

Antonio Reyes¹, Martin Potthast², Paolo Rosso¹, Benno Stein²

Evaluating Humor Features on Web Comments

Bauhaus-Universität Weimar

Web Technology & Information Systems

¹ Natural Language Engineering Lab — ELIRF Universidad Politécnica de Valencia, Spain ² Web Technology & Information Systems Bauhaus-Universität Weimar. Germany

1. Preliminaries

Humor

- Multidimensional phenomenon
 - Cultural and social information
 - Linguistic competence
 - Cognitive stimuli
- Personal and subjective

Automatic Humor Processing

- Approaches
 - Generation
 - Recognition
 - Retrieval
- Focus on verbal humor

Goal

- Humor retrieval
 - Funny comments on Web items
- Distinguish between an implicit funny comment from a not funny one
- New challenge: different characteristics compared to other text types

2. Humor Model & Evaluation Corpus

Features

- Sexual-content
- · Semantic ambiguity terms
- Negative polarity
- Emotions
- Slang and emoticons, e.g., "LOL" or ": -)"

Learning Transfer

- · One-liners corpus
- · Features representativeness
 - Frequency threshold > 50

Evaluation Corpus

- 1.068,953 comments from the Slashdot news Web site
- Comments are categorized in a community-driven process
- Four classes
 - Funny
 - Informative
 - Insightful
 - Negative
- Avoiding class imbalance, 150,000 comments from each class, i.e., 600,000 comments in total.

3. Experiments & Results

Classifier technologies

- Bayes, Decision tree, and Support Vector Machines
- Training sets contain 100,000 comments per class
- Test sets contain 50,000 comments per class

Feature Evaluation

- s_1 sexual-content and semantic ambiguity
- s_2 sexual-content, semantic ambiguity, and polarity
- s₃ sexual-content, semantic ambiguity, polarity, and emotions
- s₄ all features

Results

- Classification accuracy
 - A: Funny vs. Informative
 - B: Funny vs. Insightful
 - C: Funny vs. Negative

Exp.	Bayes	SVM	REPTree	
s_1	57.15%	57.16%	57.16%	Α
s_2	57.35%	57.38%	57.36%	
S3	58.03%	57.38%	57.29%	
<i>s</i> ₄	58.26%	57.94%	58.31%	
s_1	62.19%	62.25%	62.25%	В
<i>s</i> ₂	62.66%	62.43%	62.74%	
s_3	62.39%	62.52%	62.94%	
<i>S</i> ₄	63.08%	62.97%	63.52%	
<i>s</i> ₁	60.37%	60.36%	60.37%	С
s ₂	60.54%	60.41%	60.54%	
s ₃	60.13%	60.37%	60.54%	
<i>S</i> 4	60.48%	60.89%	61.33%	

4. Observations & Final Remarks

Discussion

- Features are not very useful for comments
- Hypothesis
 - (1) Negative data (similar structures, significant differences)
 - (2) Linguistic strategies (verbal vs. situational humor)

Assessing hypothesis

1. New negative data (10,000 hotel reviews) Funny *vs*. TripAdvisor

Ехр.	Bayes	SVM	REPTree
<i>S</i> ₄	73.43%	74.06%	73.17%

- 2. Linguistic strategies
 - (-) Sense Dispersion
 - (-) 20 threads

$$\delta(w_s) = \frac{1}{P(|S|, 2)} \sum_{s_i, s_j \in S} d(s_i, s_j)$$

$$\tag{1}$$

New Results

- Different negative data improved significantly accuracy
- Comments share more similarities than differences
- Low dispersion among the threads senses

Conclusions & Future Work

- Features have a limited performance in distinguishing the classes
- Last experiments supported our hypothesis
- Corroborate results and investigate new features (Irony detection)

*The TEXT-ENTERPRISE 2.0 (TIN2009-13391-C04-03) project has partially funded this work.