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About Me

Undergrad, Honours, PhD, RMIT University, up to 2010.

PostDoc, Bauhaus University Weimar, 2011 to current.

“Strategies for Robust Design of Structures” project.
I Includes simulation data mining and civil engineering sub-projects.
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Applications of Simulation Data Mining
Car crashworthiness (Kuhlmann et al., 2005; Mei and Thole, 2007).

Occupant restraint systems (Zhao et al., 2010).

Aviation (Fayyad et al., 1996; Painter et al., 2006).

Semiconductor manufacturing (Brady and Yellig, 2005).

http://en.wikipedia.org/wiki/Finite element method
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Interactive Bridge Design in Civil Engineering
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Supporting Bridge Design

Key idea:

Mine patterns in pre-computed bridge simulation results.

Why simulation data mining?:

Faster simulations, provide diagnosis, automated design, etc.

Consider models {mi ∈ M} and simulation results {yi ∈ Y }:
‖y1 	 y2‖ < ε ⇔ ϕDesign(m1,m2) ≈ 1.

Develop ϕDesign to predict the similarity of two designs with regards
to learned behavior.

Questions we can answer:

1 Identify good ‘?’ in ϕDesign(m1, ?) ≈ 1.

2 Predict the behavior of a new model m.

3 Learn cost optimization rules for any equivalence class M ′ ⊆ M.
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Methodology
Computation of the similarity measure in six steps:

1 Sample candidate designs.
2 Simulate the models.
3 Aggregate the simulation results.
4 Cluster the simulation results.
5 Sample the simulation results.
6 Learn a mapping from {mi ∈ M} to {yi ∈ Y }.

Future work disclaimer:

There are still competing alternatives in many steps to be explored.
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Step 1: Sample Candidate Designs
Data format:

IFC (Industry Foundation Classes): An object-oriented data model for
describing entities in the construction and building industries.

IFC-Bridge: An extension to IFC for bridges.

NURBS (Non-Uniform Rational Basis Spline): Novel extension to
IFC-Bridge in the project.

Data set:

14 641 geometry and material permutations of the model below.
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Step 2: Simulate the Models
Input:

IFC-Bridge data models (Lebegue et al., 2007) with NURBS.

Simulation Engine:

Finite Element Method implementation (Gerold, 2010). Our “oracle”.

Output:

VTK (Visualization Toolkit) format (Schroeder et al., 1996).
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Step 3: Aggregate the Simulation Results

Original data:

12 064 points and measurements from the FEM mesh.

Process:

Consultation with a Numerics professor.

Aggregated data (45 measurements):

Five regions (below).

Maximum displacement, strain, and stress.

X, Y, and Z co-ordinates.
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Step 4: Cluster the Simulation Results

Goal:

Learn similar groupings of simulated models.

Clustering algorithms:

K-means (Hartigan and Wong, 1979).

Hierarchical Agglomerative Clustering (Gowda and Krishna, 1978).

AiTools implementation (http://webis.de/research/projects/aitools).

Evaluation:

Expected Density measure (Stein et al., 2003).

Higher quality clusterings give have higher expected density score.
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Step 5: Sample the Simulation Results

Example (350 items):

Cluster A: 100 items. = 4 950
(
100(100−1)

2

)
positive pairs.

Cluster B: 120 items. = 7 140
(
120(120−1)

2

)
positive pairs.

Cluster C: 130 items. = 8 385
(
130(130−1)

2

)
positive pairs.

= 20 475 positive pairs.
+ 40 600 negative pairs.

= 61 075 total pairs.

Sampling strategy (from approximately 108 pairs):

Class balance.

Equal sampling from each cluster of positive pairs.

Random sampling for negative pairs.
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Step 6: Machine Learning
Training data:

Duples in the form 〈mk 	ml , cj〉.
Learning:

Ten-fold cross validation.
Naive Bayes and Maximum Entropy classifiers (Burrows et al., 2011).

Outcome:

Class probability estimates [0, 1] for evaluating ϕDesign.
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Clustering Results
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Accuracy Results

K-means (12) HAC (37)
Data set size Naive bayes Entropy Naive bayes Entropy

100 94.0 94.0 94.0 96.0
200 92.5 93.0 90.0 91.0
500 85.4 90.6 89.8 90.8

1 000 91.4 94.3 90.8 91.2
2 000 88.6 92.4 89.8 91.0
5 000 89.4 92.7 89.3 90.5

10 000 89.6 92.4 88.5 89.4
20 000 89.8 92.3 89.6 90.3
50 000 89.9 92.7 89.1 90.1

100 000 89.7 92.4 89.1 89.7
200 000 89.8 92.5 89.1 89.8

all 89.8 92.5 89.1 89.7
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Future Work

Use of a rank correlation co-efficient such as Spearman’s rho,
Pearson’s r, or Kendall’s tau to compare the correlation of the ranks
of ϕDesign with the ranks of the cosine similarity taken from the
simulation space.

Apply clustering instead of ranking for the evaluation, and compare
the coverage of the clusterings (F-measure).

Apply domain decomposition as a parallelization technique for solving
partial differential equations in FEM analysis.
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Summary

Mine patterns in pre-computed bridge simulation results for
knowledge discovery.

Six step methodology for computing ϕDesign so that new questions
can be answered.

Initial results are promising, but more remains for future work.

Thankyou!

Steven Burrows
steven.burrows@uni-weimar.de

www.webis.de
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