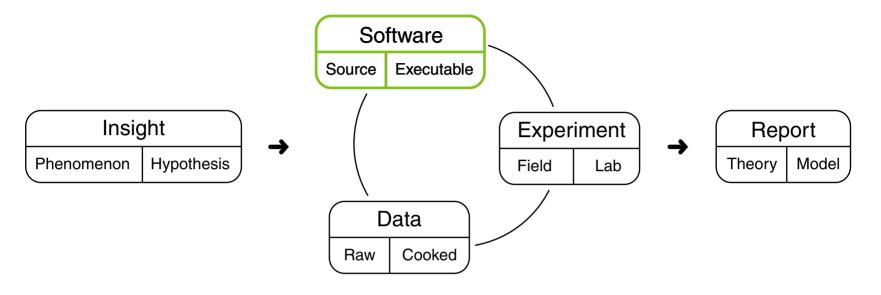

Twitter Sentiment Detection via Ensemble Classification Using Averaged Confidence Scores


Matthias Hagen

Martin Potthast Michel Büchner Bauhaus-Universität Weimar **Benno Stein**

[www.webis.de]

- General goal: algorithmic automation of certain tasks
- Evaluations establish success at doing so
- Both rely on pieces of software

- General goal: algorithmic automation of certain tasks
- Evaluations establish success at doing so
- Both rely on pieces of software
- □ Reports frequently lack information for "painless" reproduction
- Assets used during modeling and evaluation are frequently not published

Motivation, Incentives, and Barriers to Reproducing and Sharing Software

Personal motivation to reproduce a piece of research:	Bias:
1. to compare it with one's own approach for a given task	high
2. to double-check the results (e.g., to police fraud)	medium
3. to employ it as sub-module of another algorithm	low
to complete a library on a given task	low
5. to identify the best approach for application	low

Motivation, Incentives, and Barriers to Reproducing and Sharing Software

Pers	onal motivation to reproduce a piece of research:	Bias:
1.	to compare it with one's own approach for a given task	high
2.	to double-check the results (e.g., to police fraud)	medium
3.	to employ it as sub-module of another algorithm	low
4.	to complete a library on a given task	low
5.	to identify the best approach for application	low
Pers	onal incentives to share one's software:	
1.	to ensure optimal performance in evaluations	
2.	to build trust	
35.	to foster adoption in research and practice	

Motivation, Incentives, and Barriers to Reproducing and Sharing Software

Pers	onal motivation to reproduce a piece of research:	Bias:
1.	to compare it with one's own approach for a given task	high
2.	to double-check the results (e.g., to police fraud)	medium
3.	to employ it as sub-module of another algorithm	low
4.	to complete a library on a given task	low
5.	to identify the best approach for application	low
Pers	onal incentives to share one's software:	
1.	to ensure optimal performance in evaluations	
2.	to build trust	
35.	to foster adoption in research and practice	
Top b	parriers to sharing software [Stodden 2010]:	(n=134)
	The time it takes to clean up and document for release	77.78%
	Dealing with questions from user about the code / software	51.85%
	Supporting others without getting credit / acknowledgement	44.78%
	Patents or IP constraints	40.00%
7		©www.webis.de March 30th 2

Related Work from [Gollub et al. 2012]

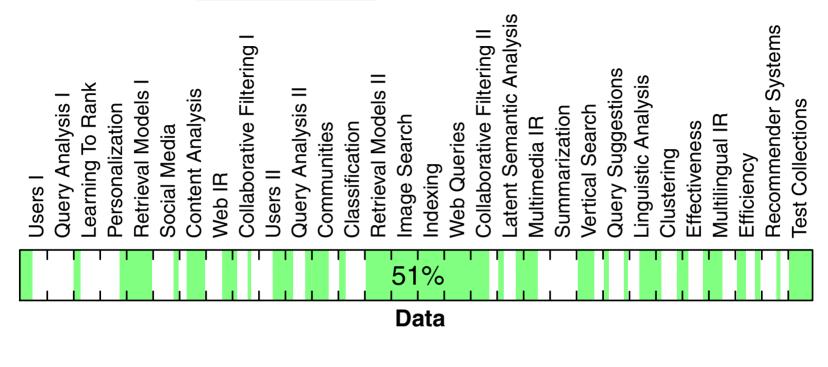
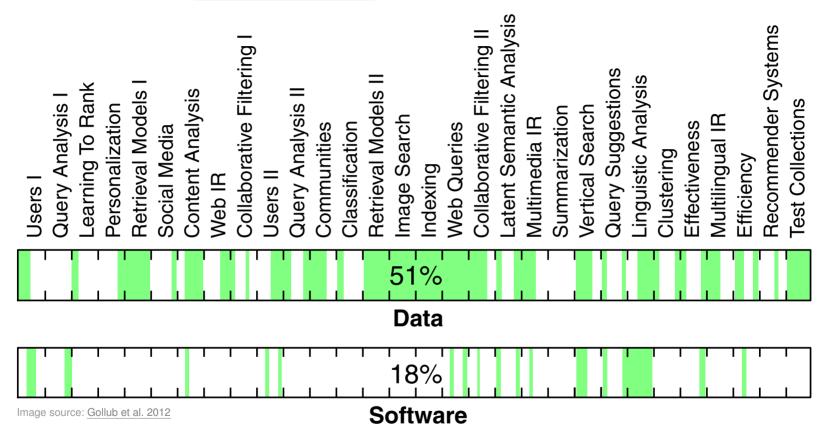
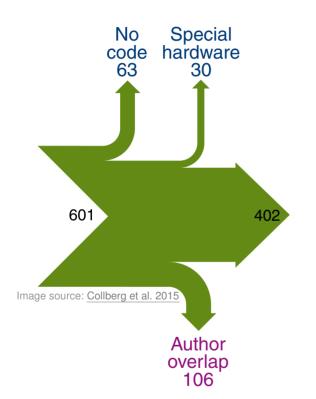
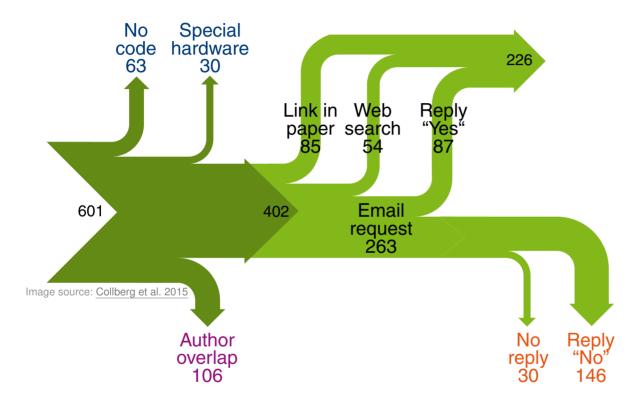



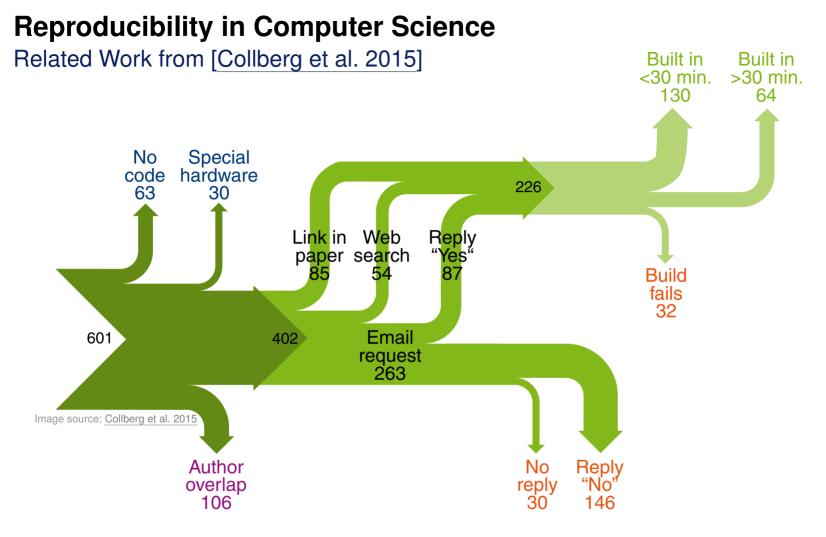
Image source: Gollub et al. 2012


- □ SIGIR 2011: 108 full papers, grouped by conference session
- Papers were analyzed regarding claims of availability, no attempts were made at downloading the mentioned assets

Related Work from [Gollub et al. 2012]


- □ SIGIR 2011: 108 full papers, grouped by conference session
- Papers were analyzed regarding claims of availability, no attempts were made at downloading the mentioned assets

Related Work from [Collberg et al. 2015]



□ Papers sampled from 8 ACM conferences, and 5 journals

Related Work from [Collberg et al. 2015]

- □ Papers sampled from 8 ACM conferences, and 5 journals
- About 21% of applicable papers contained link to code

- □ Papers sampled from 8 ACM conferences, and 5 journals
- About 21% of applicable papers contained link to code
- □ Code successfully built for about 48% of applicable papers

Notebooks from a Shared Task

Notebooks from a Shared Task

What we did:

- □ Reproduced three selected Tweet sentiment classifiers from SemEval 2013
- □ Trained an ensemble classifier

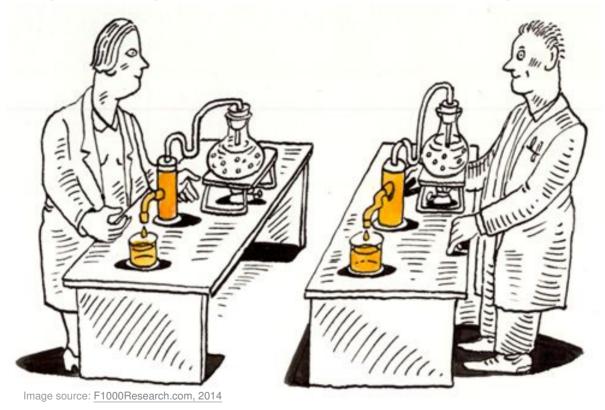
Notebooks from a Shared Task

What we did:

- Reproduced three selected Tweet sentiment classifiers from SemEval 2013
- Trained an ensemble classifier
- Why particularly this task?
 - Related investigations, where this task came up
 - □ Focus on software, since data sets and performance measures are fixed

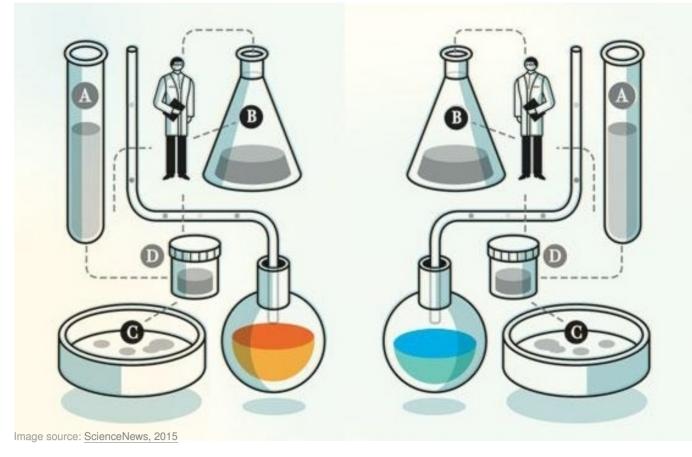
Why notebooks?

- Not all shared task notebooks are flawless
- □ Shared task results are frequently cited


Notebooks from a Shared Task

What we did:

- □ Reproduced three selected Tweet sentiment classifiers from SemEval 2013
- Trained an ensemble classifier
- Why particularly this task?
 - Related investigations, where this task came up
 - □ Focus on software, since data sets and performance measures are fixed
- Why notebooks?
 - Not all shared task notebooks are flawless
 - Shared task results are frequently cited
- Reproducibility approach:
 - Create low bias situation toward originals
 - Reproduce rather than replicate
 - □ Maximize performance, where possible


Replicability vs. Reproducibility

 \Box Replicability: same input and same method \Rightarrow same output

An Ongoing Debate in Science Reproducibility Replicability vs. Reproducibility

- \Box Replicability: same input and same method \Rightarrow same output
- \Box Reproducibility: similar input and equivalent method \Rightarrow comparable output

An Ongoing Debate in Science Reproducibility Replicability vs. Reproducibility

- \Box Replicability: same input and same method \Rightarrow same output
- \Box Reproducibility: similar input and equivalent method \Rightarrow comparable output
- What should we do in case of failure?

An Ongoing Debate in Science Reproducibility Replicability vs. Reproducibility

- \Box Replicability: same input and same method \Rightarrow same output
- \Box Reproducibility: similar input and equivalent method \Rightarrow comparable output
- What should we do in case of failure?

An Ongoing Debate in Science Reproducibility Replicability vs. Reproducibility vs. Improvability

- \Box Replicability: same input and same method \Rightarrow same output
- \Box Reproducibility: similar input and equivalent method \Rightarrow comparable output
- □ Improvability: same input and better method \Rightarrow better output (may include improvisation)

Replicability vs. Reproducibility vs. Improvability

- \Box Replicability: same input and same method \Rightarrow same output
- \Box Reproducibility: similar input and equivalent method \Rightarrow comparable output
- □ Improvability: same input and better method ⇒ better output (may include improvisation)

Replicability vs. Reproducibility vs. Improvability

- \Box Replicability: same input and same method \Rightarrow same output
- \Box Reproducibility: similar input and equivalent method \Rightarrow comparable output
- □ Improvability: same input and better method \Rightarrow better output (may include improvisation)
- Order of degrees of freedom:

improve \succ reproduce \succ replicate

□ What shared asset helps:

source code \succ library or API \succ demo or web service

Replicability vs. Reproducibility vs. Improvability

- \Box Replicability: same input and same method \Rightarrow same output
- \Box Reproducibility: similar input and equivalent method \Rightarrow comparable output
- □ Improvability: same input and better method \Rightarrow better output (may include improvisation)
- Order of degrees of freedom:

improve \succ reproduce \succ replicate

□ What shared asset helps:

source code \succ library or API \succ demo or web service

- □ Possible code of conduct for reproducing research:
 - 1. Try to improve it (e.g., by adding your own expertise and experience)
 - 2. Try to reproduce it with variations (e.g., different domains of application)
 - 3. As a last resort, replicate it, following the original to the letter

Remarks on Reproducing the Selected Appraoches

Remarks on Reproducing the Selected Appraoches

Selection criteria:

- □ High performance at SemEval 2013: NRC-Canada, GU-MLT-LT, KLUE
- □ Complementary approaches (i.e., not simply the top three)

Remarks on Reproducing the Selected Appraoches

Selection criteria:

- □ High performance at SemEval 2013: NRC-Canada, GU-MLT-LT, KLUE
- □ Complementary approaches (i.e., not simply the top three)
- Notable improvments / improvisations:
 - □ All: feature descriptions generally very terse
 - All: unification of Tweet normalization procedures
 - □ All: L2-regularized logistic regression instead of original learning algorithms
 - □ All: different parameter settings per approach
 - □ KLUE: creation of our own emoticon polarity dictionary
 - □ KLUE: unification from word frequency to Boolean occurrence

Remarks on Reproducing the Selected Appraoches

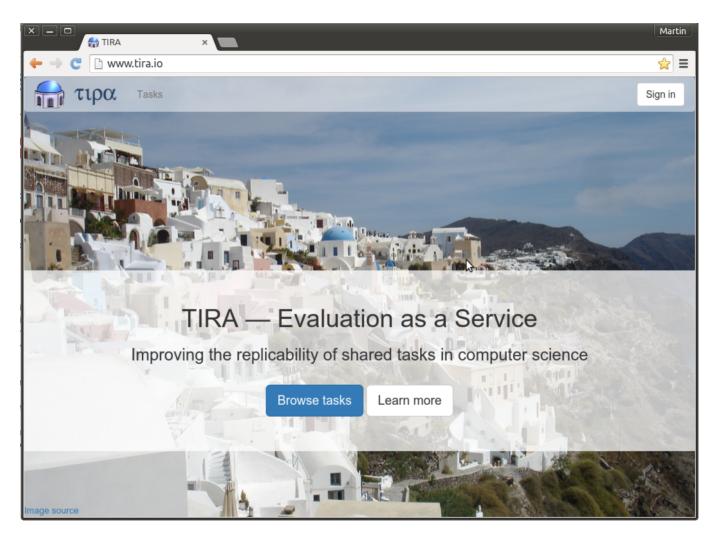
Selection criteria:

- □ High performance at SemEval 2013: NRC-Canada, GU-MLT-LT, KLUE
- □ Complementary approaches (i.e., not simply the top three)
- Notable improvments / improvisations:
 - □ All: feature descriptions generally very terse
 - All: unification of Tweet normalization procedures
 - □ All: L2-regularized logistic regression instead of original learning algorithms
 - □ All: different parameter settings per approach
 - □ KLUE: creation of our own emoticon polarity dictionary
 - □ KLUE: unification from word frequency to Boolean occurrence

Performance comparison:

Team	Original SemEval 2013	Reimplementation	Delta
NRC-Canada	69.02	69.44	+0.42
GU-MLT-LT	65.27	67.27	+2.00
KLUE	63.06	67.05	+3.99

Performance in the Context of SemEval


SemEval 2013		SemEval 2014	
Team	F1	Team	F1
Our ensemble	71.09	TeamX	70.96
NRC-Canada	69.02	coooolll	70.14
GU-MLT-LT	65.27	RTRGO	69.95
teragram	64.86	NRC-Canada	69.85
BOUNCE	63.53	Our ensemble	69.79
KLUE	63.06	TUGAS	69.00
AMI&ERIC	62.55	CISUC KIS	67.95
FBM	61.17	SAIL	67.77
AVAYA	60.84	Swiss-Chocolate	67.54
SAIL	60.14	Synalp-Empathic	67.43
27 more		40 more	

Performance in the Context of SemEval

SemEval 2013		SemEval 2014		SemEval 2015	
Team	F1	Team	F1	Team	F1
Our ensemble	71.09	TeamX	70.96	Our ensemble	64.84
NRC-Canada	69.02	coooolll	70.14	unitn	64.59
GU-MLT-LT	65.27	RTRGO	69.95	Isislif	64.27
teragram	64.86	NRC-Canada	69.85	INESC-ID	64.17
BOUNCE	63.53	Our ensemble	69.79	Splusplus	63.73
KLUE	63.06	TUGAS	69.00	wxiaoac	63.00
AMI&ERIC	62.55	CISUC KIS	67.95	IOA	62.62
FBM	61.17	SAIL	67.77	Swiss-Chocolate	62.61
AVAYA	60.84	Swiss-Chocolate	67.54	CLaC-SentiPipe	62.00
SAIL	60.14	Synalp-Empathic	67.43	TwitterHawk	61.99
27 more		40 more		30 more	

- Adding TeamX pushes our ensemble to the top in 2015
- □ Refer to [Hagen et al. 2015] for details
- □ Task organizers should predict ensemble performance as a baseline

Evaluation as a Service using TIRA

[www.tira.io]

Summary:

- □ State-of-the-art Twitter sentiment detection approaches reproducible
- Our code is publicly available at GitHub: <u>http://www.github.com/webis-de</u>
- Neither of the existing approaches maximizes performance

Summary:

- □ State-of-the-art Twitter sentiment detection approaches reproducible
- Our code is publicly available at GitHub: <u>http://www.github.com/webis-de</u>
- Neither of the existing approaches maximizes performance

Take-home messages:

- Computer science can tackle reproducibility at a fundamental level
- □ Replicability vs. reproducibility lacks a third dimension: improvability
- Reproducibility should incorporate personal expertise and experience
- □ Sharing software may greatly improve aspects of reproducibility

Summary:

- □ State-of-the-art Twitter sentiment detection approaches reproducible
- Our code is publicly available at GitHub: <u>http://www.github.com/webis-de</u>
- Neither of the existing approaches maximizes performance

Take-home messages:

- Computer science can tackle reproducibility at a fundamental level
- Replicability vs. reproducibility lacks a third dimension: improvability
- □ Reproducibility should incorporate personal expertise and experience
- □ Sharing software may greatly improve aspects of reproducibility

Open questions ahead:

- □ What are the most worthy targets?
- What constitutes impact in reproducing science?
- Will sharing software become the norm?

Summary:

- □ State-of-the-art Twitter sentiment detection approaches reproducible
- Our code is publicly available at GitHub: <u>http://www.github.com/webis-de</u>
- Neither of the existing approaches maximizes performance

Take-home messages:

- Computer science can tackle reproducibility at a fundamental level
- Replicability vs. reproducibility lacks a third dimension: improvability
- Reproducibility should incorporate personal expertise and experience
- □ Sharing software may greatly improve aspects of reproducibility

Open questions ahead:

- □ What are the most worthy targets?
- What constitutes impact in reproducing science?
- Will sharing software become the norm?

Thank you for your attention!