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Abstract. Systematic reviews are crucial for evidence-based medicine
as they comprehensively analyse published research findings on specific
questions. Conducting such reviews is often resource- and time-intensive,
especially in the screening phase, where abstracts of publications are as-
sessed for inclusion in a review. This study investigates the effectiveness
of using zero-shot large language models (LLMs) for automatic screen-
ing. We evaluate the effectiveness of eight different LLMs and investigate
a calibration technique that uses a predefined recall threshold to deter-
mine whether a publication should be included in a systematic review.
Our comprehensive evaluation using five standard test collections shows
that instruction fine-tuning plays an important role in screening, that
calibration renders LLMs practical for achieving a targeted recall, and
that combining both with an ensemble of zero-shot models saves signifi-
cant screening time compared to state-of-the-art approaches.

Keywords: Systematic Reviews · Document Classification · Large Lan-
guage Models.

1 Introduction

Systematic reviews are used extensively in medicine to comprehensively sum-
marise all research findings on a specific question. Systematic reviews ensure a
high level of rigour by including all and only those publications that meet prede-
fined criteria, called the set of ‘included documents’.5 The selection of included
documents starts with searching relevant databases such as PubMed [58] and
the Cochrane Library [17]. This search returns a list of ‘candidate documents’,
which are then screened for relevance and quality using the researchers’ explicit
inclusion and exclusion criteria.

5 Other commonly used terms are ‘studies’, ‘research publications’, and ‘references’.
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Systematic reviews are labour-intensive and time-consuming, with most re-
sources being invested in screening candidate documents, a process that can
take months. While there are various methods to assist in optimizing the cre-
ation of systematic reviews (Section 2), one particular line of work focuses on
minimising the number of documents that need to be manually screened. This
has previously been pursued with classifiers to filter out documents that are not
relevant, which may include manually labelling a significant number of the can-
didate documents to tune the classifier to the screening task at hand. Meanwhile,
instruction-based generative large language models (LLMs), such as OpenAI’s
ChatGPT,6 Llama [46], and Alpaca [44], have demonstrated a remarkable abil-
ity to generate high-quality results in response to user instructions that often do
not require task-specific tuning [44,63]. In automating systematic reviews, these
models have been fine-tuned for query formulation [55,56], as well as document
classification and ranking [56,35,4,43].

In this paper, we focus specifically on the use of zero-shot large language mod-
els for the automatic screening of documents in systematic reviews (Section 3).
By ‘zero-shot’, we mean using generative LLMs without explicitly optimising
them for the screening task, which has the potential to relieve medical experts
of any additional labelling burden. We examine two settings of our approach, an
uncalibrated and a calibrated one. Both approaches prompt the model and use
the probability of the next predicted (target) tokens to categorise documents as
either ‘included’ or ‘excluded’; the former directly uses the token with higher
probability between ‘yes’ and ‘no’, the latter introduces the hyperparameter θ
as a new decision boundary of the classifier, calculated from the difference of
the two tokens instead; θ is adjusted based on starting documents or previous
systematic reviews.

In our evaluation, we address four research questions to investigate the factors
that influence the effectiveness of the proposed zero-shot generative LLM-based
automated screening method for systematic reviews (Section 4):

RQ1 How does the architecture and size of the LLMs influence effectiveness?
RQ2 How does instruction-based fine-tuning influence effectiveness?
RQ3 How does the calibration of the classifier’s decisions with respect to the

target tokens’ likelihoods influence effectiveness?
RQ4 How does ensembling LLM-based classifiers and current strong neural

baselines influence effectiveness?

Our evaluation results (Section 5) show that LlaMa2-7b-ins is currently the
best model for this task, much better than the 13b parameter variant. In gen-
eral, instruction-based fine-tuning always outperforms the base models that have
not been fine-tuned, and models based on LlaMa2 consistently outperform the
baseline BERT-based method. Our approach also slightly outperforms (i.e. is
competitive with) the fine-tuned Bio-SIEVE baseline. The calibrated setting of
our method with ensembling achieves the best result overall and approaches the
predefined recall target for the test topics, which indicates practical use.

6 https://chat.openai.com/

https://chat.openai.com/
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2 Related Work

It is a requirement for high-quality systematic reviews to retrieve literature us-
ing a Boolean query [11,14]; the set of all retrieved documents must then be
fully screened (assessed) for inclusion in the systematic review [11]. Research
has explored the automatic creation of effective Boolean queries [39,41,40,38,55]
(also with respect to the use of controlled vocabularies such as MeSH [53,50,51]),
and the ranking of the set of documents retrieved by the Boolean query (a task
called “screening prioritisation”) [32,12,3,59,2,28,37,28,27,1,65,36], in order to
begin downstream processes of the systematic review earlier [33], e.g., acquiring
the full-text of studies or results extraction. The datasets that we consider in
our experiments, including the CLEF TAR datasets [22,24,23], specifically con-
sidered the task of screening prioritisation. In our paper, we consider a different
task, the one of automating the screening phase of the systematic review; we
discuss previous work related to this direction next.

Popular methods for automating the document screening phase are based
on text classification [45]: a classifier is learned for an individual systematic
review, typically in a supervised manner using labels obtained on a subset of
the documents to be screened. Methods include traditional machine learning
models like SVM [49,15], as well as classifiers based on encoder-based LLMs
like BERT/BioBERT [35,6,10]. Text classification methods are typically trained
incrementally (acquiring labels through cycles of automatic classification) and
often using active learning [48,9,21,20,31,5,42,62]. It is important to note that
all of the methods above requires fine-tuning using labelled data specific to
systematic review text classification in order to be effective.

In our work, we take a step further by considering the latest developments
in generative LLMs to enhance the screening process. At the same time of de-
veloping this work, others have also explored similar directions. [43] employed
ChatGPT for document screening, finding that ChatGPT’s effectiveness is poor
if the set of documents to be screened is imbalanced – which is often the case
in systematic reviews (i.e., typically, there are many more excluded documents
than included among those that have been screened). Higher classification ac-
curacy than ChatGPT was displayed by Bio-SIEVE [35], a model fine-tuned
from the Guanaco checkpoint [19]– which in turn is based on the Llama ar-
chitecture. However, Bio-SIEVE also displayed severe consistency issues across
review topics. Importantly, both these works have notable limitations. The first
study [43] focused solely on the closed-sourced ChatGPT model. In addition, the
evaluation was limited to only five systematic review topics and did not consider
publicly available datasets with a broader range of review topics used in previ-
ous work. The second study [35] required to fine-tune the LLM, and relied on a
self-constructed dataset for evaluation7, limiting comparison with previous work.
Furthermore, it only reported evaluation with respect to precision, recall, and
accuracy; thus: (i) there is no account for the effect of class imbalance, (ii) there

7 Although the dataset is described to be public, it currently only contains the DOIs
of the systematic review topics but not the labels, making reproduction difficult.
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Answer the following yes/no 
question. Should the following 
retrieved study be included in 
the systematic review?

Review: t

Study: d

The answer is '

Prompt

Generative 
LLM

Next token probabilities
Include : Snorm(d, t) ≥ θ
Exclude : Snorm(d, t) < θ{

uncalibrated

calibrated

Include : P(yes |d, t) ≥ P(no |d, t)
Exclude : P(yes |d, t) < P(no |d, t){

[0.11,0.112,0.123,… . ,0.0001] P(yes |d, t)
P(no |d, t)

S(d, t) = P(yes |d, t) − P(no |d, t)

I(d, t) =

I(d, t) =

Fig. 1. Our framework for automatic document screening using generative LLMs.
P (yes|d, t) (P (no|d, t)) is the likelihood of the yes (no) token in the next token prob-
ability list, and θ is the decision boundary(threshold) used by the calibrated setting.

is no account that high-recall is considered essential in practice when conduct-
ing a systematic review. Conversely, in our work, we (1) consider open-sourced
LLMs in a zero-shot setup, where further fine-tuning is not required, (2) take
into account class imbalance and the high-recall nature of the task when evalu-
ating methods, (3) rely on publicly available datasets that have been extensively
used in previous work, thus facilitating comparison and reproduction.

3 Generative LLMs for Automatic Document Screening

Our framework for using a generative LLM for automatic document screening
is shown in Figure 1. The LLM considers a candidate document d ∈ D for the
systematic review topic t ∈ T ; document screening is modelled as a classification
task, using the function I(d, t) : D,T → {0, 1}. Document d is included for
systematic review t when I(d, t) is 1, and otherwise excluded. The function I(d, t)
is computed with respect to the output of the LLM for the prompt containing d
and t. We investigate two instantiations of I(d, t), uncalibrated and calibrated,
which we explain below.

Uncalibrated Screening. To determine whether a document should be
included or not, uncalibrated screening directly compares the absolute values of
the token likelihoods P (yes|d, t) and P (no|d, t) as generated by the LLM:

I(d, t) =

{
1, if P (yes|d, t) ≥ P (no|d, t)
0, otherwise.

To ensure deterministic output, we forgo actual text generation with LLM.
Instead, we represent the model decision using solely the probability of the next
predicted token either to be ‘yes’ or ‘no’. In this setting, the LLM returns an an-
swer to the provided prompt of the decision with respect to the highest likelihood
from the two tokens.
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Calibrated Screening. Building upon our uncalibrated instantiation, we
calculate the difference between the likelihood of the next token to be yes, or
no; then, we use a threshold to determine the inclusion of the document. We
begin by computing the score S(d, t) as the difference between the yes and no

token likelihoods:

S(d, t) =

{
P (yes|d, t)− P (no|d, t), if P (yes|d, t) ≥ P (no|d, t)
0, otherwise.

However, the probability distribution of the tokens depends on the individual
documents, and thus is different across the documents. We then use min-max
normalisation to normalise scores across all documents for a review topic t:

Snorm(d, t) =
S(d, t)−Min({∀di ∈ D : S(di, t)}))

Max({∀di ∈ D : S(di, t)})−Min({∀di ∈ D : S(di, t)})
Next, we identify a threshold θ using training data; θ is determined such

that when used as the lower bound on scores for inclusion decisions, it ensures
a minimum recall rate k. Finally, we use θ to decide if a candidate document
should be included:

I(d, t) =

{
1, if Snorm(d, t) ≥ θ

0, otherwise.

The intuition behind exploring a calibrating screening approach is twofold.
First, in the context of systematic review document screening, recall is of param-
ount importance. For automation techniques to be used in practice, they must
ensure the identification of all (or most) of the documents that should be included
in the review. This is crucial because failing to capture all relevant documents
may compromise the integrity of the review’s conclusions and miss the main
objective of a systematic review, that is its comprehensiveness. However, this
focus on recall may not be naturally accounted for by LLMs, especially when ac-
curacy is used to train/fine-tune classification models in the presence of highly
imbalanced classes. Second, the inherent biases in different LLMs can lead to
varying outcomes; some models may be naturally more inclusive, capturing a
broader array of documents, while others may be more exclusive, being overly
selective in their output. To account for these biases and to allow for customisa-
tion based on specific review needs, the calibrated instantiation of I(d, t) offers
a more adaptable and nuanced approach.

Ensembling of Screening Methods. We also consider an ensemble of
screening methods. In particular, in our experiments we will ensemble the two
most zero-shot effective LLMs and the BERT-based method we use as a compar-
ative baseline. We use CombSUM to fuse the individual methods’ decisions [26].
For Uncalibrated Screening, we directly combine the likelihoods of the model
outputs. The decision rule I(d, t) is formulated as follows:

I(d, t) =

{
1, if

∑
m∈Methods Pm(yes|d, t) ≥

∑
m∈Methods Pm(no|d, t)

0, otherwise.
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For Calibrated Screening, we normalize Snorm to make the decisions:

I(d, t) =

{
1, if

∑
m∈Methods Snorm(d, t) ≥ θ

0, otherwise.

4 Experimental Setup

4.1 Considered LLMs

We employ an array of zero-shot generative LLMs that differ in architecture,
training steps, and size (model parameters) to extensively evaluate their effec-
tiveness for automatic systematic review document screening.

LlaMa: The LlaMa series offers an open-sourced suite of decoder models
with parameter sizes ranging from 7B to 65B. Exceptional in its zero-shot ca-
pabilities, LlaMa outperforms GPT-3 across multiple NLP benchmarks. These
models leverage a rich and diverse training dataset of approximately 1.4 trillion
tokens, harvested from various sources including web pages, code repositories,
and Wikipedia [46].

Alpaca: Alpaca has been fine-tuned on the 7B-parameter LlaMa model ac-
cording to the self-instruct methodology [57]. Alpaca’s training corpus originates
from the text-davinci-003 model 8, initialized with 175 unique tasks. Preliminary
assessments suggest that Alpaca, through instruction-based fine-tuning, achieves
similar effectiveness to the OpenAI’s text-davinci-003 model [44].

Guanaco: The Guanaco models stem from the LlaMa base models and are
obtained through the memory-efficient 4-bit QLoRA fine-tuning on the OASST1
dataset [25,60]. This represents a different fine-tuning strategy than that used
in the other considered LLMs. Guanaco models have demonstrated competi-
tive performance against commercial systems on the Vicuna and OpenAssistant
benchmarks [13,25].

Falcon: Falcon is available in two variants: Falcon-7B and Falcon-40B. These
models were trained on large-scale corpora of 1 and 1.5 trillion tokens, respec-
tively, primarily sourced from the RefinedWeb dataset [34]. Notably, the Fal-
con family includes specialized “instruct” versions — Falcon-7B-Instruct and
Falcon-40B-Instruct — that excel in assistant-style tasks through fine-tuning on
instructional and conversational datasets.

LlaMa2: LlaMa2 extends the original LlaMa family, and comes in three
parameter sizes: 7B, 13B, and 70B. Despite maintaining architectural similar-
ity with its predecessor, LlaMa2 is trained on an expanded dataset of 2 trillion
tokens, a 40% increase from LlaMa [46,47]. LlaMa2 also includes a specialized
“Chat” variant, LlaMa2 Chat, which incorporates advanced fine-tuning tech-
niques such as “Ghost Attention” for multi-turn dialogue consistency and an
array of reinforcement learning methods [47].

8 https://platform.openai.com/docs/models/gpt-3-5

https://platform.openai.com/docs/models/gpt-3-5
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Table 1. Input types and prompts designed for each model. Italicised text indicates
values that are replaced with respective content.

Model Prompt

A
lp
a
c
a

Below is an instruction that describes a task, paired with an input that provides
further context. Write a response that appropriately completes the request.
### Instruction:
Answer ‘yes’ or ‘no’ to Judge if the following retrieved study should be included by
the systematic review?
### Input:
Review: review title
Study: candidate document
### Response:

A
ll

O
th

e
r

M
o
d
e
ls

Answer ‘yes’ or ‘no’ to Judge if the following retrieved study should be included by
the systematic review?
Review: review title
Study: candidate document
The answer is ‘

Overall, we select eight models in our study: LlaMa-7b, Alpaca-7b-ins, Guana-
co-7b-ins, LlaMa2-7b, LlaMa2-13b, Falcon-7b-ins, LlaMa2-7b-ins, LlaMa2-13b-
ins.9 Table 1 demonstrates the prompts used for LLM-based automatic screening.
Note that we do not include special tokens in the prompt due to page limit, spe-
cific prompt for each model are adapted based on their special token setup. While
we could have considered other models like the popular ChatGPT, their use can
be financially prohibitive for our task. The predicted cost will be USD$4,000
and USD$80,000 if we use GPT-3.5-turbo and GPT-4, respectively. In our ex-
periments, all employed models were configured to have a maximum token limit
of 2048. This adjustment was particularly applied to the Alpaca model (original
model has a limit of 512) and LlaMa2 models(original model has a limit of 4096)
to ensure uniformity across all models. Consequently, we observed no instances
of truncation in the experimental data.

4.2 Datasets

We experiment on the CLEF TAR datasets and the Seed Collection dataset. Four
datasets were released as part of CLEF TAR [22,24,23], covering different types
of systematic reviews. The 2017 dataset contains 50 Diagnostic Test Accuracy
(DTA) topics; 2018 adds 30 more; while in 2019, a dataset consisted of 8 DTA
topics, while another included 40 intervention review (Int) topics. These datasets
contain relevance assessments for about 600,000 documents in total, and for each
topic, the review title and the protocol file are also provided. These datasets are
distributed with standard train-test splits; however, because we consider the
zero-shot capabilities of the investigated models, we do not use these splits and
instead test on all available topics.

9 Note that for consistency of the paper, we name all instruction-tuned models with
-ins; The original names are: Alpaca-7b-ins: alpaca; Guanaco-7b-ins: guanaco-7b;
Falcon-7b-ins: falcon-7b-instruct; LlaMa2-7b-ins: LlaMa2-7b-chat; LlaMa2-13b-ins:
LlaMa2-13b-chat;
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The Seed Collection dataset consists of 39 review topics and over 50,000 can-
didate documents [52].10 For each topic, the review title and inclusion/inclusion
labels are provided along with a set of “seed documents”: documents that were
provided to the researcher designing the search strategy (query) for the review
and that provide examples of documents related to the review (most are likely
to meet the inclusion criteria, but it is possible some do not). In our experiment,
we only evaluate based on the retrieved documents; included documents that
are not in retrieved document set are removed.

4.3 Baseline

We compare the effectiveness of zero-shot LLMs against a baseline that re-
lies on the BERT architecture but uses a domain-specific variant as backbone:
BioBERT [29,54]. BioBERT employs the same architecture as BERT, but the
corpus used for self-supervised training contains biomedical text (instead of gen-
eral domain text like for BERT). BioBERT has been shown effective across a
range of applications related to health tasks, including for screening prioritisa-
tion on medical systematic reviews on the datasets we consider [54], and thus is a
strong baseline. To use BioBERT in our text classification task, we concatenate
the topic title with the candidate document to form the input to the backbone.
A classification head based on a sigmoid activation function is then used to
determine the inclusion of a candidate document for the specified topic.11

4.4 Evaluation Measures

We use set-based metrics for evaluation: precision, recall, and F-3, which em-
phasize the importance of recall over precision. Additionally, we adopt balanced
accuracy (B-AC) as a pivotal metric, as it particularly suits the nature of the
systematic review document screening task, where excluded documents substan-

tially outnumber included ones; B-AC = 1
2

(
TP

TP+FN + TN
TN+FP

)
. We also report

the success rate, which quantifies the fraction of topics achieving a pre-specified
target recall. We adopt a representative target recall of 0.95, a standard thresh-
old for systematic review document screening [7,18,8]: often systems that do not
achieve at least 0.95 recall are deemed of no practical use for systematic review
automation. Lastly, we gauge the efficiency of automatic document screening
using the Work Saved by Sampling at a specific recall level (WSS) [16]. This is
expressed as: WSS = TN+FN

N − (1− r) where N denotes the total sample count
and r signifies the recall level; we set r to 1, representing total recall.

10 We removed topic 18 as no relevant document exited in the candidate document list
(the topic only contains one relevant document)

11 In the uncalibrated setting for BioBERT, we established a decision threshold of 0.5
to determine the inclusion of a document in a review topic. Specifically, a document
is included if the BioBERT output satisfies the condition output ≥ 0.5; otherwise, it
is excluded.
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4.5 Threshold Setting

For the calibration setting, the threshold θ value needs to be set. We devise two
approaches to determine θ:

1. Extrapolation from Collection: we perform a leave-one-out experiment
across all systematic review topics in a dataset. We identify threshold values
that have consistently yielded robust results in the sample topics (all other
topics except the target topic)—optimizing for a high recall rate—using the
median score of candidate documents that achieved the target recall. The
obtained threshold is then applied to the target topic under consideration.
Note that cross-validation is used to determine the θ value only: the LLMs
are still zero-shot. This is, however, a somewhat artificial setting, in that
if training material was available for determining θ, then it could also be
used to tune the LLMs (though computational costs may prevent this but
our method does not require training of the LLM itself). We will consider a
more appropriate option next.

2. Calibration with Seed Studies: we employ the uncalibrated LLM to gen-
erate inclusion scores for a set of seed studies (exemplar documents that are
often identified prior to searching and screening). If the lowest score for a
seed study is below the classifier’s threshold for inclusion (decision bound-
ary), then the threshold is lowered to the score obtained by that seed study:
we use this as the new threshold for the calibrated LLM. This adjustment
aims to improve recall. Typical targets for recall for systematic review are
0.95 or 1; we then experiment with these values to determine θ.

5 Results

RQ1: Architecture and Size of Model. Consider the results reported in Ta-
ble 2. For model architecture, we compare four models: Falcon-7b-ins, Alpaca-7b-
ins, LlaMa2-7b-ins and Guanaco-2-7b-ins — all of which have the same number
of parameters. The results indicate that LlaMa2-7b-ins is the most effective for
the task, outperforming the others across all evaluation metrics except recall and
success rate. Specifically, this model obtained a high WSS while incurring only
a marginal drop in recall: a significant loss was observed only on CLEF-2017.
Concerning success rate, LlaMa2-7b-ins exhibited comparable performance to
its counterparts, showing no statistically significant differences.

For model size, we consider two variants of the LlaMa2-ins architecture: one
with 7 billion parameters (LlaMa2-7b-ins) and another with 13 billion parame-
ters (LlaMa2-13b-ins). Our findings suggest a trade-off between recall and WSS.
Specifically, the 7-billion parameter variant obtains significantly higher recall,
but this comes at the expense of reduced savings, evidenced by significantly
lower WSS. Regarding B-AC, LlaMa2-7b-ins generally outperforms its larger
counterpart across multiple datasets, except for the Seed Collection. Statistically
significant differences in B-AC were only noted for CLEF-2017 and CLEF-2018.
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Table 2. Comparison of uncalibrated results between baseline method and generative
large language models. Statistical significance, determined by a Student’s two-tailed
paired t-test with Bonferroni correction (p < 0.05), between the top-performing method
LlaMa2-7b-ins and others is marked by *.

Model P R B-AC F3 Suc WSS

C
L
E
F
-2

0
1
7

BioBERT 0.06 0.95* 0.61* 0.30 0.74* 0.26*

LlaMa-7b 0.04* 0.92* 0.48* 0.24* 0.46* 0.03*
LlaMa2-7b 0.07 0.50* 0.60* 0.23* 0.02* 0.70*
LlaMa2-13b 0.04* 1.00* 0.50* 0.25* 0.98* 0.00*
Falcon-7b-ins 0.05* 0.92* 0.52* 0.25* 0.44 0.12*
Alpaca-7b-ins 0.04* 0.92* 0.51* 0.25* 0.38 0.11*
LlaMa2-7b-ins 0.08 0.87 0.72 0.35 0.26 0.56
LlaMa2-13b-ins 0.19* 0.41* 0.66* 0.31 0.04* 0.91*
Guanaco-7b-ins 0.04* 1.00* 0.50* 0.25* 1.00* 0.00*

C
L
E
F
-2

0
1
8

BioBERT 0.06 0.97* 0.59* 0.9 0.87* 0.19*

LlaMa-7b 0.05* 0.92* 0.48* 0.25* 0.33 0.04*
LlaMa2-7b 0.07 0.49* 0.59* 0.22* 0.03* 0.69*
LlaMa2-13b 0.05* 1.00* 0.50* 0.26 1.00* 0.00*
Falcon-7b-ins 0.05* 0.92 0.51* 0.25* 0.40 0.11*
Alpaca-7b-ins 0.05* 0.91 0.51* 0.25* 0.30 0.11*
LlaMa2-7b-ins 0.09 0.88 0.75 0.37 0.27 0.59
LlaMa2-13b-ins 0.26* 0.36* 0.66* 0.30 0.00* 0.94*
Guanaco-7b-ins 0.05* 1.00* 0.50* 0.26 1.00* 0.00*

C
L
E
F
-2

0
1
9
-d

t
a BioBERT 0.07 0.99 0.58 0.30 0.88 0.18*

LlaMa-7b 0.07 0.93 0.48* 0.27 0.25 0.03*
LlaMa2-7b 0.08 0.48* 0.58* 0.23 0.00* 0.68
LlaMa2-13b 0.07 1.00 0.50* 0.28 1.00 0.00*
Falcon-7b-ins 0.07 0.95 0.54* 0.29 0.50 0.12*
Alpaca-7b-ins 0.07 0.91 0.52* 0.28 0.25 0.12*
LlaMa2-7b-ins 0.09 0.92 0.71 0.35 0.62 0.49
LlaMa2-13b-ins 0.19 0.49* 0.69 0.32 0.00* 0.87*
Guanaco-7b-ins 0.07 1.00 0.50* 0.28 1.00 0.00*

Model P R B-AC F3 Suc WSS

C
L
E
F
-2

0
1
9
-I
n
t BioBERT 0.10 0.98* 0.58* 0.32 0.90* 0.16*

LlaMa-7b 0.05* 0.86 0.47* 0.26 0.30 0.08*
LlaMa2-7b 0.08 0.30* 0.55* 0.18* 0.05* 0.80*
LlaMa2-13b 0.05 1.00* 0.50* 0.29 0.97* 0.00*
Falcon-7b-ins 0.05 0.91 0.50* 0.27 0.57 0.09*
Alpaca-7b-ins 0.05 0.87 0.49* 0.27 0.30 0.12*
LlaMa2-7b-ins 0.08 0.90 0.70 0.35 0.42 0.48
LlaMa2-13b-ins 0.17* 0.45* 0.67 0.33 0.05* 0.87*
Guanaco-7b-ins 0.05 1.00* 0.50* 0.29 1.00* 0.00*

S
e
e
d

C
o
ll
e
c
t
io

n

BioBERT 0.04 0.93 0.54* 0.24 0.77* 0.16*

LlaMa-7b 0.04 0.89 0.48* 0.21 0.56 0.07*
LlaMa2-7b 0.04 0.29* 0.53* 0.15* 0.03* 0.78*
LlaMa2-13b 0.04 1.00* 0.50* 0.23 1.00* 0.00*
Falcon-7b-ins 0.04 0.93 0.50* 0.22 0.69 0.07*
Alpaca-7b-ins 0.04 0.90 0.50* 0.22 0.49 0.10*
LlaMa2-7b-ins 0.05 0.90 0.66 0.27 0.54 0.40
LlaMa2-13b-ins 0.13* 0.48* 0.67 0.28 0.05* 0.85*
Guanaco-7b-ins 0.04 1.00* 0.50* 0.23 1.00* 0.00*

RQ2: Impact of instruction fine-tuning. Consider again Table 2. We
contrast instruction-fine-tuned models against their base counterparts: LlaMa2-
7b-ins VS. LlaMa2-7b, LlaMa2-13b-ins VS. LlaMa2-13b,Alpaca-7b-ins VS. LlaMa-
7b. Across all differences, a significant improvement in B-AC is observed. Never-
theless, the models exhibit divergent behaviours in other metrics. For LlaMa-7b
and LlaMa2-13b, fine-tuning leads to higher WSS at the expense of reduced
recall. Conversely, LlaMa2-7b-ins exhibits a significant decline in WSS but ob-
tains higher recall, success rate, and F3 except in the CLEF-2019-dta, where the
F3 improvement is not statistically significant. We also conducted a compara-
tive evaluation with Guanaco-7b-ins, a QLoRA fine-tuned model. While it does
outperform LlaMa-7b in B-AC, the model classifies all candidate documents as
relevant, nullifying any practical applicability for systematic review screening.

In summary, our analyses suggest that instruction-based fine-tuning is gener-
ally beneficial for improving document screening accuracy. However, the specific
gains — whether in savings or recall — depend on the base model’s architecture.
Our experiments also suggest that QLoRa fine-tuning does not yield an effective
model for this particular task.

RQ3: Impact of Calibration. Consider Table 3. We find that calibrated
models reliably meet their pre-set recall targets and provide an attractive solu-
tion for practical implementation for automatic document screening. Specifically,
in our tests that considered the extrapolation from collection calibration, ap-
proximately 50% of the topics met the pre-set recall target of 0.95 by comparing
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Table 3. Comparison between the Calibrated (Cal) and Uncalibrated (Unc) ap-
proaches using the BioBERT model, LlaMa2-7b-ins model (7b-ins), the LlaMa2-13b-
ins model (13b-ins) and the Ensemble of the three models (Ensemb). The calibrated
method’s number or character in the bracket () denotes the pre-set target recall (0.95
& 1) or using seed documents (S). Statistical significance for each generative model
across different datasets is assessed using a Student’s two-tailed paired t-test with a
Bonferroni correction (p < 0.05) with respect to the uncalibrated approach, denoted
by *. The highest evaluated scores for each dataset are bolded.

Model Setting P R B-AC F3 Suc WSS

C
L
E
F
-2

0
1
7

B
io

B
E
R
T

Unc 0.06 0.95 0.61 0.30 0.74 0.26
Cal(0.95) 0.06 0.92 0.64 0.31 0.50* 0.34*
Cal(1) 0.06 0.97 0.60 0.29 0.82 0.23

7b
-i
n
s Unc 0.08 0.87 0.72 0.35 0.26 0.56

Cal(0.95) 0.06* 0.92* 0.69* 0.32 0.52 0.44
Cal(1) 0.05* 0.99* 0.60* 0.28 0.96 0.20

13
b
-i
n
s Unc 0.19 0.41 0.66 0.31 0.04 0.91

Cal(0.95) 0.06* 0.93 0.59* 0.28 0.50* 0.25*
Cal(1) 0.05* 0.98 0.53* 0.26 0.88* 0.08*

E
n
se
m
b Unc 0.31 0.13 0.56 0.13 0.00 0.98

Cal(0.95) 0.08 0.93* 0.72 0.35* 0.52* 0.50*
Cal(1) 0.06 0.97* 0.63 0.30 0.90* 0.29*

C
L
E
F
-2

0
1
8

B
io

B
E
R
T

Unc 0.06 0.97 0.59 0.29 0.87 0.19
Cal(0.95) 0.07 0.91* 0.63 0.30 0.57* 0.33*
Cal(1) 0.06 0.97 0.59 0.29 0.87 0.21

7b
-i
n
s Unc 0.09 0.88 0.75 0.37 0.27 0.59

Cal(0.95) 0.08* 0.94* 0.71* 0.35* 0.50 0.46
Cal(1) 0.06* 0.99* 0.62* 0.30 1.00 0.24

13
b
-i
n
s Unc 0.26 0.36 0.66 0.30 0.00 0.94

Cal(0.95) 0.06 0.94* 0.59* 0.29 0.47* 0.22*
Cal(1) 0.05 0.97 0.53* 0.27 0.80* 0.08*

E
n
se
m
b Unc 0.35 0.12 0.54 0.12 0.00 0.95

Cal(0.95) 0.09* 0.94* 0.75 0.38* 0.50* 0.54*
Cal(1) 0.06 0.99* 0.64 0.32* 0.93* 0.28*

C
L
E
F
-2

0
1
9
-d

t
a

B
io

B
E
R
T

Unc 0.07 0.99 0.58 0.30 0.88 0.18
Cal(0.95) 0.08 0.89 0.59 0.26 0.50 0.27
Cal(1) 0.08 0.91 0.59 0.27 0.62 0.25

7b
-i
n
s Unc 0.09 0.92 0.71 0.35 0.62 0.49

Cal(0.95) 0.10* 0.91* 0.71* 0.34 0.50 0.50
Cal(1) 0.08* 0.97* 0.66 0.32 0.75 0.34

13
b
-i
n
s Unc 0.19 0.49 0.69 0.32 0.00 0.87

Cal(0.95) 0.08 0.95 0.56 0.29 0.50* 0.16*
Cal(1) 0.07 0.99 0.51 0.28 0.88* 0.03*

E
n
se
m
b Unc 0.31 0.21 0.59 0.19 0.00 0.96

Cal(0.95) 0.10 0.91 0.73 0.34* 0.50* 0.52*
Cal(1) 0.09* 0.99 0.64 0.32* 1.00* 0.28*

Model Setting P R B-AC F3 Suc WSS

C
L
E
F
-2

0
1
9
-I
n
t

B
io

B
E
R
T

Unc 0.10 0.98 0.58 0.32 0.90 0.16
Cal(0.95) 0.10 0.87* 0.59 0.29 0.50* 0.31*
Cal(1) 0.10 0.90* 0.59 0.30 0.62* 0.27*

7b
-i
n
s Unc 0.08 0.90 0.70 0.35 0.42 0.48

Cal(0.95) 0.08* 0.91* 0.67* 0.34 0.50 0.42
Cal(1) 0.07* 0.93* 0.64* 0.33 0.65 0.34

13
b
-i
n
s Unc 0.17 0.45 0.67 0.33 0.05 0.87

Cal(0.95) 0.07* 0.90 0.58 0.30 0.50* 0.25*
Cal(1) 0.06* 0.94 0.55 0.29 0.62* 0.16*

E
n
se
m
b Unc 0.35 0.23 0.58 0.22 0.05 0.92

Cal(0.95) 0.09* 0.93* 0.70 0.37* 0.50* 0.45*
Cal(1) 0.08* 0.96* 0.67 0.35* 0.68* 0.35*

S
e
e
d

C
o
ll
e
c
t
io

n

B
io

B
E
R
T

Unc 0.04 0.93 0.54 0.24 0.77 0.16
Cal(0.95) 0.05 0.80* 0.55 0.22 0.50* 0.29*
Cal(1) 0.05 0.83 0.55 0.23 0.53* 0.26
Cal (S) 0.04 0.93 0.54 0.23 0.76 0.15

7b
-i
n
s

Unc 0.05 0.90 0.66 0.27 0.54 0.40
Cal(0.95) 0.05* 0.90* 0.66 0.28* 0.51 0.41
Cal(1) 0.05* 0.92* 0.65 0.27* 0.56 0.38
Cal (S) 0.05 0.97* 0.6* 0.26 0.77* 0.22*

13
b
-i
n
s Unc 0.13 0.48 0.67 0.28 0.05 0.85

Cal(0.95) 0.06* 0.87 0.64* 0.27* 0.51* 0.39*
Cal(1) 0.05* 0.93 0.59* 0.26 0.59* 0.25*
Cal (S) 0.06* 0.87* 0.63 0.29 0.54* 0.38*

E
n
se
m
b

Unc 0.16 0.18 0.52 0.14 0.00 0.86
Cal(0.95) 0.07* 0.86* 0.71 0.31* 0.49* 0.53*
Cal(1) 0.07* 0.88* 0.70 0.30* 0.56* 0.49*
Cal (S) 0.04* 1.00* 0.55 0.25* 0.97* 0.10*

success rates obtained in each dataset (note that success rate in our experiments
is set to measure a 0.95 recall level). This further improves (success rate be-
tween 0.56 and 1.00) when the target recall for determining the threshold is set
to 1. We further compare the performance of three calibrated models, BioBERT,
LlaMa2-7b-ins and LlaMa2-13b-ins. Generally, the 7-billion parameter LlaMa2
model significantly outperforms the two other models in both B-AC and WSS.
As for success rate and recall, the models exhibit similar effectiveness; LlaMa2-
7b-ins performs the same or better in 60% of the cases for success rate and in
40% of cases for average recall.

The calibration with seed documents method could only be tested on the
Seed Collection, as CLEF datasets have no seed studies. In this case, LlaMa2-
7b-ins consistently obtains higher recall: 70% of topics achieved perfect recall,
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Table 4. Comparison of Fine-tuned baseline to our method; Statistical significance,
determined by a Student’s two-tailed paired t-test with Bonferroni correction (p <
0.05), between Uncalibrated Bio-SIEVE method and others is marked by *.

Model Setting P R B-AC F3 Suc WSS

Bio-SIEVE

Original/Calibrated 0.232 0.576 0.727 0.429 0.111 0.858

Calibrated(Recall=0.95) 0.102* 0.877* 0.683 0.348 0.481* 0.471*

Calibrated (Recall=1) 0.088* 0.945* 0.666 0.339 0.704* 0.369*

LlaMa2-7b-ins

Uncalibrated 0.078* 0.920* 0.725 0.359 0.333 0.513*

Calibrated (Recall=0.95) 0.068* 0.935* 0.685 0.333 0.481* 0.421*

Calibrated(Recall=1) 0.059* 0.990* 0.621* 0.311 1.000* 0.241*

Ensemble

Uncalibrated 0.400* 0.204* 0.594* 0.199* 0.037 0.972*

Calibrated (Recall=0.95) 0.095* 0.937* 0.729 0.373 0.519* 0.500*

Calibrated (Recall=1) 0.068* 0.981* 0.630* 0.322 0.889* 0.266*

compared to only 50% using the other calibration method. Although calibration
with seed studies generally improves recall, our analysis indicates that LlaMa2-
13b-ins displays more volatile effectiveness in this setting, possibly due to the
varying quality and quantity of seed documents across different topics.

Ensemble of Automatic Screening Methods. Consider Table 3 with re-
spect to the Ensemble results, obtained by ensambling LlaMa2-7b-ins, LlaMa2-
13b-ins and the BioBERT baseline. The Ensemble strategy yields consistently
higher B-AC and WSS, when calibrated. Moreover, when pitted against indi-
vidual generative LLMs calibrated with the same threshold recall, the Ensem-
ble method obtains higher WSS, precision, and F3. Exceptions are observed in
CLEF-2018 and Seed Collection, where the Ensemble strategy registers lower
success rates. Interestingly, the Ensemble’s performance dips in recall when not
calibrated. This decline may be attributed to the model’s aggressive document
exclusion strategy, as evidenced by its consistently high WSS across datasets.
Overall, our findings indicate that a calibrated Ensemble approach generally
outperforms single generative LLMs.

6 Discussion and Outlook

Comparison with fine-tuned LLMs. Although this study aimed to investi-
gate the effectiveness of zero-shot generative LLMs in systematic review docu-
ment screening, we are also interested in comparing our method to the state-
of-the-art fine-tuned model. For this comparison, we consider the Bio-SIEVE
approach, a fine-tuned model for systematic review document screening, and
compare it with our best methods in Table 4.12 We also apply our calibration
approach to Bio-SIEVE. Surprisingly the most effective model, LlaMa2-7b-ins,
obtains a B-AC comparable to Bio-SIEVE, and our Ensemble method is even
more effective than Bio-SIEVE, although differences are not significant.

12 Comparison is however not straightforward as Bio-SIEVE used most of the datasets
we consider here for fine-tuning; we then evaluate effectiveness using the only 27
topics from CLEF-TAR that were not used to fine-tune Bio-SIEVE.
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Another noteworthy observation is Bio-SIEVE’s low recall and success rate,
especially when not calibrated (original). These results raise concerns regarding
Bio-SIEVE’s practical utility for the screening task, as a low recall is often not
accepted by the researchers conducting the review as it translates into missing
important studies. While calibration improves Bio-SIEVE’s recall, this is still
inferior to our zero-shot model under the same calibration setting. This finding
suggests that although fine-tuning can improve effectiveness, it requires careful
calibration for systematic review document screening. Looking forward, fine-
tuning remains an interesting avenue for research but may necessitate alternative
calibration strategies for practical utility for this task.

Variation in model input prompt. While we only considered one type
of prompt for each model, it is important to highlight that generative LLMs are
sensitive to prompt formulation [61,64,30]. Due to page constraints, we could
not deeply discuss the effects of alternative prompt formulations, such as those
based on inclusion/exclusion criteria or seed studies. However, preliminary in-
vestigations into these aspects show a similar trend to what is observed when
solely using review topic titles as prompts. These additional results are provided
in a supplementary digital appendix for completeness.13

7 Conclusion

We comprehensively evaluated zero-shot LLMs for systematic review document
screening and introduced a calibration method for tuning the model output.
We further explored the utility of an ensemble method that combines the top
zero-shot LLMs with the BioBERT baseline.

Our results highlight the importance of output calibration when applying
generative LLMs to systematic review document screening. This calibration
maintains review quality and reliably by meeting pre-set recall targets, thus offer-
ing the flexibility to adjust the model to the specific requirements of a system-
atic review. Furthermore, when calibrated, our ensemble method outperforms
the current state-of-the-art fine-tuned model, Bio-SIEVE [35]. We also empha-
sized the role of instruction-based fine-tuning in effectively leveraging generative
LLMs for this application, while we showed that QLoRa-tuning does not yield
effective results for this task.

The findings reported in the paper suggest that LLM-based methods can be
created for automatically screening documents for systematic reviews, leading
to considerable savings in manual effort. Furthermore, this can be done without
requiring expensive fine-tuning (both in terms of labelling and computation).
The fact that a high recall level can be obtained across a large number of different
types of reviews suggests that these methods might be mature enough for actual
adoption in systematic review workflows.

13 https://github.com/ielab/ECIR-2024-llm-screening

https://github.com/ielab/ECIR-2024-llm-screening
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