Simulation Data Mining for Supporting Bridge Design

Ninth Australasian Data Mining Conference

Steven Burrows[†] Benno Stein[†] Jörg Frochte[‡] David Wiesner[†] Katja Müller[†]

> [†] Bauhaus University Weimar [‡] Bochum University of Applied Science

> > 1-2 December 2011

About Me

- Undergrad, Honours, PhD, RMIT University, up to 2010.
- PostDoc, Bauhaus University Weimar, 2011 to current.
- "Strategies for Robust Design of Structures" project.
 - Includes simulation data mining and civil engineering sub-projects.

Applications of Simulation Data Mining

- Car crashworthiness (Kuhlmann et al., 2005; Mei and Thole, 2007).
- Occupant restraint systems (Zhao et al., 2010).
- Aviation (Fayyad et al., 1996; Painter et al., 2006).
- Semiconductor manufacturing (Brady and Yellig, 2005).

http://en.wikipedia.org/wiki/Finite_element_method

Interactive Bridge Design in Civil Engineering

Supporting Bridge Design

Key idea:

• Mine patterns in pre-computed bridge simulation results.

Why simulation data mining?:

• Faster simulations, provide diagnosis, automated design, etc.

Consider models $\{m_i \in M\}$ and simulation results $\{y_i \in Y\}$:

•
$$\|\mathbf{y}_1 \ominus \mathbf{y}_2\| < \varepsilon \quad \Leftrightarrow \quad \varphi_{\text{Design}}(\mathbf{m}_1, \mathbf{m}_2) \approx 1.$$

• Develop $\varphi_{\rm Design}$ to predict the similarity of two designs with regards to learned behavior.

Questions we can answer:

- Identify good '?' in $\varphi_{\text{Design}}(\mathbf{m}_1,?) \approx 1$.
- Predict the behavior of a new model m.
- Solution cost optimization rules for any equivalence class $M' \subseteq M$.

Methodology

Computation of the similarity measure in six steps:

- Sample candidate designs.
- ② Simulate the models.
- Aggregate the simulation results.
- Oluster the simulation results.
- Sample the simulation results.
- Learn a mapping from $\{m_i \in M\}$ to $\{y_i \in Y\}$.

Future work disclaimer:

• There are still competing alternatives in many steps to be explored.

Step 1: Sample Candidate Designs

Data format:

- IFC (Industry Foundation Classes): An object-oriented data model for describing entities in the construction and building industries.
- IFC-Bridge: An extension to IFC for bridges.
- NURBS (Non-Uniform Rational Basis Spline): Novel extension to IFC-Bridge in the project.

Data set:

• 14641 geometry and material permutations of the model below.

Step 2: Simulate the Models

Input:

• IFC-Bridge data models (Lebegue et al., 2007) with NURBS. Simulation Engine:

• Finite Element Method implementation (Gerold, 2010). Our "oracle".

Output:

• VTK (Visualization Toolkit) format (Schroeder et al., 1996).

Step 3: Aggregate the Simulation Results

Original data:

• 12064 points and measurements from the FEM mesh.

Process:

• Consultation with a Numerics professor.

Aggregated data (45 measurements):

- Five regions (below).
- Maximum displacement, strain, and stress.
- X, Y, and Z co-ordinates.

Step 4: Cluster the Simulation Results

Goal:

• Learn similar groupings of simulated models.

Clustering algorithms:

- K-means (Hartigan and Wong, 1979).
- Hierarchical Agglomerative Clustering (Gowda and Krishna, 1978).
- AiTools implementation (http://webis.de/research/projects/aitools).

Evaluation:

- Expected Density measure (Stein et al., 2003).
- Higher quality clusterings give have higher expected density score.

Step 5: Sample the Simulation Results

Example (350 items):

Cluster A: 100 items.	$=4950\left(\frac{100(100-1)}{2}\right)$ positive pairs.		
Cluster B: 120 items.	$= 7140 \left(\frac{120(120-1)}{2}\right)$ positive pairs.		
Cluster C: 130 items.	$= 8385 \left(\frac{130(130-1)}{2}\right)$ positive pairs.		
	= 20475 positive pairs. + 40600 negative pairs.		
	= 61075 total pairs.		

Sampling strategy (from approximately 10⁸ pairs):

- Class balance.
- Equal sampling from each cluster of positive pairs.
- Random sampling for negative pairs.

Step 6: Machine Learning

Training data:

• Duples in the form $\langle \mathbf{m}_k \ominus \mathbf{m}_l, c_j \rangle$.

Learning:

• Ten-fold cross validation.

• Naive Bayes and Maximum Entropy classifiers (Burrows et al., 2011). Outcome:

 \bullet Class probability estimates [0, 1] for evaluating $\varphi_{Design}.$

Clustering Results

Accuracy Results

	K-means (12)		HAC (37)	
Data set size	Naive bayes	Entropy	Naive bayes	Entropy
100	94.0	94.0	94.0	96.0
200	92.5	93.0	90.0	91.0
500	85.4	90.6	89.8	90.8
1 000	91.4	94.3	90.8	91.2
2 000	88.6	92.4	89.8	91.0
5 000	89.4	92.7	89.3	90.5
10 000	89.6	92.4	88.5	89.4
20 000	89.8	92.3	89.6	90.3
50 000	89.9	92.7	89.1	90.1
100 000	89.7	92.4	89.1	89.7
200 000	89.8	92.5	89.1	89.8
all	89.8	92.5	89.1	89.7

Future Work

- Use of a rank correlation co-efficient such as Spearman's *rho*, Pearson's *r*, or Kendall's *tau* to compare the correlation of the ranks of φ_{Design} with the ranks of the cosine similarity taken from the simulation space.
- Apply clustering instead of ranking for the evaluation, and compare the coverage of the clusterings (F-measure).
- Apply *domain decomposition* as a parallelization technique for solving partial differential equations in FEM analysis.

Summary

- Mine patterns in pre-computed bridge simulation results for knowledge discovery.
- Six step methodology for computing $\varphi_{\rm Design}$ so that new questions can be answered.
- Initial results are promising, but more remains for future work.

Thankyou!

Steven Burrows steven.burrows@uni-weimar.de www.webis.de