Hash-based Indexing: Application, Impact, and Realization Alternatives

Benno Stein and Martin Potthast

Bauhaus University Weimar Web-Technology and Information Systems

Introduction

Hash-based Indexing Methods

Comparative Study

Text-based Information Retrieval (TIR)

Motivation

Consider a set of documents *D*.

Term query—the most common retrieval task: Find all documents $D' \subset D$ containing a set of query terms.

 \rightarrow Best practice: Index *D* using an inverted file.

→ Implemented by well-known web search engines.

Introduction

Hash-based Indexing Methods

Comparative Study

Text-based Information Retrieval (TIR)

Motivation

Document query—given a document *d*: Find all documents $D' \subset D$ with a high similarty to *d*.

Use cases: plagiarism analysis, query by example. www.turing.org.uk/ - 11k - <u>Cached</u> - <u>Similar pages</u> - <u>Filter</u>

→ Naive approach: Compare d with each $d' \in D$.

Introduction

Hash-based Indexing Methods

Comparative Study

 \sum

In detail: Construct document models for D and d obtaining \mathbf{D} and \mathbf{d} . Employ a similarity function $\varphi : \mathbf{D} \times \mathbf{D} \rightarrow [0, 1]$.

Is it possible to be faster than the naive approach?

Background

Nearest Neighbour Search

Given a set D of *m*-dimensional points and a point d: Find the point $d' \in D$ which is nearest to d.

Background

Approximate Nearest Neighbour Search

Given a set D of *m*-dimensional points and a point d: Find some points $D' \subset D$ from a certain ε -neighbourhood of d.

Introduction

Hash-based Indexing Methods

Comparative Study

 \sum

The dimensionality m does not affect the runtime of their algorithm.

Text-based Information Retrieval (TIR)

Nearest Neighbour Search

Introduction

Hash-based Indexing Methods

Comparative Study

 \sum

Approximate retrieval results are often acceptable.

Similarity Hashing

Introduction

With standard hash functions collisions occur accidently.

In similarity hashing collisions shall occur purposefully where the purpose is "high similarity".

Given a similarity function φ a hash function

$$h_{\varphi}: \mathbf{D} \to U \qquad \text{with } U \subset \mathbf{N}$$

Introduction

Hash-based Indexing Methods

Comparative Study

 \sum

resembles φ if it has the following property [Stein 2005]:

$$h_{\varphi}(\mathbf{d}) = h_{\varphi}(\mathbf{d}') \ \Rightarrow \ \varphi(\mathbf{d},\mathbf{d}') \geq 1 - \varepsilon \qquad \text{with } \mathbf{d},\mathbf{d}' \in \mathbf{D}, 0 < \varepsilon \ll 1$$

Similarity Hashing

Index Construction

Given a similarity hash function h_{φ} a hash index

$$\mu_h : \mathbf{D} \to \mathcal{D} \qquad \text{width } \mathcal{D} = \mathcal{P}(D)$$

is constructed using

 $\hfill\square$ a hash table ${\cal T}$

 \Box a standard hash function $h: U \to \{1, \ldots, |\mathcal{T}|\}$

Introduction

Hash-based Indexing Methods

Comparative Study

Similarity Hashing

Index Construction

Given a similarity hash function h_{φ} a hash index

$$\mu_h : \mathbf{D} \to \mathcal{D} \qquad \text{width } \mathcal{D} = \mathcal{P}(D)$$

is constructed using

 $\hfill\square$ a hash table ${\cal T}$

 \Box a standard hash function $h: U \to \{1, \ldots, |\mathcal{T}|\}$

To *index* a set of documents D given their models D,

Introduction

Hash-based Indexing Methods

Comparative Study

 \sum

□ compute for each $d \in D$ its hash value $h_{\varphi}(d)$ □ store a reference to *d* in \mathcal{T} at storage position $h(h_{\varphi}(d))$

To *search* for documents similar to *d* given its model d, \Box return the bucket in \mathcal{T} at storage position $h(h_{\varphi}(\mathbf{d}))$

Fuzzy-Fingerprinting (FF) [Stein 2005]

All words having the same prefix belong to the same prefix class.

Locality-Sensitive Hashing (LSH) [Indyk and Motwani 1998, Datar *et. al.* 2004]

The results of the k dot products are summed.

Adjusting Recall and Precision

Recall:

Introduction

Hash-based Indexing Methods

Comparative Study

Adjusting Recall and Precision

Recall:

(FF) # fuzzy schemes.(LSH) # random vector sets.

A set of hash values per document is called fingerprint.

Introduction

Hash-based Indexing Methods

Comparative Study

Adjusting Recall and Precision

Recall:

(FF) # fuzzy schemes.(LSH) # random vector sets.

A set of hash values per document is called fingerprint.

Introduction

Hash-based Indexing Methods

Comparative Study

 \sum

Precision:

- (FF) # prefix classes or
 - # intervals per fuzzy scheme.
- (LSH) # random vectors.

Experimental Setting

Three test collections for three retrieval situations

- 1. Web results: 100.000 documents from a focused search.
- ➔ Documents as Web retrieval systems return them.
- 2. RCV1: 100.000 documents from the Reuters Corpus.
- Documents as corporations organize them.
- 3. Plagiarism corpus: 3.000 documents with high similarity.
- Documents as they appear in plagiarism analysis.

Introduction

Hash-based Indexing Methods

Comparative Study

 \sum

Retrieval tasks: Similarity Search, Near-Duplicate Detection Precision and Recall were recorded for similarity thresholds ranging from 0 to 1.

Results

Introduction

Hash-based Indexing Methods

Comparative Study

Results

Indexing Methods

Study

Results

Introduction Hash-based

Indexing Methods

Comparative Study

Summary

Near-duplicate detection in plagiarism situation:

□ FF outperforms LSH in terms of Precsion and Recall.

Retrieval tasks in standard corpora:

□ FF outperforms LSH in terms of Precision.

□ FF and LSH perform equally good in terms of Recall.

Conclusions:

- → Both hash-based indexing methods may be applied in TIR.
- FF has an advantage in precision which directly affects runtime performance.

None of the hash-based indexing methods is limited to TIR. The only prerequisite is a reasonable vector representation.

Introduction

Hash-based Indexing Methods

Comparative Study

Thank you!

Introduction

Hash-based Indexing Methods

Comparative Study