Learning Overlap Optimization for Domain Decomposition Methods

17th Pacific-Asia Conference on Knowledge Discovery and Data Mining

Steven Burrows[†] Jörg Frochte[‡] Michael Völske[†] Ana Belén Martina Tores[‡] Benno Stein[†]

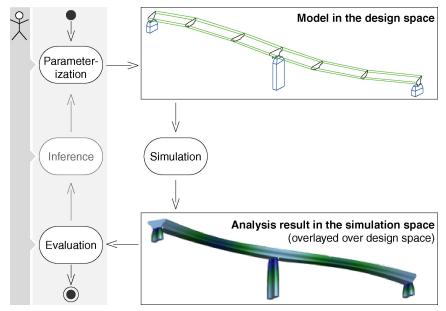
> [†] Bauhaus-Universität Weimar [‡] Bochum University of Applied Science

14-17 April 2013

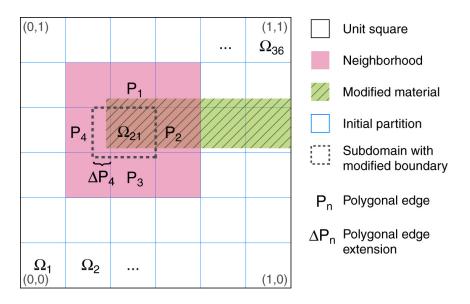
About Me

- RMIT University: Undergrad, Honours, and PhD up to 2010.
- Bauhaus-Universität Weimar: PostDoc from 2011–2012.
 - Research in Digital Engineering and Simulation Data Mining.
- German Institute for International Educational Research: Research Scientist from 2013 to current.

Interactive Bridge Design in Civil Engineering



Parallel Simulation with Domain Decomposition



Problem Definition

Problem: Poisson's Equation

- A second-order elliptic partial-differential equation (PDE).
- Has application in modeling stationary heat.
- Additional applications in Newtonian gravity and electrostatics.
- Transferable results. E.g: Stress modeling in engineering science.

The Maths

•
$$-\varepsilon(x)
abla^2 u = f(x)$$
 on Ω ; $u = g(x)$ on $\partial\Omega$

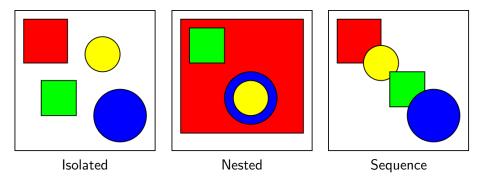
Ω: geometry (i.e. a bar). f(x) ≥ 0: heat sources. ε(x): material property. g(x): temperatures on the boundary ∂Ω of the domain Ω.

Numerical Method: Finite Element Method

- A standard method in most engineering software solutions.
- Applied to the unit square. $\Omega = [0, 1] \times [0, 1]$.
- Checkerboard partitioning for a restricted problem space.

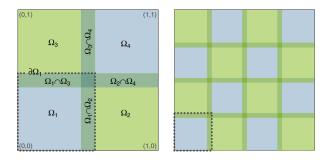
Generating Diffusion Specifications

Diffusion specification: A unique set of material values within the unit square to solve Poisson's equation.



Shapes and sizes are based on a deterministic pseudo random number generator.

Generating Domain Specifications

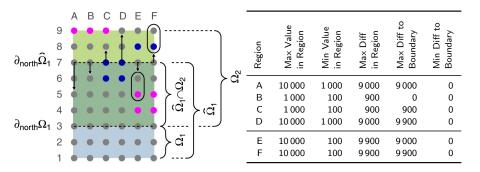


- Assuming 0.4% global overlap on a 4 \times 4 checkerboard, and
- Three adjustments per sub-domain (-0.2%, +0.0%, +0.2%), gives us
- 48 domain specifications per diffusion specification.

Extracting Features from Neighborhoods

Example. Material settings are:

• Pink: $\epsilon = 10\,000$. Gray: $\epsilon = 1\,000$. Blue: $\epsilon = 100$.



• Feature sets: FINE (A–D), COARSE (E–F), and COMBINED (A–F).

• 120 features can be extracted in total.

The FPO Evaluation Measure

Motivation:

- Need a theoretical and architecture independent measure.
- We propose "FPO" (floating point operations).

Notation:

- Assume a hardware architecture with *s* computation nodes.
- s: also number of sub-domains.
- *n_i*: number of unknowns in a sub-domain.
- *I*: number of domain decomposition iterations.

• FPO
$$pprox \sum_{i=1}^{s} rac{n_i^3}{3} + I \cdot n_i^2$$
 .

Note — FPO is only comparable for solutions with:

- Same number of sub-domains, and
- Same hardware architecture.

Machine Learning Methodology

Training. For each diffusion file:

- **1** Extract features for all 48 permutations of the neighborhoods.
- **②** Compute FPO for all 48 permutations with simulation.
- Second the mapping from the set of input features to FPO.

Testing. For each diffusion file:

- Extract features for all 48 permutations of the neighborhoods.
- **2** Predict FPO for all 48 permutations using a regression model.
- Identify the minimum FPO value for each neighborhood.

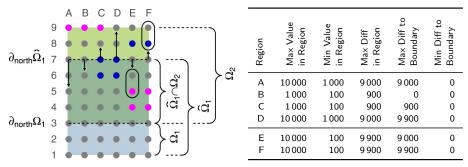
Evaluation. For each diffusion file:

- **O** Compute FPO on the best combined specification with simulation.
- ② Compare the predicted FPO score with that of the baseline.

Baseline Overlap Decision

Global	Total overlap for various grid sizes (% of unknowns)									
overlap	1 imes 1	2×2	3×3	4 imes 4	5 imes 5	6×6	7×7	8 × 8		
minimum	0.00	0.40	0.80	1.19	1.59	1.99	2.38	2.77		
0.2%	0.00	1.19	2.38	3.56	4.73	5.90	7.06	8.21		
0.4%	0.00	1.99	3.95	5.90	7.82	9.73	11.62	13.48		
0.6%	0.00	2.77	5.51	8.21	10.87	13.48	16.06	18.60		
0.8%	0.00	3.56	7.06	10.49	13.85	17.16	20.40	23.57		

Data Analysis



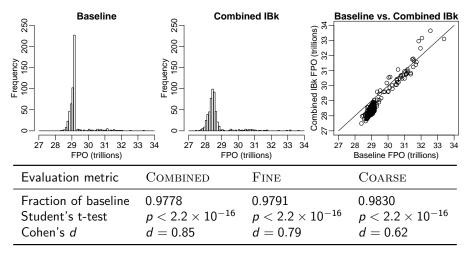
Region A Feature	Invalid	No Diff	Default	Other	Total
Max Value in Region	12 000	0	34 171	1 829	48 000
Min Value in Region	12 000	0	35 990	10	48 000
Max Diff in Region	12 000	34 171	0	1 829	48 000
Min Diff to Boundary	12000	36 000	0	0	48 000
Max Diff to Boundary	12 000	35 361	0	639	48 000

Steven Burrows (Bauhaus University)

Learning Overlap Optimization

Regression Algorithms and Feature Sets

- Algorithms: simple linear, nearest neighbor, decision tree, and SVM.
- Feature sets: COMBINED, FINE, and COARSE.
- Only the nearest neighbor algorithm offered improvement (below).



Forward Plan

- Increase the checkerboard size for more precise learning.
- **2** Increase the training set size with additional diffusion specifications.
- Opply non-uniform boundary adjustments with sub-domains.
- Drop the checkerboard constraint in favor of polygonal boundaries.
- Sonsider three-dimensional problems later.

Summary

- We have proposed a method for learning overlap optimization.
- New feature sets have been developed.
- The FPO evaluation metric has been developed.
- Results to date are a step in the right direction.

Thankyou!

Steven Burrows steven.burrows@uni-weimar.de www.webis.de