
Maik Fröbe Matti Wiegmann Nikolay Kolyada Bastian Grahm Theresa Elstner Frank Loebe Benno Stein Matthias Hagen Martin Potthast
maik.froebe@uni-jena.de

Continuous Integration for Reproducible Shared Tasks with TIRA.io

TIRA in a Nutshell:
◦ Software Submissions + Blinded Experiments
◦ Sandboxing for execution on confidential data
◦ Complete export of shared task archive

https://github.com/tira-io

Immutable Software Submissions

Implemented in Docker + Git CI/CD

◦ Shared task = git repository
◦ Software execution = commit

Technology Stack

◦ Image registry via Gitlab
◦ Storage 12.4 PB HDD via a Ceph cluster (78 nodes)

◦ Kubernetes cluster for software execution
◦ 130 nodes from a shared cluster

(1,620 CPU cores, 25.4 TB RAM)
◦ 24 dedicated GeForce GTX 1080 GPUs

◦ Adding additional runners is simple:
E.g., add a runner on your laptop

The Perspective of a Participant in a Shared Task
Step 1: Implement Approach in Docker Image

◦ Docker image must be self-contained
◦ No internet access during execution

Step 2: Local Testing
Participants can test their software locally

◦ Input: Public validation data
◦ Mirrors cloud execution and sandboxing

tira-run \
--output-directory <OUTPUT> \
--input-directory <INPUT> \
--image <DOCKER-IMAGE> \
--command <COMMAND>

Step 3: Upload Image

◦ Each team has a dedicated image registry
◦ Upload via docker push

Step 4: Configure Immutable Software

◦ Software = Docker image + command
◦ Immutability by retagging images
◦ Documentation: Paper + Description

Step 5: Run Software

◦ Parallel software executions possible
◦ Validation vs. test executions
◦ Resources for execution can be specified
◦ E.g., CPU, GPU, etc.

Organization of Shared Tasks with TIRA
Requirements to organize a task in TIRA
Data:

◦ Public validation data + ground truth
◦ Private test inputs

Evaluator:

◦ Docker image that evaluates runs
◦ Input: Run + ground truth
◦ Output: Evaluation scores
◦ We have a collection of standard evaluators

Baseline:

◦ Docker image with a baseline
◦ Might serve as starting point for participants
◦ We have a collection of standard baselines

Run Execution on Kubernetes

Provisioning I
Execution

(sandboxed) Provisioning II
Evaluation

(sandboxed) Provisioning III

User code
repository

Shared task
repository

Run

Test data
w/o ground truth

Test data
ground truth

User software
(snapshot)

Evaluator
(snapshot)

Evaluation
results

Workflow

◦ Provisioning I (trusted): Branch and clone
repository + copy test data.

◦ Provisioning II (trusted): Persist run files
and logs + copy the test ground truth.

◦ Provisioning III (trusted): Persist evalua-
tion results and logs + merge branch.

TIRA at SemEval 2023
Task Reg. Active Software Largest Image D. in Top-10
ValueEval 91 41 7 66 GB 10 %
Clickbait 83 31 21 47 GB 90 %

Want to organize a shared task in TIRA?
We would be very happy to help you!
You only need 15 minutes to import your task!

Post-Hoc Reproducibility Experiments
Git repository of the shared task can be published after the task

◦ Repository is fully self-contained (metadata, runs, logs, etc.)
◦ No Lock-in effect (tira-run is only syntactic sugar around Docker)
◦ Repeat, replicate, and reproduce in one line of code

Future Work Enabled By Docker Submissions

◦ Docker images resulting from shared tasks enable cre-
ative reuse/hacking

◦ Creative reuse of SOTA submission: values.args.me
◦ Inject code, models, oracle functions, . . .

Try it out :)
Set up your shared task in TIRA in 15 minutes:

Databases and Information Systems www.webis.de Friedrich-Schiller-Universität Jena

https://github.com/tira-io

