Using Argument Mining to Assess the Argumentation Quality of Essays

The first study of argument mining for argumentation quality assessment

Argument mining determines the argumentative structure of texts. The benefit of this structure has rarely been evaluated.

Argumentation quality assessment is needed for envisaged applications such as argumentative writing support.

Argumentative writing support for persuasive essays:

- 1. Mining of an essay's argumentative structure.
- 2. Assessment of argumentation quality dimensions.
- 3. Synthesis of suggestions for improvements (future work).

We score persuasive essays based on the output of mining for four argumentation-related quality dimensions:

- Organization (Persing et al., EMNLP 2010)
- Thesis clarity (Persing and Ng, ACL 2013)
- Prompt adherence (Persing and Ng, ACL 2014)
- Argument strength (Persing and Ng, ACL 2015)

Main contributions of our work:

- The first study of the benefit of argument mining for argumentation quality assessment.
- Statistical insights into essay argumentation.
- The new state of the art for two quality dimensions.

Statistical insights into argumentation based on the output of mining

Modeling of an essay as a flow of paragraph-level arguments with sentence-level argumentative discourse units (ADUs).

Learning of mining four ADU types using standard features on the Argument Annotated Essays corpus (Stab and Gurevych, COLING 2014)

Argument mining approach	Accuracy	F ₁ -score
Majority baseline	0.525	0.361
State-of-the-art baseline (Stab and Gurevych, EMNLP 2014)	0.773	0.726
Our approach	0.745	0.745

Application of mining on all 6085 student essays from the International Corpus of Learner English (Granger et al., 2009).

Analysis of common ADU change flows in all ICLE paragraphs.

		Paragraph of essay		
#	ADU change flow	average	first	last
1	(conclusion, premise)	25.1%	_	13.1%
2	(conclusion)	22.4%	0.9%	31.6%
3	(conclusion, premise, conclusion)	17.0%	_	27.2%
4	(none)	5.8%	42.7%	0.4%
5	(premise)	4.3%	_	1.4%
6	(none, thesis)	3.4%	25.9%	_
7	(premise, conclusion)	2.9%	_	2.7%

State-of-the-art assessment of essay organization and argument strength

Novel feature types for argumentation-related essay scoring based on the output of mining.

Evaluation on all 830–1003 ICLE essays that are labeled for each quality dimension with a score from [1, 4].

Demo

Experimental set-up exactly as in the papers of the (former) state-of-the-art approaches.

Essay scoring with several supervised approaches:

- Average score baseline
- State-of-the-art baseline (Persing et al. EMNLP 2010, Persing and Ng ACL 2013–2015)
- Content: Token n-grams, prompt similarities
- POS: Part-of-speech n-grams
- Flows: Sentiment flow patterns (Wachsmuth et al., COLING 2014, EMNLP 2015)
- Our approach: ADU flows, n-grams, and compositions

Mean squared errors in 5-fold cross-validation:

Essay scoring approach	Organization	Thesis clarity	Prompt adherence	Argument strength
Average score baseline	0.349	0.469	0.291	0.266
State-of-the-art baseline	0.175	0.369	0.197	0.244
Content	0.336	0.425	0.231	0.236
POS	0.326	0.461	0.231	0.233
Flows	0.228	0.481	0.257	0.259
Our approach	0.184	0.470	0.241	0.242
ADU flows	0.234	0.461	0.247	0.242
ADU n-grams	0.225	0.466	0.265	0.243
ADU compositions	0.194	0.457	0.239	0.239
Our approach + POS / Flow	s 0.164	0.496	0.232	0.246
ADU compositions + Content	0.178	0.435	0.216	0.226

(mean squared errors in green significantly improve the state of the art with a confidence of over 90%)