Syntax versus Semantics: Analysis of Enriched Vector Space Models

Benno Stein and Sven Meyer zu Eissen and Martin Potthast Bauhaus University Weimar

Introduction

Enrichment Approaches

Evaluation

Relevance Computation

Information retrieval aims at dividing relevant documents from irrelevant ones with respect to an information need.

Document models are at the heart of such a process.

A look behind the scenes:

Introduction

Enrichment Approaches

Evaluation

Relevance Computation

Information retrieval aims at dividing relevant documents from irrelevant ones with respect to an information need.

Document models are at the heart of such a process.

A look behind the scenes: An average document model.

Introduction

Enrichment Approaches

Evaluation

Relevance Computation

Information retrieval aims at dividing relevant documents from irrelevant ones with respect to an information need.

Document models are at the heart of such a process.

A look behind the scenes: A perfect document model.

Introduction

Enrichment Approaches

Evaluation

Text with markups [Reuters]:

<TEXT> <TITLE>CHRYSLER> DEAL LEAVES UNCERTAINTY FOR AMC WORKERS</TITLE> <AUTHOR> By Richard Walker, Reuters</AUTHOR> <DATELINE> DETROIT, March 11 - </DATELINE><BODY>Chrysler Corp's 1.5 billion dlr bid to takeover American Motors Corp; AMO> should help bolster the small automaker's sales, but it leaves the future of its 19,000 employees in doubt, industry analysts say. It was "business as usual" yesterday at the American

Introduction

. . .

Enrichment Approaches

Evaluation

Raw text:

chrysler deal leaves uncertainty for amc workers by richard walker reuters detroit march 11 chrysler corp s 1 5 billion dlr bid to takeover american motors corp should help bolster the small automaker s sales but it leaves the future of its 19 000 employees in doubt industry analysts say it was business as usual yesterday at the american ...

Introduction

Enrichment Approaches

Evaluation

Stop words emphasized:

chrysler deal leaves uncertainty for amc workers by richard walker reuters detroit march 11 chrysler corp s 1 5 billion dlr bid to takeover american motors corp should help bolster the small automaker s sales but it leaves the future of its 19 000 employees in doubt industry analysts say it was business as usual yesterday at the american ...

Introduction

Enrichment Approaches

Evaluation

After stemming:

chrysler deal leav uncertain amc work richard walk reut detroit takeover american motor help bols automak sal leav futur employ doubt industr analy business usual yesterday american ...

Introduction

Enrichment Approaches

Evaluation

After stemming:

chrysler deal leav uncertain amc work richard walk reut detroit takeover american motor help bols automak sal leav futur employ doubt industr analy business usual yesterday american ...

Vector Space Model:

$$\begin{array}{c} \text{chrysler} \rightarrow 0.64 \\ \text{deal} \rightarrow 0.31 \\ \text{leav} \rightarrow 0.03 \\ \text{uncertain} \rightarrow 0.12 \\ \text{amc} \rightarrow 0.22 \\ \vdots \end{array} \right)$$

Term weighting schemes quantify the importance of each index term.

Introduction

Enrichment Approaches

Evaluation

Index Construction Principles

How can the set of index terms be improved?

 \sum

TIR'06 Aug. 29th, 2006

How can the set of index terms be improved?

1. Semantic Approach.

Exploit domain knowledge and external information sources to find or infer new index terms.

2. Syntactic Approach.

Identify concepts (i.e. "Artificial Intelligence") present in the document through statistical frequency analysis.

Introduction

Enrichment Approaches

Evaluation

Semantic Approach: Find Transitive Relationships

Adding hypernyms:

Syntactic Approach: Amplify Document Relationships

```
The area of information retrieval has grown well beyond its primary goals ...
```

... one of the most interesting and active areas of research in information retrieval.

... use common tools for the retrieval of parts or all of the deleted information.

Introduction

Enrichment Approaches

Evaluation

Syntactic Approach: Amplify Document Relationships

The area of information retrieval has grown well beyond its primary goals ...

... one of the most interesting and active areas of research in information retrieval.

... use common tools for the retrieval of parts or all of the deleted information.

We consider a short sequence of words as a concept, if it has a particular meaning beyond the senses of each individual word.

Introduction

Enrichment Approaches

Evaluation

 \sum

Concept identification:

Frequency analysis of all *n*-grams of a document, for $n \in \{2, 3, 4\}$.

Concept Identification: Successor Variety Analysis

Suffix tree at word level:

A note on runtime:

 \Box O(n) [Ukkonen 1995]

Introduction

Enrichment Approaches

Evaluation

Concept Identification: Successor Variety Analysis

Suffix tree at word level:

A note on runtime:

□ *O*(*n*) [Ukkonen 1995]

 $\begin{tabular}{ll} \square $O(n^2)$ and $\Theta(n\log(n))$ \\ [Giegerich et. al.] \end{tabular}$

Introduction

Enrichment Approaches

Evaluation

 \sum

How to find good candidates for a concept?

analysis of degree differences (depending on tree depth)
cut-off method, entropy method

Remark. Related work for stemming (suffix tree at letter level).

TIR'06 Aug. 29th, 2006

[Stein/Potthast 2006] Stein/Meyer zu Eissen/Potthast

Concept Identification: Examples

Successor variety analysis at work:

n = 2	n = 3
south africa	mad cow disease
public sector	public sector deficit
european union	argentine central bank
weighted average	national statistics institute

n = 4

	secretary general kofi annan		
luction hment paches	secretary state madeleine albright		
	prime minister benjamin netanyahu		
	palestinian president yasser arafat		
otion			

Introd

Enric Appro

Evaluation

 \sum

Based on a sample of 1000 documents out of 5 categories from the RCV1.

Syntax vs. Semantics: Benefits and Weaknesses

Semantic Approach:

- + Transitive relationships are revealed
- Generalization of specific documents
- Word sense disambiguation may be necessary

Syntactic Approach:

- + Corpus-specific concepts are found
- + Language-independent means of concept identification
- Statistical mass necessary to identify a concept

Introduction

Enrichment Approaches

Evaluation

Evaluation

The Traditional Way: Clustering

Comparison of *F*-measure values:

Vector space model variant	F-min	F-max	F-av.	
	(sample size 1000, 10 categories)			
standard vector space model	-baseline-			
synonym enrichment	-20%	+12%	-2%	
hypernym enrichment	-9%	+20%	+3%	
n-gram index term selection	0%	+14%	+8%	

Introduction

Enrichment Approaches

Evaluation

Evaluation

The Traditional Way: Clustering

Comparison of *F*-measure values:

Vector space model variant	F-min	F-max	F-av.	
	(sample size 1000, 10 categories)			
standard vector space model	—baseline—			
synonym enrichment	-20%	+12%	-2%	
hypernym enrichment	-9%	+20%	+3%	
<i>n</i> -gram index term selection	0%	+14%	+8%	

Interpretation is difficult.

Introduction

Enrichment Approaches

Evaluation

 \sum

A cluster algorithm's performance depends on various parameters. Different cluster algorithms behave differently sensitive to document model "improvements".

Baseline? Interpretation? Objectivity? Generalizability?

Evaluation

Model-based instead of Algorithm-based: Expected Density $\bar{\rho}$

An objective way to rank document models is to compare their ability to *capture the intrinsic similarity relations* of a collection *D*.

Basic idea:

- 1. construct a similarity graph, $G = \langle V, E, w \rangle$
- 2. measure its conformance to a reference classification
- 3. analyze improvement/decline under new document model

Introduction

Enrichment Approaches

Evaluation

Definition

Graph $G = \langle V, E, w \rangle$

 \Box G is called sparse [dense] if |E| = O(|V|) [$O(|V|^2)$]

 \Box the density θ computes from the equation $|E| = |V|^{\theta}$

Introduction

Enrichment Approaches

Evaluation

Definition

Graph $G = \langle V, E, w \rangle$

 \Box G is called sparse [dense] if |E| = O(|V|) [$O(|V|^2)$]

 \square the density θ computes from the equation $|E| = |V|^{\theta}$

u with $w(G) := \sum_{e \in E} w(e)$, this extends to weighted graphs:

$$w(G) = |V|^{\theta} \quad \Leftrightarrow \quad \theta = \frac{\ln (w(G))}{\ln (|V|)}$$

Using θ we assess the density of an induced subgraph G_i of G.

Introduction

Enrichment Approaches

Evaluation

Definition

Graph $G = \langle V, E, w \rangle$

 \Box G is called sparse [dense] if |E| = O(|V|) [$O(|V|^2)$]

 \square the density θ computes from the equation $|E| = |V|^{\theta}$

u with $w(G) := \sum_{e \in E} w(e)$, this extends to weighted graphs:

$$w(G) = |V|^{\theta} \quad \Leftrightarrow \quad \theta = \frac{\ln (w(G))}{\ln (|V|)}$$

Using θ we assess the density of an induced subgraph G_i of G.

 \Box a categorization $C = \{C_1, \ldots, C_k\}$ induces k subgraphs G_i

→ expected density
$$\overline{\rho}(\mathcal{C}) = \sum_{i=1}^{k} \frac{|V_i|}{|V|} \cdot \frac{w(G_i)}{|V_i|^{\theta}}$$

Introduction

Enrichment Approaches

Evaluation

 \sum

TIR'06 Aug. 29th, 2006

Understanding Expected Density

Introduction

Enrichment Approaches

Evaluation

 \sum

Embedding of a collection under a particular document model.

Understanding Expected Density

Introduction

Enrichment Approaches

Evaluation

 \sum

Embedding of a collection under a particular document model.

 $\overline{\rho} > 1$ [$\overline{\rho} < 1$] if the cluster density is larger [smaller] than average.

Understanding Expected Density

Introduction

Enrichment Approaches

Evaluation

 \sum

Consider inter-cluster and intra-cluster similarities.

Understanding Expected Density

Introduction

Enrichment Approaches

Evaluation

 \sum

Consider inter-cluster and intra-cluster similarities.

Effect of a document model that *reinforces the structural characteristic* within a document collection.

Understanding Expected Density

Introduction

Enrichment Approaches

Evaluation

 \sum

Consider inter-cluster and intra-cluster similarities.

Effect of a document model that *reinforces the structural characteristic* within a document collection.

Experiments: English Collection

Collection: RCV1. Two documents d_1, d_2 are assigned to the same category if they share the top level category and the most specific category.

Introduction

Enrichment Approaches

Evaluation

 \sum

Experiments: German Collection

Introduction

Enrichment Approaches

Evaluation

 \sum

Collection: Compilation of 26,000 documents from 20 German news groups.

Summary

- Basis: document models with "visible" index terms
- □ Issue: selection, modification, enrichment of index terms
- Question: syntactic concept identification compared to semantic enrichment

Contribution

- □ efficient implementation of a concept identificator
- □ comparison to semantic enrichment apporaches
- \square algorithm-neutral evaluation method based on $\bar{\rho}$

Introduction

Enrichment Approaches

Evaluation

- Message
 - □ the benefit of semantic term enrichment is overestimated
 - generally accepted analysis methods are required

Introduction

Evaluation

 \sum

TIR'06 Aug. 29th, 2006