
Heuristic Feature Selection for Clickbait Detection

The Icarfish Clickbait Detector at the Clickbait Challenge 2017

Matti Wiegmann Michael Völske Benno Stein Matthias Hagen Martin Potthast

Bauhaus-Universität Weimar and Leipzig University
<first name>.<last name>@uni-weimar.de and martin.potthast@uni-leipzig.de

ABSTRACT
We study feature selection as a means to optimize the baseline click-
bait detector employed at the Clickbait Challenge 2017 [6]. The
challenge’s task is to score the “clickbaitiness” of a given Twitter
tweet on a scale from 0 (no clickbait) to 1 (strong clickbait). Unlike
most other approaches submitted to the challenge, the baseline ap-
proach is based on manual feature engineering and does not compete
out of the box with many of the deep learning-based approaches.
We show that scaling up feature selection efforts to heuristically
identify better-performing feature subsets catapults the performance
of the baseline classifier to second rank overall, beating 12 other
competing approaches and improving over the baseline performance
by 20%. This demonstrates that traditional classification approaches
can still keep up with deep learning on this task.

1. INTRODUCTION
The widespread usage of social media in politics, online news

publishing, and public relations gives rise to misuse and abuse in the
forms of fake news, hate speech, and clickbait. Especially the high
frequency with which new posts are spread on social media causes
publishers to compete for user attention: a hunt for clicks. This com-
petition incentivizes the use of clickbait headlines or clickbaiting
language to generate page visits. This pertains particularly to the
news domain, where publishers seem to balance a certain degree of
clickbaitiness against perceived credibility. This balance is a central
problem for automated detection: since there is no closed definition
that clearly distinguishes clickbait messages from others, the degree
of "clickbaitiness" must be measured.

Preceding the Clickbait Challenge 2017, Potthast et al. [5] sug-
gested an approach for binary clickbait classification using a range
of different features at the tweet level and at the document level.
This approach has been reimplemented as close as possible to the
full feature set of the original publication, but using a regression
model instead of a linear classifier in order to serve as a baseline
for the challenge.1 This baseline achieved the 7th rank among
13 participants. In their original paper, Potthast et al. were able to
improve the performance of their classifier by 10% when selecting
the 1,000 best features (χ2 feature selection) from the full feature
set. However, adopting the same feature selection for the regression
task of the Clickbait Challenge did not yield the same improve-
ment. It appears that χ2 feature selection does not seem to work as
well for scoring clickbaitiness as it does for classification. In this
paper, we demonstrate how to improve the performance of the Click-
bait Challenge 2017 baseline via a new heuristic approach called
leave-many-out feature selection; the Icarfish clickbait detector.2

1https://github.com/clickbait-challenge/clickbait17-baseline
2https://github.com/clickbait-challenge/icarfish

2. BACKGROUND AND RELATED WORK
This section briefly reviews related work on clickbait detection,

and it gives a detailed background of feature selection.

2.1 Clickbait Detection
Our approach derives from the clickbait detection classifier de-

veloped by Potthast et al. [5], which utilizes 215 different features
and feature types, grouped into the following 5 categories: tweet-
based features (e.g., character and word n-grams), Downworthy rule
sets, General Inquirer word lists, features based on the linked web
page, and meta information (e.g., publisher). It was trained on the
Webis Clickbait 2016 corpus [5], a manually annotated 3000 tweet
corpus constructed alongside the classifier. Some of the originally
proposed features were omitted to render the approach compati-
ble with the challenge’s training dataset and the TIRA evaluation
platform [4]. For instance, the publisher and retweet information
originally used are not present in the challenge’s datasets, and the
Imagga image tagging service used cannot be reached from within
the challenge’s TIRA evaluation platform [4]. Furthermore, the
Downworthy clickbait rules were omitted, since they are redundant.

The training dataset of the Clickbait Challenge 2017 comprises
19,538 tweets, each annotated by at least 5 people recruited at
Amazon’s Mechanical Turk [7]. Another 18,979 tweets have been
annotated the same way, but withheld for testing. An overview of
all other approaches submitted to the challenge can be found in [6],
which also includes a review of other related work, so that we can
omit a complete review here.

2.2 Feature Selection
The performance of machine learning models heavily relies on

a good selection of features since the features determine the infor-
mation that can be used by the learning algorithm. Features can be
discriminative (reducing the prediction error), confusing (increasing
the prediction error), or redundant (no direct impact). Likewise,
feature combinations can have these properties. A good feature
selection approach should identify confusing features (or feature
combinations) and redundant features to avoid the curse of dimen-
sionality. Guyon and Elisseeff [2] distinguish three basic strategies
for feature selection:

• Filter methods estimate the value of a feature by statistical
analyses, such as correlation and mutual information.

• Embedding methods integrate filter methods within a machine
learning algorithm (e.g., random forest regression).

• Wrapper methods are meta-heuristics that apply a search strat-
egy to find a subset and evaluate it by training a model (e.g.,
simulated annealing or genetic algorithms with the prediction
error as their fitness function).

1

ar
X

iv
:1

80
2.

01
19

1v
1 

 [
cs

.C
L

] 
 4

 F
eb

 2
01

8

https://github.com/clickbait-challenge/clickbait17-baseline


0.00

0.06

0.05

0.04

0.03

0.02

0.01

0.07
M

ea
n 

S
qu

ar
ed

 E
rr

or

Ridge Huber EnetSVRRFR Lasso PAR

Figure 1: Mean squared errors of out-of-the-box regression al-
gorithms on the Clickbait Challenge 2017 training dataset us-
ing the full set of features described in Section 3.1. Shown are
ridge, random forest (RFR), Huber, support vector (SVR), elas-
tic net (Enet), lasso, and passive aggressive regression (PAR).

Since the Clickbait Challenge 2017 data are sparse, filter methods
and embedding methods are not very effective: statistics like corre-
lation or mutual information cannot provide meaningful information
for sparse data as indicated, for example, by the high prediction er-
rors of a lasso regression (considering covariance to select features)
or a random forest regression (building decision trees) shown in
Figure 1. Heuristic wrapper methods is hence the only alternative
left, incurring a comparably high computational complexity.

The fitness function of heuristic feature selection approaches
is typically the prediction error; in case of the Clickbait Chal-
lenge 2017, the mean squared error (MSE) between the predicted
clickbaitiness scores and the ones in the ground-truth is used. In
our study, we use the mean squared error as the fitness function to
train a ridge regression model,3 since it is a fast linear model that
does not preselect features based on their properties, and since it
provides better results using the full feature set compared to most
other regression approaches (see Figure 1).

Several local search algorithms and combinatorial optimization
algorithms can find good approximations of the “optimal” feature
subset (e.g., simulated annealing, genetic algorithms, and ant colony
optimization). The major downside is that they usually identify a
good subset but give no information about how good the features are
and how they interact. Determining an individual feature’s quality
and taking into account feature relationships will yield more insights
about the task at hand and might even help to engineer better features.
We therefore do not employ simulated annealing, genetic algorithms,
or ant colony optimization in our study.

As noted earlier, feature selection can significantly increase the
performance of predictive models by generalizing and reducing
computational load for further experiments and analysis. Established
strategies usually use statistics such as χ2 or correlations between a
feature and the target vector. When working on short texts, such as
social media posts or comments, all features based on occurrence
frequencies (like n-grams or word lists) become sparse. Sparse
vectors on their own do not encode a lot of information and therefore
the statistical metrics become indifferent. This can be seen well
when considering the performance of learning algorithms that fit
using these metrics (like lasso or elastic net). This also implies that
a feature selection strategy is needed which considers combinations
(or interactions) of features.
3We used the scikit-learn 0.18.1 library and Python 3.5.2.

Considering that statistical metrics are not helpful, applying a
search strategy is the logical next step. These strategies iteratively
add and/or remove features using prediction error changes for guid-
ance. Established strategies include the following:

• Exhaustive Search, which is exponential in the number of
features.

• Forward Selection, which does not find interactions.

• Compound Selection, which adds k features and removes r,
k > r. This strategy is computationally feasible if k − r is
smaller than the the total number of features, but does not reli-
ably find feature interactions: If the interactions involve many
features and if multiple interactions are considered (which
is very likely for sparse text data), k must be chosen large
(to capture interactions and change the prediction error in a
meaningful way) and r has to become dynamic (large if many
redundant features are added, small if a useful interaction
was added), rendering compound selection approximately
equivalent to the following strategy.

• Backward Selection starts with a full feature set and iteratively
removes features that change the prediction error below a
certain threshold. This strategy is linear in the number of
features but does not find multiple interactions.

None of these strategies is “perfect,” but backward selection is a
good starting point once modified to account for the aforementioned
characteristics of the data. If one feature contributes equally to
confusing as well as discriminatory interactions, removing it would
not change the prediction error. To reliably resolve such interactions,
it is necessary to remove features in a way most confusing interac-
tions are resolved and most discriminatory ones are still intact. This
requires a way to judge each feature’s influence on the whole set.

The most promising strategy to determine the value of a feature
is the leave-one-feature-out error minimization strategy [8]. This
strategy compares the prediction error of two models. The first
one trains and predicts on all features. The second one trains and
predicts on all features except the feature in question. The difference
between both models (prediction error without the feature minus
prediction error with the feature) hints at the feature’s contribution
in the prediction. Here, a positive value indicates that, if a feature is
removed, the prediction error rises and vice versa.

To infer useful information about the value of a feature from its
leave-one-out error, it is necessary to first remove redundancy and
multiple interactions. The rationale is that smaller feature subsets
tend to contain less redundancies and interactions and that the leave-
one-out error over a subset of features becomes clearer. Considering
the inherent ambiguity of language, it is likely unnecessary to use a
strategy to construct a subset. It is also likely that, if the subsets are
too small, too much information about the interactions is removed.
Since we do not know which subsets are useful for measuring the
leave-one-out error of a feature, parallel backward selection is used
to determine the subsets, resulting in our proposed leave-many-out
feature selection strategy.

3. ICARFISH CLICKBAIT DETECTOR
The most salient property of the Icarfish clickbait detector is its

feature selection approach. Based on the feature set of the chal-
lenge’s baseline detector, we develop a leave-many-out feature se-
lection heuristic, which, when applied at scale, yields significant
improvements over the baseline’s performance. In what follows, we
overview the feature set and describe our feature selection heuristic
and its implementation.

2



3.1 Features
The following features are extracted from a Tweet’s text only:4

1. Tweet character n-grams. All character 1-, 2-, and 3-grams
that occur more than twice, resulting in a total of 12,471 dis-
tinct character n-gram features weighted by tf-idf. N-grams
occurring only once or twice are prone to overfitting.

2. Tweet word n-grams. All word 1-, 2-, and 3-grams that occur
more than twice, resulting in a total of 24,861 distinct word
n-gram features weighted by tf-idf.

3. Engineered features. In total, twelve engineered features
are implemented. Three features encode character counts:
average word length, length of the longest word, and total
character length. Five features encode character occurrences:
the occurrence frequency of ’@’ (mentions), ’#’ (hashtags),
and ’.’ (dots), whether a tweet starts with a number, and the
occurrence frequency of abbreviations following the Oxford
abbreviations list.5 Two features encode meta-data, namely
whether the tweet has media attachments and the part of day
(as quarters of a day, 1 to 4) the tweet was issued. The last
two features encode the tweet’s sentiment polarity as per the
VADER sentiment detector implementation in NLTK [3], and
its Flesh-Kincaid readability score.

4. Word lists. Given the 181 General Inquirer word lists,6 the
Terrier stop word list,7 the Dale-Chall easy words list [1], and
the Downworthy common clickbait phrases,8 each word list is
used as a single feature, indicating how often any word form
the list occurs in a tweet.

Features from the web pages linked in a tweet are omitted for prac-
tical reasons: a clickbait scorer which does not have to download
the linked web page of a teaser message is more scalable than one
which does. Altogether, we obtain 37,528 distinct features.

3.2 Regression Model
As a regression model, we employ ridge regression.9 It is a fast

linear model that does not preselect features based on statistical prop-
erties, which is an important prerequisite for our feature selection
experiments. Moreover, when trained on a random 7:3 training-
validation split of the training data, using the entire set of features,
it achieves a reasonable performance of 0.0328 mean squared error
(see Figure 1). In what follows, we employ ridge regression on
every feature subset analyzed, creating a new random 7:3 training-
validation split each time.

3.3 Leave-Many-Out Feature Selection
Leave-many-out feature selection repeatedly applies the back-

ward selection search, averaging the results of leave-one-out errors
of each feature removed. Starting with the full feature set of size n,
features are randomly removed one at a time until a minimum sub-
set size m is reached. For each removed feature, the leave-one-out
error is recorded. This procedure is repeated r times, resulting in a
series of leave-one-out errors for each feature. The average over all
leave-one-out errors recorded for a given feature can be considered
a score of its overall usefulness. This leave-many-out score captures
4If necessary for a given feature, tweets are preprocessed using the
WordNetLemmatizer and the TweetTokenizer of NLTK 3.2.4.
5http://public.oed.com/how-to-use-the-oed/abbreviations/
6http://wjh.harvard.edu/~inquirer/
7https://github.com/terrier-org/terrier-core/blob/4.2/share/stopword-list.txt
8https://github.com/snipe/downworthy/blob/master/Source/dictionaries/original.js
9Implementation from scikit-learn 0.18.1 in Python 3.5.2.

how frequently and by how much the removal of a feature improves
or reduces the prediction error of our regression model, or if its
removal has no impact. The leave-many-out score also reflects if a
feature is more important for some interactions, or if it is redundant.
A negative leave-many-out score indicates that a feature affects
prediction errors negatively, a zero score indicates a features is re-
dundant, and a positive leave-many-out score indicates that a feature
is useful, where higher scores indicate higher usefulness. Finally,
ranking features by their leave-many-out scores and selecting the
top k ones results in a highly discriminatory subset of features.

The quality of the leave-many-out score of a feature, and the
runtime of the leave-many-out algorithm depends on the number of
removals per run n−m, and the number of runs r. If the minimum
subset size m is chosen too small, the last features removed will
likely break fewer interactions, yielding scores closer to 0. If m is
chosen too large, the reverse effect may occur. Increasing the num-
ber of runs r will calculate more leave-one-out errors per feature and
thus provide better leave-many-out scores, but also increase runtime.
Pilot experiments on sparse text data showed that choosing m and r
so that r(n − m)/n = 25 provides good results. Choosing the
number k of top-scoring features to be selected varies depending on
the application. Removing features with a negative leave-many-out
score always improves the prediction, whereas, for the top-scoring
features, local optimization can be applied.

3.4 Hadoop-based Implementation
We implement leave-many-out feature selection using the Hadoop

framework,10 consisting of preprocessing, mappers, and reduc-
ers. The mappers configure the reducers by passing feature subset
changes to them, and the reducers conduct the steps training and
evaluation in parallel on given subsets, recording the mean squared
error changes.

Preprocessing includes parsing the provided dataset, extracting
the aforementioned features into a feature matrix, as well as filling
a vector with the ground-truth clickbaitiness scores. This data is
stored as two NPZ-files (Numpys data storage format). Afterwards,
the MapReduce input file is generated. This file dictates how many
models are analyzed in parallel (1000 in our case): each line consists
of a unique ID and the size of the full feature set (37,528). Both
NPZ-files and the input file are then fed to a Hadoop streaming job.

The mapper reads its input file split one line at a time, generating
a bit set of the given length with all bits set to 1, where the i-th bit
corresponds to the i-th feature, its truth value indicating whether the
feature is to be included in a to-be-analyzed feature subset. It then
repeatedly flips one of the 1-bits to 0, passing the bit set resulting
from each bit flip to a reducer, keyed by the line’s ID (1000 rep-
etitions in our case). Altogether, for each of the 1000 input lines,
our mapper emits 1000 bit sets to the reducers, ordered by ID and
consecutive feature removals, resulting in an average 26 removals
of each feature overall.

We adjusted the Hadoop job to spawn one reducer per line ID.
Since reducers are typically spawned only once per line ID, they
need to initialize the regression model and the supplied NPZ-files
only once before handling the series of bit sets for a given ID. To
ensure generalizability and to foreclose overfitting, each reducer
randomly splits the training data into 7:3 training-validation sets.
It then proceeds to handle the bit sets one at a time, computing
the mean squared error of the regression model after removing the
respective features indicated by a bit set, and emitting the recorded
prediction error along the bit set as a reference which feature subset
was used to compute it, keyed by the input line’s ID.

10Hadoop streaming 2.7.2

3



0.030

0.033

0.032

0.031

0.034
M

ea
n 

S
qu

ar
ed

 E
rr

or

0 30000250002000015000100005000 35000
Feature Set Size

Figure 2: Mean squared error of the ridge regression models
for 52 feature subsets on a constant 2:1 training-validation-split
of the Clickbait Challenge 2017 training dataset.

4. EVALUATION
We conducted a large-scale experiment to select the “best” feature

set based on the training dataset of the Clickbait Challenge 2017.
The resulting model was then evaluated once on the challenge’s test
dataset. Furthermore, we analyzed the individual features selected
to gain insights about the impact of the best and worst features.

4.1 Selecting the “Best” Feature Set
In total, we processed one million remove-train-predict iterations

for our feature assessment (i.e., a feature was removed from an aver-
age of 26 feature subsets). After the outputs of the iterations were
accumulated, the leave-many-out scores per feature was computed
to rank the features. From this ranking, we then choose feature
subsets of increasing size to examine the effect of removing the
lowest ranking features and training a model on the remaining ones.
We constructed 49 subsets including the top-ranked 100%, . . . , 2%
of the features in steps of 2%, and three other subsets containing
only the top-ranked 1.5%, 1.0%, and 0.5% of the features. For every
subset, we trained a ridge regression model on 2/3 of the training
data and validated it on the remaining 1/3 of the training data. In
this case the split was kept constant for all the 52 feature subsets.
Figure 2 shows the mean squared errors measured on the 1/3 of
the training data used for validation. The best-performing model in
this experiment series achieves a mean squared error of 0.0297 with
12,008 features (32.0% of the original features). This corresponds to
about 10% performance improvement over the full feature set (see
Table 1, left). The smallest subset size that does not perform worse
than the full feature set uses 375 features (1.0%).

We chose the performance-wise best among the validated models
as our final approach, and submitted it for testing to the challenge’s
evaluation platform, achieving a prediction error of 0.0351 on the
Clickbait Challenge 2017 test data (participant Icarfish in Table 1,
right). This means that Icarfish, based only on its heuristic feature se-
lection, achieves a performance gain of about 20% over the baseline
and would have been placed second in the challenge.11

4.2 Feature Analysis
To gain insights into the 52 feature subsets of our experiment,

we analyzed them based on the validation data obtained from the
challenge’s training data. Figure 2 shows that removing the first 2%
of the most “confusing” features provides by far the highest perfor-

11Icarfish did not officially compete in the challenge.

Table 1: Mean squared error (MSE) of selected models on
a 2:1 training-validation-split of the Clickbait Challenge 2017
training dataset (left), and means squared error of selected sub-
mitted approaches on the challenge’s test dataset (right).

Feature Set Size MSE
absolute relative

37,528 100.0% 0.0328
12,008 32.0% 0.0297

375 1.0% 0.0323
187 0.5% 0.0342

Participant Rank MSE

Zingel 1 0.0332
Icarfish (this paper) – 0.0351
Emperor 2 0.0359
Carpetshark 3 0.0362
Clickbait17-baseline 7 0.0435

mance gain among any neighboring pair of feature subsets. These
“worst” features could be features that are confusing in themselves
or features whose removal resolves confusing interactions. It further
appears that about 68% of the features have an at least slightly con-
fusing impact, probably due to feature interactions that are resolved
by removing one of them. And the reverse also seems to hold: There
are some, but far fewer features with beneficial interactions among
them, slightly increasing the performance when included.

Figure 3 and Table 2 show the features with high impact (absolute
value of performance gain or loss larger than 10−5) split by feature
category. All feature types include good and bad features with
differences in strength and frequency. Most of the 12 engineered
features have a high impact about one order of magnitude larger
than that of any other feature. However, two of the engineered
features harm prediction performance (the average word length
and whether a tweet starts with a number). One reason for the
relatively high impact of the engineered features is that they are
not as sparse as the n-grams or word lists. Interestingly, word n-
grams are the only feature category without high-impact confusing
features. An interesting side note is that the question mark seems to
be discriminatory as a word token, but confusing as a character token,
while the exclamation mark is discriminatory in both categories.

From Figure 3 and Table 2, it seems as if the engineered features
from the baseline approach are among the most valuable ones for
scoring clickbaitiness. Maybe more compact models could thus be
constructed if the information of individual features with high im-
pact could be combined into engineered features with higher impact.
An example for a new engineered feature could be something like
the “number of words ending with -ly or -ing” (counting adverbs,
gerunds, etc.) since these suffixes seem to be rather discriminat-
ing character n-gram features. However, the hypothesis of creating
good engineered features from individual other features is only par-
tially supported by a qualitative analysis of the high-impact features.
While the engineered “number of stopwords” feature is very dis-
criminatory and most of the high-impact word 1-grams are actually
stop words, the engineered “number of mentions” feature (counting
the number of @’s in a tweet) is not in the table of the high-impact
engineered features, even though 3 of the 18 most discriminatory
character tokens involve the ’@’ character.

5. CONCLUSION
Our study has demonstrated that an iterated leave-many-out strat-

egy can help to identify good feature subsets from the ones employed
in the Clickbait Challenge 2017 baseline. The challenge poses click-
baitiness scoring as a regression task on social media posts and thus
typically comes with rather sparse features—a particularly challeng-
ing scenario for feature selection. The best feature subsets that our
approach identified achieve a performance gain of 20% over the
baseline with respect to the prediction error. At the same time, our
technique is able to hint at possible feature interactions and further
feature engineering possibilities.

4



Character n-grams

0.00005

0.00000

-0.00005

151050 20

Word n-grams

0.0002

0.0000
151050 20

Engineered Features

0.000

-0.001

6543210 7

Wordlist Features

0.0002

0.0000

0 105 15

Le
av

e-
m

an
y-

ou
t S

co
re

Figure 3: Leave-many-out scores grouped by feature category
and sorted by performance impact. The height of the bar cor-
responds to the average leave-many-out score of the subsets in-
cluding the feature. A high positive bar indicates discriminative
features. Features with scores below 0.0001 are omitted.

Concerning the actual subset selection, open questions for future
research still are how many different random feature subsets are
needed to draw valid conclusions about an individual feature’s po-
tential, and how to best cover potentially interacting feature groups
in the selection of the removed subsets. Furthermore, our initial ob-
servations on different features’ strengths may hint at some possible
engineered features that combine the individual features’ potential—
integrating more of such engineered features in a regression model
could also be an interesting future direction. Finally, ensemble
techniques for feature-based learning or a combination with deep
learning are further opportunities.

References
[1] J. S. Chall and E. Dale. Readability revisited: The new

Dale-Chall readability formula. Brookline Books, 1995.
[2] I. Guyon and A. Elisseeff. An Introduction to Variable and

Feature Selection. In Journal of Machine Learning Research 3,
pages 1157–1182. JMLR, 2003.

[3] C. J. Hutto and E. Gilbert. VADER: A Parsimonious
Rule-Based Model for Sentiment Analysis of Social Media
Text. In ICWSM, 2014.

[4] M. Potthast, T. Gollub, F. Rangel, P. Rosso, E. Stamatatos, and
B. Stein. Improving the Reproducibility of PAN’s Shared
Tasks: Plagiarism Detection, Author Identification, and Author
Profiling. In CLEF, pages 268–299. Springer, 2014.

[5] M. Potthast, S. Köpsel, B. Stein, and M. Hagen. Clickbait
Detection. In N. Ferro, F. Crestani, M.-F. Moens, J. Mothe,
F. Silvestri, G. Di Nunzio, C. Hauff, and G. Silvello, editors,
Advances in Information Retrieval. 38th European Conference
on IR Research (ECIR 16), volume 9626 of Lecture Notes in

Table 2: Features by category with a leave-many-out score >
10−5. All scores are multiplied by 10−4. Feature categories
shown are character n-grams (CNG), word n-grams (WNG),
word list features, and engineered features.

CNG Score
thi -0.80
his -0.66
? -0.34
hi -0.21
th -0.11
hes 0.10
ing 0.10
wh 0.11
! 0.11
how 0.11
ly 0.12
ly 0.12
s 0.12
j 0.14
n 0.16
.@ 0.20
.. 0.21
s 0.21
a 0.26
@ 0.24
. 0.34

0.53
@ 0.73

WNG Score
how to 0.11
as 0.11
sex 0.11
dies 0.11
5 0.11
that 0.13
an 0.13
to 0.14
... 0.15
in 0.15
here 0.15
things 0.18
heres 0.20
is 0.28
at 0.40
a 0.57
! 0.82
how 0.83
these 1.10
? 1.38
. 1.50
this 3.16

Word lists Score

RcLoss -0.29
Human coll. -0.15
PowCon -0.12
EnlTot -0.11
Exprsv 0.11
You 0.12
Virtue 0.12
PowLoss 0.12
Quan 0.14
Dist 0.15
Vice 0.15
PowDoct 0.15
Polit 0.19
Finish 0.20
Academic 0.22
Eval 0.22
PowEnds 0.23
Stop Words 0.29
Easy Words 2.60

Engineered Score
Mean word length -1.37
Starts with number -0.30
Abbreviation count 0.11
Sentiment polarity 0.25
Max. word length 1.90
Part of day 4.74
Character sum 6.70
Number of dots 7.18

Computer Science, pages 810–817, Berlin Heidelberg New
York, Mar. 2016. Springer. .

[6] M. Potthast, T. Gollub, M. Hagen, and B. Stein. The Clickbait
Challenge 2017: Towards a Regression Model for Clickbait
Strength. In Proceddings of the Clickbait Challenge, 2017.

[7] M. Potthast, T. Gollub, K. Komlossy, S. Schuster,
M. Wiegmann, E. Garces, M. Hagen, and B. Stein.
Crowdsourcing a Large Corpus of Clickbait on Twitter. In (to
appear), 2017.

[8] J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio,
and V. Vapnik. Feature Selection for SVMs. In NIPS 13, 2000.

5


	1 Introduction
	2 Background and Related Work
	2.1 Clickbait Detection
	2.2 Feature Selection

	3 Icarfish Clickbait Detector
	3.1 Features
	3.2 Regression Model
	3.3 Leave-Many-Out Feature Selection
	3.4 Hadoop-based Implementation

	4 Evaluation
	4.1 Selecting the ``Best'' Feature Set
	4.2 Feature Analysis

	5 Conclusion

