
Modern Talking in Key Point Analysis:

Key Point Matching using Pretrained Encoders

Key Point Analysis Shared Task 2021

Jan Heinrich Reimer Thi Kim Hanh Luu Max Henze Yamen Ajjour

Martin Luther University Halle-Wi�enberg, Germany

November 11, 2021



2/9

Key Point Matching

I Arguments influence daily decisions [Bar+20]

I Large amount of information on the Web

I Need to summarize→ key points

I Find matching key points for arguments

Example

Argument: Sex selection can lead to gender imbalance by

distorting the natural male-female sex ratio.

Key Point: Sex selection can lead to gender imbalance → match
Key Point: It is unethical/unhealthy for parents to intervene → no match
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Baseline: Token Overlap

Example

Argument: Sex selection can lead to gender imbalance by

distorting the natural male-female sex ratio.

Key Point: Sex selection can lead to gender imbalance

Approach

I Key points are sampled from arguments→ similar vocabulary

I Count tokens that appear in argument and key point

scorearg,kp =
|{t : t ∈ tokensarg ∧ t ∈ tokenskp}|

min{|tokensarg|, |tokenskp|}

I Rule-based, no training

Preprocessing

I Stemming, synonyms, antonyms
1 generalization

I Stop words (without not) less noise/confusion

1
Using NLTK [Bir06] and WordNet [Mil95]
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Transformers: Bert and RoBerta

I Pretrained encoder models:

I Bert [Dev+18]

I RoBerta [Liu+19]

I Train for sentence pair regression:

Bert [CLS] argument [SEP] key point [SEP]
RoBerta <s> argument </s> <s> key point </s>

I Fine-tune pretrained model with ArgKP-2021 training data

Why RoBerta?

I Trained on 10× more data than Bert

I Larger batches, learning rates, step sizes→ longer training

I O�en outperforms Bert [Liu+19]
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Transformers: Bert and RoBerta (cont.)

Parameters and Implementation

I Simple Transformers library
2

ClassificationModel(..., args={"regression": True})
I Pretrained models

I Bert-Base and RoBerta-Base

I 12 hidden layers of size 768, 12 a�ention heads with dropout 0.1

I Fine-tuning

I Batch size 32, 1 epoch

I Learning rate 2 · 10−5
, warmup proportion 6 %

I No weight decay, no early stopping, no oversampling,

skip missing labels

2https://simpletransformers.ai/

https://simpletransformers.ai/
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Evaluation: Mean Average Precision

Strict Labels

Training Data Validation Data Test Data
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Figure: Mean average precision of the match label for di�erent approaches and

baselines under the strict label se�ing.
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Evaluation: Mean Average Precision

Relaxed Labels

Training Data Validation Data Test Data
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Figure: Mean average precision of the match label for di�erent approaches and

baselines under the relaxed label se�ing.
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Error Analysis

I RoBerta generalizes be�er than Bert

I Bert: some uncertain pairs (prediction around 0.5)

→ Example from training set without matching key points

RoBerta does predict correctly

I Di�iculties wih very long arguments

→ Example from training set with 6.5× more tokens than key point

I Both predict non-matching pairs be�er than matching pairs

(likely because of imbalanced training data)

Table: Falsely predicted pairs from the ArgKP-2021 dataset.

Argument Key point True Bert RoBerta

School uniforms can be less comfortable than stu-

dents’ regular clothes.

School uniforms are

expensive

0 0.48 0.03

a�irmative action discriminates the majority, pre-

venting skilled workers from gaining employment

over someone less qualified but considered to be

a member of a protected minority group.

A�irmative action

reduces quality

1 -0.05 0.03
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Conclusion

I Strong, rule-based baseline (twice as good as random)

I Bert an RoBerta models be�er for context understanding

I Scores on test set

mAP strict: 0.913

mAP relaxed: 0.967

I Hyperparameter tuning is important

Future Work

I Ensemble with RoBerta and overlap baseline

I Improved, more robust language models [Sun+21]

I Avanced textual oversampling to balance training data

Thank you!
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