Cross-language High Similarity Search: Why no Sub-linear Time Bound can be Expected

Maik Anderka, Benno Stein, and Martin Potthast

Problem: Cross-language High Similarity Search

Use cases:

- Cross-language plagiarism detection
- Translation search

Naive approach:

 Linear scan using a multilingual IR model
→ compelxity O(D)

Research question: Can cross-language high similarity search be tackled in sub-linear time?

Background: Monolingual High Similarity Search

Suppose the language of *q* and *D* is the same. Then it can be tackled in sub-linear time by fingerprinting or by exhaustive *n*-gram indexing.

Fingerprinting:

- Compute fingerprints F_q and F_d for q and $d \in D$ using a multi-valued similarity hash-function.
- Consider *q* and *d* as similar if their fingerprints intersect:

 $F_q \cap F_d \neq \emptyset \implies \varphi(q, d) \ge 1 - \varepsilon$, with $0 < \varepsilon << 1$

• Runtime: $O(D_q)$, whereas $|D_q| \ll |D|$.

Exhaustive *n*-gram indexing:

- *D* is indexed by all *n*-grams with a reasonable large *n*, $n \in [5; 15]$.
- *q* is considered as a single *n*-gram.
- Runtime: O(1).

Why no Sub-linear Time Bound can be Excpected

Major result: Neither fingerprinting nor exhaustive *n*-gram indexing can solve *cross-language* high similarity search with an acceptable quality:

• Cross-language similarities are on average 0.5 (cf. plot on the right); hence, with a reasonable ε of ~0.15, D_q nearly contains any document.

Bauhaus-Universität Weimar

- If ϵ is adjusted to capture more documents (e.g., ϵ = 0.5) the recall of all fingerprinting approaches drops dramatically as shown above.
- The *n*-grams of a query and a document written in different languages are not comparable.
- Current research is on deriving theoretical performance bounds for cross-language fingerprinting using the locality-sensitive hashing (LSH) framework.

Web Technology and Information Systems