Revisiting Query Variation Robustness of Transformer Models

November 12 – 16, 2024 **Tim Hagen** Harry Scells Martin Potthast

University of Kassel and hessian.AI

- $\approx 70 \,\%$ of information seeking queries are keyword queries
- 26% of queries contain **typos**

- $\approx 70 \,\%$ of information seeking queries are keyword queries
- 26 % of queries contain typos
- Transformer-based rankers have been shown not to be robust to using keywords and typos

- $\approx 70 \,\%$ of information seeking queries are keyword queries
- 26 % of queries contain typos
- Transformer-based rankers have been shown not to be robust to using keywords and typos
- Previous work mostly focussed on typos

- $\approx 70 \,\%$ of information seeking queries are keyword queries
- 26 % of queries contain typos
- Transformer-based rankers have been shown not to be robust to using keywords and typos
- · Previous work mostly focussed on typos

Research Question

How robust are more recent transformer-based language models?

Background

Dense Retrieval

- Using embedding models for ranking:
 - Embed query and document separately
 - Rank using the cossim of the documents' embeddings to the query's
- Transformer-based ranking models are the first neural architecture to demonstrably outperform traditional approaches

Models

SBERT

- Popular embedding model
- Based on DistilBERT_{Base}
- 66M parameters

Models

SBERT

- Popular embedding model
- Based on DistilBERT_{Base}
- 66M parameters

CharacterBERT-DR-ST

- Typo-aware architecture & pre-training
- Based on BERT_{Base}
- 104M parameters

Models

SBERT

- Popular embedding model
- Based on DistilBERT_{Base}
- 66M parameters

CharacterBERT-DR-ST

- Typo-aware architecture & pre-training
- Based on BERT_{Base}
- 104M parameters

E5 Mistral

- #1 on MTEB¹
- Based on Mistral-7B-instruct
- 7B parameters

¹At the time of our experiments

Models

SBERT

- Popular embedding model
- Based on DistilBERT_{Base}
- 66M parameters

CharacterBERT-DR-ST

- Typo-aware architecture & pre-training
- Based on BERT_{Base}
- 104M parameters

E5 Mistral

- #1 on MTEB¹
- Based on Mistral-7B-instruct
- 7B parameters

AnglE

- #2 on MTEB¹
- Based on BERT_{Large}
- 335M parameters

¹At the time of our experiments

Models

¹At the time of our experiments

- Query variation dataset by Penha et al.
- Semantically equivalent query variations

- Query variation dataset by Penha et al.
- Semantically equivalent query variations

Query variation		Example	# Queries		ple # Queries	ries
Category	Transform. heuristic		TREC DL'19	ANTIQUE		
Original		what is durable medical equipment consist of	43	200		

- Query variation dataset by Penha et al.
- Semantically equivalent query variations

Query variation		Example	# Queries	
Category	Transform. heuristic		TREC DL'19	ANTIQUE
Original		what is durable medical equipment consist of	43	200
	NeighbCharSwap	what is durable mdeical equipment consist of	43	199
Misspelling	RandomCharSub	what is durable medycal equipment consist of	42	197
	QWERTYCharSub	what is durable medical equipment xonsist of	42	182

- Query variation dataset by Penha et al.
- Semantically equivalent query variations

Query variation		Example	# Queries	
Category	Transform. heuristic		TREC DL'19	ANTIQUE
Original		what is durable medical equipment consist of	43	200
Misspelling	NeighbCharSwap	what is durable mdeical equipment consist of	43	199
	RandomCharSub	what is durable medycal equipment consist of	42	197
	QWERTYCharSub	what is durable medical equipment xonsist of	42	182
Naturality	RemoveStopWords	what is durable medical equipment consist of	37	199
	T5DescToTitle	what is durable medical equipment consist of	35	136

- Query variation dataset by Penha et al.
- Semantically equivalent query variations

Query variation		Example	# Queries	
Category	Transform. heuristic		TREC DL'19	ANTIQUE
Original		what is durable medical equipment consist of	43	200
Misspelling	NeighbCharSwap	what is durable mdeical equipment consist of	43	199
	RandomCharSub	what is durable medycal equipment consist of	42	197
	QWERTYCharSub	what is durable medical equipment xonsist of	42	182
Naturality	RemoveStopWords	what is durable medical equipment consist of	37	199
	T5DescToTitle	what is durable medical equipment consist of	35	136
Ordering	RandomOrderSwap	medical is durable what equipment consist of	43	200

- Query variation dataset by Penha et al.
- Semantically equivalent query variations

Query variation		Example	# Queries	
Category	Transform. heuristic		TREC DL'19	ANTIQUE
Original		what is durable medical equipment consist of	43	200
Misspelling	NeighbCharSwap	what is durable mdeical equipment consist of	43	199
	RandomCharSub	what is durable medycal equipment consist of	42	197
	QWERTYCharSub	what is durable medical equipment xonsist of	42	182
Naturality	RemoveStopWords	what is durable medical equipment consist of	37	199
	T5DescToTitle	what is durable medical equipment consist of	35	136
Ordering	RandomOrderSwap	medical is durable what equipment consist of	43	200
Paraphrasing	BackTranslation	what is $\ensuremath{\text{sustainable}}$ medical equipment $\ensuremath{\text{consist of}}$	23	93
	T5QQP	what is durable medical equipment eonsist of	26	105
	WordEmbedSynSwap	what is durable medicinal equipment consist of	27	124
	WordNetSynSwap	what is long lasting medical equipment consist of	16	71

Method

Ranking robustness

Method

Ranking robustness

Method

Ranking robustness

Note

- Ideally, $\Delta n DCG@10$ is 0
- $\Delta nDCG@10 > 0$ means \mathcal{M} is more effective on the query variant

Method

Ranking robustness

Embedding robustness

- Ideally, $\Delta n DCG@10$ is 0
- $\Delta nDCG@10 > 0$ means \mathcal{M} is more effective on the query variant

Anisotropy in Embedding Models

Anisotropy in Embedding Models

• High cossim ⇒ semantically similar

(Unrelated inputs have a cossim of 0.71 for CBERT)

Anisotropy in Embedding Models

• High cossim ⇒ semantically similar

(Unrelated inputs have a cossim of 0.71 for CBERT)

• Embeddings are not uniformly distributed

("Anisotropic")

Anisotropy in Embedding Models

- High cossim ⇒ semantically similar (Unrelated inputs have a cossim of 0.71 for CBERT)
- Embeddings are not uniformly distributed

("Anisotropic")

Cossim can't be compared across models

Anisotropy in Embedding Models

- High cossim ⇒ semantically similar (Unrelated inputs have a cossim of 0.71 for CBERT)
- Embeddings are not uniformly distributed

("Anisotropic")

- Cossim can't be compared across models
- Adjust cossim for anisotropy

$$\operatorname{adjcossim}(v, v') = \frac{\operatorname{cossim}(v, v') - \mu}{1 - \mu}$$
Expected cossim for two arbitrary inputs

Method

Ranking robustness

Embedding robustness

- Ideally, $\Delta n DCG@10$ is 0
- $\Delta nDCG@10 > 0$ means \mathcal{M} is more effective on the query variant

Method

Ranking robustness

Embedding robustness

- Ideally, $\Delta n DCG@10$ is 0
- $\Delta nDCG@10 > 0$ means \mathcal{M} is more effective on the query variant

Method

Ranking robustness

Embedding robustness

Note

- Ideally, $\Delta n DCG@10$ is 0
- $\Delta nDCG@10 > 0$ means \mathcal{M} is more effective on the query variant

- Ideally, adjcossim is 1
- The expected adjcossim of two arbitrary inputs is 0

Ranking Robustness

• $\Delta nDCG@10$ sometimes positive but mostly negative

- $\Delta n DCG@10$ sometimes positive but mostly negative
- Only effectiveness degradation is statistically significant

- $\Delta n DCG@10$ sometimes positive but mostly negative
- Only effectiveness degradation is statistically significant
- Smaller spread on ANTIQUE (except for naturality)

- AnDCG@10 sometimes positive but mostly negative
- Only effectiveness degradation is statistically significant
- Smaller spread on ANTIQUE (except for naturality)
- On ANTIQUE, all models are least robust to naturality

Embedding Robustness

• Ordering and paraphrasing the easiest

- Ordering and paraphrasing the easiest
- CBERT the most robust to typos

- Ordering and paraphrasing the easiest
- CBERT the most robust to typos
- AnglE the most robust except to typos

- Ordering and paraphrasing the easiest
- CBERT the most robust to typos
- AnglE the most robust except to typos
- E5 Mistral in median similarly robust to the most robust model (but larger spread)

None of the models are robust

Note

E5-Mistral is based on Mistral-7binstruct and can be prompted via

Prompting Robustness

Note

E5-Mistral is based on Mistral-7binstruct and can be prompted via

Research Question

Prompting Robustness

Research Question

Prompting Robustness

Note

E5-Mistral is based on Mistral-7binstruct and can be prompted via

Research Question

Prompting Robustness

Note

E5-Mistral is based on Mistral-7binstruct and can be prompted via

Research Question

Prompting Robustness

Note

E5-Mistral is based on Mistral-7binstruct and can be prompted via

Research Question

Prompting Robustness

Prompting Robustness

Prompting Robustness

Training Robustness

Research Question

How does training on more query variations affect robustness?

Training Robustness

Research Question

How does training on more query variations affect robustness?

Setup

• Create a training set using Penha et al.'s transformations

Training Robustness

Research Question

How does training on more query variations affect robustness?

Setup

- Create a training set using Penha et al.'s transformations
- Prompt-tune E5-Mistral & Fine-tune CBERT

Training Robustness

Research Question

How does training on more query variations affect robustness?

Setup

- Create a training set using Penha et al.'s transformations
- Prompt-tune E5-Mistral & Fine-tune CBERT

Prompt-tuning

Training Robustness

Research Question

How does training on more query variations affect robustness?

Training Robustness

Research Question

How does training on more query variations affect robustness?

 Both models improved robustness across all categories

Training Robustness

Research Question

How does training on more query variations affect robustness?

- Both models improved robustness across all categories
- ... but mean effectiveness is not improved and

Training Robustness

Research Question

How does training on more query variations affect robustness?

- Both models improved robustness across all categories
- ... but mean effectiveness is not improved and
- degradation is statistically significant

• Transformer-based embedding models are effective rankers

tim.hagen@uni-kassel.de temir.org

- Transformer-based embedding models are effective rankers
- ... but not robust to query variations

tim.hagen@uni-kassel.de temir.org

- Transformer-based embedding models are effective rankers
- ... but not robust to query variations
- We tested embedding models that are...
 - more recent

typo-aware

larger

commercial

tim.hagen@uni-kassel.de temir.org

- Transformer-based embedding models are effective rankers
- ... but not robust to query variations
- We tested embedding models that are...
 - more recent typo-aware
- Result: they, too, are not robust

commercial

- Transformer-based embedding models are effective rankers
- ... but not robust to query variations
- We tested embedding models that are...
 - ► more recent ► typo-aware ► larger ► commercial
- Result: they, too, are not robust
- Prompt- and fine-tuning on a query variation dataset can improve robustness

- Transformer-based embedding models are effective rankers
- ... but not robust to query variations
- We tested embedding models that are...
 - more recent
 typo-aware
- Result: they, too, are not robust
- Prompt- and fine-tuning on a query variation dataset can improve robustness

larger

Take-away

• Transformer-based embedding models are still not robust and

commercial

- Transformer-based embedding models are effective rankers
- ... but not robust to query variations
- We tested embedding models that are...
 - more recent
 typo-aware
- Result: they, too, are not robust
- Prompt- and fine-tuning on a query variation dataset can improve robustness

larger

Take-away

- Transformer-based embedding models are still not robust and
- query variation datasets are needed so that typos and keyword queries are not out-of-distribution

commercial