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❑ Given a learning task and ground truth within WARC files, train a model.
Only a fraction of the records within the WARC files are ground truth.

❑ Goal: Training at web scale (billions of WARC files)
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❑ Given a mining task and a trained (classification) model, collect relevant data.
Only a fraction of the records within the WARC files are relevant.

❑ Goal: Mining at web scale (billions of WARC files)
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❑ Given a mining task and a trained (classification) model, collect relevant data.
Only a fraction of the records within the WARC files are relevant.

❑ Goal: Mining at web scale (billions of WARC files)

Observations:

❑ Mining / filtering WARC files is “embarrassingly parallel”.

❑ Decompressing WARC files, and processing WARC records are CPU bound.

❑ The preprocessing step results in a variable data flow.

❑ Training of neural networks is GPU bound and presumes constant data flow.

❑ WARC storage, parallel processing, and GPU bound processing are on separate clusters.
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Webis Data Center (Digital Bauhaus Lab)

Nodes

RAM [TB]

Cores

Disk [PB]

α-web [2009]

44

0.8

176

≅ 3.2 TFLOPs

0.2

β-web [2015]

135

28

1,740

≅ 67.4 TFLOPs

4.1

γ-web [2016 + 2021]

9

7.5

672

227,328

≅ 8 PFLOPs

0.08

+

δ-web [2018]

78

10

1,248

≅ 119.8 TFLOPs

12

ε-web [2020]

55

7

1,100

≅ 44 TFLOPs

0.1

Typical research:

α-Web. Teaching, Staging environment

β-Web. Web mining (map reduce), CPU parallelization

γ-Web. Machine learning (embedding, deep learning), Language modeling

δ-Web. Web archive storage (10 PB from Internet Archive and Common Crawl)

ϵ-Web. Search index construction, Argument search
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Web Archive Processing
WARC-DL: Pipeline for Processing at Petabyte Scale

PySpark
parallelize
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1. PySpark distributes WARCs among workers

2. FastWARC decompresses and iterates records
CPU-bound filtering, feature extraction, tokenization

3. Pickled record streams

4. Conversion to TensorFlow datasets and source interleaving

5. Inference: Batched processing by a Keras model
and second filtering based on classification results

6. Optional filtering (e.g., deduplication) and model training
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1. PySpark distributes WARCs among workers

2. FastWARC decompresses and iterates records
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1. PySpark distributes WARCs among workers

2. FastWARC decompresses and iterates records
CPU-bound filtering, feature extraction, tokenization

3. Pickled record streams

4. Conversion to TensorFlow datasets and source interleaving

5. Inference: Batched processing by a Keras model
and second filtering based on classification results

6. Optional filtering (e.g., deduplication) and model training
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1. PySpark distributes WARCs among workers

2. FastWARC decompresses and iterates records
CPU-bound filtering, feature extraction, tokenization

3. Pickled record streams

4. Conversion to TensorFlow datasets and source interleaving

5. Inference: Batched processing by a Keras model
and second filtering based on classification results

6. Optional filtering (e.g., deduplication) and model training
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Application: Building Large-Scale Multimodal Datasets
For Training Generative Text-To-Image Models

❑ CompVis group created the Latent Diffusion model

❑ LAION created a dataset of text-image pairs
Consists of image urls and img alt attribute texts from Common Crawl

❑ Stability AI finetuned Latent Diffusion on this dataset to create Stable Diffusion

Image generated by Stable Diffusion with the prompt

“award-winning cake shaped like the Swiss Alps”
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Application: Building Large-Scale Multimodal Datasets
For Training Generative Text-To-Image Models

❑ CompVis group created the Latent Diffusion model

❑ LAION created a dataset of text-image pairs
Consists of image urls and img alt attribute texts from Common Crawl

❑ Stability AI finetuned Latent Diffusion on this dataset to create Stable Diffusion

❑ Next target together with LAION: Building a better multimodal dataset

❑ Obtaining such a dataset requires preprocessing,
rule-based and DL-based filtering (e.g., NSFW filtering)
Using the WARC-DL pipeline allows quick deployment on existing infrastructure

❑ Include text, images, videos and audio

❑ Extract more context from around the media links
Will enable text-to-image models to work with more complex prompts
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Conclusion

WARC-DL can be used for petascale web archive processing:

❑ Training and applying domain-specific models for web mining

❑ Dataset extraction

❑ (Multimodal) Search engines
Will be applied in the upcoming Open Web Search project
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Conclusion

WARC-DL can be used for petascale web archive processing:

❑ Training and applying domain-specific models for web mining

❑ Dataset extraction

❑ (Multimodal) Search engines
Will be applied in the upcoming Open Web Search project

Thank you!

13 △ © Webis 2022


