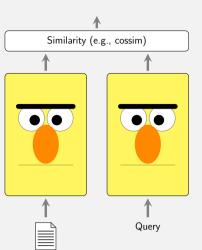
Are transformers robust to query variations?

Revisiting Query Variation Robustness of Transformer Models

Tim Hagen, Harry Scells, and Martin Potthast

(University of Kassel and hessian.AI)

Problem Statement



- ullet $\approx 70\%$ of information seeking queries use **key**words and 26% contain typos.
- Transformers are used for re-ranking in IR
- Transformers have been shown not to be robust to these variations

RQ: How robust are more recent LLM-based embedding models?

Paper

Dataset

Penha et al.'s query variation dataset with semantically equivalent query variants

Query variation		Example
Category	Transform. heuristic	
Original		what is durable medical equipment consist of
Misspelling	NeighbCharSwap	what is durable mdeical equipment consist of
	${\sf RandomCharSub}$	what is durable medycal equipment consist of
	QWERTYCharSub	what is durable medical equipment xonsist of
Naturality	RemoveStopWords	what is durable medical equipment consist of
	T5DescToTitle	what is durable medical equipment consist of
Ordering	RandomOrderSwap	medical is durable what equipment consist of
Paraphrasing	BackTranslation	what is sustainable medical equipment consist of
	T5QQP	what is durable medical equipment consist of
	${\sf WordEmbedSynSwap}$	what is durable medicinal equipment consist of
	${\sf WordNetSynSwap}$	what is long lasting medical equipment consist of

Ranking Robustness Ranking on Ranking on query-variants original queries

Compute document embeddings Sort documents by embedding-

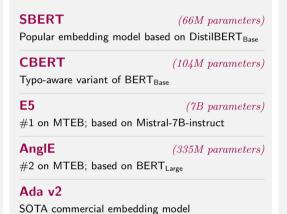
similarity to the query

Method

Embedding Robustness

Embeddings of the Embeddings of the query-variants original queries

Models



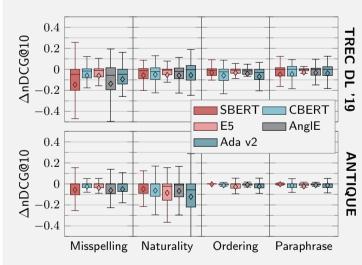
Anisotropy in Embedding Models

- High cossim ⇒ semantically similar
 - (Mean cossim is 0.71 for CBERT)
- Embeddings are not uniformly distributed ("Anisotropic")
- ► Cossim can't be compared across models
- ► Adjust cossim for anisotropy

Expected cossim for

two arbitrary inputs

Results



• $\Delta nDCG@10$ is sometimes positive but mostly negative

0.8

0.6

0.4

0.2

-0.2

Pairwise

- Only effectiveness degradation is statistically significant
- Smaller spread on ANTIQUE (except for naturality)
- On ANTIQUE, all models are least robust to naturality

Additional Experiment 1

Note E5-Mistral is based on an instruct-LLM and is promptable via

Embedding Model

Instruct: (instruction) Query:

> **RQ: Can robustness** simply be prompted?

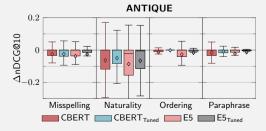


Additional Experiment 2

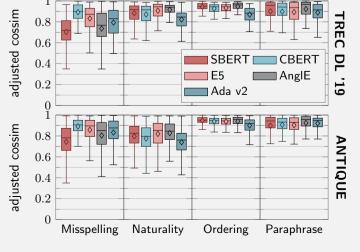
Prompt tune E5 & fine-tune CBERT for Penha et al.'s transformations.

Prompt tuning Instruct LLM

RQ: How does training on more query variations affect robustness?



- Improved robustness across all categories
- ...but still not robust
- statistically significant effectiveness drop



- Ordering and paraphrasing the easiest
- CBERT the most robust to typos
- AnglE the most robust except to typos
- E5 Mistral in median similarly robust to the most robust model (but larger spread)