

Maik Fröbe¹ Christopher Akiki² Martin Potthast² Matthias Hagen¹ Friedrich Schiller University Jena¹ Leipzig University²

SPIRE, 8–10 November 2022

webis.de

Motivation: Leaderboard for Retrieval Effectiveness on Robust04

- Bobust04: 249 test queries with dense judgments
 - Traditional setup with cross-validation

1

Motivation: Leaderboard for Retrieval Effectiveness on Robust04

- Robust04: 249 test queries with dense judgments
 - Traditional setup with cross-validation
- MonoT5 (zero-shot)
 - Trained only on MS MARCO (> 10 million queries available)
 - There might be overlapping queries: Is this train-test leakage?

Overlapping Queries for Topic 441 of Robust04

MS MARCO

Robust04

Train on many queries

Title: lyme disease Description: How do you prevent and treat Lyme disease? Narrative: Documents that discuss current prevention and treatment techniques for Lyme disease are relevant. Reports of research on new treatments of the disease are also relevant. Query variants: Lyme disease treatments

lyme disease treatments prevent lyme disease

□ Test on 249 queries

Overlapping Queries for Topic 441 of Robust04

MS MARCO

Robust04

Train on many queries

Title: lyme disease Description: How do you prevent and treat Lyme disease? Narrative: Documents that discuss current prevention and treatment techniques for Lyme disease are relevant. Reports of research on new treatments of the disease are also relevant. Query variants: lyme disease treatments prevent lyme disease

□ Test on 249 queries

Overlapping Queries for Topic 441 of Robust04

MS MARCO

Robust04

Train on many queries

Title: lyme disease Description: How do you prevent and treat Lyme disease? Narrative: Documents that discuss current prevention and treatment techniques for Lyme disease are relevant. Reports of research on new treatments of the disease are also relevant. Query variants: lyme disease treatments prevent lyme disease

□ Test on 249 queries

Overlapping Queries for Topic 441 of Robust04

MS MARCO

Robust04

□ Train on many queries

Title: lyme disease Description: How do you prevent and treat Lyme disease? Narrative: Documents that discuss current prevention and treatment techniques for Lyme disease are relevant. Reports of research on new treatments of the disease are also relevant. Query variants:

lyme disease treatments prevent lyme disease

□ Test on 249 queries

Overlapping Queries for Topic 441 of Robust04

MS MARCO

Robust04

Train on many queries

Description: How do you prevent and treat Lyme disease? Narrative: Documents that discuss current prevention and treatment techniques for Lyme disease are relevant. Reports of research on new treatments of the disease are also relevant. Query variants:

lyme disease treatments prevent lyme disease . . .

Test on 249 queries

Is the evaluation of MonoT5 invalidated by overlapping queries?

Might MonoT5 Benefit From Overlapping Queries?

MonoT5

- □ 3 billion parameters sequence-to-sequence model
- \Box The query q and the document d are embedded in a input sequence:

Query: q Document: d Relevant:

Documents ranked by the probability that the next token is "true"

Might MonoT5 Benefit From Overlapping Queries?

MonoT5

- □ 3 billion parameters sequence-to-sequence model
- \Box The query q and the document d are embedded in a input sequence:

Query: q Document: d Relevant:

Documents ranked by the probability that the next token is "true"

WHEN YOU TRAIN PREDICTIVE MODELS ON INPUT FROM YOUR USERS, IT CAN

Candidates for Leaking Queries

- □ Nearest-neighbor search for overlapping queries
- □ Sentence-BERT embeddings for all MS MARCO and ORCAS queries
- Exact cosine similarity nearest-neighbor search with Faiss

Candidates for Leaking Queries

- □ Nearest-neighbor search for overlapping queries
- □ Sentence-BERT embeddings for all MS MARCO and ORCAS queries
- Exact cosine similarity nearest-neighbor search with Faiss

- □ We review 100 query-topic pairs to identify a precision-oriented threshold
- Candidates for overlapping queries:

Candidates for Leaking Queries

- □ Nearest-neighbor search for overlapping queries
- □ Sentence-BERT embeddings for all MS MARCO and ORCAS queries
- Exact cosine similarity nearest-neighbor search with Faiss

- □ We review 100 query-topic pairs to identify a precision-oriented threshold
- Candidates for overlapping queries:

Candidates	Robust04	
	Topics	Queries
Title	140	1,775

Candidates for Leaking Queries

- □ Nearest-neighbor search for overlapping queries
- □ Sentence-BERT embeddings for all MS MARCO and ORCAS queries
- Exact cosine similarity nearest-neighbor search with Faiss

- □ We review 100 query-topic pairs to identify a precision-oriented threshold
- Candidates for overlapping queries:

Candidates	Robust04	
	Topics	Queries
Title	140	1,775
Description	8	50

Candidates for Leaking Queries

- □ Nearest-neighbor search for overlapping queries
- □ Sentence-BERT embeddings for all MS MARCO and ORCAS queries
- Exact cosine similarity nearest-neighbor search with Faiss

- □ We review 100 query-topic pairs to identify a precision-oriented threshold
- Candidates for overlapping queries:

Candidates	Robust04	
	Topics	Queries
Title	140	1,775
Description	8	50
Variants	167	3,356

Candidates for Leaking Queries

- □ Nearest-neighbor search for overlapping queries
- □ Sentence-BERT embeddings for all MS MARCO and ORCAS queries
- Exact cosine similarity nearest-neighbor search with Faiss

- □ We review 100 query-topic pairs to identify a precision-oriented threshold
- Candidates for overlapping queries:

Candidates	Robust04	
	Topics	Queries
Title	140	1,775
Description	8	50
Variants	167	3,356
Union	181	3,960

Verification of Candidates for Leaking Queries

- □ Manually review of the 5 most similar candidates per topic above threshold
- Identified query reformulation types:

Туре	Queries
Identical	187
Generalization	124
Specialization	228
Reformulation	182
Different Topic	106

Verification of Candidates for Leaking Queries

- □ Manually review of the 5 most similar candidates per topic above threshold
- Identified query reformulation types:

Туре	Queries
Identical	187
Generalization	124
Specialization	228
Reformulation	182
Different Topic	106

172 of 249 test queries from Robust04 occur in MS MARCO (69%)

Impact of Leaking Queries: Experimental Setup

- Models trained on dedicated datasets to assess train-test leakage
- □ Varying training set sizes: 1,000 to 128,000 instances
- Each model trained five times on each dataset
- **Training Datasets**
 - No Leakage
 - Random non-leaking queries
 - balanced between MS MARCO and ORCAS
 - MS MARCO Leakage
 - 500 random manually verified leaking queries from MS MARCO
 - supplemented by no-leakage queries
 - Test Leakage
 - 500 queries from the actual test data
 - supplemented by no-leakage queries
 - Meant as an "upper bound" for any train-test leakage effect

Effectiveness of Retrieval Models

Effectiveness of Retrieval Models

Multiple models in five-fold cross-validation setup

Model	nDCG@10 on R04		
	No Leakage	MS MARCO Leakage	Test Leakage
Duet	0.201	0.198	0.224 [†]
KNRM	0.194	0.214 [†]	0.309 [†]
monoBERT	0.394	0.373^{\dagger}	0.396
monoT5	0.461	0.457	0.478 [†]
PACRR	0.382	0.364^{\dagger}	0.391

Effectiveness of Retrieval Models

Increase in rank-offset between leaked relevant and non-relevant documents

Model	MS MARCO Leakage	Test Leakage
Duet	6.378 ±32.15	$0.809 \scriptstyle \pm 17.69$
KNRM	0.640 ± 19.22	$1.335{\scriptstyle~\pm 11.75}$
monoBERT	$0.692 \scriptstyle \pm 17.97$	$\textbf{3.886} \pm \textbf{20.39}$
monoT5	$\textbf{0.443}_{\pm 8.60}$	$\textbf{3.443} \pm \textbf{19.96}$
PACRR	$\textbf{0.043} \scriptstyle \pm 19.30$	1.952 ± 17.71

Takeaways

- Possible train-test leakage for models trained on MS MARCO
 - Potential to invalidate experiments
 - Default in PyTerrier/Pyserini/PyGaggle often trained on MS MARCO
 - Only few training instances overlap: Impact measurable, but negligible
- □ Future work:
 - Effects on Dense Retrieval models
 - Practical consequences for real search engines

Takeaways

- Possible train-test leakage for models trained on MS MARCO
 - Potential to invalidate experiments
 - Default in PyTerrier/Pyserini/PyGaggle often trained on MS MARCO
 - Only few training instances overlap: Impact measurable, but negligible
- □ Future work:
 - Effects on Dense Retrieval models
 - Practical consequences for real search engines

Thank You!

