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Corpus Subsampling
Neural Retrieval Models are Power Hungry
[Scells’22]
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Neural Retrieval Models are Power Hungry
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Green IR is ...
[Schwartz’20]

Research that yields novel results while taking into account the
computational cost, encouraging a reduction in resources spent.
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Corpus Subsampling
Considerations to Make Research-Oriented Evaluations Greener

Our Evaluation will always give us some number

❑ Is this number meaningful?
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Our Evaluation will always give us some number

❑ Is this number meaningful?

Solution: Ensure that our evaluation is reliable
[Voorhees’19]

❑ Observations transfer to similar scenarios with a high probability

System A > System B
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Considerations to Make Research-Oriented Evaluations Greener

Our Evaluation will always give us some number

❑ Is this number meaningful?

Solution: Ensure that our evaluation is reliable
[Voorhees’19]

❑ Observations transfer to similar scenarios with a high probability

System A > System B

Correlations of system rankings can confirm the reliability of evaluations
[Breuer’20]

Step 1: Create a system ranking with all data

System A > Sytem B > System C > System D
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Corpus Subsampling
Considerations to Make Research-Oriented Evaluations Greener

Our Evaluation will always give us some number

❑ Is this number meaningful?

Solution: Ensure that our evaluation is reliable
[Voorhees’19]

❑ Observations transfer to similar scenarios with a high probability

System A > System B

Correlations of system rankings can confirm the reliability of evaluations
[Breuer’20]

Step 1: Create a system ranking with all data

System A > Sytem B > System C > System D

Step 2: Repeat the experiment in a „greener“ setting

New System Ranking τAP kWh
System A > Sytem B > System C > System D 1.0 1000
System A > Sytem B > System D > System C 0.8 1
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Corpus Subsampling
How build our Evaluation Dataset? Step 1: Queries

Many queries with few judgments or few queries with many judgments?
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Corpus Subsampling
How build our Evaluation Dataset? Step 1: Queries

Many queries with few judgments or few queries with many judgments?

How many different rankings?

Labels Top-10 Rankings
0 1 2 3
∞ 1 — — 11
∞ 10 10 10 410 > 1 million
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Corpus Subsampling
How build our Evaluation Dataset? Step 2: Documents

Evaluation Corpora with top-k pooling typically:

❑ Have 50 queries
❑ Pool 30 to 100 systems
❑ Between 10 million and 1 billion documents
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Corpus Subsampling
How build our Evaluation Dataset? Step 2: Documents

Evaluation Corpora with top-k pooling typically:

❑ Have 50 queries
❑ Pool 30 to 100 systems
❑ Between 10 million and 1 billion documents

What documents to include to evaluate on ca. 50 pooled queries?

Considerations:

❑ A few million document suffice to satisfy most information needs
[Mei’08]

❑ We do not need to include all relevant documents
❑ We only need a subset that allows reliable evaluations
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Corpus Subsampling
Document Selection Strategies

Judgment Pool:

❑ Select all documents with a judgment. E.g., the top-10 pool
❑ Disadvantage: Effectiveness overestimated in post-hoc experiments

[Sakai’08,Fröbe’23]
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❑ Select all documents with a judgment. E.g., the top-10 pool
❑ Disadvantage: Effectiveness overestimated in post-hoc experiments

[Sakai’08,Fröbe’23]

Re-Ranking:

❑ Select all documents retrieved by a model. E.g., the top-1k of BM25
❑ Disadvantage: Bias towards the first stage model
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Document Selection Strategies

Judgment Pool:

❑ Select all documents with a judgment. E.g., the top-10 pool
❑ Disadvantage: Effectiveness overestimated in post-hoc experiments

[Sakai’08,Fröbe’23]

Re-Ranking:

❑ Select all documents retrieved by a model. E.g., the top-1k of BM25
❑ Disadvantage: Bias towards the first stage model

Judgment Pool + Random

❑ All documents with a judgment plus random documents
❑ Disadvantage: Random documents are too easy negatives
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Corpus Subsampling
Document Selection Strategies

Judgment Pool:

❑ Select all documents with a judgment. E.g., the top-10 pool
❑ Disadvantage: Effectiveness overestimated in post-hoc experiments

[Sakai’08,Fröbe’23]

Re-Ranking:

❑ Select all documents retrieved by a model. E.g., the top-1k of BM25
❑ Disadvantage: Bias towards the first stage model

Judgment Pool + Random

❑ All documents with a judgment plus random documents
❑ Disadvantage: Random documents are too easy negatives

Re-Pooling

❑ Re-Pool to k
′
>> k. E.g., top-100 or 1k for a top-10 judgment pool

❑ Advantage: Incorporates many distractors. Can use all above.
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Corpus Subsampling
Evaluation: Reliability of System Rankings

Experiments on 9 evaluation campaigns on four corpora

❑ ClueWeb09, ClueWeb12, Robust04, MS MARCO

19 © Webis 2025



Corpus Subsampling
Evaluation: Reliability of System Rankings

Experiments on 9 evaluation campaigns on four corpora

❑ ClueWeb09, ClueWeb12, Robust04, MS MARCO

Leave-one-Group-out Experiments

❑ For each team, assume all systems of the team did not participate
❑ Remove documents only retrieved by the team from the judgments/corpus
❑ Re-Evaluate all systems and compare their ranking with the ground truth
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Corpus Subsampling
Evaluation: Reliability of System Rankings

Experiments on 9 evaluation campaigns on four corpora

❑ ClueWeb09, ClueWeb12, Robust04, MS MARCO

Leave-one-Group-out Experiments

❑ For each team, assume all systems of the team did not participate
❑ Remove documents only retrieved by the team from the judgments/corpus
❑ Re-Evaluate all systems and compare their ranking with the ground truth

Results

Subsampling τPJ

ClueWeb09 ClueWeb12 Robust04 MS MARCO
Judgment Pool 0.944 0.941 0.983 0.978
Re-Ranking BM25 0.936 0.938 0.836 0.994
Judgment Pool + Random 0.799 0.765 0.789 0.794
Re-Pooling k

′
= 100 0.980 0.987 0.995 0.999
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Corpus Subsampling
Evaluation: Reliability of System Rankings

Subsampling modifies the corpus statistics

❑ Unretrieved Documents can impact the ranking of the top documents
❑ Ranking on a subsample should mimick retrieval from the complete corpus
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Evaluation: Reliability of System Rankings

Subsampling modifies the corpus statistics

❑ Unretrieved Documents can impact the ranking of the top documents
❑ Ranking on a subsample should mimick retrieval from the complete corpus

Experimental setup

❑ 9 evaluation campaigns (ClueWeb09, ClueWeb12, Robust04, MS MARCO)
❑ 10 lexical models, 7 Bi-Encoder models, 3 Late Interaction models
❑ RBO correlation against retrieval from all retrieved documents
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Corpus Subsampling
Evaluation: Reliability of System Rankings

Subsampling modifies the corpus statistics

❑ Unretrieved Documents can impact the ranking of the top documents
❑ Ranking on a subsample should mimick retrieval from the complete corpus

Experimental setup

❑ 9 evaluation campaigns (ClueWeb09, ClueWeb12, Robust04, MS MARCO)
❑ 10 lexical models, 7 Bi-Encoder models, 3 Late Interaction models
❑ RBO correlation against retrieval from all retrieved documents

Results

Subsampling ClueWeb09
Bi-E. Late Lex.

Judgment Pool .297 .263 .295
Re-Ranking BM25 .139 .192 .037
Judgment Pool + Random .096 .111 .056
Re-Pooling k

′
= 100 .600 .481 .660
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Corpus Subsampling
How big are the resulting subcorpora?
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Corpus Subsampling
Conclusions

❑ Pooling can produce subcorpora for reliable post-hoc evaluation
❑ Allows to evaluate expensive retrieval approaches on large corpora
❑ Subsamples improve accessibility:

– E.g., a reliable ClueWeb09 subsample is 0.9 GB

❑ Leave-one-group-out simulations to the reliability of a subsample in advance
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Conclusions

❑ Pooling can produce subcorpora for reliable post-hoc evaluation
❑ Allows to evaluate expensive retrieval approaches on large corpora
❑ Subsamples improve accessibility:

– E.g., a reliable ClueWeb09 subsample is 0.9 GB

❑ Leave-one-group-out simulations to the reliability of a subsample in advance

Future Work

❑ Can corpus subsampling be integrated into evaluation campaigns?

– Step 1: Run evaluation campaign on huge, noisy corpora
– Step 2: Subsample corpus
– All post-hoc experiments run on the subsample
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Corpus Subsampling
Conclusions

❑ Pooling can produce subcorpora for reliable post-hoc evaluation
❑ Allows to evaluate expensive retrieval approaches on large corpora
❑ Subsamples improve accessibility:

– E.g., a reliable ClueWeb09 subsample is 0.9 GB

❑ Leave-one-group-out simulations to the reliability of a subsample in advance

Future Work

❑ Can corpus subsampling be integrated into evaluation campaigns?

– Step 1: Run evaluation campaign on huge, noisy corpora
– Step 2: Subsample corpus
– All post-hoc experiments run on the subsample

Thank you!
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Results (2)

Subsampling ∆nDCG@10

ClueWeb09 ClueWeb12 Robust04 MS MARCO
Judgment Pool 0.030 0.031 0.005 0.011
Re-Ranking BM25 -0.013 -0.053 0.049 -0.005
Judgment Pool + Random 0.375 0.325 0.062 0.259
Re-Pooling k

′
= 100 -0.030 -0.060 -0.004 -0.007
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