Introducing the User-over-Ranking hypothesis

Benno Stein Matthias Hagen

Bauhaus-Universität Weimar matthias.hagen@uni-weimar.de

ECIR 2011 Dublin, Ireland April 21, 2011

User-over-Ranking stated informally

Queries returning as many results as the user can consider increase retrieval performance.

User-over-Ranking stated informally

Queries returning as many results as the user can consider increase retrieval performance.

Small print: If ranking works: fine! Use case is not some query like ebay. But more involved information needs, automatic systems, etc.

Assumption 1: More keywords = more specific

Google	"information retrieval"	Search
0	Abou 2,490,000 esults (0.10 seconds)	Advanced search
🚼 Everything 🎬 Videos	Information retrieval - Wikipedia, the free encyclopedia Information retrieval (IR) is the science of searching for documents, for information within documents, and for metadata about documents, as well as that of	
🔰 Books 👎 Discussions	 History - Overview - Performance measures - Model types en.wikipedia.org/wiki/Information_retrieval - Cached - Similar	
Plogs More	Information Retrieval - University of Glasgow :: Computing Science An online book by Qi van Rijbergen, University of Glasgow. ww.dcs.dia.cu.k/kreth/Preface.html - Cached - Similar	
Any time Past 2 days	Introduction to Information Retrieval The book aims to provide a modern approach to information retrieval from a	
All results Related searches Wonder wheel Timeline	computer science perspective. It is based on a course we have been teaching in www-csli.stanford.edu/~hinrichyinformation-retrieval-book.html - Cached journal of Information Retrieval - SpringerLink Journal www.springerlink.com/ink.asp?id=103814 - Similar	
▼ More search tools	Information Retrieval Information Retrieval - The Journal of Information Retrieval is an international forum for theory, algorithms, and experiments that concern search and www.springer.com/computer/database+management/10791 - Cached	

2

Assumption 1: More keywords = more specific

イロト イポト イヨト イヨト

Assumption 1: More keywords = more specific

Specificity of Queries

- 4 ⊒ →

3

Assumption 2: User can arbitrarily specify information need

Specificity of Queries

3. 3

Assumption 2: User can arbitrarily specify information need

Specificity of Queries

3. 3

Assumption 3: User can consider about k results.

Specificity of Queries

∃ >

Hypothesis: Specificity matches k = Optimum retrieval

Specificity of Queries

Probability for Retrieval Success

.∋...>

What about empirical evidence?

2

► < Ξ ►</p>

Experimental Setting: AOL log

- Cleaning (bots, URL queries, encoding problems)
- Query duplicates removed
- 4.4 million unique queries (\leq 22 keywords)
- Submitted to Bing API
- Result list length estimates stored

AOL log result list length distribution in 3D

Median AOL log result list length in 2D

3 x 3

Experimental Setting: TREC Robust04

- 530 000 newswire documents
- BM25 indexed with Terrier
- Nounphrase extraction for TREC topics 301-450, 601-700
- Submitted all combinations to Terrier
- Result lists stored
- Assumed capacity k = 100

Avg. NDCG@100 per result list length (Robust04)

э

Almost the end: The take-away messages!

2

글 제 제 글 제

What we have done

Results

- When ranking works: fine!
- Else: User-over-Ranking
 - $\bullet \ \ \text{longer queries} \rightarrow \text{fewer results}$
 - optimum retrieval performance \rightarrow user capacity
- Empirical evidence

⁻uture Work

• Apply hypothesis to query formulation

What we have (not) done

Results

- When ranking works: fine!
- Else: User-over-Ranking
 - $\bullet \ \ \text{longer queries} \rightarrow \text{fewer results}$
 - optimum retrieval performance \rightarrow user capacity
- Empirical evidence

Future Work

• Apply hypothesis to query formulation

What we have (not) done

Results

- When ranking works: fine!
- Else: User-over-Ranking
 - longer queries \rightarrow fewer results
 - optimum retrieval performance \rightarrow user capacity
- Empirical evidence

Future Work

 Apply hypothesis to query formulation

Thank you