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Cross-encoders are effective but slow and expensive to run. [Scells et al., SIGIR’22]
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Making cross-encoders more efficient

One paradigm that improves cross-encoder efficiency is reducing the number of
tokens that interact with each other. [Sekulic et al., TREC’20; Jiang et al., EMNLP’20]
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Sparse cross-encoder architecture

Our sparse cross-encoder architecture combines windowed self-attention and
asymmetric cross-attention between sub-sequences.
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Sparse cross-encoder effectiveness

nDCG@10 on TREC Deep Learning 2019–2022 passage and document

Task Full Attention / Longformer Sparse Cross-Encoder
w = ∞ 64 16 4 1 0 ∞ 64 16 4 1 0

Passage 0.62 0.62† 0.62† 0.62† 0.61 0.57 0.62† 0.62† 0.61 0.61† 0.60 0.56
Document 0.58 0.58 0.59† 0.59 0.58† 0.56 0.57 0.59 0.59 0.58 0.59 0.56
† denotes significant equivalence within ±0.02 (paired TOST) with underlined score per row. MaxP results are grayed out.

1. Asymmetric query attention does not impact effectiveness . . .

2. Window size of w = 16 is on par with full attention

3. Window size of w = 1 still competitive

4. Window size of w = 0 slightly less effective

➜ Also translates to out-of-domain effectiveness on TIREx [Fröbe et al. SIGIR’23]
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Investigating the Effects of Sparse Attention on Cross-Encoders
Sparse cross-encoder efficiency

Latency and memory consumption on synthetic query document pairs

Unit Full Attention Longformer Sparse CE Sparse CE
w = ∞ 64 64 4
Query length 10, Passage length 164
µs 368 980 (+166%) 527 (+43%) 364 (−1%)

MB 9 15 (+67%) 9 (+0%) 7 (−22%)

Query length 10, Document length 4086
ms 49 (+250%) 14 12 (−14%) 8 (−43%)

MB 1608 (+905%) 160 111 (−31%) 66 (−59%)

1. Sparse cross-encoder with w = 64 is more efficient than the Longformer

2. Window size w = 4 is more efficient than full attention on passages
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Investigating the Effects of Sparse Attention on Cross-Encoders
Conclusion

We introduced a sparse cross-encoder architecture that combines windowed
self-attention and asymmetric cross-attention between sub-sequences.

❑ Attention from query tokens to other tokens can be deactivated
without losing effectiveness.

❑ Very small window sizes are still effective for re-ranking with cross-encoders.

❑ Our sparse cross-encoder reduces memory consumption and runtime.
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Thank you! Code and models @
https://github.com/webis-de/ECIR-24
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Full TREC DL Table

Task Full Att. / Longformer Sparse Cross-Encoder QDS
w = ∞ 64 16 4 1 0 ∞ 64 16 4 1 0 64

P
as

sa
ge

2019 .724 .719† .725† .719 .714 .694 .722 .717 .724 .728 .715 .696 .720†

2020 .674 .681† .680 .684 .676 .632 .666 .672 .661 .665 .649 .605 .682
2021 .656 .653 .650 .645 .629 .602 .656 .650 .639 .647 .625 .593 .656†

2022 .496 .494† .487 .486 .481 .441 .490 .492† .479 .484 .471 .427 .495†

Avg. .619 .619† .616† .615† .607 .572 .615† .615† .607 .612† .596 .560 .620†

D
oc

um
en

t 2019 .658 .683 .678 .667 .689 .663 .638 .672 .685 .669 .692 .646 .697
2020 .622 .640 .639 .661 .655 .644 .636 .638 .650 .642 .657 .638 .639
2021 .678 .671 .681 .683 .683 .629 .677 .681 .681 .670 .679 .644 .676
2022 .424 .425 .431 .425 .409 .389 .421 .446 .443 .417 .424 .405 .428
Avg. .575 .582 .586† .587 .584† .556 .573 .590 .594 .577 .589 .561 .587†
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Investigating the Effects of Sparse Attention on Cross-Encoders
TIREx Table

Corpus Doc. Len. First Stage monoT5 monoBERT Sparse CE
Base Large 3b Base Large 512 4096

Antique 49.9 .510 .505 .527 .537 .507 .484 .540 .174
Args.me 435.5 .405 .305 .338 .392 .314 .371 .313 .180
CW09 1132.6 .178 .186 .182 .201 .192 .134 .198 .212
CW12 5641.7 .364 .260 .266 .279 .263 .251 .312 .338
CORD-19 3647.7 .586 .688 .636 .603 .690 .625 .673 .642
Cranfield 234.8 .008 .006 .007 .007 .006 .006 .009 .003
Disks4+5 749.3 .429 .516 .548 .555 .514 .494 .487 .293
GOV 2700.5 .266 .320 .327 .351 .318 .292 .316 .292
GOV2 2410.3 .467 .486 .513 .514 .489 .474 .503 .460
MED. 309.1 .366 .264 .318 .350 .267 .298 .237 .180
NFCorpus 364.6 .268 .295 .296 .308 .295 .288 .284 .151
Vaswani 51.3 .447 .306 .414 .458 .321 .476 .436 .163
WaPo 713.0 .364 .451 .492 .476 .449 .438 .434 .296
Average – .358 .353 .374 .387 .356 .356 .365 .260
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Efficiency Graphs
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