Michael Völske¹ Alexander Bondarenko Maik Fröbe Benno Stein Jaspreet Singh Matthias Hagen Avishek Anand

¹michael.voelske@uni-weimar.de

Towards Axiomatic Explanations for Neural Ranking Models

Our Axiomatic Explanation Framework Explains Rankings by Reconstruction

Top: Our axiomatic explanation pipeline. (1) The retrieval model to be explained ranks a document set of size k. (2) Axioms produce ranking preferences for all pairs. (3) A simple explanation model reconstructs the initial ranking.

Right: Two examples of axioms, and the twenty axioms included in our explanation framework, including three different implementations each for STMC1 and STMC2.

TDC [Fang, 2004] Document length: LNC1 [Fang, 2004], TF-LNC [Fang, 2004] Lower-bounding term frequency: LB1 [Lv, 2011] Query aspects: REG [Wu, 2012], AND [Zheng, 2010], DIV [Gollapudi, 2009] Semantic Similarity: STMC1* [Fang, 2006], STMC2* [Fang, 2006] Term proximity: PROX1–PROX5 [Hagen, 2016]

With our Current Axiom Set, Explanation Fidelity is Limited Except for Distant Pairs

Explanation Mode Scope Per Re	Explanation Fidelity (Fraction Correct Pairs) Classical Retrieval Models Neural Retrieval Models						
Robust04		BM25	TF-IDF	PL2	MP-COS	DRMM	PACRR-DRMM
query	100	0.75	0.66	0.78	0.67	0.68	0.72
rank-diff bin	24	0.71	0.63	0.77	0.59	0.61	0.67
score-diff bin	24	0.72	0.64	0.78	0.59	0.61	0.68
query, rank-diff bin	2,368	0.73	0.64	0.77	0.65	0.66	0.70
query, score-diff bir	n 2,394	0.74	0.65	0.79	0.64	0.66	0.70
MS MARCO		BM25	TF-IDF	PL2		BERT-3S	DAI-MAXP
query	100	0.64	0.60	0.63		0.61	0.59
rank-diff bin	24	0.60	0.56	0.59		0.57	0.54
score-diff bin	24	0.61	0.56	0.59		0.59	0.55

Left: Explanation models for 100 queries each from Robust04 and MS MARCO. For the score- and rank-difference-scope models, document pair samples are divided into 24 bins based on the min-max normalized difference in retrieval scores. Explanation fidelity is computed for each bin separately and is further macro-averaged.

Below: The increase in explainability as the score difference grows is more pronounced for Robust04, whereas the explanations on both datasets perform very similarly at the low-score difference end (0.5 is no better than random guessing).

Top Axioms Overlap Between Models, and "Easier" Queries are Easier to Explain

ery	Explanation fidelity		Topic title	nDCG			
Qu	DRMM	MP-COS	PACRE	-	DRMM MP	-COS P	ACRR
344	0.57	0.55	0.60	Abuses of E-Mail	0.26	0.27	0.33
352	0.64	0.56	0.61	British Chunnel impact	0.15	0.17	0.15

618	3 0.82	0.81	0.83	Ayatollah Khomeini death	0.41	0.52	0.44	
684	4 0.67	0.55	0.66	Part-time benefits	0.41	0.26	0.39	

Top: Explanation fidelity and nDCG are weakly positively correlated (Pearson \approx 0.1). **Left:** Top-3 axioms per retrieval model by relative score difference (Robust04).

Conclusions:

1. Twenty well understood IR axioms to explain black-box neural rankers.

- 2. Explanation fidelity on the smaller, more genre-focused Robust04 with its shorter queries is superior to that on MS MARCO.
- 3. Well-grounded axiomatic constraints capturing other retrieval aspects seem to be needed to further improve explanation fidelity.

