October 12-17, 2022

Axel-Cyrille Ngonga Ngomo [‡] Benno Stein [†] Pavel Braslavski ^{§,¶} Matthias Hagen ^{*} Martin Potthast ^{||}

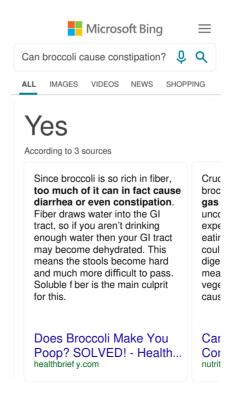
*Martin-Luther-Universität Halle-Wittenberg [†]Bauhaus-Universität Weimar

[‡]Paderborn University [§]Ural Federal University [¶]HSE University ^{||}Leipzig University

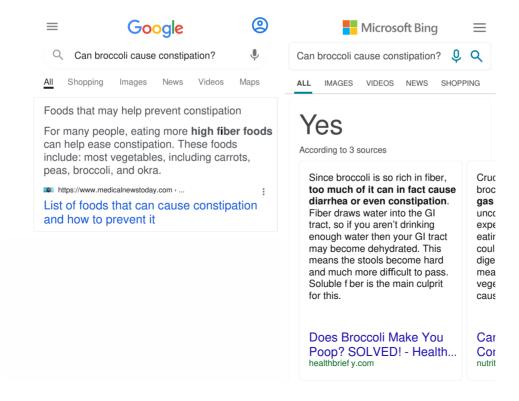
www.webis.de

- At least 5% of questions submitted to search engines ask about causality.
- Existing benchmark datasets for causal QA are comparably small.
- Causal QA is hampered by a lack of specialized, large-scale resources.

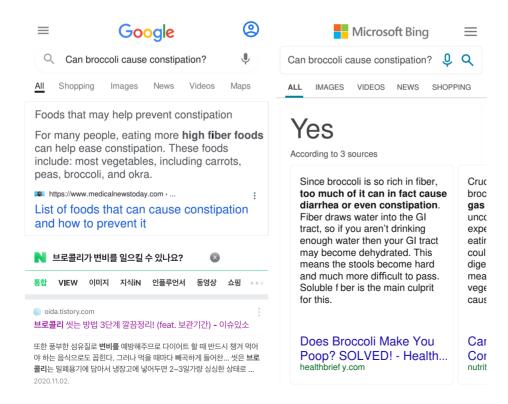
- At least 5% of questions submitted to search engines ask about causality.
- Existing benchmark datasets for causal QA are comparably small.
- Causal QA is hampered by a lack of specialized, large-scale resources.



- At least 5% of questions submitted to search engines ask about causality.
- Existing benchmark datasets for causal QA are comparably small.
- Causal QA is hampered by a lack of specialized, large-scale resources.

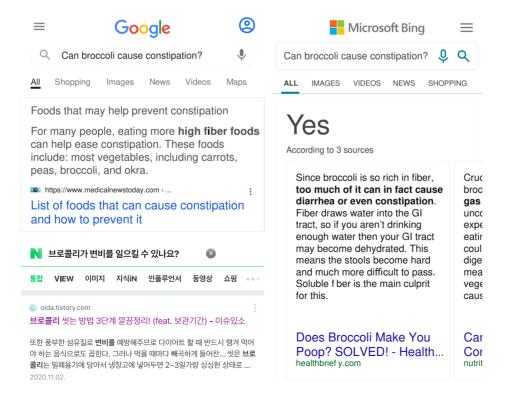


- At least 5% of questions submitted to search engines ask about causality.
- Existing benchmark datasets for causal QA are comparably small.
- Causal QA is hampered by a lack of specialized, large-scale resources.



Contributions

- Webis-CausalQA-22 dataset with 1.1M causal questions and answers.
- A set of rules to identify causal questions at near-perfect precision.
- Analisys of causal questions and a new taxonomy.
- Baseline question answering experiments on the dataset.



Dataset Webis-CausalQA-22

- □ 10 existing QA datasets: PAQ, GooAQ, MS MARCO, SQuAD, etc.
- Datasets are well-known, large, and contain lexically diverse questions.

Dataset Webis-CausalQA-22

- □ 10 existing QA datasets: PAQ, GooAQ, MS MARCO, SQuAD, etc.
- □ Datasets are well-known, large, and contain lexically diverse questions.
- □ A question is *causal* if answering it requires:
 - 1. identifying causal chains,
 - 2. inference on those chains,
 - 3. verbalizing the causal relations involved when answering it.

Dataset Webis-CausalQA-22

- □ 10 existing QA datasets: PAQ, GooAQ, MS MARCO, SQuAD, etc.
- □ Datasets are well-known, large, and contain lexically diverse questions.
- □ A question is *causal* if answering it requires:
 - 1. identifying causal chains,
 - 2. inference on those chains,
 - 3. verbalizing the causal relations involved when answering it.
- □ 7 regex rules to identify causal questions:

R1 [why] e.g.: Why does mosquito bite itch?

9

Dataset Webis-CausalQA-22

- □ 10 existing QA datasets: PAQ, GooAQ, MS MARCO, SQuAD, etc.
- □ Datasets are well-known, large, and contain lexically diverse questions.
- □ A question is *causal* if answering it requires:
 - 1. identifying causal chains,
 - 2. inference on those chains,
 - 3. verbalizing the causal relations involved when answering it.
- □ 7 regex rules to identify causal questions:

```
R1 [why] e.g.: Why does mosquito bite itch?
```

R2 [cause(s)?] e.g.: What causes broken blood vessels?

R7 [what (to do|should be done)] \([if | to | when] \)

e.g.: What to do if my Xbox won't connect to the Wi-Fi?

Dataset Webis-CausalQA-22

- □ 10 existing QA datasets: PAQ, GooAQ, MS MARCO, SQuAD, etc.
- □ Datasets are well-known, large, and contain lexically diverse questions.
- □ A question is *causal* if answering it requires:
 - 1. identifying causal chains,
 - 2. inference on those chains,
 - 3. verbalizing the causal relations involved when answering it.
- □ 7 regex rules to identify causal questions:

```
R1 [why] e.g.: Why does mosquito bite itch?
R2 [cause(s)?] e.g.: What causes broken blood vessels?
:
```

R7 [what (to do|should be done)] \[if | to | when]
e.g.: What to do if my Xbox won't connect to the Wi-Fi?

Webis-CausalQA-22 contains ca. 1.1 million causal QA pairs.

□ UnifiedQA model, pre-trained and fine-tuned [Khashabi et al.; EMNLP '20].

Benchmark

□ UnifiedQA model, pre-trained and fine-tuned [Khashabi et al.; EMNLP '20].

Dataset	Random 90/10 split						
	N	Fine-tuned model					
		ROUGE-L Tradition					
		Р	R	F_1	EM	F_1	
PAQ	76,961	0.95	0.95	0.94	0.91	0.94	
GooAQ	14,629	0.17	0.15	0.15	0.00	0.19	
MS MARCO QnA	2,557	0.45	0.42	0.39	0.13	0.40	
Natural Questions	121	0.37	0.34	0.32	0.16	0.33	
ELI5	13,104	0.16	0.09	0.10	0.00	0.12	
SearchQA	78	0.55	0.54	0.54	0.47	0.54	
SQuAD v. 2.0	321	0.96	0.96	0.95	0.93	0.95	
NewsQA	66	0.76	0.76	0.73	0.58	0.73	
HotpotQA	39	0.73	0.73	0.73	0.67	0.72	
TriviaQA	71	0.44	0.43	0.42	0.28	0.42	
Macro-averaged	107,947	0.55	0.54	0.53	0.41	0.53	
Micro-averaged	107,947	0.73	0.72	0.72	0.65	0.73	

13

Benchmark

□ UnifiedQA model, pre-trained and fine-tuned [Khashabi et al.; EMNLP '20].

Dataset	Random 90/10 split						
	N	Fine-tuned model					
		ROUGE-L Traditio				itional	
		Р	R	F_1	EM	F_1	
PAQ	76,961	0.95	0.95	0.94	0.91	0.94	
GooAQ	14,629	0.17	0.15	0.15	0.00	0.19	
MS MARCO QnA	2,557	0.45	0.42	0.39	0.13	0.40	
Natural Questions	121	0.37	0.34	0.32	0.16	0.33	
ELI5	13,104	0.16	0.09	0.10	0.00	0.12	
SearchQA	78	0.55	0.54	0.54	0.47	0.54	
SQuAD v. 2.0	321	0.96	0.96	0.95	0.93	0.95	
NewsQA	66	0.76	0.76	0.73	0.58	0.73	
HotpotQA	39	0.73	0.73	0.73	0.67	0.72	
TriviaQA	71	0.44	0.43	0.42	0.28	0.42	
Macro-averaged	107,947	0.55	0.54	0.53	0.41	0.53	
Micro-averaged	107,947	0.73	0.72	0.72	0.65	0.73	

Benchmark

- ☐ UnifiedQA model, pre-trained and fine-tuned [Khashabi et al.; EMNLP '20].
- \Box Highest F_1 on SQuAD is 0.93, while that of humans is 0.89 [Rajpurkar et al.; ACL '18].

Dataset	Random 90/10 split						
	N	Fine-tuned model					
			ROUGE	-L	Traditional		
		Р	R	F_1	EM	F_1	
PAQ	76,961	0.95	0.95	0.94	0.91	0.94	
GooAQ	14,629	0.17	0.15	0.15	0.00	0.19	
MS MARCO QnA	2,557	0.45	0.42	0.39	0.13	0.40	
Natural Questions	121	0.37	0.34	0.32	0.16	0.33	
ELI5	13,104	0.16	0.09	0.10	0.00	0.12	
SearchQA	78	0.55	0.54	0.54	0.47	0.54	
SQuAD v. 2.0	321	0.96	0.96	0.95	0.93	0.95	
NewsQA	66	0.76	0.76	0.73	0.58	0.73	
HotpotQA	39	0.73	0.73	0.73	0.67	0.72	
TriviaQA	71	0.44	0.43	0.42	0.28	0.42	
Macro-averaged	107,947	0.55	0.54	0.53	0.41	0.53	
Micro-averaged	107,947	0.73	0.72	0.72	0.65	0.73	

15

Causal Questions in Web Search

□ Data: 1.5 billion question-like Yandex log entries.

Causal Questions in Web Search

- □ Data: 1.5 billion question-like Yandex log entries.
- Ca. 82 million (about 5%) causal questions found with the rules.

Causal Questions in Web Search

- □ Data: 1.5 billion question-like Yandex log entries.
- □ Ca. 82 million (about 5%) causal questions found with the rules.
- "Why"-questions are most frequent (causal) questions
 e.g.: Why can't I log in into VKontakte? (cat. problem solving).

Causal Questions in Web Search

- Data: 1.5 billion question-like Yandex log entries.
- □ Ca. 82 million (about 5%) causal questions found with the rules.
- "Why"-questions are most frequent (causal) questions
 e.g.: Why can't I log in into VKontakte? (cat. problem solving).
- Most of the questions about causes or effects target causes of medical conditions or effects on health (cat. problem prevention).

Causal Questions in Web Search

- □ Data: 1.5 billion question-like Yandex log entries.
- □ Ca. 82 million (about 5%) causal questions found with the rules.
- "Why"-questions are most frequent (causal) questionse.g.: Why can't I log in into VKontakte? (cat. problem solving).
- Most of the questions about causes or effects target causes of medical conditions or effects on health (cat. problem prevention).
- 90% of the "what happens if"-questions are about dream interpretation e.g.: What will happen, if one dreams of pregnancy?

- Dataset with 1.1M QA pairs to advance research in causal QA.
- Rules to identify causal questions and search engine log analysis.
- Taxonomy of causal questions.
- Baseline QA systems on the constructed dataset.

Conclusions

- Dataset with 1.1M QA pairs to advance research in causal QA.
- Rules to identify causal questions and search engine log analysis.
- Taxonomy of causal questions.
- Baseline QA systems on the constructed dataset.

Future Work

Combine text matching QA systems with causal inference.

Code and data: github.com/webis-de/COLING-22

Conclusions

- Dataset with 1.1M QA pairs to advance research in causal QA.
- Rules to identify causal questions and search engine log analysis.
- Taxonomy of causal questions.
- Baseline QA systems on the constructed dataset.

Future Work

Combine text matching QA systems with causal inference.

Code and data: github.com/webis-de/COLING-22

thank you!