# Web Page Segmentation Revisited: Evaluation Framework and Dataset

### **CIKM 2020**



Johannes Kiesel<sup>1</sup>



Florian Kneist<sup>1</sup>



Lars Meyer<sup>1</sup>



Kristof Komlossy<sup>1</sup>

2



Benno Stein<sup>1</sup>



Martin Potthast<sup>2</sup>

1,2





universität leipzig



Webis



















**⊕ ⊕ ⊕** Comments







**⊕ ⊕ ⊕** Comments

### Web Page Segmentation: Downstream Tasks (Examples)



#### Content Extraction

Image: Language Independent Content Extraction from Web Pages. Javier et al., DIR'09.

### Web Page Segmentation: Downstream Tasks (Examples)





#### Content Extraction

Image: Language Independent Content Extraction from Web Pages. Javier et al., DIR'09.

#### Template Detection

Image: Automatic Data Extraction From Template Generated Web Pages. Ma et al., PDPTA'03.

### Web Page Segmentation: Downstream Tasks (Examples)





Content Extraction

Image: Language Independent Content Extraction from Web Pages. Javier et al., DIR'09.

Template Detection

Image: Automatic Data Extraction From Template Generated Web Pages. Ma et al., PDPTA'03.

Design Mining

Image: Webzeitgeist: Design Mining the Web. Kumar et al., CHI'13.



LAYOUT QUERY





### Concept Formation: Web Page Segment

A web page segment is a part of a web page containing those elements that belong together as per agreement among a majority of viewers.

Rationale: Web pages are created for human viewers, and so are segments

#### Gestalt Principles provide common ground



A web page segment is a part of a web page containing those elements that belong together as per agreement among a majority of viewers.

Elements  $E = \{e_1, \ldots, e_n\}$ 

Segmentation  $S = \{s_1, \ldots, s_m\}$  with segments  $s_i \subseteq E$ 

A web page segment is a part of a web page containing those elements that belong together as per agreement among a majority of viewers.

Elements  $E = \{e_1, \ldots, e_n\}$ 

Segmentation  $S = \{s_1, \ldots, s_m\}$  with segments  $s_i \subseteq E$ 

#### Suggested sets of elements:

Listen Live on iHea rtRADIO News Radi o 610WTVN-News, T raffic, Weather - C olumbus, OH On-Air News Podcasts Me dia Connect Contes ts Flashback: Supe rcur of Elton John singing 'Your Song' through the years posted by Samantha Martin | Popdust -4 years ago comme nt share Listen to Elton John on iHear tRadio There's som ething exciting abo ut being among the





DOM nodes



Pixels



Edges

A web page segment is a part of a web page containing those elements that belong together as per agreement among a majority of viewers.

Elements 
$$E = \{e_1, \ldots, e_n\}$$

Segmentation 
$$S = \{s_1, \ldots, s_m\}$$
 with segments  $s_i \subseteq E$ 

#### Precision

$$P_{B^3}(S,S^*) = \operatorname{avg}_e\left(\frac{|\text{elements in same segment as } e \text{ in both } S \text{ and } S^*|}{|\text{elements in same segment as } e \text{ in } S|}\right)$$

#### Recall

$$R_{B^3}(S,S^*) = \operatorname{avg}_e\left(\frac{|\text{elements in same segment as } e \text{ in both } S \text{ and } S^*|}{|\text{elements in same segment as } e \text{ in } S^*|}\right)$$

F-Measure,  $F_{B^3}$ , is defined as the harmonic mean of precision and recall as usual

Note: 
$$P_{B^3}(S, S') = R_{B^3}(S', S)$$
  $\Rightarrow$   $F_{B^3}(S, S') = F_{B^3}(S', S)$ 









 $P_{B^3}(S,S^*) = \operatorname{avg}_e\left(rac{| ext{elements in same segment as }e ext{ in both } S ext{ and } S^*|}{| ext{elements in same segment as }e ext{ in } S|}
ight)$ 



$$P_{B^3}(S,S^*) = \operatorname{avg}_e\left(\frac{|\text{elements in same segment as } e \text{ in both } S \text{ and } S^*|}{|\text{elements in same segment as } e \text{ in } S|}\right)$$



$$P_{B^3}(S,S^*) = \operatorname{avg}_e\left( \frac{|\text{elements in same segment as } e \text{ in both } S \text{ and } S^*|}{|\text{elements in same segment as } e \text{ in } S|} \right)$$

$$R_{B^3}(S,S^*) = \operatorname{avg}_e\left( \frac{|\text{elements in same segment as } e \text{ in both } S \text{ and } S^*|}{|\text{elements in same segment as } e \text{ in } S^*|} \right)$$









Webis-Web-Archive-17 (JDIQ'18)

Extract node locations and text content





| Agreement measure | Elements   |       |        |       |  |
|-------------------|------------|-------|--------|-------|--|
|                   | Characters | Nodes | Pixels | Edges |  |
| $F_{B^3}$         | 0.78       | 0.74  | 0.65   | 0.73  |  |



| Agreement measure       | Elements   |       |        |       |  |
|-------------------------|------------|-------|--------|-------|--|
|                         | Characters | Nodes | Pixels | Edges |  |
| $F_{B^3}$               | 0.78       | 0.74  | 0.65   | 0.73  |  |
| $\max(P_{B^3},R_{B^3})$ | 0.97       | 0.95  | 0.94   | 0.96  |  |

@KieselJohannes

es)



## Web Page Segmentation Revisited: Evaluation Framework and Dataset

#### Evaluation Framework for Web Page Segmentation

- Segmentation similarity, quality, and fusion
- Comparison of level of detail of segmentations
- Adjustable for different downstream tasks

#### Webis-WebSeg-20

- 8,490 pages from 4,824 sites
- 5 human annotators each page
- Segments in "Simple Feature Access" standard
- Web pages provided in several representations:
  - HTML file
  - Screenshot
  - Screenshot coordinates of DOM nodes
  - Webis-Web-Archive-17 WARC file



https://webis.de/publications.html?q= johannes+kiesel+web+archive#stein\_2020w

Paper, browser, code, data