Query Session Detection as a Cascade

Matthias Hagen Benno Stein Tino Rüb

Bauhaus-Universität Weimar matthias.hagen@uni-weimar.de

SIR 2011 Dublin, Ireland April 18, 2011

∃ ► < ∃ ►</p>

It's quiz time!

3

What is the user searching?

paris hilton

æ

4 3 4 3 4

Without context ...

paris hilton

source: [http://upload.wikimedia.org/wikipedia/commons/2/26/Paris_Hilton_3_Crop.jpg]

< 日 > < 同 > < 回 > < 回 > .

э

What if you knew the previous queries?

```
paris hotels
paris marriott
paris hyatt
paris hilton
```

э

What if you knew the previous queries?

```
paris hotels
paris marriott
paris hyatt
paris hilton
```


・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Query sessions: same information need

The benefits

- Improved understanding of user intent
- Improved retrieval performance via session knowledge

4 3 4 3 4 3 4

Query sessions: same information need

The benefits

- Improved understanding of user intent
- Improved retrieval performance via session knowledge

The "minor" issue

Users do not announce when querying for a new information need.

- E > - E >

A typical query log

User	Query	Click domain + Click ra	ank	Time
773	istanbul	en.wikipedia.org	1	2011-04-16 20:34:17
773	istanbul archeology	6		2011-04-17 12:02:54
773	istanbul archeology	www.kulturturizm.tr	6	2011-04-17 12:03:15
773	istanbul archeology	www.arkeoloji.gov.tr	13	2011-04-17 18:24:07
773	constantinople			2011-04-17 19:00:40
773	constantinople	www.roman-empire.net	4	2011-04-17 19:01:02
773	hurling			2011-04-17 19:03:01
773	hurling	en.wikipedia.org	1	2011-04-17 19:03:05
773	liam mccarthy cup			2011-04-17 23:33:04
773	liam mccarthy cup	www.hurling.net	5	2011-04-17 23:33:12
773	liam mccarthy cup	starbets.ie	16	2011-04-18 12:42:48

æ

★ E ► < E ►</p>

How to determine the break points?

User	Query	Click domain + Click ra	${\sf Click \ domain + Click \ rank}$	
			-	
773	istanbul	en.wikipedia.org	1	2011-04-16 20:34:17
773	istanbul archeology			2011-04-17 12:02:54
773	istanbul archeology	www.kulturturizm.tr	6	2011-04-17 12:03:15
773	istanbul archeology	www.arkeoloji.gov.tr	13	2011-04-17 18:24:07
773	constantinople			2011-04-17 19:00:40
773	constantinople	www.roman-empire.net	4	2011-04-17 19:01:02
773	hurling			2011-04-17 19:03:01
773	hurling	en.wikipedia.org	1	2011-04-17 19:03:05
773	liam mccarthy cup			2011-04-17 23:33:04
773	liam mccarthy cup	www.hurling.net	5	2011-04-17 23:33:12
773	liam mccarthy cup	starbets.ie	16	2011-04-18 12:42:48

æ

3 1 4 3 1

Automatic query session detection

æ

A B < A B </p>

Automatic query session detection

Usual "technique"

Check for consecutive queries whether same/new information need.

Example			
773	istanbul istanbul archeology constantinople	2011-04-16 20:34:17 2011-04-17 18:24:07 2011-04-17 19:01:02	√ same √ same
773	 hurling	2011-04-17 19:03:05	∳ new

Typical features

Temporal thresholds	5 minutes 10–15 minutes 30 minutes user specific	[Silverstein et al., 1999] [He and Göker, 2000] [Downey et al., 2007] [Murray et al., 2006]
Lexical similarity	<i>n</i> -gram overlap Levenshtein distance	[Zhang and Moffat, 2006] [Jones and Klinkner, 2008]
Semantic similarity	Search results ESA	[Radlinski and Joachims, 2005] [Lucchese et al., 2011]

3

Previous methods

Observations

- Temporal thresholds: fast but bad accuracy
- Feature combinations: more accurate
- One of the best: Geometric method (time + lexical) [Gayo-Avello, 2009]

4 3 4 3 4 3 4

Previous methods

Observations

- Temporal thresholds: fast but bad accuracy
- Feature combinations: more accurate
- One of the best: Geometric method (time + lexical) [Gayo-Avello, 2009]

Shortcomings

- \bullet All features evaluated simultaneously $~\rightarrow~$ runtime
- Geometric method ignores semantics \rightarrow accuracy

Examples Subset test suffices Geometric method fails hurling ✓ same hurling gaa mccarthy cup Hagen, Stein, Rüb Query Session Detection as a Cascade 11

We address the shortcomings in a cascade

source: [http://wp.ltchambon.com/wp-content/uploads/2010/09/Cascade-de-Tufs-Baume-les-messieurs-Jura.jpg]

... well ... a small 4-step cascade

э

< 一型

... well ... a small 4-step cascade

Step 1: Subset tests Step 2: Geometric method Step 3: ESA similarity Step 4: Search results

Basic Idea

Increased feature cost (runtime) from step to step. Expensive features only if previous steps "unreliable."

Simple string comparison

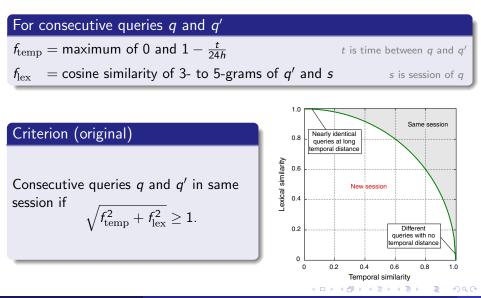
Criterion

Consecutive queries q and q' in same session if q sub- or superset of q'. Else: Goto Step 2.

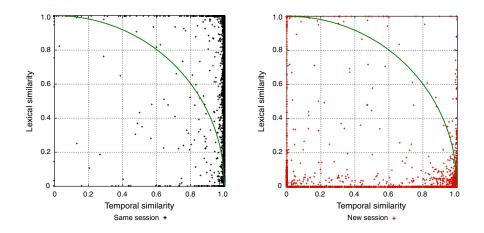
Example						
Repetition	Specialization	Generalization				
hurling √ same hurling	hurling √ same hurling gaa	hurling gaa √ same hurling				

Combination of temporal and lexical features [Gayo-Avello, 2009]

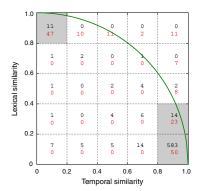
For	consecutive	queries	а	and	a'	
101	consecutive	queries	Ч	and	Ч	


 $f_{ ext{temp}} = ext{maximum of 0 and } 1 - rac{t}{24h}$

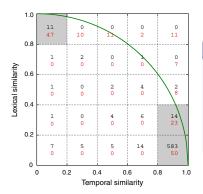
t is time between q and q'


 f_{lex} = cosine similarity of 3- to 5-grams of q' and s

s is session of q


Combination of temporal and lexical features [Gayo-Avello, 2009]

Performs well on standard test corpus ...


... but has some problems "on the edge"

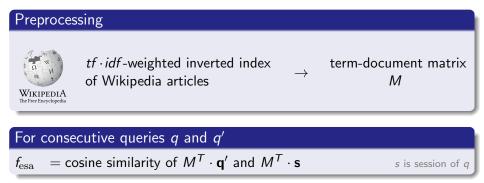
Major problems

Diff. queries, same semantics (lower right) \rightarrow Incorporate semantics

... but has some problems "on the edge"

Major problems

Similar queries, time gap (upper left) \rightarrow Merely a matter of opinion


Diff. queries, same semantics (lower right) \rightarrow Incorporate semantics

Criterion (adapted)

Original geometric method if $f_{temp} < 0.8$ or $f_{lex} > 0.4$. Else: Goto Step 3.

How ESA works

[Gabrilovich and Markovitch, 2007]

Criterion

Consecutive queries q and q' in same session if $f_{esa} \ge 0.35$. Else: Goto Step 4.

くロト く伺 ト くきト くきト

Even more "semantics"

Idea

Enrich the short query strings with the results of some web search engine.

Criterion

Consecutive queries q and q' in same session iff

they share at least one of the top 10 search results.

Even more "semantics"

Idea

Enrich the short query strings with the results of some web search engine.

Criterion

Consecutive queries q and q' in same session iff

they share at least one of the top 10 search results.

Remark

If q and q' share no top 10 result, decision should be "not sure."

・ロト ・ 一下・ ・ ヨト・

э

That's the complete cascade

source: [http://www.solarshop.com/solarpix/Solar Cascade 4 Tier GreenLjpg]

Step 1: Subset tests Step 2: Geometric method Step 3: ESA similarity Step 4: Search results

That's the complete cascade

source: [http://www.solarshop.com/solarpix/Solar Cascade 4 Tier GreenLjpg]

Step 1: Subset tests Step 2: Geometric method Step 3: ESA similarity Step 4: Search results

What about accuracy and performance?

Accuracy and runtime

	Precision	Recall	F-Measure ($\beta = 1.5$)
Geometric	0.8673	0.9431	0.9184
Cascading	0.8618	0.9676	0.9328

Performance per step on Gayo-Avello's corpus						
		affected	F-Measure	time	factor	
	Step 1	40.49%	0.8303	0.08 ms	1.0	
	Step 2	35.15%	0.9292	0.20 ms	2.5	
	Step 3	2.05%	0.9316	0.27 ms	3.4	
	Step 4	0.85%	0.9328	9.85 ms	123.1	

<ロト <問ト < 国ト < 国ト

э

Goal: high quality session test data

Our own use case

Sample sessions from the AOL log as test data.

AOL log (cleaned): 35.4 million interactions from 470 000 users.

Some figures			
Step 4 involved on 22.5%	\rightarrow	8 million web queries	
	\rightarrow	300 ms per search \rightarrow	1 month

- E > - E >

Goal: high quality session test data

Our own use case

Sample sessions from the AOL log as test data.

AOL log (cleaned): 35.4 million interactions from 470 000 users.

Some figures			
Step 4 involved on 22.5%	\rightarrow	8 million web queries	
	\rightarrow	300 ms per search \rightarrow	1 month

Way out

• Drop Step 4 and the sessions on which it would have been invoked

Remaining sessions: F-Measure = 0.9755 Cleaned AOL log: 27 minutes

Almost the end: The take-away messages!

æ

What we have done

Results

- Cascading method
- Cheap features first
- Beats geometric
- 3 step version: simple, fast, high quality sessions

⁻uture Work

- Postprocessing for multi-tasking
- Postprocessing for goals/missions

3 1 4 3 1

What we have (not) done

Results

- Cascading method
- Cheap features first
- Beats geometric
- 3 step version: simple, fast, high quality sessions

Future Work

- Postprocessing for multi-tasking
- Postprocessing for goals/missions

What we have (not) done

Results

- Cascading method
- Cheap features first
- Beats geometric
- 3 step version: simple, fast, high quality sessions

Future Work

- Postprocessing for multi-tasking
- Postprocessing for goals/missions

