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Motivation

❑ Quality problems induced by the LLMs and the user often does not realize

❑ Models change quickly - making a reproducible and comparable evaluation
difficult
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Generative Models as an Index

❑ Inspired by the idea of the Infinite Index:

See generation with a prompt as
retrieval with a query, but on an infinite index

❑ Fundamental difference: Set of documents that is being retrieved on

❑ Will try to identify and use parallels between traditional and generative IR
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Generative IR Systems

❑ Conversational approach

❑ Answering a question in natural language

❑ Including information and references from the web
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List SERP vs. Text SERP
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Query

❑ SERPs are traditionally lists of document references (10 blue links)

❑ LLMs generate text documents with optional source references (text SERPs)
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Components for the Evaluation of Generative IR Systems

➀ User Models

➁ Evaluation Metrics

➂ Systems for Reproducible Evaluation Experiments
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➀
User Models



Applying the Accumulation Model

❑ Traditional IR:

– a utility model (how each result provides utility to the user)
– a browsing model (how the user interacts with results)
– an accumulation model (how individual utility of documents is aggregated)

❑ Applying this idea to generative IR

❑ Evaluation will require segmentation into statements

❑ Results in a measure that looks similar to discounted cumulative gain (DCG)
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➁
Evaluation Metrics



Evaluation Objectives

❑ Evaluation objectives must be grounded in the underlying user model
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Baselines

❑ Retrieval, then generation:

– Provide LLM with query and snippets from a traditional IR system
– Relies on high context length

❑ Generation, then retrieval:

– Use LLM to generate a better query that is piped into a traditional IR
system

❑ Approaches in between
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Baselines

❑ Retrieval, then generation:

– Provide LLM with query and snippets from a traditional IR system
– Relies on high context length

❑ Generation, then retrieval:

– Use LLM to generate a better query that is piped into a traditional IR
system

❑ Approaches in between

❑ ChatNoir Chat based on Alpaca and the Clueweb
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➂
Systems for Reproducible Evaluation Experiments



Adaptation of TIRA for Generative IR Systems

❑ Participants submit LLM-powered generative IR systems

❑ Central evaluation on given tasks

❑ GPU support
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Implementing a Reproducible LLM Infrastructure

❑ Self-hosted LLMs and dynamically changing blackboxes (ChatGPT) are
problematic (even with wiretapping)

Approaches should still work
when changing the underlying LLM
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Implementing a Reproducible LLM Infrastructure

❑ Self-hosted LLMs and dynamically changing blackboxes (ChatGPT) are
problematic (even with wiretapping)

Approaches should still work
when changing the underlying LLM

❑ Providing an API infrastructure

❑ Allows to repeat approaches later by switching to a newer state-of-the-art LLM

❑ Real time hosting vs. batch processing

❑ Hosting many different LLMs in parallel is difficult

❑ Working on a Kubernetes infrastructure for dynamic scaling (scale to zero)
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Conclusion

❑ Adapting traditional IR system evaluation for generative IR systems

❑ Need to focus on reproducibility when designing evaluation systems
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Discussion

❑ How to solve the problem of having no pre-labeled judgements?

– Offline evaluation with human annotations? Requires new evaluation for
every new version of the underlying LLM

– LLM-based simulation? Requires an LLM that is better than the one
underlying the generative IR system

❑ Where will generative IR systems be extended to, requiring different user
models and metrics? Image SERPs, . . .
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