Applying Hash-based Indexing in Text-based Information Retrieval

Benno Stein and Martin Potthast

Bauhaus University Weimar Web-Technology and Information Systems

Introduction

Hash-based Indexing Methods

Comparative Study

 \sum

Text-based Information Retrieval (TIR)

Motivation

Consider a set of documents D.

Term query—given a set of query terms:

→ Implemented by well-known web search engines.

Find all documents $D' \subset D$ containing the query terms.

→ Best practice: Index D using an inverted file.

Introduction

Hash-based Indexing Methods

Comparative Study

Σ

Text-based Information Retrieval (TIR)

Motivation

Consider a set of documents D.

Document query—given a document d: Find all documents $D' \subset D$ with a high similarity to d.

→ Use cases: plagiarism analysis, query by example www.turing.org.uk/ - 11k - Cached - Similar pages - Filter

 \rightarrow Naive approach: Compare d with each $d' \in D$.

Introduction

In detail:

Construct document models for D and d obtaining D and d. Employ a similarity function $\varphi: \mathbf{D} \times \mathbf{D} \to [0,1]$.

Is it possible to be faster than the naive approach?

Hash-based

Comparative

Indexing Methods

Study

Background

Given a set D of *m*-dimensional points and a point d:

Find the point $\mathbf{d}' \in \mathbf{D}$ which is nearest to \mathbf{d} .

0

0

0

Nearest Neighbour Search

0

In our case: $1.000 \ll m < 1.000.000$

0

Finding \mathbf{d}' cannot be done better than in $\mathcal{O}(|\mathbf{D}|)$ time if m exceeds 10.

[Weber et. al. 1998]

Stein/Potthast

Introduction

Hash-based Indexing Methods

Comparative

Study

Background

Approximate Nearest Neighbour Search

Given a set D of *m*-dimensional points and a point d:

0 0 0 \bigcirc ε-neighbourhood

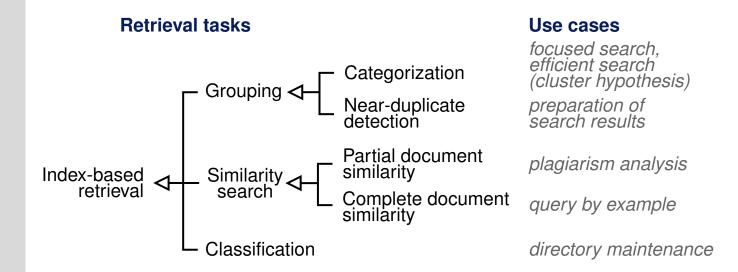
Introduction

Hash-based Indexing Methods

Comparative

Study

of hashing. [Indyk and Motwani 1998]


Finding \mathbf{D}' can be done in $\mathcal{O}(1)$ time with high probability by means

Find some points $D' \subset D$ from a certain ε -neighbourhood of d.

The dimensionality m does not affect the runtime of their algorithm.

Text-based Information Retrieval (TIR)

Nearest Neighbour Search

Introduction

Hash-based Indexing Methods

Comparative Study

 \sum

Approximate retrieval results are often acceptable.

DIR'07 Mar. 29th, 2007

Similarity Hashing

Introduction

With standard hash functions collisions occur accidentally.

In similarity hashing collisions shall occur purposefully where the purpose is "high similarity".

Given a similarity function φ a hash function

 $h_{\circ}: \mathbf{D} \to U$ with $U \subset \mathbf{N}$

resembles φ if it has the following property [Stein 2005]:

 $h_{\varphi}(\mathbf{d}) = h_{\varphi}(\mathbf{d}') \implies \varphi(\mathbf{d}, \mathbf{d}') \ge 1 - \varepsilon \quad \text{with } \mathbf{d}, \mathbf{d}' \in \mathbf{D}, 0 < \varepsilon \ll 1$

Hash-based Indexing Methods

Introduction

Comparative Study

Similarity Hashing

Index Construction

Given a similarity hash function h_{φ} a hash index

$$\mu_h: \mathbf{D} \to \mathcal{D}$$
 width $\mathcal{D} = \mathcal{P}(D)$

is constructed using

- $\ \square$ a hash table $\mathcal T$
- \square a standard hash function $h: U \to \{1, \dots, |\mathcal{T}|\}$

Introduction

Hash-based Indexing Methods

Comparative Study

Σ

Similarity Hashing

Index Construction

Given a similarity hash function h_{ω} a hash index

 $\mu_h: \mathbf{D} \to \mathcal{D}$ width $\mathcal{D} = \mathcal{P}(D)$

is constructed using

 \Box a hash table \mathcal{T}

 \Box a standard hash function $h: U \to \{1, \dots, |\mathcal{T}|\}$

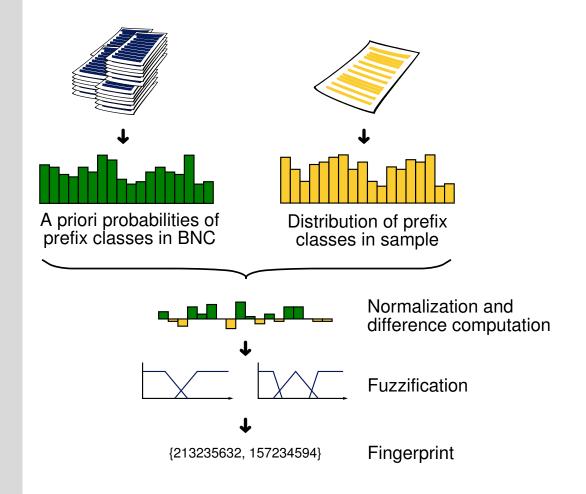
To *index* a set of documents D given their models D,

 \Box compute for each $\mathbf{d} \in \mathbf{D}$ its hash value $h_{\varphi}(\mathbf{d})$

 \Box store a reference to d in \mathcal{T} at storage position $h(h_{\varphi}(\mathbf{d}))$

Comparative Study

Indexing Methods


Introduction

Hash-based

To *search* for documents similar to d given its model d,

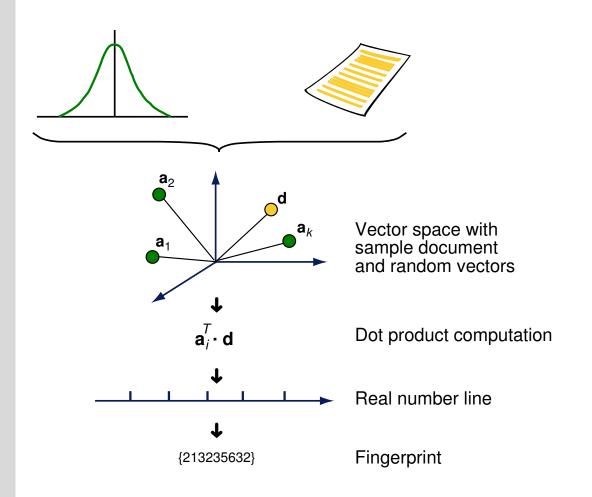
 \Box return the bucket in \mathcal{T} at storage position $h(h_{\varphi}(\mathbf{d}))$

Fuzzy-Fingerprinting (FF) [Stein 2005]

All words having the same prefix belong to the same prefix class.

Introduction

Hash-based Indexing Methods


Comparative Study

 \sum

DIR'07 Mar. 29th, 2007

Locality-Sensitive Hashing (LSH)

[Indyk and Motwani 1998, Datar et. al. 2004]

The results of the k dot products are summed.

Introduction

Hash-based

Comparative

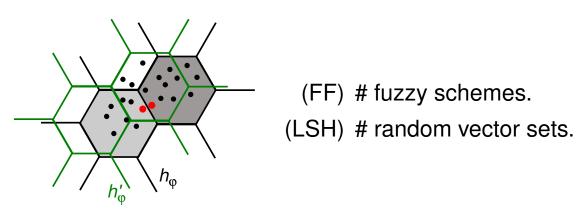
Indexing Methods

Study

Adjusting Recall and Precision

Recall:

Introduction


Hash-based Indexing Methods

Comparative Study

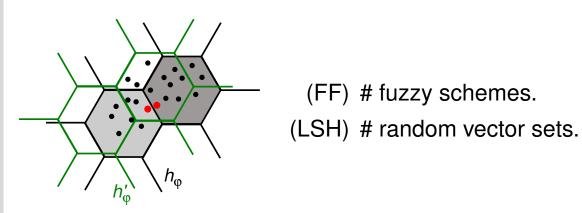
 \sum

Adjusting Recall and Precision

Recall:

Introduction

Hash-based Indexing Methods


Comparative Study

Σ

A set of hash values per document is called fingerprint.

Adjusting Recall and Precision

Recall:

A set of hash values per document is called fingerprint.

Introduction

Hash-based Indexing Methods

Comparative Study

 \sum

Precision:

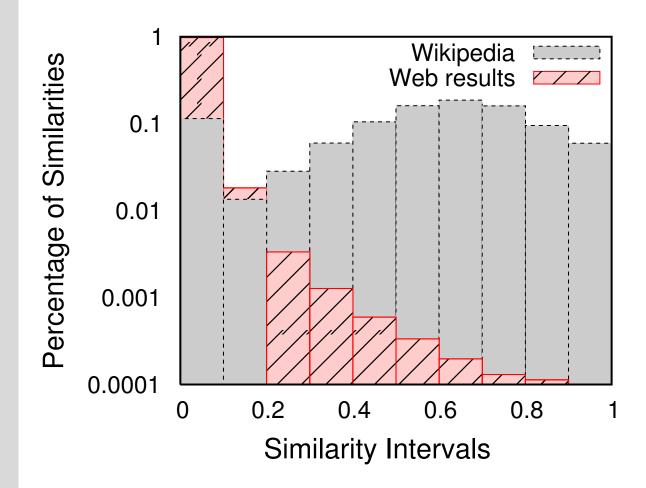
(FF) # prefix classes or# intervals per fuzzy scheme.

(LSH) # random vectors.

Experimental Setting

Three test collections for three retrieval situations

- 1. Web results: 100.000 documents from a focused search.
- → Documents as Web retrieval systems return them.
- 2. Plagiarism corpus: 3.000 documents with high similarity.
- → Documents as they appear in plagiarism analysis.
- 3. Wikipedia Revision corpus: 6m documents, 80m revisions.
- → Documents as they appear in social software, plagiarism analysis, and the Web.
- $\ \square$ first revision of each document used as query document d
- □ comparison with each of *d*'s revisions


Introduction

Hash-based Indexing Methods

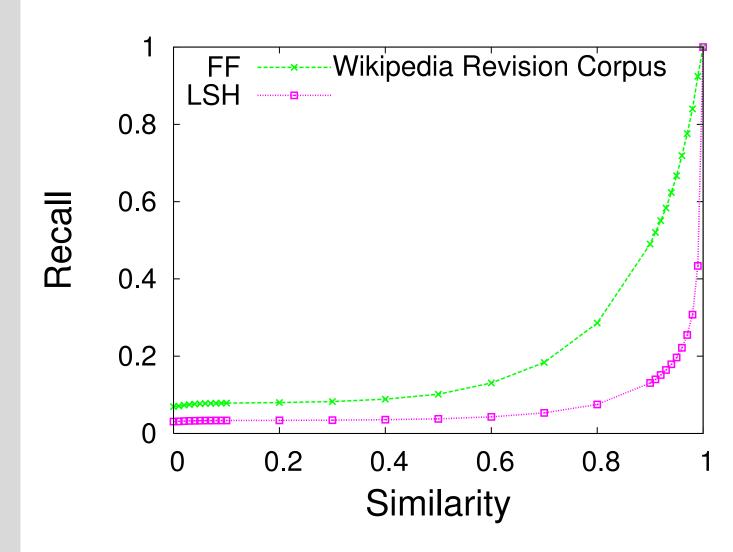
Comparative Study

Σ

Experimental Setting

Introduction

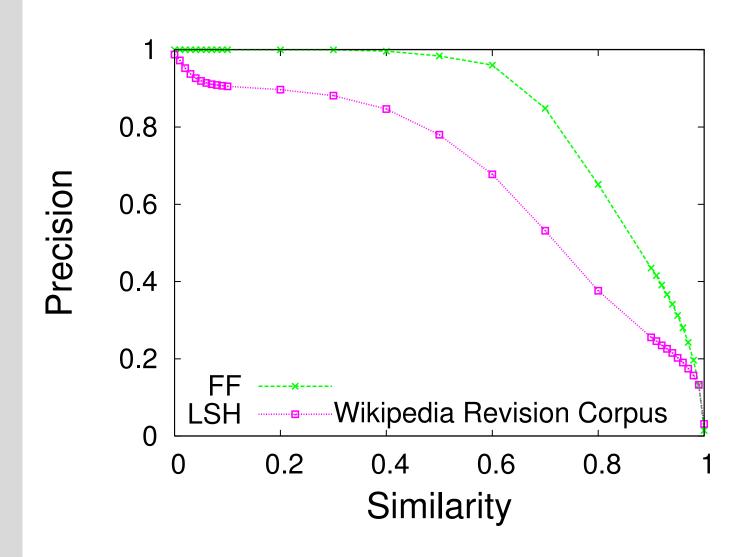
Hash-based Indexing Methods


Comparative Study

 \sum

Precision and Recall were recorded for similarity thresholds ranging from 0 to 1.

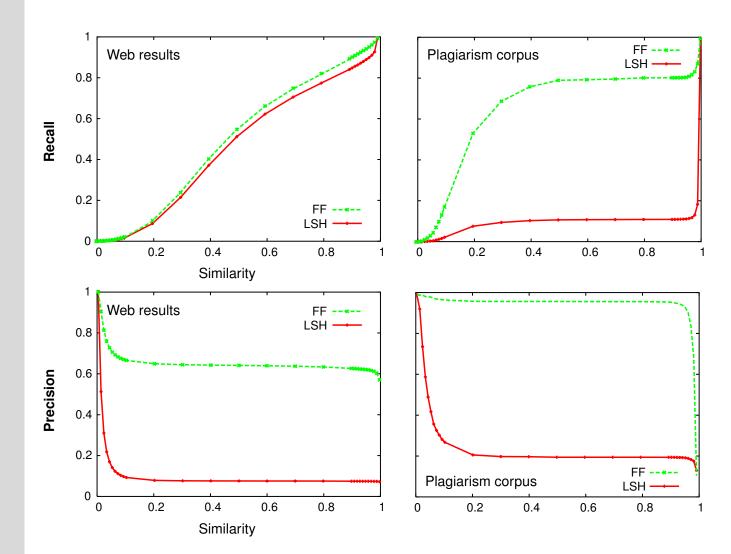
DIR'07 Mar. 29th, 2007


Introduction

Hash-based Indexing Methods

Comparative Study

Σ


Introduction

Hash-based Indexing Methods

Comparative Study

 \sum

Results

Introduction
Hash-based
Indexing
Methods

Comparative Study

 \sum

Summary

Similarity hashing may contribute to various retrieval tasks

Comparison of similarity hash functions:

- □ FF outperforms LSH in terms of Precision and Recall.
- □ FF constructs significantly smaller fingerprints.

Conclusions:

- → Both hash-based indexing methods are applicable to TIR.
- → The incorporation of domain knowledge significantly increases retrieval performance.

None of the hash-based indexing methods is limited to TIR. The only prerequisite is a reasonable vector representation.

Introduction

Hash-based Indexing Methods

Comparative Study

 \sum

Thank you!

Introduction

Hash-based Indexing Methods

Comparative Study

 \sum_{i}

DIR'07 Mar. 29th, 2007