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A Universal Model for Discourse-Level Argumentation Analysis
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The argumentative structure of texts is increasingly exploited for analysis tasks, e.g., for stance classifica-
tion or the assessment of argumentation quality. Most existing approaches, however, model only the local
structure of single arguments. This article considers the question of how to capture the global discourse-
level structure of a text for argumentation-related analyses. In particular, we propose to model the global
structure as a flow of “task-related rhetorical moves”, such as discourse functions or aspect-based sentiment.
By comparing the flow of a text to a set of common flow patterns, we map the text into the feature space of
global structures, thus capturing its discourse-level argumentation. We show how to identify different types
of flow patterns and we provide evidence that they generalize well across different domains of texts. In our
evaluation for two analysis tasks, the classification of review sentiment and the scoring of essay organiza-
tion, the features derived from flow patterns prove both effective and more robust than strong baselines. We
conclude with a discussion of the universality of modeling flow for discourse-level argumentation analysis.
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1. INTRODUCTION
Several types of argumentative texts exist in social media and the web as a whole,
ranging from reviews on e-commerce platforms over opinionated blog posts and news
editorials to essays and discussions in writing and debate communities. Generally, an
argumentative text can be seen as a written form of argumentation. In the article at
hand, we focus on monological argumentation, where an author composes arguments
to justify a thesis or an opinion on a given topic. Such argumentation puts particular
emphasis on argumentative structure [Besnard and Hunter 2008]. Different models
have been proposed to capture this structure: some are based on argumentation the-
ory [Toulmin 1958; Walton et al. 2008], considering different types of argument units
and relations; others adapt models like the rhetorical structure theory [Mann and
Thompson 1988], or they rely on proprietary representations of arguments.

In the last five years, researchers started to model argumentative structure to tackle
argumentation-related analysis tasks that aim at predicting a class or a numerical
value. Examples are the stance classification of essays and comments [Faulkner 2014;
Sobhani et al. 2015] or the quality assessment of essays and their arguments [Ong
et al. 2014; Persing and Ng 2015]. So far, however, no argumentation model robustly
applies to all text types [Al-Khatib et al. 2016]. Moreover, nearly all approaches restrict
their view to the local structure of single arguments, ignoring the impact of the global
discourse-level argumentation of complete texts. E.g., the sentiment of reviews depends
on whether positive aspects precede negatives or vice versa [Wachsmuth et al. 2014b].
News editorials have a strategy of when to state pro arguments and when to attack
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Model an argumentative text
as a flow of rhetorical moves

Group known training flows
to identify a set of flow patterns

Analyze unknown flow, based on
its similarity to each flow pattern1 2 3

This book was different. 
I liked the first part. I could 
relate with Pi on his views 
about God and religion. He 
put into words my feelings 
when he said, “I just want 
to love God“ to the three 
religious leaders (Catholic, 
Muslim, Hindu) when they 
asked him why he practiced 
all three religions. I puzzled 
over the middle while he 
was lost at sea with the 
tiger. I didn't get the island 
at all. But in the end it all 
came together.

Fig. 1. How to model and analyze the discourse-level argumentation of a text (overall view of our approach).

con arguments to convince readers [Kiesel et al. 2015]. An essay should introduce its
thesis before it opposes pros and cons, and concludes [Persing et al. 2010]. Similarly,
scientific articles follow structural conventions to achieve clarity, e.g., to first present
methods and then the results [Teufel et al. 2009]. To account for such global dialectical
structure, argumentation must be modeled and analyzed at the discourse level.

In this article, we investigate the question of how to generally capture the structure
of an argumentative text for analysis tasks related to the overall argumentation of the
text. Figure 1 illustrates the three high-level steps of the approach that we provide. In
particular, we propose (1) a flexible argumentation model that represents a text as a
flow of task-related rhetorical moves, such as the discourse functions of paragraphs or,
as illustrated, the aspect-based sentiment within sentences. The shallow nature of the
model supports a reliable pattern identification. (2) Given a collection of training texts,
we group the flows of all texts in order to determine a set of common flow patterns.
(3) For each unknown text, we then compute the similarity of its flow to all patterns,
and we use each similarity as an individual feature for learning to address the analysis
task at hand. This way, we map the text into the feature space of global structures,
thereby capturing the discourse-level argumentation of the complete text.

In Section 2, we present flow as a model of argumentation. We discuss the kinds of
rhetorical moves to represent in a flow and how to represent them for analysis pur-
poses. Section 3 deals with the identification of flow patterns, contrasting “normaliza-
tion” and “abstraction” as two means to make flows comparable. Patterns are derived
from clusters of training flows or from frequency counts then. The last step of our ap-
proach is to use the patterns as similarity features for supervised learning (Section 4).

In empirical studies, Section 5 reveals common flow patterns for different text types
(reviews and essays), rhetorical moves (discourse functions and sentiment, among oth-
ers), and granularity levels (sentences and paragraphs). Thereby, we obtain insights
into how people argue in practice. Section 6 evaluates major aspects of our approach for
two diverse analysis tasks. We find that analyzing flow outperforms strong baselines
in the cross-domain sentiment analysis of reviews, and it improves the state of the
art in scoring essay organization. These results suggest to discuss flows as a universal
model of discourse-level argumentation, which is done in Section 8, after a discussion
of related work in Section 7. In conclusion, the contributions of this article are:
(1) We provide a comprehensive and general view of how to model and analyze flows to

assess the argumentation of a text at the discourse level.
(2) We report on several statistical patterns of how people argue in reviews and essays.
(3) We offer evidence that capturing the global structure of argumentative texts bene-

fits effectiveness and robustness in two argumentation-related analysis tasks.
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I liked the first part. I could 
relate with Pi on his views 
about God and religion. He 
put into words my feelings 
when he said, “I just want 
to love God“ to the three 
religious leaders (Catholic, 
Muslim, Hindu) when they 
asked him why he practiced 
all three religions. I puzzled 
over the middle while he 
was lost at sea with the 
tiger. I didn't get the island 
at all. But in the end it all 
came together.

negative / 0.0

negative / 0.0

positive / 1.0

neutral / 0.5

positive / 1.0

neutral / 0.5

positive / 1.0

neutral
positive
neutral

positive

positive

negative
negative

Fig. 2. The main steps of modeling the discourse-level argumentation of a text as a flow of rhetorical moves.

2. MODELING DISCOURSE-LEVEL ARGUMENTATION AS A FLOW
This section presents how to model the flow of argumentative texts for discourse-level
argumentation analysis. We discuss the kinds of rhetorical moves to consider in the
flow—depending on the text type and analysis task at hand—as well as how to rep-
resent these moves. As detailed below, Figure 2 sketches these two steps for a book
review, which is mapped to a flow of sentence-level sentiment values.

2.1. Classifying Text Segments as Task-related Rhetorical Moves
The argumentative structure of a text corresponds to a graph whose nodes represent
argument units and whose edges model relations between the units. However, many
argumentative texts, especially user-generated texts, are written ad-hoc. Reviews such
as the one in Figure 2, e.g., often remain with a sequential structure. Also, they miss
explicit relations between the reasons they give to justify their ratings. Following Wal-
ton and Godden [2006], we see the discourse-level argumentation of texts as a regu-
lated sequence of speech acts. In particular, we propose to identify the rhetorical moves
of speech acts [Teufel et al. 2009] for modeling the argumentation.

2.1.1. Rhetorical Moves (related to an analysis task). Rhetorical moves represent the com-
municative functions of segments of an argumentative text, which are linked to the
general communicative objective of the type of text [Swales 1990]. Thereby, they sup-
port the author’s strategy of persuasion or justification. Unlike Swales, we will not
consider a fixed set of rhetorical moves for a given text type, but we propose to choose
a set in compliance with the analysis task to be addressed: For the organization of es-
says, Persing et al. [2010] model different discourse functions. For stance classification,
it may be more beneficial to explicitly model argument units, e.g., pro claims and con
claims along with their premises. Many stance classifiers approximate pros and cons
with local sentiment [Faulkner 2014]. This makes particular sense in case of reviews,
like the one in Figure 2. There, the ordering of local sentiment adds to the justification
of the global sentiment. Also, discourse relations provide insights, such as the review’s
final contrast. We experiment with various rhetorical moves in Sections 5 and 6.

2.1.2. Text Segments (specific to a text type). Each speech act is represented by a specific
span of text. The identification of rhetorical moves therefore requires to first segment
the text appropriately. While the right segment size may vary in and between texts,
we observe that many text types have a particular level on which the discourse is
usually advanced. E.g., many reviews consecutively state opinions on different aspects
rather than providing arguments. Their local sentiment is classified on the clause level
[Wachsmuth et al. 2014b] or sentence level [Täckström and McDonald 2011]. In con-
trast, arguments in essays ideally match with paragraphs, although discourse func-
tions are known for both sentences and paragraphs [Persing et al. 2010].
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Fig. 3. The main steps when identifying common flow patterns based on a set of known training flows.

We explore all these levels in Sections 5 and 6. Irrespective of the level, the rhetorical
move of each segment must be classified. As with most natural language text analyses,
such a classification will not be free of noise, which in turn affects the correctness of
the resulting model instance. The effect of classification errors is analyzed in Section 6.

2.2. Creating a Flow based on the Rhetorical Moves
Given the rhetorical moves of an argumentative text, we propose a straightforward
model of the global discourse-level argumentation of a text for analysis purposes:

2.2.1. Flows. We model global argumentation solely by the sequence of rhetorical
moves in a text, which we call the flow of the text. In particular, we fully abstract from
content. The shallow nature of our model is motivated by the goal of predicting output
classes or values (cf. Section 1). Our hypothesis is that similar flows refer to similar
outputs, when being based on task-related rhetorical moves. Moreover, we hypothe-
size that comparable flows are used in the same way across different text domains (in
terms of topic or similar). For comparison purposes, we unify flows below.

2.2.2. Nominal versus Numerical Flows. One model parameter deserves special attention,
namely, whether rhetorical moves are represented as nominal classes or as numerical
values. For instance, sentiments are frequently mapped onto values between 0 and 1
or to some predefined scores [Pang and Lee 2005]. We also do this in Sections 5 and 6.
The right side of Figure 2 illustrates a respective flow for local sentiment. The two flow
versions shown there can also be denoted in vector form:

Nominal flow. (Neutral, Positive, Neutral, Positive, Negative, Negative, Positive)
Numerical flow. (0.5, 1.0, 0.5, 1.0, 0.0, 0.0, 1.0)

For other rhetorical moves, a reasonable mapping may not exist, since it reduces their
expressiveness to a ratio scale. For example, we model discourse relations as moves
in Section 5. We evaluate the impact of using numerical instead of nominal flows in
Section 6 where possible. Numerical flows offer advantages for pattern identification.

3. IDENTIFYING COMMON FLOW PATTERNS
As outlined in Section 1, we aim to capture the global structure of an argumentative
text by comparing its flow to common flow patterns. This section describes two alter-
natives of how to unify flows for pattern identification. Then, we present two ways of
deriving patterns from groups of training texts. The variants are evaluated in Sec-
tion 5. Figure 3 sketches one unification and derivation variant for sentiment flows.

3.1. Unifying a Set of Flows
The similarity of two numerical flows can be computed from the numerical difference
of their values. For nominal flows, only two cases exist: a pair of values is equal or not.
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Stretching
the flow

a b

Normalized flow

Abstracting
the flow

Original flow Change abstraction No Loops abs. Fewer Classes abs.

Fig. 4. Comparison of the two proposed unification approaches for a sample flow: (a) Normalization of the
flow’s dimensionality by stretching it to 10 positions, (b) Application of one or more of three flow abstractions.

Many similarity functions require vectors with uniform dimensions as input, such as
the Manhattan or Cosine distance [Cha 2007]. To this end, the flows must be normal-
ized to the same vector space, as e.g. done by Mao and Lebanon [2007]. An adequate
normalization can preserve all information, but flows are similar only if they are sim-
ilar in the same dimensions then. An alternative is to abstract from variances, thus
mapping similar flows to the same flow. We introduce both approaches in the following.

3.1.1. Normalized Flows (in terms of dimensionality). With dimensionality, we refer to the
number of positions distinguished in a flow. Each position originally represents a par-
ticular rhetorical move. For normalization purposes, positions may have to be stretched
or squeezed, which brings up two questions: (1) What number of dimensions to use in
the normalized form and (2) how to interpolate during stretching and squeezing?

The first question relates to the bias-variance tradeoff in machine learning: Few po-
sitions will oversimplify long flows, because they may omit potentially relevant rhetor-
ical moves. Many positions will require too much data to distinguish patterns from
noise. A reasonable number should therefore be chosen depending on the expected
number of text segments to be represented. The second question is particularly rele-
vant for numerical flows. In case of the sentiment flows from above, a weighted (pos-
sibly linear) interpolation seems beneficial, e.g., for comparing flows like (1.0, 0.5, 0.0)
and (1.0, 0.0). In contrast, nominal classes hardly provide an alternative to simple
removal and duplication. Figure 4 depicts a weighted interpolation of the flow from
Figure 2, contrasting normalization and abstraction.

3.1.2. Abstracted Flows (in terms of irrelevant variations). While we hypothesize that similar
flows occur across domains of argumentative texts (cf. Section 2), we cannot expect the
original flows from our model to generalize well: Different domains show different
flows due to variations in the text length or the explicitness of rhetorical moves. E.g.,
a movie review from Rotten Tomatoes is typically over twice as long as a TripAdvisor
hotel review or an Amazon product review. At the same time, it contains less and more
subtle sentiment. These variations are exemplified in Section 5. Now, we deal with the
problem of reducing them. We propose to apply up to three abstractions:

Change. The deletion of repeating rhetorical moves in a flow. The rationale is to
reduce differences in explicitness by considering move changes only.
No Loops. The deletion of repeating sequences of two or more rhetorical moves. The
rationale is to reduce length differences by merging identical sub-flows.
Fewer Classes. The deletion of specific rhetorical moves of minor relevance. The
rationale is to reduce explicitness and length differences caused by these types.1

1Fewer Classes generalizes 2Class from [Wachsmuth et al. 2015], allowing any number of remaining classes.
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purity ≥ 0.75

Fig. 5. Cuts in a hierarchical clustering of 12 normalized training flows with known output class/value.

The third abstraction requires expert knowledge about the importance of the move
types in the analysis task at hand. Typical candidates are “filler classes” (such as neu-
tral local sentiment) or very frequent and, thus, potentially less discriminative classes.
Besides, the three abstractions are not commutative. In Section 5, we analyze combina-
tions of the abstractions. Higher abstraction will benefit generality, but it may decrease
the impact of flows in analysis tasks. While the best combinations are not known in
advance for the task at hand, they can be learned from a training set.

The general goal of abstraction is to reduce the number of different flows, thus fa-
voring common flows that can be directly used as patterns. Unlike with normalization,
similar flows are found even if they are not scaled versions of each other; the avoidance
of a vector space enables more powerful similarity functions, as detailed in Section 4.
Moreover, abstraction lowers the risk of misclassifying rhetorical moves. E.g., if one
negative sentiment in the original flow from Figure 4 is classified as positive, Change
eliminates the effect. If classified as neutral, Change and Fewer Classes do so together.

3.2. Deriving Flow Patterns from a Set of Unified Flows
Having unified the set of all training flows through normalization or abstraction, com-
mon flow patterns can be derived. Again, we present two alternative ways to approach
this step: (1) Simple frequency counts and (2) a clustering of the flows.

3.2.1. Abstracted Flow Patterns (derived from frequency counts). In general, the number of
different flows that remains after unification is not predictable. However, flow abstrac-
tion as defined above often yields several frequent flows. In this case, a way to obtain
flow patterns is to simply take the most frequent flows, i.e., those that represent a
certain fraction of all training flows.

3.2.2. Normalized Flow Patterns (derived from flow clusters). Even with significant abstrac-
tion, many training sets will contain only very few flows that occur multiple times in
exactly the same form, because of the diversity of natural language. Still, many flows
will be similar in terms of some adequate similarity function (for normalized flows, we
use the Manhattan distance below). In such situations, we propose to determine a set
of flow patterns such that each pattern represents a distinct set of similar training
flows. Ideally, flows that refer to the same flow pattern should be as similar as possible
and others as dissimilar as possible. This suggests to partition the training flows with
clustering and to then derive flow patterns from the resulting clusters.

Our hypothesis is that similar flows entail the same output class or value within the
task to be addressed (cf. Section 2). Since we know the correct output for each train-
ing flow, we propose a supervised variant of clustering that exploits this knowledge to
ensure that all clusters are of high purity. Here, purity denotes the proportion of flows
that have the majority output within a cluster [Manning et al. 2008]. At the same
time, we aim for few clusters in order to prefer generality over specificity of the flow
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Fig. 6. The main steps of analyzing an argumentative text based on its similarity to a set of flow patterns.

patterns. We account for both aims by using hierarchical clustering. This way, we can
sensibly control the number of distinct clusters through cuts in the clustering dendo-
gram (the binary tree of the associated hierarchy). To minimize the number, we search
all cuts closest to the root of the tree that create clusters whose purity lies above some
threshold. Figure 5 exemplifies this approach for a sample threshold of 0.75.

The centroid of each cluster becomes a flow pattern.2 For numerical flows, it can be
computed as the average of the values of all flows in the cluster, as demonstrated in
Section 5. For nominal flows, we use the majority class at each position of the flows.

4. ANALYZING DISCOURSE-LEVEL ARGUMENTATION BASED ON FLOW PATTERNS
To analyze an argumentative text at the discourse level, we compare its flow to the
identified flow patterns. In this section, we discuss how to compute similarities for this
purpose and how to predict output classes or values from the similarities within an
analysis task. Figure 6 illustrates these steps for classifying global sentiment.

4.1. Computing Similarities between Flows and Flow Patterns
In case the flow of a text does not already occur in the set of training flows, its out-
put output class or value is unknown. The flow is hence transformed into the unified
form of the given flow patterns (cf. Section 3) and its similarity to each flow pattern is
computed. We consider two alternative approaches in this regard.

4.1.1. Vector Space Distance (for normalized flows). If the training flows were mapped into
a vector space through normalization, a similarity function (e.g., the Manhattan dis-
tance) has already been chosen for the subsequent pattern derivation. The same func-
tion should also be used to compute the similarity flows and flow patterns in order not
to mix up different similarity concepts. The center part of Figure 6 shows exemplary
similarity values that result in this case.

4.1.2. Edit Distance (for abstracted flows). If unification was achieved via abstraction, an
adequate similarity function is still to be chosen. As argued in Section 3, a function is
preferred that detects similar flows even if they are not similar at the same positions.
Thus, we compare flows and flow patterns in terms of their normalized minimum edit
distance. This requires the specification of costs for all edit operations. We consider the
substitution, insertion, and deletion of a single rhetorical move. Given the moves r and
r′ at some position of a pair of flow and pattern, we define the costs as follows:

d(r, r′) =

{
∆(r, r′) if r′ substitutes r.

α+ (1−α) ·∆(r, r′) if r′ is inserted or deleted after r.

2For noise reduction, flow patterns can be derived only from clusters of some minimum size. Also, rare flows
can already be discarded before clustering (e.g., flows that occur only once in the training set).
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Fig. 7. Illustration of the normalized edit distance of a flow and a flow pattern: (2 · 0 + 3 · 1/3) / 4 = 1/4.

Here, ∆(r, r′) is the numerical difference in case r and r′ are represented as numer-
ical values. For nominal classes, ∆(r, r′) = 0 if r = r′, and ∆(r, r′) = 1 otherwise. The
idea is to increase the cost the more r and r′ differ, but to induce a minimum cost
value α ∈ [0, 1] for insertions and deletions—to capture differences that remain after
abstraction. We set α to 1/3 in Section 6, which worked best among 1, 1/2, 1/3, and 1/4
in experiments of Wachsmuth et al. [2015]. Based on d, the edit distance can be incre-
mentally computed with sequence alignment, as Persing et al. [2010] do for discourse
functions. Figure 7 illustrates this as a shortest-path search. The minimum distance
is normalized to [0, 1] by the maximum length of the flow and flow pattern.

4.2. Learning the Prediction of Output Classes and Values from the Similarities
We consider the flow patterns as a feature type for supervised machine learning such
that each similarity between a flow and a flow pattern denotes a single feature. The
output class or value of a text can then be predicted from a feature vector of similarity
values. Thereby, we compare the global structure of a text (represented by the flow) to
known global structures (the flow patterns), hence mapping the text into the feature
space of global structures. Figure 6 exemplifies this approach for the prediction of neu-
tral global sentiment from the similarity of a sentiment flow to four flow patterns.

To learn the prediction, the same training set can be used that has been processed
when identifying the flow patterns. In addition, the similarity features can be com-
bined with any other features. In Section 6, we evaluate our novel feature type in two
analysis tasks. More details about its implementation are found in [Wachsmuth 2015].

5. EMPIRICAL STUDY OF FLOW PATTERNS
This section reports on the identification of flow patterns in several empirical analy-
ses with four types of rhetorical moves on datasets with two types of argumentative
texts. Section 5.1 seeks to provide evidence that our model reveals novel insights about
how people argue in texts. Section 5.2 demonstrates that flow patterns generalize well
across domains. An overview of all datasets used in this paper is given in Table I.3

5.1. Analysis of Common Flows in Reviews and Essays
Our hypothesis is that the global structure of an argumentative text impacts discourse-
level properties of the text. To investigate this, we computed the most common flows
for different types of argumentative texts and rhetorical moves as well as their cooc-
currence with certain text classes, given the following setting:

5.1.1. Argumentative Texts. One set of argumentative texts is the hotel review corpus
from [Wachsmuth et al. 2014b] in Table I. Each clause-level segment in the reviews is
classified to have a negative, neutral, or positive sentiment. The reviews are balanced
regarding their overall ratings between 1 and 5; here, we map the ratings to negative (1
and 2), neutral (3), and positive (4 and 5) global sentiment.

3All presented results have been produced with Java implementations found at http://www.arguana.com. In
case you need further instructions to reproduce them, do not hesitate to contact the authors of this article.
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Table I. Facts about the datasets on which we evaluated the two specified analysis tasks in the specified sections:
Source, text type, number of texts, segment level of the analyzed flows, and average number of segments per text.

Task Sections Source of dataset Text type Texts Seg’ level Seg’s
Sentiment 5.1, 5.2, 6.1 [Wachsmuth et al. 2014b] Hotel reviews 2100 Clauses 14.8
analysis 5.2, 6.1 [Täckström and McDonald 2011] Product reviews 294 Sentences 11.5

5.2 [Pang and Lee 2005] Movie reviews 5098 Sentences 36.1
5.2, 6.1 [Mao and Lebanon 2007] Movie reviews 450 Sentences 28.9

Organization 6.2 [Persing et al. 2010] Student essays 1003 Sentences 31.4
scoring 5.1, 6.2 [Persing et al. 2010] Student essays 1003 Paragraphs 7.5

Second, we use the 1003 student essays from the International Corpus of Learner
English [Granger et al. 2009], annotated by Persing et al. [2010] with respect to an
argumentation-related quality dimension. In particular, each essay is assigned a half-
point score in the range [1.0, 4.0] that represents the quality of its organization. Accord-
ing to the authors, a high score is given to essays that introduce their topic, argue for a
stance on the topic, and conclude. The mean score is 3.05, the standard deviation 0.59.

5.1.2. Rhetorical Moves. In case of the hotel reviews, we model rhetorical moves for the
given clause-level segments. Essay argumentation, however, proceeds paragraph-wise,
which is why we look for rhetorical moves on the paragraph level there (the impact of
the chosen level is evaluated in Section 6). In total, we assess four types of moves:

(1) Local Sentiment. The negative, neutral, or positive sentiment of a text segment.
(2) Discourse Relations. The discourse relations between consecutive segments. We

use a subset of the relations from [Mann and Thompson 1988]: background, cause,
circumstance, concession, condition, contrast, motivation, purpose, and summary.

(3) Discourse Functions. The four paragraph-level functions considered by Persing
et al. [2010], i.e., introduction, body (own argument), rebuttal, and conclusion.

(4) Argument Roles. Whether a text segment is a real argument (with premises and
a claim or major claim), whether it serves as premise or a (major) claim, or none.

5.1.3. Preprocessing. Local sentiment is already given in the reviews. Due to lack of
ground-truth data for the other rhetorical moves, we relied on automatic classification.
Concretely, to obtain paragraph sentiment, we first apply the state-of-the-art sentence
sentiment classifier of Socher et al. [2013] to all essays. A paragraph is then classified
as positive if it contains a positive but no negative sentence, and vice versa. Else,
it is seen as neutral. For discourse relations, we used the rule-based algorithm from
[Wachsmuth et al. 2014a] that looks for high-precision indicator words, such as “but”
or “because”. Discourse functions were found with the heuristic algorithm of Persing et
al. [2010]. Finally, we reimplemented a mining approach of Stab and Gurevych [2014]
to identify major claims, claims, premises, and the none class on the sentence level.
Similar to the authors, we achieve a weighted F1-score of 74.5 on their data. Argument
roles are derived as follows: All paragraphs with a claim and a premise were classified
as arguments, all with neither as none. The remaining are claims or premises.

5.1.4. Experiments. Given all rhetorical moves, we created the different flows for all re-
views and essays. As many original flows do not generalize well (recall Section 3.1), we
applied the defined Change abstraction to each flow. Afterwards, we computed the fre-
quency of each resulting change flow pattern and its distribution over all text classes.
Due to the limited effectiveness of automatic classification, the patterns we found have
to be interpreted with caution, because they may not fully represent actual argumen-
tation. Still, clear correlations with text classes can be insightful.

5.1.5. Results. Table II lists the most frequent flow patterns in the hotel reviews based
on local sentiment and discourse relations, respectively. While the first three sentiment
patterns are trivial (i.e., without any changes), the others reveal the impact of a re-
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Table II. The 12 most frequent flow patterns in the review corpus from [Wachsmuth et al. 2014b] when considering
changes of clause-level sentiment and discourse relations, respectively. The relative frequency of each pattern and
its distribution over the three global sentiments are given in percent (the majority global sentiment is marked bold).

Type # Clause-level Change Flow Pattern Rel. Freq. Positive Neutral Negative
Local
sentiment

1 (positive) 7.7 87.7 7.4 4.9
2 (neutral) 5.2 62.7 20.0 17.3
3 (negative) 3.5 1.4 9.6 89.0
4 (positive, neutral, positive) 3.0 93.5 6.5 0.0
5 (neutral, positive) 2.7 91.2 7.0 1.8
6 (positive, negative, positive) 2.1 72.7 11.4 15.9
7 (neutral, positive, neutral, positive) 1.9 94.9 5.1 0.0
8 (negative, neutral, negative) 1.7 0.0 2.8 97.2
9 (positive, negative) 1.7 19.4 33.3 47.2

10 (neutral, positive, negative, positive) 1.5 64.5 32.3 3.2
11 (negative, positive, negative) 1.5 0.0 12.9 87.1
12 (neutral, negative) 1.1 0.0 0.0 100.0

Discourse
Relations

1 (contrast) 25.2 30.8 25.5 43.8
2 (circumstance) 3.7 20.8 5.2 74.0
3 (concession) 2.6 40.0 30.9 29.1
4 (motivation) 2.4 60.0 18.0 22.0
5 (contrast, circumstance) 1.9 20.0 22.5 57.5
6 (circumstance, contrast) 1.5 28.1 12.5 59.4
7 (contrast, concession) 1.4 33.3 13.3 53.3
8 (concession, contrast) 1.3 32.1 28.6 39.3
9 (contrast, motivation) 1.3 32.1 35.7 32.1

10 (cause) 1.3 44.4 11.1 44.4
11 (motivation, contrast) 1.0 27.3 22.7 50.0
12 (contrast, circumstance, contrast) 1.0 15.0 15.0 70.0

Average 40.0 20.0 40.0

view’s sentiment flow on its global sentiment. E.g., the flow (positive, negative, positive)
(line 6, upper part) is mostly positive while (negative, positive, negative) in line 11 is
mostly negative. The 1.7% of all reviews, which begin positive and turn negative, typi-
cally result in negative (47.2%) or neutral (33.3%) global sentiment. Discourse relation
flows seem to play a limited role. E.g, the circumstance relation indicates a rather neg-
ative review—irrespective of its position in a flow (lines 2, 5, 6, and 12 in the lower
part). Some impact can be seen, though. For example, motivation (indicated by second
person voice) in isolation is positive in 60% of the cases, whereas (contrast, motivation)
rather occurs in neutral reviews and (motivation, contrast) in negative reviews.

Turning to the essays, Table III shows the most frequent change flow patterns for
three rhetorical move types. The average distribution at the bottom helps to interpret
their score distribution. In case of local sentiment, the shortest pattern found, (neu.),
often results in score 1.0 (24.4%), whereas the longest has the highest correlation with
4.0 (17.4%) among all listed sentiment flow patterns. These results suggest that orga-
nization scores correlate with the length of essays. Hardly any patterns contains the
move positive, which may be due to the fact that the employed sentiment classifier was
trained out-of-domain (on movie reviews). For discourse functions, the listed patterns
provide strong evidence that people tend to (or are taught to) follow a particular argu-
mentative structure when writing an essay. Most dominantly, (intro., body, conclusion)
represents every fifth essay (19.6%). This and some other patterns support a high or-
ganization score. Especially, the pattern in line 12 (middle part) results in 3.5 or 4.0
in about 60% of the cases, suggesting that it is clever to first rebut con arguments be-
fore presenting pro arguments. Similar observations can be made for argument roles.
Among others, the most frequent pattern (claim, argument) reflects a good organiza-
tion, whereas the scores of (claim, argument, claim, argument, claim) indicate that
multiple switches between claim and argument paragraphs are not optimal.

We conclude that several common flow patterns exist in the given reviews and es-
says. Also, some types of rhetorical moves have more impact on discourse-level prop-
erties than others. Their actual use for analysis tasks is evaluated in Section 6.
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Table III. The 12 most frequent flow patterns in the essay corpus of Persing et al. [2010] when considering changes
of paragraph-level sentiment, discourse functions, and argument roles, respectively. All values in percent.

Type # Paragraph-level Change Flow Pattern Rel. F. 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Local
sentiment

1 (neu., negative, neu.) 8.9 0.0 0.0 0.0 4.5 38.2 43.8 13.5
2 (neu.) 8.6 24.4 8.1 7.0 3.5 24.4 24.4 8.1
3 (neu., negative, neu., negative) 6.5 0.0 0.0 3.1 12.3 38.5 36.9 9.2
4 (negative, neu., negative) 6.2 0.0 0.0 1.6 11.3 45.2 33.9 8.1
5 (neu., negative) 6.1 0.0 0.0 6.6 18.0 32.8 32.8 9.8
6 (negative, neu.) 5.5 1.8 1.8 0.0 7.3 41.8 34.5 12.7
7 (negative, neu., negative, neu.) 5.3 0.0 0.0 1.9 15.1 43.4 34.0 5.7
8 (neu., negative, neu., negative, neu.) 3.9 0.0 0.0 0.0 10.3 38.5 35.9 15.4
9 (negative, neu., negative, neu., negative) 3.8 0.0 0.0 0.0 10.5 52.6 23.7 13.2

10 (neu., negative, neu., negative, neu., negative) 2.3 0.0 0.0 4.3 26.1 34.8 17.4 17.4
11 (neu., positive, neu.) 1.6 0.0 0.0 0.0 18.8 37.5 31.3 12.5
12 (negative) 1.4 0.0 0.0 7.1 7.1 64.3 7.1 14.3

Discourse
functions

1 (intro., body, conclusion) 19.6 0.5 0.0 1.0 8.6 42.6 37.1 10.2
2 (intro., body) 6.7 1.5 1.5 1.5 16.4 34.3 34.3 10.4
3 (intro., body, rebuttal, body, conclusion) 4.3 0.0 2.3 4.7 34.9 44.2 14.0 0.0
4 (intro., body, intro.) 4.2 0.0 0.0 0.0 7.1 42.9 38.1 11.9
5 (intro., body, intro., body, conclusion) 3.5 0.0 0.0 2.9 20.0 37.1 31.4 8.6
6 (intro., body, intro., conclusion) 3.4 0.0 0.0 0.0 14.7 41.2 26.5 17.6
7 (intro.) 3.3 60.6 21.2 6.1 3.0 3.0 6.1 0.0
8 (conclusion, body, conclusion) 3.1 0.0 0.0 0.0 3.2 35.5 54.8 6.5
9 (intro., body, conclusion, body, conclusion) 2.7 0.0 0.0 0.0 11.1 29.6 48.1 11.1

10 (intro., conclusion) 1.6 0.0 0.0 12.5 18.8 25.0 31.3 12.5
11 (intro., body, conclusion, body) 1.2 0.0 0.0 0.0 16.7 66.7 16.7 0.0
12 (intro., rebuttal, body, conclusion) 1.2 0.0 0.0 8.3 0.0 33.3 33.3 25.0

Argument
roles

1 (claim, argument) 10.2 0.0 2.0 1.0 9.8 31.4 38.2 17.6
2 (none, argument) 9.2 1.1 2.2 2.2 7.6 30.4 45.7 10.9
3 (claim, argument, claim) 5.2 0.0 0.0 0.0 9.6 46.2 38.5 5.8
4 (none, argument, claim) 4.9 0.0 0.0 0.0 10.2 42.9 34.7 12.2
5 (claim, argument, claim, argument, claim) 4.1 0.0 0.0 4.9 22.0 48.8 24.4 0.0
6 (none, argument, premise, argument) 3.3 0.0 0.0 0.0 12.1 36.4 33.3 18.2
7 (claim, argument, claim, argument) 3.2 0.0 0.0 0.0 9.4 53.1 34.4 3.1
8 (none, argument, claim, argument) 3.0 0.0 0.0 3.3 10.0 63.3 23.3 0.0
9 (claim, argument, premise, argument) 3.0 0.0 0.0 0.0 3.3 40.0 43.3 13.3

10 (premise) 2.1 90.5 9.5 0.0 0.0 0.0 0.0 0.0
11 (none, argument, claim, argument, claim) 2.1 0.0 0.0 0.0 9.5 61.9 23.8 4.8
12 (claim, argument, premise, argument, claim) 2.0 0.0 0.0 5.0 0.0 50.0 30.0 15.0

Average 2.4 1.4 3.4 14.6 41.6 28.8 7.9

5.2. Analysis of the Generality of Flow Patterns across Domains
We have hypothesized above that similar flows can be found across domains of texts—
provided an adequate abstraction. In [Wachsmuth et al. 2015], we systematically an-
alyze the generality of combinations of the abstractions outlined in Section 3.1. Since
we also evaluate the domain robustness of using flows for analysis tasks (in Section 6),
we study our hypothesis only exemplarily here for sentiment analysis. In particular,
we bring together two experiments from [Wachsmuth et al. 2014a] and [Wachsmuth
et al. 2015], allowing to compare normalized and abstracted flows:

5.2.1. Argumentative Texts. For the case of normalization, we consider all 900 training
hotel reviews from [Wachsmuth et al. 2014b] as one domain (cf. Table I). The other
domain is defined by movie reviews from [Pang and Lee 2005], where we use the 1302
reviews of author c and the 1027 reviews of author d as two separate datasets. We map
their sentiment scale [0, 2] to negative (0), neutral (1), and positive (2) global sentiment,
and we assume each sentence as one text segment. For the abstraction case, we rely
on ground-truth local sentiment. Besides the hotel reviews, we consider the 450 movie
reviews from [Mao and Lebanon 2007], a subset of the dataset from [Pang and Lee
2005]. In these, all sentences are classified as negative, neutral, or positive. The anno-
tated reviews lack global sentiment. We could recover it from the original dataset (178
positive, 139 neutral, and 133 negative reviews). We used the 201 reviews of one of au-
thor here. Finally, we added the 294 product reviews from [Täckström and McDonald
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Fig. 8. The three most common normalized sentiment flow patterns found in (a) the processed hotel reviews
and (b–c) the movie reviews of author c and d. All patterns are labeled with the associated global sentiment.

2011] where every sentence is classified as positive, negative, neutral, mixed, or irrel-
evant. We mapped the last three to neutral. The reviews are roughly balanced with
respect to global sentiment and five product categories (books, DVD, electronics, mu-
sic, and videogames) from which we used the 175 book, DVD, and electronics reviews.
The remaining parts of the corpora are left for testing our approach in Section 6. Be-
sides the length of reviews, the given domains largely differ in the distribution of local
sentiment: 38% of the ground-truth segments in hotel reviews are positive, 41.7% are
negative. In contrast, only 24.1% (34.4%) of the product sentences are positive (nega-
tive) and only 17.6% (21.2%) of the movie sentences.

5.2.2. Rhetorical Moves. We model negative, neutral, and positive local sentiment as
task-related rhetorical moves for the prediction of global sentiment.

5.2.3. Preprocessing. For normalized sentiment flows, we trained linear support vec-
tor machines that classify local sentiment of text segments [Wachsmuth et al. 2014a].
Based on their output, flows are created and normalized to 30 (hotel reviews) and 60
(movie reviews) dimensions, respectively. While the normalization length itself is an
optimization parameter that is not studied here, the chosen lengths capture about 90%
of the original flows without loss according to the respective training sets. To obtain
flow patterns as defined in Section 3.2, we developed an agglomerative hierarchical
clusterer that employs the Manhattan distance between flows and that operational-
izes the merging with group-average link. The dendrogram cuts are made for a purity
threshold of 0.8; the centroid of each cluster with at least three flows became a flow
pattern.4 For the abstracted sentiment flows, no preprocessing was performed, but the
flows created from the given ground-truth local sentiment were used.

5.2.4. Experiments. In the supervised normalization setting, we computed the most
common flow pattern for each global sentiment in the respective dataset and compared
the different patterns. In the unsupervised abstraction setting, we first determined the
most frequent abstracted flow in every domain for combinations of the abstractions
from Section 3.1. To assess their generality, we analyzed the frequency and global
sentiment distribution of each flow in all three domains.5

5.2.5. Results. Figure 8 shows the most common normalized sentiment flow patterns
in the hotel and the movie domain. The three hotel patterns represent between 2.6%

4The chosen parameter values of the clusterer worked best in initial experiments. In principle, these values
are also subject to optimization, as discussed in [Wachsmuth 2015].
5For comparability, we balanced the training flows before according to their global sentiment distribution.
E.g., if 40% are positive, 30% neutral, and 30% negative, then the positive flows are weighted by 0.75.
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Table IV. The most frequent flow pattern in each evaluated training domain (marked bold) for five combinations of
abstractions. For each test domain, the relative frequency and global sentiment distribution are given in percent.

Abstractions Domain Rank Clause-level Sentiment Flow Pattern Rel. F. Pos. Neu. Neg.
Change,
Fewer classes,
No loops

Product 1st (negative, negative) 13.6 0.0 25.0 75.0
Hotel 9th 4.2 0.0 8.9 91.1
Movie 4th 6.7 0.0 0.0 100.0
Product 8th (positive, negative, positive) 3.4 34.1 65.9 0.0
Hotel 1st 10.5 45.1 49.6 5.3
Movie 14th 2.3 0.0 73.3 26.7
Product 10th (negative, negative, positive, negative) 3.4 0.0 33.3 66.7
Hotel 15th 2.2 0.0 16.7 83.3
Movie 1st 8.6 0.0 57.9 42.1

Fewer classes,
No loops

Product 1st (negative, negative) 15.3 7.6 29.6 62.8
Hotel 5th 4.4 0.0 8.5 91.5
Movie 1st 6.7 0.0 0.0 100.0
Product 3rd (positive, positive) 12.8 86.8 8.8 4.4
Hotel 1st 7.6 87.8 12.2 0.0
Movie 10th 2.1 61.1 38.9 0.0

Change,
No loops

Product 1st (positive, neutral, positive) 10.5 94.6 0.0 5.4
Hotel 6th 3.3 88.9 11.1 0.0
Movie 23rd 1.3 100.0 0.0 0.0
Product 22nd (positive) 1.1 50.9 49.1 0.0
Hotel 1st 6.6 83.1 14.1 2.8
Movie – – – – –
Product 2nd (neutral, negative) 9.1 6.5 24.9 68.6
Hotel 5th 3.5 0.0 10.5 89.5
Movie 1st 7.6 8.6 0.0 91.4

No loops,
Fewer classes

Product 1st (negative, negative) 10.2 11.5 33.2 55.3
Hotel 5th 2.0 0.0 – 100.0
Movie – – – – –
Product 3rd (positive, positive, positive) 5.3 100.0 0.0 0.0
Hotel 1st 5.6 90.0 10.0 0.0
Movie – – – – –
Product 22nd (6x negative) 1.1 0.0 0.0 100.0
Hotel 65th 0.3 0.0 0.0 100.0
Movie 1st 2.7 0.0 0.0 100.0

Fewer classes Product 1st (negative, negative, negative, negative) 5.1 0.0 22.2 77.8
Hotel 13th 0.9 0.0 20.0 80.0
Movie – – – – –
Product 12th (6x positive) 4.6 75.6 12.2 12.2
Hotel 1st 2.3 84.0 16.0 0.0
Movie – – – – –
Product – (16x negative) – – – –
Hotel – – – – –
Movie 1st 1.5 0.0 0.0 100.0

and 25.1% of the 900 training reviews. The positive and the negative pattern both in-
dicate rather simple one-sided argumentations, while the neutral pattern captures the
intuitive argumentation of starting with positive but soon arriving at negative aspects.
In total, the clustering produced 38 hotel patterns. In contrast, 75 patterns resulted
from the movie reviews of author c and 41 from those of author d. The depicted movie
patterns show less clear sentiment but more changes than the hotel patterns. While
the global behavior of the hotel patterns and those of author c are partly comparable,
two patterns of author d contain only little sentiment at all, especially in the middle.
Although exemplary only, these observations suggest that normalized sentiment flow
patterns do not sufficiently generalize and that abstraction is needed.

Table IV shows the most frequent abstracted flow from each review domain for five
selected combinations of abstractions. Frequent flows naturally tend to be simple, and
this tendency is reinforced by the abstractions. While less insightful, the respective
patterns may still capture decisive discourse-level differences between flows. Besides,
we also see more complex patterns: In case of the first combination, e.g., the top movie
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Table V. Rhetorical moves and flow types of the flow patterns evaluated in the specified sections. For each type of
rhetorical move, both normalization and abstraction are used, based on clustering and frequencies, respectively.

Rhetorical Moves Flow type Sections Unification Identification Similarity function
Argument roles Nominal 6.2 Normalization Cluster centroids Manhattan distance

Abstraction Frequency ≥ 1% Edit distance
Local sentiment Numeric 6.1, 6.2 Normalization Cluster centroids Manhattan distance

Abstraction Frequency ≥ 1% Edit distance
Discourse functions Both 6.2 Normalization Cluster centroids Manhattan distance

Abstraction Frequency ≥ 1% Edit distance

flow (negative, negative, positive, negative) also constitutes the 10th and 15th most fre-
quent flow in the product and hotel domain, respectively. For Fewer classes, No Loops,
two domains even share the first flow. At least the flows of the upper three combi-
nations are common across domains with a frequency of over 2% in most cases. While
only few flows clearly predict one global sentiment, almost all behave similar across do-
mains. An exception is (positive, negative, positive) in Change, Fewer classes, No Loops,
which is rather positive in product reviews but negative in movie reviews.

To summarize, our analyses yield flow abstractions that prove to be general across
review domains, although not being a perfect model of review argumentation. The
discussed combinations were selected since we found in [Wachsmuth et al. 2015] that
they abstract neither too little, such as the original flows, nor too much, such as Fewer
classes, Change, No Loops, which creates at most seven flows per domain. In Section 6,
we evaluate the selected combinations for analyzing discourse-level argumentation.

6. EXPERIMENTS WITH DISCOURSE-LEVEL ARGUMENTATION ANALYSIS
This section presents the evaluation of our approach in two argumentation-related
analysis tasks. We demonstrate the effectiveness and domain robustness of modeling
discourse-level argumentation with flows and we examine major flow parameters. An
overview of all evaluated features based on flow patterns is given in Table V.6

6.1. Domain-Robust Sentiment Analysis of Reviews
Given the generality results from Section 5.2, we hypothesize that our features based
on flow patterns allow for domain-robust argumentation analyses. We tested this hy-
pothesis for the global sentiment analysis of reviews in the following experiments.

6.1.1. Argumentative Texts. As in Section 5.2, we resort to the product, hotel, and movie
reviews in Table I from [Täckström and McDonald 2011; Wachsmuth et al. 2014b; Mao
and Lebanon 2007]. While all three datasets contain ground-truth sentiment on the
clause- or sentence-level, below we analyze the effect of using self-classified rhetorical
moves. Precisely, we classify local sentiment with the algorithm of Socher et al. [2013].

6.1.2. Approach and Baselines. All approaches evaluated here represent features for su-
pervised learning with normalized values in [0, 1]. We consider both pattern variants:

a1 Normalized Sentiment Flows. The Manhattan distance of the normalized flow
of a review to all normalized flow patterns, identified through clustering as intro-
duced in Section 3.2 and concretized in Section 5.2.

a2 Abstracted Sentiment Flows. The minimum edit distance of the abstracted flow
of a review to the most frequent abstracted flow patterns, namely, those that rep-
resent at least 1% of the respective training set. The distances are computed for all
five combinations of the abstractions from Section 3.1 that are shown in Table IV.

We compare the accuracy of our approach to previous approaches for the given cor-
pora. To assess its domain robustness, we also evaluate two additional baselines:

6Again, results can be reproduced with the code at http://www.arguana.com and http://tinyurl.com/toit2016.
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Table VI. Accuracy in 3-class global sentiment analysis using our approach and the baselines for each combination
of training and test review domain, based either on self-classified or on ground-truth local sentiment.

Training
domain

Feature
types

Accuracy on self-classified Accur. on ground-truth
Product Hotel Movie Product Hotel Movie

Product a1 Normalized sentiment flows 46.8 57.5 47.8 77.2 70.1 55.8
a2 Abstracted sentiment flows 50.5 51.3 42.4 70.9 58.1 55.1
a Approach (a1+a2) 50.9 58.2 51.1 73.7 64.5 58.0
b1 Bag-of-words 49.0 45.9 32.4 49.0 45.9 32.4
b2 Sentiment distribution 51.7 50.4 39.3 74.4 69.1 55.1
b Baselines (b1+b2) 56.5 53.0 34.7 67.3 68.8 42.7
a+b1 Approach + Bag-of-words 54.1 60.7 50.0 72.9 65.4 57.6
a+b2 Approach + Sentiment distribution 50.8 59.7 50.2 73.6 64.3 56.4
a+b Approach + Baselines 54.2 60.0 48.7 74.6 64.3 56.4

Hotel a1 Normalized sentiment flows 50.7 74.2 51.1 60.2 81.5 59.8
a2 Abstracted sentiment flows 53.4 69.0 54.7 67.0 79.3 64.0
a Approach (a1+a2) 53.8 75.5 53.6 65.6 81.6 66.7
b1 Bag-of-words 37.8 79.6 39.8 37.8 79.6 39.8
b2 Sentiment distribution 51.4 64.2 51.1 59.9 76.6 56.0
b Baselines (b1+b2) 44.9 81.9 41.3 50.7 87.0 42.4
a+b1 Approach + Bag-of-words 54.8 79.2 52.2 68.0 85.3 68.7
a+b2 Approach + Sentiment distribution 57.1 75.6 51.8 65.6 81.5 69.3
a+b Approach + Baselines 56.4 79.0 53.3 67.0 85.4 69.1

Movie a1 Normalized sentiment flows 42.2 39.5 67.2 69.4 70.5 74.4
a2 Abstracted sentiment flows 44.6 49.7 60.9 60.5 62.1 73.4
a Approach (a1+a2) 47.6 51.9 65.2 62.2 66.7 75.6
b1 Bag-of-words 35.0 41.2 64.8 35.0 41.2 64.8
b2 Sentiment distribution 43.2 44.2 59.0 67.4 71.4 72.2
b Baselines (b1+b2) 38.1 43.1 67.6 43.2 54.7 69.1
a+b1 Approach + Bag-of-words 47.6 55.2 70.6 62.9 68.5 77.6
a+b2 Approach + Sentiment distribution 49.7 54.1 65.9 62.2 68.3 75.9
a+b Approach + Baselines 48.0 52.3 71.8 66.0 68.2 76.7

b1 Bag-of-Words. The frequencies of the tokens in a review. We consider only tokens
occurring in ≥ 5% of all training reviews to avoid noise induced by rare tokens. In
cross-domain scenarios, such tokens behave unpredictable and usually fail.

b2 Sentiment Distribution. The frequencies of positive, neutral, and negative local
sentiment in a review, as well as the first and last local sentiment.

6.1.3. Experiments. Based on either self-classified or ground-truth local sentiment, we
predicted 3-class global sentiment with the default configuration of the state-of-the-art
ensemble classifier Random Forest [Breiman 2001]. In particular, we learned one clas-
sifier for each feature type and different feature sets for all training and test domains.
No hyperparameters were optimized, so no knowledge about a test domain was used.
To prevent class bias, the training sets were balanced with oversampling. We mea-
sured in-domain accuracy in 10-fold cross-validation, averaged over five runs. For out-
of-domain accuracy, we applied the learned classifiers to the other corpora. Table VI
lists all results for both kinds of local sentiment and all nine domain combinations.

6.1.4. Results for Self-classified Local Sentiment. Bag-of-words (b1) proves strong in some
in-domain tasks, but it consistently fails out-of-domain. Although less clear, similar
holds for b2, so a restriction to the distribution of local sentiment does not suffice to
tackle domain dependence. In contrast, the normalized sentiment flows (a1) and espe-
cially the abstracted sentiment flows (a2) are more effective out-of-domain. Either of
them is the best single feature type in all six out-of-domain experiments.

In the movie domain, we obtain an overall accuracy of 71.8. I.e., we were able to
outperform Pang and Lee [2005] who report about 75 on the reviews of one author, but
only 63 for the other. Partly due to an improved local sentiment classification, we also
beat our highest accuracy result on the hotel reviews (78) presented in [Wachsmuth
2015]. In the product domain, we fail to compete with Täckström and McDonald [2011]
who achieve 66.6 after training on large-scale corpora. Our small product training set
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explains the limited in-domain accuracy; even some out-of-domain classifiers perform
better. Also, our sentiment analysis approach (a) performs worse than the baselines
within the domains, achieving an accuracy of 63.9 compared to 68.7 on average. This
is significantly worse at p < 0.05 according to a student t-test.

Across domains, however, the bottom lines of all domains in the left part of Table VI
provide evidence for the robustness of our approach: the out-of-domain accuracy con-
sistently improves when using the flow patterns. Averaging over the six out-of-domain
experiments, our approach (a) achieves an accuracy of 52.7 compared to 38.7 of base-
line b1, 46.6 of b2, and 42.5 of b. Thus, a performs significantly better at p < 0.01 in all
cases. All features together (a+b) obtain 53.1, which is even significant at p < 0.005.

6.1.5. Results for Ground-truth Local Sentiment. The availability of ground truth allows an
estimation of what could be achieved on the given corpora in theory. The right part of
Table VI shows the high impact of flow patterns: Only in the hotel in-domain exper-
iment, the sentiment distribution (b2) performs stronger. When training on product
reviews, our approach even performs better alone than together with the baselines.

6.1.6. Conclusion. The latter results demonstrate that the sentiment flow is often deci-
sive for a review’s global sentiment. Practically, our flow features did not beat the base-
lines within the domains. Still, they added to the state-of-the-art-like overall effective-
ness, indicating that the flows make usually disregarded aspects of reviews measur-
able. The real impact of the flows becomes obvious out-of-domain, though, where they
significantly improved robustness (with slight advantages for the abstracted flows).
This suggests that similar sentiment flows are used across domains of reviews. While
very high effectiveness seems to require more adaptation to a target domain, the mod-
eling of flows can thus serve as a basis for aligning effective features between domains.

6.2. State-of-the-Art Scoring of the Organization of Essays
In Section 5.1, we have seen that different types of flow patterns can be found in an
essay, which indicate the quality of the essay’s organization. Now, we report on our
experiments with the scoring of this organization based on flow patterns. We evaluated
major parameters of our approach, relying on the following set-up.

6.2.1. Argumentative Texts. For training and testing, we used the student essay dataset
from Table I with organization scores from [1.0, 4.0] again. As in Section 5.1, we pro-
cessed all essays with the algorithms from [Persing et al. 2010; Socher et al. 2013;
Stab and Gurevych 2014] to obtain local sentiment, discourse functions, and argument
roles. This time, we considered these rhetorical moves also on the sentence level.

6.2.2. Approach and Baselines. We modeled three feature types for the rhetorical moves:

a1 Sentiment Features. (1) The sentiment distribution features already used in Sec-
tion 6.1. (2) The respective numerical normalized flows with 15 (paragraph level) or
30 (sentence-level) dimensions. (3) The respective abstracted flows. For simplicity,
we used all possible 16 combinations of 0–3 of the abstractions from Section 3.1.

a2 Discourse Function Features. Analog to a1, the discourse function distribution,
the normalized flows, and the abstracted flows (ignoring body in case of Fewer
Classes). In addition, we computed the distribution of discourse function n-grams,
i.e., sequences of n ≤ 3 consecutive discourse functions. We created both nominal
and numerical flows to evaluate the benefit of numerical values. To this end, we
mapped body to 1.0, introduction and conclusion to 0.5, and rebuttal to 0.0.

a3 Argument Role Features. The argument role distribution, the normalized flows,
and the abstracted flows (ignoring none in case of Fewer Classes). The paragraph-
level features are analog to a1. On the sentence level, we computed the distribution
of argument unit n-grams (for major claims, claims, premises, and none). Also, the
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Table VII. Mean average error (MAE) and mean squared error (MSE) in scoring essay organization for all proposed
feature types. The different rhetorical moves are computed either on the sentence level or on the paragraph level.

Rhetorical
Moves #

Feature
Type

Sentence level Paragraph level
MAE MSE MAE MSE

Sentiment Sentiment distribution 0.425 ±.016 0.349 ±.030 0.422 ±.017 0.349 ±.032
Normalized flows (numerical) 0.425 ±.016 0.349 ±.030 0.418 ±.015 0.348 ±.038
Abstracted flows (numerical) 0.425 ±.014 0.349 ±.030 0.371 ±.011 0.231 ±.019

a1 Sentiment features 0.423 ±.013 0.350 ±.027 0.369 ±.014 0.228 ±.022

Discourse functions Discourse function distribution 0.421 ±.016 0.346 ±.031 0.416 ±.016 0.342 ±.032
Normalized flows (nominal) 0.417 ±.012 0.347 ±.033 0.405 ±.016 0.305 ±.027
Normalized flows (numerical) 0.415 ±.017 0.343 ±.033 0.398 ±.022 0.299 ±.055
Abstracted flows (nominal) 0.413 ±.020 0.342 ±.039 0.385 ±.027 0.247 ±.031
Abstracted flows (numerical) 0.421 ±.009 0.351 ±.031 0.376 ±.025 0.231 ±.036

a2 Discourse function features 0.420 ±.018 0.344 ±.043 0.358 ±.028 0.210 ±.035

Argument roles Argument role distribution 0.375 ±.015 0.231 ±.019 0.388 ±.023 0.258 ±.030
Normalized flows (nominal) 0.390 ±.015 0.302 ±.040 0.376 ±.022 0.242 ±.029
Abstracted flows (nominal) 0.367 ±.022 0.234 ±.017 0.360 ±.025 0.225 ±.030

a3 Argument role features 0.345 ±.021 0.198 ±.022 0.361 ±.025 0.224 ±.029

b1 Average baseline 0.425 ±.016 0.349 ±.030 0.425 ±.016 0.349 ±.030

sentence-level flows represented only single paragraphs, hence being captured in
terms of their frequency in an essay.

Based on the feature types, we predicted organization scores. To assess effectiveness,
we compared the feature types to three baselines:

b1 Average Baseline. This lower-bound baseline simply assigns the average score of
the training essays to all test essays.

b2 Bag-of-Words. The frequencies of all tokens occurring in ≥10% of the training set.
b3 State of the Art. The best approach of Persing et al. [2010]. To our knowledge,

this approach denotes the state of the art in organization scoring.

6.2.3. Experiments. For direct comparison, we replicate the experimental set-up of
Persing et al. [2010], who score essay organization with supervised regression based
on sequences of discourse functions (the relation between ours and their approach is
discussed in Section 7). In particular, we measured the mean absolute error (MAE)
and the mean squared error (MSE) of regression, using cross-validation on the five
predefined folds of the given corpus. Like the authors, we trained linear support vector
machines, relying on LibSVM [Chang and Lin 2011]. Unlike them, we did not optimize
the SVM cost parameter but simply set it to 0.1 in all cases after some initial tests.

6.2.4. Results. Table VII lists errors and their standard deviations for each proposed
feature type on both granularity levels. Consistently, the abstracted flows beat the nor-
malized flows and the latter beat the distribution of the respective rhetorical moves.
The mapping from nominal discourse functions to numerical values indeed proves ben-
eficial, reducing the MSE from 0.247 to 0.231 on the paragraph level, among others. In
case of sentiment and discourse functions, the paragraph-level features clearly outper-
form the sentence-level features. A comparison with the average baseline (b1) reveals
that hardly any impact is achieved based on sentences. In contrast, the sentence-level
argument role features succeed, even denoting the best-performing of all feature types
with an MAE of 0.345 and an MSE of 0.198. We used all types whose values are shown
bold in Table VII in the final evaluation of our complete approach.

The overall effectiveness of our approach is shown in Table VIII. Together, the cho-
sen feature types (a) have about the same MSE as the state-of-the-art baseline (b3).
While bag-of-words (b2) fails in isolation, it adds to our approach when combining
them (a+b2), reducing the MAE to 0.322 and the MSE to 0.171. These results are
slightly (though not significantly) better than those of Persing et al. [2010].
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Table VIII. MAE and MSE of our complete approach and two baselines in scoring essay organization.

# Feature Type MAE MSE
a1 Sentiment features (paragraph level) 0.369 ±.014 0.228 ±.022
a2 Discourse function features (paragraph level) 0.358 ±.028 0.210 ±.035
a3 Argument role features (sentence level) 0.345 ±.021 0.198 ±.022
b1 Average baseline 0.425 ±.016 0.349 ±.030
b2 Bag-of-words 0.422 ±.015 0.345 ±.003
b3 State of the art [Persing et al. 2010] 0.323 0.175
a Approach (a1–a3) 0.328 ±.018 0.176 ±.019
a+b2 Approach + Bag-of-words 0.322 ±.013 0.171 ±.016

6.2.5. Conclusion. The flow patterns achieved the best results known so far for the
given essay scoring task. Compared to the former state of the art [Persing et al. 2010],
additional gains were obtained through the resort to sentence-level argument roles,
underlining the connection of essay organization and argumentation quality. In gen-
eral, the dominance of the abstracted over the normalized flows suggests that a com-
putationally expensive clustering could be omitted. This would enable the use of flow
patterns on big data. Also, the abstracted flows come with fewer parameters (cf. Sec-
tion 3). Still, in nearly all cases, combining both flow types (a1–a3) performed best.

7. RELATED WORK
Argumentation is in the focus of current research [Al-Khatib et al. 2016]. We do not
deal with dialogical argumentation, such as online debates [Cabrio and Villata 2012],
but we target at texts that comprise a monological argumentation, such as reviews,
essays, or scientific articles. Their goal is to persuade the intended reader of a thesis
or opinion on some topic [Besnard and Hunter 2008]. Faulkner [2014] points out that
only in this setting true argumentative structure is found, while dialogs—especially
online debates—are often dominated by short, emotion-loaded text fragments.

Several approaches have been proposed to mine argumentative structure from texts,
often grounded in models from theory. Mochales and Moens [2011] seek for conclusions
and premises in legal cases based on [Walton et al. 2008]. Relying on [Freeman 2011],
Peldszus and Stede [2015] capture support and attack relations in microtexts. For the
web, Habernal and Gurevych [2015] adapt the model of Toulmin [1958], which defines
facts and warrants that support a claim unless a rebuttal applies. Shallower models
consider only claims and evidence [Rinott et al. 2015]. Common to these approaches
is the focus on the local structure of single arguments and their relations. In contrast,
we model and investigate the global structure of complete argumentations. An argu-
mentation composes a set of arguments to justify a thesis. The thesis may be explicit,
implicit, or encoded in an overall judgment (such as the rating of a review). In experi-
ments with the argument types from [Stab and Gurevych 2014], we have also modeled
the completeness of local structure inspired by [Park and Cardie 2014].

From a linguistics perspective, an argumentation can be viewed as a “regulated”
sequence of speech acts [Walton and Godden 2006]. As related research, we model it as
a sequence of rhetorical moves [Swales 1990]. For instance, Teufel et al. [2009] capture
argumentative zones of scientific articles for retrieval purposes, such as the statement
of a research goal. Our model can integrate such zones—e.g., to learn about clear or
well-organized ways of arguing scientifically. Generally, our model allows a flexible
choice of rhetorical moves with regard to the requirements of a given analysis task. As
shown, we represent a review’s argumentation regarding its global sentiment by the
sequence of local sentiments in the review, among others. The correlation of local and
global sentiment has already been analyzed (e.g., by Täckström and McDonald [2011]),
but not for the impact of structure. Further rhetorical moves have been evaluated in
our experiments, partly derived from argumentation mining.
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Our focus is not argumentation mining in terms of capturing argumentative struc-
ture, but it is the argumentation analysis of the previously captured structure (here, in
the form of a flow). Following Mochales and Moens [2011], a complete argumentation
analysis investigates the content and linguistic structure of composed arguments, re-
lations between the arguments, underlying beliefs, and the coherence of the discussed
topic. E.g., Brüninghaus and Ashley [2003] analyze the types of reasoning used in in-
dividual arguments to predict the outcomes of legal cases. Here, we have identified
patterns in the argumentative structure of complete texts at the discourse level. While
Feng and Hirst [2011] perform related analyses to classify argumentation schemes, we
have used the structure to address specific argumentation-related analyses.

In related work, Faulkner [2014] uses a proprietary model of single arguments, de-
rived from dependency trees, to classify stance. Sobhani et al. [2015] investigate the
use of argumentation mining for the same task. Ong et al. [2014] exploit heuristically
found argument units to assess general essay quality, and Persing and Ng [2015] do
similar to score an essay’s argument strength. Based on [Mann and Thompson 1988],
Feng et al. [2014] extract long-distance discourse relations to measure text coherence,
but even they do not capture discourse-level argumentation.

In contrast, Persing et al. [2010] rely on the sequence of all discourse functions in
an essay (both on the sentence level and on the paragraph level) to score the essay’s
organization. Given an unknown sequence, they first determine its k nearest-neighbor
sequences in a training set and derive scores from these sequences. The scores as well
as the representations of discourse function subsequences are then encoded in linear,
string, and alignment kernels. Finally, the kernels are combined in a composite kernel
that is fed to a supervised learning algorithm. Similar to Persing et al. [2010], we align
unknown and known discourse-level sequences. We identify and consider only com-
mon known sequences, though, which prevents an overfitting to noise in the training
set. Unlike Persing et al. [2010], we directly use the sequences as similarity features,
making fully transparent what our approach actually measures. At the same time,
we can easily capture any type of information in the sequences on any level in order
to find the most decisive sequences, as shown. Moreover, the resulting features can
be immediately integrated with any other features, thus further improving flexibility.
Altogether, our approach can hence be seen as generalization of [Persing et al. 2010],
which we can approximate if needed, as we have demonstrated in Section 6.

The core idea of our approach is to analyze the flow of rhetorical moves in a text. This
idea is derived from empirical analyses of a review corpus [Wachsmuth et al. 2014b].
There, we identify frequent local sentiment flows in reviews that cooccur with partic-
ular global sentiment. Such flows have been introduced by Mao and Lebanon [2007],
who use conditional random fields to classify sentence sentiment in reviews depending
on preceding sentence sentiment. They also predict a review’s global sentiment from
all local sentiments. However, they represent each position in a flow as a single feature.
Thereby, they disregard the flow’s ordering and, thus, do not capture overall structure.
We overcome this limitation by comparing a complete flow to a set of known flows. This
resembles explicit semantic analysis [Gabrilovich and Markovitch 2007], which com-
pares texts based on their similarity to complete Wikipedia articles. While the content
of each article represents one concept, our flows abstract from content.

We claim that our model of discourse-level argumentation benefits effectiveness in
argumentation-related analysis tasks. To support this claim, we have evaluated the
model in sentiment analysis and essay scoring. We do not compete with state-of-the-art
sentiment analysis, which learns the composition of words in sentences [Socher et al.
2013], but we use it to create local sentiment flows from which we infer global senti-
ment. Regarding essay scoring, we are not interested in classical aspects like grammar
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or vocabulary usage [Dikli 2006]. Instead, we look at an important aspect of the argu-
mentation of essays, such as the evaluated quality of organization.

Finally, we aim at domain robustness: Most text analyses use, more or less, domain-
specific features and, thus, they tend to fail in other domains [Daumé and Marcu 2006].
Domain adaptation tackles this problem, e.g., by learning structural correspondences
between domains based on a few domain-independent pivot features [Blitzer et al.
2006]. While adaptation requires some texts from the target domain for training, the
proposed flow features strive for domain independence directly and, so, could serve as
pivot features. Among others, such domain independence is analyzed by Menon and
Choi [2011] for function words in authorship attribution. To our knowledge, however,
we are the first to model the discourse-level structure of texts for robustness.

Originally, we introduced our approach in previous work for one type of argumenta-
tive texts, namely, reviews [Wachsmuth et al. 2014a]. There, we modeled global struc-
ture as a flow of clause-level sentiments. More details and extended evaluations fol-
lowed in [Wachsmuth 2015]. Later, we provided empirical evidence that sentiment
flows generalize across topical domains [Wachsmuth et al. 2015]. While we have built
on these works here, we have also gone significantly further. In particular, we have cre-
ated flows based on types of rhetorical moves never used before (argument roles and
discourse functions), we have explicitly compared different ways to represent (nominal
vs. numeric) flows and to identify patterns (clustering vs. frequency counts) for the first
time, and we have addressed another argumentation-related analysis task (organiza-
tion scoring). In doing so, we laid the ground for our final discussion of the suitability
of flows as a universal model for analyzing the discourse-level argumentation of texts.

8. DISCUSSION AND CONCLUSION
In this paper, we propose to model an argumentative text as a flow of rhetorical moves.
The flow representation matches the view of argumentation as a regulated sequence
of speech acts [Walton and Godden 2006]. It builds upon our observation that many
user-generated argumentative texts are written in an ad-hoc fashion rather than com-
prising a well-planned argumentation. Based on the flow, the global structure of a text
can be analyzed by comparing it to common flow patterns. We even claim that the flow
may serve as a universal model for discourse-level argumentation analysis.

To achieve universality, the flow model should apply to all (or at least most) analysis
tasks that relate to the discourse-level argumentation of texts. We have considered
the modeling and analysis of the local sentiment flow of a review for global sentiment
classification as a running example to illustrate our ideas. Clearly, sentiment will often
not be in the focus of an argumentation analysis, although it is closely connected to
an author’s stance in case of reviews [Wachsmuth et al. 2014b]. However, we have
presented alternatives to sentiment, and we have evaluated the existence and benefit
of flow patterns for other rhetorical moves, such as discourse functions and argument
roles. Our results for sentiment analysis and the scoring of essay organization indicate
that flows enable an effective analysis and generalize well across domains.

Still, several other analysis tasks exist that address discourse-level argumentation
to a larger or minor extent. Besides real stance classification and other argumentation-
related essay scoring tasks, the relevance or convincingness of an argumentative text
may be analyzed based on the flow of different evidence types used in the text [Rinott
et al. 2015]. Also, argumentative zones [Teufel et al. 2009] in a scientific article seem
useful to assess its quality (e.g., in terms of clarity) or to identify its type (e.g., approach
vs. resource vs. survey). We plan to study such tasks in future work. In contrast, we
expect that there will also be argumentation-related tasks where our approach hardly
helps, especially tasks that target at the content of arguments. We see this not as a
contradiction to the universality claim: When referring to an analysis at the discourse
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level, we mean the assessment of argumentation properties that emerge from the com-
position of arguments in a text along with the way this composition is conveyed. We
believe that such properties are always affected by the global structure of the text.

A question is when to prefer our model over classical representations of argumenta-
tive structure, such as a tree-like graph built from the argument units and relations in
a text. The latter complies with concepts from argumentation theory and can express
more complex, non-linear interactions [Toulmin 1958; Walton et al. 2008]. This can be
important for well-planned argumentation, as e.g. found in legal cases. Still, we expect
our model to be able to capture at least sequential argument chains in such argumen-
tation. For discourse-level analyses, such as the classification or scoring of a text, we
argue that the abstraction towards sequential structures is favorable: First, it reduces
the search space of global structures and hence facilitates a reliable determination of
patterns that are discriminative for output classes or values. Second, the separation of
a fixed structure (the flow) and flexible content (task-related rhetorical moves) in our
model allows an adaptation to the specific needs in an analysis task at hand, which
in the end improves expressiveness over classical representations. And third, the cre-
ation of a flow will often be more efficient than the construction of an argument graph.
This becomes decisive in practical applications that deal with big data.

Altogether, this article provides a comprehensive picture of our model. The general
use of flows to analyze the global structure of argumentative texts is straightforward.
We have outlined major factors for the success of flows, though not all have been evalu-
ated here. For sentiment analysis, further experiments can be found in the publications
this article builds on [Wachsmuth et al. 2014a; Wachsmuth et al. 2015; Wachsmuth
2015]. For other tasks, the benefits and limitations of flows are still to be explored.
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