Revisiting Uncertainty-based Query Strategies for Active Learning with Transformers

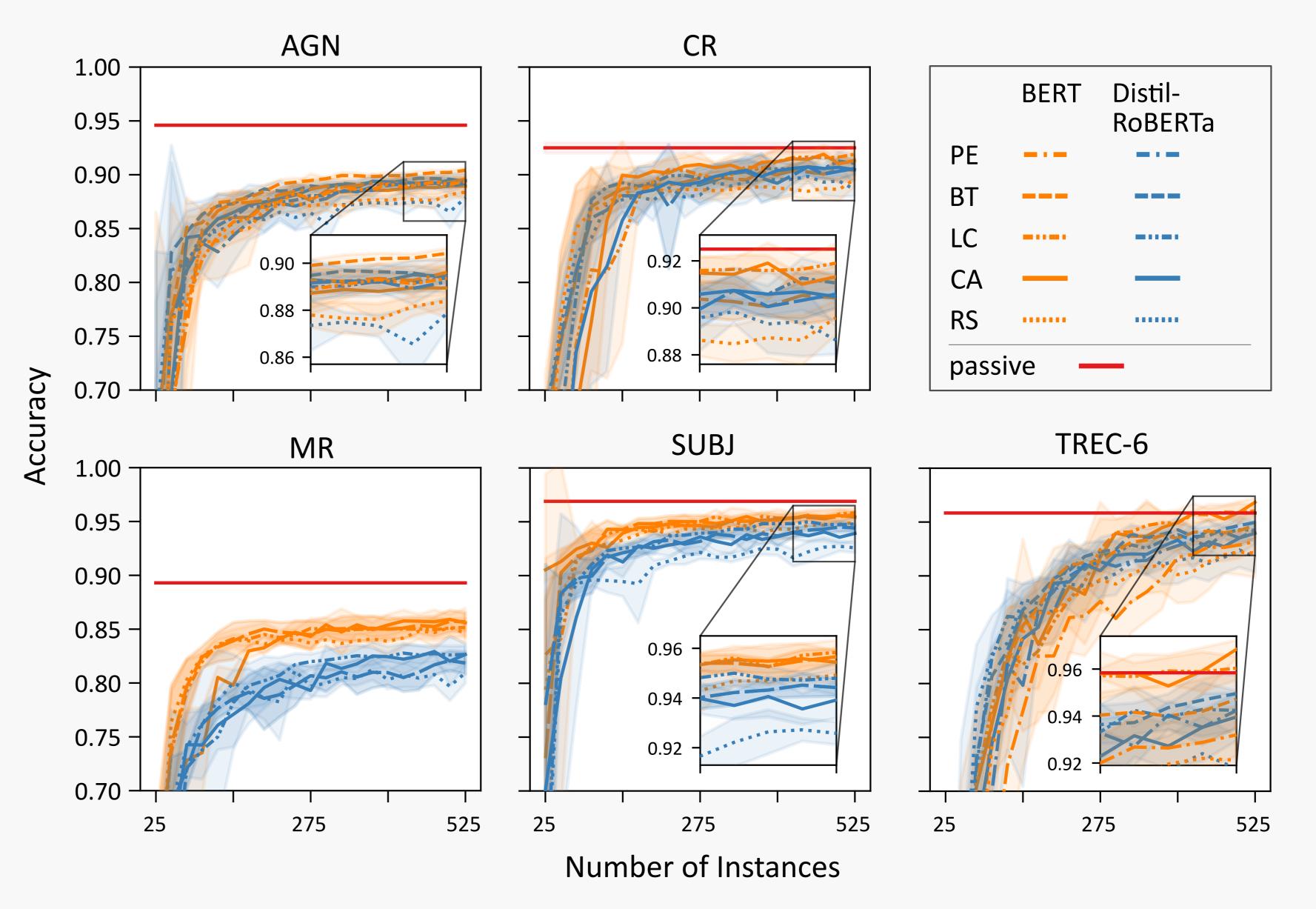
Christopher Schröder, Andreas Niekler, Martin Potthast

Motivation

- Transformer models are increasingly used in active learning for text classification.
- Query strategies targeted at neural networks or text classification are computationally expensive.
- Uncertainty-based query strategies are computationally inexpensive but are

Uncertainty-based query strategies with transformers are strong on text classification benchmarks.

Results: Learning Curves



usually considered only as a baseline.

Contributions

- We systematically investigate uncertainty-based query strategies in combination with transformer models (BERT [1], DistilRoBERTa [2]).
- Our experiments use five previously established but lately neglected text classification benchmarks.
- We investigate the effectiveness of using a transformer model with fewer parameters, DistiRoBERTa, for active learning.

Query StrategiesPrediction
Entropy
[3, 4] $\arg \max_{x_i} \left[-\sum_{j=1}^{c} P(y_i = j | x_j) \log P(y_i = j | x_j) \right]$ Breaking
Ties [5, 6] $\arg \min_{x_i} \left[P(y_i = k_1^* | x_i) - P(y_i = k_2^* | x_j) \right]$ Least
Confidence
[7]
Contrastive
Active
Learning [8] $\arg \max_{x_i} \left[1 - P(y_i = k_1^* | x_i) \right]$

Results: Summary

Selected Results

Random

Sample i.i.d. from the unlabeled pool.

Data					
Dataset Name (ID)	Туре	Classes	Training	Test	
AG's News (AGN)	Ν	4	120,000	7,600	
Customer Reviews (CR)	S	2	3,397	378	
Movie Reviews (MR)	S	2	9,596	1,066	
Subjectivity (SUBJ)	S	2	9,000	1,000	
TREC-6 (TREC-6)	Q	6	5,500	500	

	Strategy	Mean Rank		Mean Result	
Model		Acc.	AUC	Acc.	AUC
SVM	PE	1.80	2.60	0.764	0.663
	BT	1.60	1.60	0.767	0.697
	LC	3.00	2.60	0.751	0.672
	CA	5.00	5.00	0.667	0.593
	RS	3.00	2.60	0.757	0.686
KimCNN	PE	1.60	2.40	0.818	0.742
	BT	1.60	2.00	0.818	0.750
	LC	3.80	2.80	0.810	0.732
	CA	3.80	4.80	0.793	0.711
	RS	3.60	2.40	0.804	0.749
D.RoBERTa	PE	2.60	3.00	0.901	0.856
	BT	2.20	1.80	0.902	0.864
	LC	1.40	2.00	0.904	0.860
	CA	3.00	3.40	0.901	0.852
	RS	5.00	4.20	0.884	0.853
BERT	PE	2.40	2.40	0.909	0.859
	BT	2.00	1.60	0.914	0.873
	LC	2.20	3.80	0.917	0.866
	CA	2.80	2.60	0.916	0.872

- Using transformer models we reach considerably higher AUC scores compared to Zhang et al. [9].
- Active learning reaches scores very close (and even surpasses) previous state-of-the-art results, and our own passive classification.
- DistilRoBERTa reaches scores only slightly worse than BERT using about 25% of the parameters.

Conclusions

- We find that, contrary to common practice, prediction entropy seems not to always be the strongest baseline.
- DistilRoBERTa achieves results close to BERT while using only about 25% of the parameters.
- Breaking ties, which is equal in the binary

Types: N=News, S=Sentiment, Q=Questions.

RS 5.00 4.00 0.899 0.861

setting, consistently outperforms prediction entropy in multi-class scenarios.

LEIPZIG	
WEBIS.DE	

IINII\/EDCIT%T

[4

1]	J. Devlin, MW. Chang, K. Lee, and K. Toutanova, "BERT: Pre-training of deep bidirectional transformers for language understanding", in Proceedings of the 2019 Conference of the North American Chapter of the
	Association for Computational Linguistics (NAACL), 2019, pp. 4171–4186.

- [2] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, "Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter", *arXiv preprint arXiv:1910.01108*, 2019.
- N. Roy and A. McCallum, "Toward optimal active learning through sampling estimation of error reduction", in Proceedings of the Eighteenth International Conference on Machine Learning (ICML), 2001, pp. 441–448.
- G. Schohn and D. Cohn, "Less is more: Active learning with support vector machines", in Proceedings of the Seventeenth International Conference on Machine Learning (ICML), 2000, pp. 839–846.
- 5] T. Scheffer, C. Decomain, and S. Wrobel, "Active hidden markov models for information extraction", in *Proceedings of the 4th International Conference on Advances in Intelligent Data Analysis (IDA)*, 2001, pp. 309–318.
- [6] T. Luo, K. Kramer, D. B. Goldgof, L. O. Hall, S. Samson, A. Remsen, and T. Hopkins, "Active learning to recognize multiple types of plankton", Journal of Machine Learning Research (JMLR), pp. 589–613, 2005.
- 7] A. Culotta and A. McCallum, "Reducing labeling effort for structured prediction tasks", in *Proceedings of the 20th National Conference on Artificial Intelligence*, 2005, pp. 746–751.
- 8] K. Margatina, G. Vernikos, L. Barrault, and N. Aletras, "Active learning by acquiring contrastive examples", in Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2021, pp. 650–663.
- [9] Y. Zhang, M. Lease, and B. C. Wallace, "Active discriminative text representation learning", in *Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence*, 2017, pp. 3386–3392.

This research was partially funded by the Development Bank of Saxony (SAB) under project number 100335729. Printed at the Leipzig University Computing Centre.