

Overview of the 2nd International Competition on Plagiarism Detection

Martin Potthast, Alberto Barrón-Cedeño, Andreas Eiselt, Benno Stein, Paolo Rosso

Bauhaus-Universität Weimar & Universidad Politécnica de Valencia http://pan.webis.de

2nd International Competition on Plagiarism Detection, PAN 2010

These days, plagiarism and text reuse is rife on the Web.

Task:

Given a set of suspicious documents and a set of source documents, find all plagiarized sections in the suspicious documents and, if available, the corresponding source sections.

2nd International Competition on Plagiarism Detection, PAN 2010

These days, plagiarism and text reuse is rife on the Web.

Task:

Given a set of suspicious documents and a set of source documents, find all plagiarized sections in the suspicious documents and, if available, the corresponding source sections.

Facts:

- □ 18 groups from 12 countries participated
- □ 15 weeks of training and testing (March June)
- □ training corpus was the PAN-PC-09
- □ test corpus was the PAN-PC-10, a new version of last year's corpus.
- □ performance was measured by precision, recall, and granularity

Plagiarism Corpus PAN-PC-101

Large-scale resource for the controlled evaluation of detection algorithms:

- □ 27 073 documents (obtained from 22 874 books from the Project Gutenberg²)
- □ 68 558 plagiarism cases (about 0-10 cases per document)
- [1] www.webis.de/research/corpora/pan-pc-10

[2] www.gutenberg.org

Plagiarism Corpus PAN-PC-10¹

Large-scale resource for the controlled evaluation of detection algorithms:

- □ 27 073 documents (obtained from 22 874 books from the Project Gutenberg²)
- □ 68 558 plagiarism cases (about 0-10 cases per document)
- [1] www.webis.de/research/corpora/pan-pc-10

[2] www.gutenberg.org

PAN-PC-10 addresses a broad range of plagiarism situations by varying reasonably within the following parameters:

- 1. document length
- 2. document language
- 3. detection task
- 4. plagiarism case length
- 5. plagiarism case obfuscation
- 6. plagiarism case topic alignment

PAN-PC-10 Document Statistics

100% 27 073 documents

PAN-PC-10 Document Statistics

100% 27073 documents

Document length:

50% short	35% medium	15% long
(1-10 pages)	(10-100 pages)	(100-1 000 pp.)

PAN-PC-10 Document Statistics

100% 27073 documents

Document length:

50% short	35% medium	15% long
(1-10 pages)	(10-100 pages)	(100-1 000 pp.)

Document language:

80% English	10% de	10% es
-------------	--------	--------

PAN-PC-10 Document Statistics

100% 27073 documents

Document length:

50% short	35% medium	15% long
(1-10 pages)	(10-100 pages)	(100-1 000 pp.)

Document language:

80% English	10% de	10% es	
-------------	--------	--------	--

Detection task:

70% external analysis		30% intrinsic analysis	
plagiarized	unmodified (plagiarism source)	plagiarized	unmodified
Plagiarism fraction per document [%] 5 25 50 75 100			

PAN-PC-10 Plagiarism Case Statistics

100% 68558 plagiarism cases

PAN-PC-10 Plagiarism Case Statistics

100% 68558 plagiarism cases

Plagiarism case length:

34% short	33% medium	33% long
(50-150 words)	(300-500 words)	(3000-5000 words)

PAN-PC-10 Plagiarism Case Statistics

100% 68558 plagiarism cases

Plagiarism case length:

34% short	33% medium	33% long
(50-150 words)	(300-500 words)	(3000-5000 words)

Plagiarism case obfuscation:

40% none	40% artificial ³		6% ⁴	149	% ⁵
	low obfuscation	high obfuscation	AMT	de	es

[3] Artificial plagiarism: algorithmic obfuscation.

[4] Simulated plagiarism: obfuscation via Amazon Mechanical Turk.

[5] Cross-language plagiarism: obfuscation due to machine translation de \rightarrow en and es \rightarrow en.

PAN-PC-10 Plagiarism Case Statistics

100% 68558 plagiarism cases

Plagiarism case length:

34% short	33% medium	33% long
(50-150 words)	(300-500 words)	(3000-5000 words)

Plagiarism case obfuscation:

40% none	40% artificial ³		6% ⁴	14	% ⁵
	low obfuscation	high obfuscation	AMT	de	es

- [3] Artificial plagiarism: algorithmic obfuscation.
- [4] Simulated plagiarism: obfuscation via Amazon Mechanical Turk.
- [5] Cross-language plagiarism: obfuscation due to machine translation de \rightarrow en and es \rightarrow en.

Plagiarism case topic alignment:

50% intra-topic	50% inter-topic
-----------------	-----------------

Plagiarism Detection Results

	i lag	juci
Kasprzak		0.80
Zou		0.71
Muhr		0.69
Grozea		0.62
Oberreuter		0.61
Torrejón		0.59
Pereira		0.52
Palkovskii		0.51
Sobha		0.44
Gottron		0.26
Micol		0.22
Costa-jussà		0.21
Nawab		0.21
Gupta		0.20
Vania		0.14
Suàrez		0.06
Alzahrani		0.02
lftene		0.00
	0	1

Plagdet

 Plagdet combines precision, recall, and granularity.

- Precision and recall are well-known, yet not often used in plagiarism detection.
- Granularity measures the number of times a single plagiarism case has been detected.

[Potthast et al., COLING 2010]

Plagiarism Detection Results

	Recall	Precision	Granularity
Kasprzak	0.69	0.94	1.00
Zou	0.63	0.91	1.07
Muhr	0.71	0.84	1.15
Grozea	0.48	0.91	1.02
Oberreuter	0.48	0.85	1.01
Torrejón	0.45	0.85	1.00
Pereira	0.41	0.73	1.00
Palkovskii	0.39	0.78	1.02
Sobha	0.29	0.96	1.01
Gottron	0.32	0.51	1.87
Micol	0.24	0.93	2.23
Costa-jussà	0.30	0.18	1.07
Nawab	0.17	0.40	1.21
Gupta	0.14	0.50	1.15
Vania	0.26	0.91	6.78
Suàrez	0.07	0.13	2.24
Alzahrani	0.05	0.35	17.31
Iftene	0.00	0.60	8.68
	0 1	0 1	1 2

Summary

Summary

- □ More in the overview paper
 - This year's best practices for external detection.
 - Detection results with regard to every corpus parameter.
 - Comparison to PAN 2009.
- □ Lesson's learned & frontiers
 - Too much focus on local comparison instead of Web retrieval.
 - Intrinsic detection needs more attention.
 - Machine translated obfuscation is easily defeated in the current setting.
 - Short plagiarism cases and simulated plagiarism cases are difficult to detect.

Obfuscation

Real plagiarists modify their plagiarism to prevent detection, i.e., to *obfuscate* their plagiarism.

Our task:

Given a section s_{src} , create a section s_{plg} that has a high content similarity to s_{src} under some retrieval model but a different wording.

Obfuscation

Real plagiarists modify their plagiarism to prevent detection, i.e., to *obfuscate* their plagiarism.

Our task:

Given a section s_{src} , create a section s_{plg} that has a high content similarity to s_{src} under some retrieval model but a different wording.

Obfuscation strategies:

- 1. simulated: human writers
- 2. artificial: random text operations
- 3. artificial: semantic word variation
- 4. artificial: POS-preserving word shuffling
- 5. artificial: machine translation

Obfuscation Strategy: Human Writers

 s_{plg} is created by manually rewriting s_{src} .

 $s_{\rm src}$ = "The quick brown fox jumps over the lazy dog."

Examples:

- \Box s_{plg} = "Over the dog, which is lazy, quickly jumps the fox which is brown."
- \Box $s_{plg} =$ "Dogs are lazy which is why brown foxes quickly jump over them."
- \Box $s_{plg} =$ "A fast bay-colored vulpine hops over an idle canine."

Reasonable scales can be achieved with this strategy via payed crowdsourcing, e.g., on Amazon's Mechanical Turk.

Obfuscation Strategy: Random Text Operations

 s_{plg} is created from s_{src} by shuffling, removing, inserting, or replacing words or short phrases at random.

 $s_{\rm src}$ = "The quick brown fox jumps over the lazy dog."

- \Box s_{plg} = "over The. the quick lazy dog context jumps brown fox"
- \Box s_{plg} = "over jumps quick brown fox The lazy. the"
- \Box s_{plg} = "brown jumps the. quick dog The lazy fox over"

Obfuscation Strategy: Semantic Word Variation

 s_{plg} is created from s_{src} by replacing each word by one of its synonyms, antonyms, hyponyms, or hypernyms, chosen at random.

 $s_{\rm src}$ = "The quick brown fox jumps over the lazy dog."

- \Box s_{plg} = "The quick brown dodger leaps over the lazy canine."
- \Box $s_{plg} =$ "The quick brown canine jumps over the lazy canine."
- \Box $s_{plg} =$ "The quick brown vixen leaps over the lazy puppy."

Obfuscation Strategy: POS-preserving Word Shuffling

Given the part of speech sequence of s_{src} , s_{plg} is created by shuffling words at random while retaining the original POS sequence.

 s_{src} = "The quick brown fox jumps over the lazy dog." POS = "DT JJ JJ NN VBZ IN DT JJ NN ."

- \Box s_{plg} = "The brown lazy fox jumps over the quick dog."
- \Box s_{plg} = "The lazy quick dog jumps over the brown fox."
- \Box s_{plg} = "The brown lazy dog jumps over the quick fox."

Obfuscation Strategy: Machine Translation

 s_{plg} is created from s_{src} by translating it using machine translation (services).

 s_{src} = "Der flinke braune Fuchs hüpft über den faulen Hund."

- \Box s_{plg} = "The quick brown fox jumps over the lazy dog."
- \Box s_{plg} = "The speedy brown fox hops over the lazy dog."