain Adaptation of Information Ex-
traction Models. SIGMOD Records, 37(4):35—40, 2009.

Morten Gylling. The Structure of Discourse: A Corpus-Based Cross-Linguistic
Study. Dissertation, Copenhagen Business School, 2013.

Ivan Habernal, Judith Eckle-Kohler, and Iryna Gurevych. Argumentation
Mining on the Web from Information Seeking Perspective. In Frontiers and
Connections between Argumentation Theory and Natural Language Processing,
page to appear, 2014.

Matthias Hagen, Benno Stein, and Tino Riib. Query Session Detection as a
Cascade. In 20th ACM International Conference on Information and Knowl-
edge Management (CIKM 11), pages 147-152, 2011.

Jan Haji¢, Massimiliano Ciaramita, Richard Johansson, Daisuke Kawahara,
Maria Antonia Marti, Lluis Marquez, Adam Meyers, Joakim Nivre, Se-
bastian Pado, Jan étépének, Pavel Strandk, Mihai Surdeanu, Nianwen
Xue, and Yi Zhang. The CoNLL-2009 Shared Task: Syntactic and Seman-
tic Dependencies in Multiple Languages. In Proceedings of the Thirteenth
Conference on Computational Natural Language Learning: Shared Task, pages
1-18, 2009.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reute-
mann, and Ian H. Witten. The WEKA Data Mining Software: An Update.
SIGKDD Explorations, 11(1):10-18, 2009.

Maarit Harsu. A Survey on Domain Engineering. Tampere University of Tech-
nology, 2002.

321

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Sta-
tistical Learning: Data Mining, Inference and Prediction. Springer, New York,
NY, USA, 2 edition, 2009.

Barbara Hayes-Roth. A Blackboard Architecture for Control. Artificial Intel-
ligence, 26(3):251-321, 1985.

Marti A. Hearst. Untangling Text Data Mining. In Proceedings of the 37th
Annual Meeting of the Association for Computational Linguistics on Computa-
tional Linguistics, pages 3-10, 1999.

Marti A. Hearst. Search User Interfaces. Cambridge University Press, Cam-
bridge, MA, USA, 2009.

Erhard Hinrichs, Marie Hinrichs, and Thomas Zastrow. WebLicht: Web-
based LRT Services for German. In Proceedings of the ACL 2010 System
Demonstrations, pages 25-29, 2010.

Kristy Hollingshead and Brian Roark. Pipeline Iteration. In Proceedings of the
45th Annual Meeting of the Association for Computational Linguistics, pages
952-959, 2007.

Ian Horrocks. Ontologies and the Semantic Web. Communications of the
ACM, 51(12):58-67, 2008.

HP Labs. Annual Report, 2010. Retrieved from http://www.hpl.hp.com
/news/2011/jan-mar/pdf/HPL_AR_2010_web.pdf, July 12, 2013.

Wei Chung Hsu, Howard Chen, Pen Chung Yew, and H. Chen. On the Pre-
dictability of Program Behavior using Different Input Data Sets. In Sixth
Annual Workshop on Interaction between Compilers and Computer Architec-
tures, pages 45-53, 2002.

Lian Huang. Advanced Dynamic Programming in Semiring and Hyper-
graph Frameworks. In COLING 2008: Advanced Dynamic Programming
in Computational Linguistics: Theory, Algorithms and Applications — Tutorial
notes, pages 1-18, 2008.

Yannis Ioannidis. Query Optimization. In Handbook for Computer Science.
CRC Press, 1997.

Peter Jackson. Introduction to Expert Systems. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2nd edition, 1990.

322

Ludovic Jean-Louis, Romaric Besang¢on, and Olivier Ferret. Text Segmen-
tation and Graph-based Method for Template Filling in Information Ex-
traction. In Proceedings of the 5th International Joint Conference on Natural
Language Processing, pages 723-731, 2011.

Thorsten Joachims. A Statistical Learning Model of Text Classification for
Support Vector Machines. In Proceedings of the 24th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval,
pages 128-136, 2001.

Dan Jurafsky. Pragmatics and Computational Linguistics. In Handbook of
Pragmatics, pages 578-604. Blackwell, Oxford, England, UK, 2003.

Daniel Jurafsky and James H. Martin. Speech and Language Processing: An
Introduction to Natural Language Processing, Speech Recognition, and Com-
putational Linguistics. Prentice-Hall, Upper Saddle River, NJ, USA, 2nd
edition, 2009.

Aditya Kalyanpur, Siddharth Patwardhan, Branimir Boguraev, Adam Lally,
and Jennifer Chu-Carroll. Fact-based Question Decomposition for Candi-
date Answer Re-ranking. In Proceedings of the 20th ACM International Con-
ference on Information and Knowledge Management, pages 2045-2048, 2011.

Yoshinobu Kano. Kachako: Towards a Data-centric Platform for Full Au-
tomation of Service Selection, Composition, Scalable Deployment and
Evaluation. In Proceedings of the IEEE 19th International Conference on Web
Services, pages 642-643, 2012.

Yoshinobu Kano, Ruben Dorado, Luke McCrohon, Sophia Ananiadou, and
Jun’ichi Tsujii. U-Compare: An Integrated Language Resource Evalu-
ation Platform Including a Comprehensive UIMA Resource Library. In
Proceedings of the Seventh International Conference on Language Resources and
Evaluation, pages 428—-434, 2010.

John E. Kelly and Steve Hamm. Smart Machines: IBM's Watson and the Era
of Cognitive Computing. Columbia University Press, New York, NY, USA,
2013.

Jin-Dong Kim, Yue Wang, Toshihisa Takagi, and Akinori Yonezawa.
Overview of Genia Event Task in BioNLP Shared Task 2011. In Proceedings
of the BioNLP Shared Task 2011 Workshop, pages 7-15, 2011.

Hans Kleine Biining and Theodor Lettmann. Propositional Logic: Deduction
and Algorithms. Cambridge University Press, New York, NY, USA, 1999.

323

Timo Klerx, Maik Anderka, Hans Kleine Biining, and Steffen Priesterjahn.
Model-based Anomaly Detection for Discrete Event Systems. In Proceed-
ings of the 26th IEEE International Conference on Tools with Artificial Intelli-
gence, pages 665-672, 2014.

Nikita Korshunov. Effiziente Information-Extraction-Verfahren zur Erstel-
lung von Use-Case-Diagrammen aus Texten. Master’s thesis, University
of Paderborn, Paderborn, Germany, 2012.

Eyal Krikon, David Carmel, and Oren Kurland. Predicting the Performance
of Passage Retrieval for Question Answering. In Proceedings of the 21st
ACM International Conference on Information and Knowledge management,
pages 2451-2454, 2012.

Rajasekar Krishnamurthy, Yunyao Li, Sriram Raghavan, Frederick Reiss,
Shivakumar Vaithyanathan, and Huaiyu Zhu. SystemT: A System for
Declarative Information Extraction. SIGMOD Records, 37(4):7-13, 2009.

Todd Kulesza, Simone Stumpf, Weng-Keen Wong, Margaret M. Burnett,
Stephen Perona, Andrew Ko, and Ian Oberst. Why-oriented End-user
Debugging of Naive Bayes Text Classification. ACM Transactions on Inter-
active Intelligent Systems, 1(1):2:1-2:31, 2011.

Todd Kulesza, Simone Stumpf, Margaret M. Burnett, Sherry Yang, Irwin
Kwan, and Weng-Keen Wong. Too Much, Too Little, or Just Right? Ways
Explanations Impact End Users” Mental Models. In IEEE Symposium on
Visual Languages and Human-Centric Computing, pages 3-10, 2013.

Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis. Intro-
duction to Parallel Computing: Design and Analysis of Algorithms. Benjamin-
Cummings Publishing Co., Inc., Redwood City, CA, USA, 1994.

Nicholas Kushmerick. Wrapper Induction for Information Extraction. Disser-
tation, University of Washington, 1997.

Knud Lambrecht. Information Structure and Sentence Form: Topic, Focus, and
the Mental Representations of Discourse Referents. Cambridge University
Press, New York, NY, USA, 1994.

Yong-Bae Lee and Sung Hyon Myaeng. Text Genre Classification with
Genre-Revealing and Subject-Revealing Deatures. In Proceedings of the
25th Annual International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, pages 145-150, 2002.

324

David D. Lewis and Richard M. Tong. Text Filtering in MUC-3 and MUC-4.
In Proceedings of the 4th Conference on Message Understanding, pages 51-66,
1992.

David D. Lewis, Yiming Yang, Tony G. Rose, and Fan Li. RCV1: A New
Benchmark Collection for Text Categorization Research. Journal of Ma-
chine Learning Research, 5:361-397, 2004.

Lianghao Li, Xiaoming Jin, and Mingsheng Long. Topic Correlation Analy-
sis for Cross-Domain Text Classification. In Proceedings of the 26th AAAI
Conference on Artificial Intelligence, pages 998-1004, 2012a.

Qi Li, Sam Anzaroot, Wen-Pin Lin, Xiang Li, and Heng Ji. Joint Inference for
Cross-document Information Extraction. In Proceedings of the 20th ACM
International Conference on Information and Knowledge Management, pages
2225-2228,2011.

Yunyao Li, Laura Chiticariu, Huahai Yang, Frederick R. Reiss, and Arnaldo
Carreno-fuentes. WizIE: A Best Practices Guided Development Environ-
ment for Information Extraction. In Proceedings of the ACL 2012 System
Demonstrations, pages 109-114, 2012b.

Brian Y. Lim and Anind K. Dey. Assessing Demand for Intelligibility in
Context-aware Applications. In Proceedings of the 11th International Con-
ference on Ubiquitous Computing, pages 195-204, 2009.

Nedim Lipka. Modeling Non-Standard Text Classification Tasks. Dissertation,
Bauhaus-Universitat Weimar, 2013.

Tiago Luis and David Martins de Matos. High-Performance High-Volume
Layered Corpora Annotation. In Proceedings of the Third Linguistic Anno-
tation Workshop, pages 99-107, 2009.

William C. Mann and Sandra A. Thompson. Rhetorical Structure Theory:
Toward a Functional Theory of Text Organization. Text, 8(3):243-281,
1988.

Christopher D. Manning and Hinrich Schiitze. Foundations of Statistical Nat-
ural Language Processing. MIT Press, Cambridge, MA, USA, 1999.

Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schiitze. Intro-
duction to Information Retrieval. Cambridge University Press, New York,
NY, USA, 2008.

325

Yi Mao and Guy Lebanon. Isotonic Conditional Random Fields and Local
Sentiment Flow. Advances in Neural Information Processing Systems, 19:961—
968, 2007.

Daniel Marcu. The Theory and Practice of Discourse Parsing and Summarization.
MIT Press, 2000.

R. Timothy Marler and Jasbir S. Arora. Survey of Multi-Objective Optimiza-
tion Methods for Engineering. Structural and Multidisciplinary Optimiza-
tion, 26(6):369-395, 2004.

Andrew McCallum. Joint Inference for Natural Language Processing. In
Proceedings of the Thirteenth Conference on Computational Natural Language
Learning, page 1, 2009.

Tobias Melzner. Heuristische Suchverfahren zur Laufzeitoptimierung von
Information-Extraction-Pipelines. Master’s thesis, University of Pader-
born, Paderborn, Germany, 2012.

Rohith Menon and Yejin Choi. Domain Independent Authorship Attribu-
tion without Domain Adaptation. In Proceedings of the International Confer-
ence Recent Advances in Natural Language Processing 2011, pages 309-315,
2011.

Filipe Mesquita, Jordan Schmidek, and Denilson Barbosa. Effectiveness and
Efficiency of Open Relation Extraction. In Proceedings of the 2013 Conference
on Empirical Methods in Natural Language Processing, pages 447-457,2013.

Daniel Mex. Efficiency and Effectiveness of Multi-Stage Machine Learning
Algorithms for Text Quality Assessment. Master’s thesis, University of
Paderborn, Paderborn, Germany, 2013.

David Meyer, Friedrich Leisch, and Kurt Hornik. The Support Vector Ma-
chine under Test. Neurocomputing, 55(1-2):169-186, 2003.

Steven Minton, John Bresina, and Mark Drummond. Total-order and
Partial-order Planning: A Comparative Analysis. Journal of Artificial Intel-
ligence Research, 2(1):227-262, 1995.

Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York, NY,
USA, 1 edition, 1997.

Raquel Mochales and Marie-Francine Moens. Argumentation Mining. Ar-
tificial Intelligence and Law, 19(1):1-22, 2011.

326

Grégoire Montavon, Genevieve B. Orr, and Klaus-Robert Miiller, editors.
Neural Networks: Tricks of the Trade, Reloaded. Springer, Berlin Heidelberg,
Germany, 2nd edition, 2012.

Alessandro Moschitti and Roberto Basili. Complex Linguistic Features for
Text Classification: A Comprehensive Study. In Advances in Information
Retrieval, pages 181-196. Springer, 2004.

Subhabrata Mukherjee and Pushpak Bhattacharyya. Sentiment Analysis in
Twitter with Lightweight Discourse Analysis. In Proceedings of the 24th In-
ternational Conference on Computational Linguistics, pages 1847-1864, 2012.

Claire Nedellec, Mohamed O. A. Vetah, and Philippe Bessiéres. Sentence
Filtering for Information Extraction in Genomics, a Classification Prob-
lem. In Proceedings of the 5th European Conference on Principles of Data Min-
ing and Knowledge Discovery, pages 326-337, 2001.

Vincent Ng. Supervised Noun Phrase Coreference Research: The First Fif-
teen Years. In Proceedings of the 48th Annual Meeting of the Association for
Computational Linguistics, pages 1396-1411, 2010.

Joakim Nivre. An Efficient Algorithm for Projective Dependency Parsing. In
Proceedings of the 8th International Workshop on Parsing Technologies, pages
149-160, 2003.

Diarmuid O Séaghdha and Simone Teufel. Unsupervised learning of rhetor-
ical structure with un-topic models. In Proceedings of COLING 2014, the
25th International Conference on Computational Linguistics: Technical Papers,
pages 2-13, Dublin, Ireland, 2014.

OMG. Unified Modeling Language (OMG UML) Superstructure, Version 2.4.1.
OMG, 2011.

Bo Pang and Lillian Lee. A Sentimental Education: Sentiment Analysis Us-
ing Subjectivity. In Proceedings of 42th Annual Meeting on Association for
Computational Linguistics, pages 271-278, 2004.

Bo Pang and Lillian Lee. Seeing Stars: Exploiting Class Relationships for
Sentiment Categorization with Respect to Rating Scales. In Proceedings of
the 43rd Annual Meeting on Association for Computational Linguistics, pages
115-124, 2005.

Bo Pang and Lillian Lee. Opinion Mining and Sentiment Analysis. Founda-
tions and Trends in Informal Retrieval, 2(1-2):1-135, 2008.

327

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. Thumbs Up?: Senti-
ment Classification Using Machine Learning Techniques. In Proceedings of
the ACL-02 Conference on Empirical Methods in Natural Language Processing
- Volume 10, pages 79-86, 2002.

Patrick Pantel, Deepak Ravichandran, and Eduard Hovy. Towards Terascale
Knowledge Acquisition. In Proceedings of the 20th International Conference
on Computational Linguistics, pages 771-777, 2004.

Marius Pasca. Web-based Open-Domain Information Extraction. In Proceed-
ings of the 20th ACM International Conference on Information and Knowledge
Management, pages 2605-2606, 2011.

Siddharth Patwardhan and Ellen Riloff. Effective Information Extraction
with Semantic Affinity Patterns and Relevant Regions. In Proceedings of
the 2007 Joint Conference on Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learning, pages 717-727, 2007.

Adam Pauls and Dan Klein. k-best A* Parsing. In Proceedings of the Joint
Conference of the 47th Annual Meeting of the ACL and the 4th International
Joint Conference on Natural Language Processing of the AFNLP, pages 958—
966, 2009.

Slav Petrov, Dipanjan Das, and Ryan McDonald. A Universal Part-of-Speech
Tagset. In Proceedings of the Eight International Conference on Language Re-
sources and Evaluation, pages 2089-2096, 2012.

Emily Pitler and Ani Nenkova. Revisiting Readability: A Unified Frame-
work for Predicting Text Quality. In Proceedings of the Conference on Empir-
ical Methods in Natural Language Processing, pages 186-195, 2008.

Sandeep Pokkunuri, Cartic Ramakrishnan, Ellen Riloff, Eduard Hovy, and
Gully Apc Burns. The Role of Information Extraction in the Design of a
Document Triage Application for Biocuration. In Proceedings of BioNLP
2011 Workshop, pages 46-55, 2011.

Hoifung Poon and Pedro Domingos. Joint Inference in Information Extrac-
tion. In Proceedings of the 22nd National Conference on Artificial Intelligence,
pages 913-918, 2007.

Ana-Maria Popescu and Oren Etzioni. Extracting Product Features and
Opinions from Reviews. In Proceedings of the conference on Human Language
Technology and Empirical Methods in Natural Language Processing, pages
339-346, 2005.

328

Natascha Pranjic. Branchenzuordnung mittels statistischer Analyse von
Information-Retrieval-Ergebnissen. =~ Bachelor’s thesis, University of
Paderborn, Paderborn, Germany, 2011.

Peter Prettenhofer and Benno Stein. Cross-Lingual Adaptation using Struc-
tural Correspondence Learning. Transactions on Intelligent Systems and
Technology (ACM TIST), 3:13:1-13:22, 2011.

Chittoor V. Ramamoorthy and H. F. Li. Pipeline Architecture. ACM Com-
puting Surveys, 9(1):61-102, 1977.

Karthik Raman, Adith Swaminathan, Johannes Gehrke, and Thorsten
Joachims. Beyond Myopic Inference in Big Data Pipelines. In Proceedings
of the 19th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 86-94, 2013.

Lev Ratinov and Dan Roth. Design Challenges and Misconceptions in
Named Entity Recognition. In Proceedings of the 13th Conference on Nat-
ural Language Learning, pages 147-155, 2009.

Frederick Reiss, Sriram Raghavan, Rajasekar Krishnamurthy, Huaiyu Zhu,
and Shivakumar Vaithyanathan. An Algebraic Approach to Rule-Based
Information Extraction. In Proceedings of the 2008 IEEE 24th International
Conference on Data Engineering, pages 933-942, 2008.

Anton Riabov and Zhen Liu. Scalable Planning for Distributed Stream Pro-
cessing Systems. In Proceedings of the Sixteenth International Conference on
Automated Planning and Scheduling, pages 31-41, 2006.

Mirko Rose. Entwicklung eines Expertensystems zur automatischen Erstel-
lung effizienter Information-Extraction-Pipelines. Master’s thesis, Uni-
versity of Paderborn, Paderborn, Germany, 2012.

Jennifer Rowley. The Wisdom Hierarchy: Representations of the DIKW Hi-
erarchy. Journal of Information Science, 33(2):163-180, 2007.

Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Prentice-Hall, Upper Saddle River, NJ, USA, 3rd edition, 2009.

Arthur L. Samuel. Some Studies in Machine Learning Using the Game of
Checkers. IBM Journal of Research and Development, 3(3):210-229, 1959.

Upendra Sapkota, Thamar Solorio, Manuel Montes, Steven Bethard, and
Paolo Rosso. Cross-Topic Authorship Attribution: Will Out-Of-Topic Data

329

Help? In Proceedings of the 25th International Conference on Computational
Linguistics: Technical Papers, pages 1228-1237, 2014.

Sunita Sarawagi. Information Extraction. Foundations and Trends in
Databases, 1(3):261-377, 2008.

Helmut Schmid. Improvements in Part-of-Speech Tagging with an Applica-
tion to German. In Proceedings of the ACL SIGDAT-Workshop, pages 47-50,
1995.

Fabrizio Sebastiani. Machine Learning in Automated Text Categorization.
ACM Computing Surveys, 34(1):1-47, 2002.

Patricia G. Selinger, Morton M. Astrahan, Donald D. Chamberlin, Ray-
mond A. Lorie, and Thomas G. Price. Access Path Selection in a Relational
Database Management System. In Proceedings of the 1979 ACM SIGMOD
International Conference on Management of Data, pages 23-34, 1979.

Warren Shen, AnHai Doan, Jeffrey F. Naughton, and Raghu Ramakrish-
nan. Declarative Information Extraction using Datalog with Embedded
Extraction Predicates. In Proceedings of the 33rd International Conference on
Very Large Data Bases, pages 1033-1044, 2007.

Rashmi Sinha and Kirsten Swearingen. The Role of Transparency in Rec-
ommender Systems. In CHI ‘02 Extended Abstracts on Human Factors in
Computing Systems, pages 830-831, 2002.

Valery Solovyev, Vladimir Polyakov, Vladimir Ivanov, Ivan Anisimov, and
Andrey Ponomarev. An Approach to Semantic Natural Language Pro-
cessing of Russian Texts. Research in Computing Science, 65:65-73, 2013.

Swapna Somasundaran and Janyce Wiebe. Recognizing Stances in Ideo-
logical On-line Debates. In Proceedings of the NAACL HLT 2010 Workshop
on Computational Approaches to Analysis and Generation of Emotion in Text,
pages 116-124, 2010.

Christian Stab and Iryna Gurevych. Annotating Argument Components
and Relations in Persuasive Essays. In Proceedings of the 25th International
Conference on Computational Linguistics: Technical Papers, pages 1501-1510,
2014a.

Christian Stab and Iryna Gurevych. Identifying Argumentative Discourse
Structures in Persuasive Essays. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing, pages 46-56, 2014b.

330

Efstathios Stamatatos. A Survey of Modern Authorship Attribution Meth-

ods. Journal of the American Society for Information Science and Technology,
60(3):538-556, 2009.

Efstathios Stamatatos. Plagiarism Detection Based on Structural Informa-
tion. In Proceedings of the 20th ACM International Conference on Information
and Knowledge Management, pages 1221-1230, 2011.

Benno Stein, Sven Meyer zu Eissen, Gernot Gréfe, and Frank Wissbrock.
Automating Market Forecast Summarization from Internet Data. In Pro-
ceedings of the Fourth Conference on WWW/Internet, pages 395-402, 2005.

Benno Stein, Sven Meyer zu FEifsen, and Nedim Lipka. Genres on the Web,
volume 42 of Text, Speech and Language Technology, chapter Web Genre
Analysis: Use Cases, Retrieval Models, and Implementation Issues, pages
167-190. Springer, Berlin Heidelberg New York, 2010.

Mark Stevenson. Fact Distribution in Information Extraction. Language Re-
sources and Evaluation, 40(2):183-201, 2007.

Veselin Stoyanov and Jason Eisner. Easy-first Coreference Resolution. In
Proceedings of the 24th International Conference on Computational Linguistics,
pages 2519-2534, 2012.

Simone Teufel, Advaith Siddharthan, and Colin Batchelor. @ Towards
Discipline-independent Argumentative Zoning: Evidence from Chem-
istry and Computational Linguistics. In Proceedings of the 2009 Confer-
ence on Empirical Methods in Natural Language Processing, pages 1493-1502,
2009.

Erik F. Tjong Kim Sang and Fien De Meulder. Introduction to the CoNLL-
2003 Shared Task: Language-independent Named Entity Recognition. In
Proceedings of the Seventh Conference on Natural Language Learning at HLT-
NAACL 2003, pages 142-147, 2003.

Hendrik Torunsky. Aggregation und Visualisierung von Umsatzaussagen
anhand geltender Gestaltgesetze. Bachelor’s thesis, University of Pader-
born, Paderborn, Germany, 2011.

Stephen E. Toulmin. The Uses of Arqument. Cambridge University Press,
1958.

Anna Trosborg. Text Typology: Register, Genre and Text Type. In Text Typol-
ogy and Translation, pages 3-24. John Benjamins Publishing, Amsterdam,
The Netherlands, 1997.

331

Jun’ichi Tsujii. Computational Linguistics and Natural Language Process-
ing. In Proceedings of the 12th international conference on Computational lin-
guistics and intelligent text processing - Volume Part 1, pages 52-67, 2011.

Jordi Turmo, Alicia Ageno, and Neus Catala. Adaptive Information Extrac-
tion. ACM Computing Surveys, 38(2), 2006.

Gertjan van Noord. Learning Efficient Parsing. In Proceedings of the 12th
Conference of the European Chapter of the Association for Computational Lin-
guistics, pages 817-825, 2009.

C. J. van Rijsbergen. Information Retrieval. Butterworth-Heinemann, New-
ton, MA, USA, 1979.

Maria Paz Garcia Villalba and Patrick Saint-Dizier. Some Facets of Argu-
ment Mining for Opinion Analysis. In Proceedings of the 2012 Conference
on Computational Models of Argument, pages 23-34, 2012.

Henning Wachsmuth and Katrin Bujna. Back to the Roots of Genres: Text
Classification by Language Function. In Proceedings of the 5th International
Joint Conference on Natural Language Processing, pages 632-640, 2011.

Henning Wachsmuth and Benno Stein. Optimal Scheduling of Information
Extraction Algorithms. In Proceedings of the 24th International Conference
on Computational Linguistics: Posters, pages 1281-1290, 2012.

Henning Wachsmuth, Peter Prettenhofer, and Benno Stein. Efficient State-
ment Identification for Automatic Market Forecasting. In Proceedings of
the 23rd International Conference on Computational Linguistics, pages 1128—
1136, 2010.

Henning Wachsmuth, Benno Stein, and Gregor Engels. Constructing Effi-
cient Information Extraction Pipelines. In Proceedings of the 20th ACM Con-
ference on Information and Knowledge Management, pages 2237-2240, 2011.

Henning Wachsmuth, Mirko Rose, and Gregor Engels. Automatic Pipeline
Construction for Real-Time Annotation. In Proceedings of the 14th Interna-
tional Conference on Intelligent Text Processing and Computational Linguistics,
pages 3849, 2013a.

Henning Wachsmuth, Benno Stein, and Gregor Engels. Learning Efficient
Information Extraction on Heterogeneous Texts. In Proceedings of the 6th
International Joint Conference on Natural Language Processing, pages 534—
542,2013b.

332

Henning Wachsmuth, Benno Stein, and Gregor Engels. Information Ex-
traction as a Filtering Task. In Proceedings of the 22nd ACM Conference on
Information and Knowledge Management, pages 2049-2058, 2013c.

Henning Wachsmuth, Martin Trenkmann, Benno Stein, and Gregor Engels.
Modeling Review Argumentation for Robust Sentiment Analysis. In Pro-
ceedings of the 25th International Conference on Computational Linguistics:
Technical Papers, pages 553-564, 2014a.

Henning Wachsmuth, Martin Trenkmann, Benno Stein, Gregor Engels, and
Tsvetomira Palakarska. A Review Corpus for Argumentation Analysis. In
Proceedings of the 15th International Conference on Intelligent Text Processing
and Computational Linguistics, pages 115-127, 2014b.

Douglas Walton and David M. Godden. Considering Pragma-Dialectics, chap-
ter The Impact of Argumentation on Artificial Intelligence, pages 287-
299. Erlbaum, Mahwah, NJ, USA, 2006.

Daisy Z. Wang, Long Wei, Yunyao Li, Frederick R. Reiss, and Shivakumar
Vaithyanathan. Selectivity Estimation for Extraction Operators over Text
Data. In Proceedings of the 2011 IEEE 27th International Conference on Data
Engineering, pages 685-696, 2011.

Hongning Wang, Yue Lu, and Chengxiang Zhai. Latent Aspect Rating Ana-
lysis on Review Text Data: A Rating Regression Approach. In Proceedings
of the 16th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 783-792, 2010.

Casey Whitelaw, Alex Kehlenbeck, Nemanja Petrovic, and Lyle Ungar. Web-
scale Named Entity Recognition. In Proceedings of the 17th ACM Conference
on Information and Knowledge Management, pages 123-132, 2008.

Daya C. Wimalasuriya and Dejing Dou. Components for Information Ex-
traction: Ontology-based Information Extractors and Generic Platforms.
In Proceedings of the 19th ACM International Conference on Information and
Knowledge Management, pages 9-18, 2010.

Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learning Tools
and Techniques. Morgan Kaufmann Publishers, San Francisco, CA, 2nd
edition, 2005.

Qiong Wu, Songbo Tan, Miyi Duan, and Xueqi Cheng. A Two-Stage Al-
gorithm for Domain Adaptation with Application to Sentiment Transfer

333

Problems. In Information Retrieval Technology, volume 6458 of Lecture Notes
in Computer Science, pages 443—453. Springer, 2010.

Zi Yang, Elmer Garduno, Yan Fang, Avner Maiberg, Collin McCormack,
and Eric Nyberg. Building Optimal Information Systems Automatically:
Configuration Space Exploration for Biomedical Information Systems. In
Proceedings of the 22nd ACM International Conference on Conference on Infor-
mation and Knowledge Management, pages 1421-1430, 2013.

Jeonghee Yi, Tetsuya Nasukawa, Razvan Bunescu, and Wayne Niblack. Sen-
timent Analyzer: Extracting Sentiments About a Given Topic Using Nat-
ural Language Processing Techniques. In Proceedings of the Third IEEE
International Conference on Data Mining, pages 427-434, 2003.

Monika Zakova, Petr Kfemen, Filip Zelezn}’l, and Nada Lavra¢. Automating
Knowledge Discovery Workflow Composition through Ontology-based
Planning. IEEE Transactions on Automation Science and Engineering, 8(2):
253-264, 2011.

Min Zhang, Jie Zhang, Jian Su, and Guodong Zhou. A Composite Kernel
to Extract Relations Between Entities with Both Flat and Structured Fea-
tures. In Proceedings of the 21st International Conference on Computational
Linguistics and the 44th Annual Meeting of the Association for Computational
Linguistics, pages 825-832, 2006.

Tong Zhang. Solving Large Scale Linear Prediction Problems Using Stochas-
tic Gradient Descent Algorithms. In Proceedings of the Twenty-first Interna-
tional Conference on Machine Learning, pages 116-123, 2004.

Yang Zhang. Grid-centric Scheduling Strategies for Workflow Applications. Dis-
sertation, Rice University, 2010.

