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Language Models as Context-sensitive Word Search Engines
Motivation

Context-sensitive word search engines retrieve words that match a given context.

q Trivially: Thesauri, idiom collections, ...

2 @MattiWiegmann, 2022



Language Models as Context-sensitive Word Search Engines
Motivation

Context-sensitive word search engines retrieve words that match a given context.

q Trivially: Thesauri, idiom collections, ...

3 @MattiWiegmann, 2022



Language Models as Context-sensitive Word Search Engines
Motivation

Context-sensitive word search engines retrieve words that match a given context.

q Trivially: Thesauri, idiom collections, ...
q Context allows wildcard queries q = ql ? qr and ranking.

4 @MattiWiegmann, 2022



Language Models as Context-sensitive Word Search Engines
Motivation

Context-sensitive word search engines retrieve words that match a given context.

q Trivially: Thesauri, idiom collections, ...
q Context allows wildcard queries q = ql ? qr and ranking.
q Counting frequencies beats predictions and smoothing for word search.

5 @MattiWiegmann, 2022



Language Models as Context-sensitive Word Search Engines
Motivation

Context-sensitive word search engines retrieve words that match a given context.

q Trivially: Thesauri, idiom collections, ...
q Context allows wildcard queries q = ql ? qr and ranking.
q Counting frequencies beats predictions and smoothing for word search.

→ Context-sensitive word search engines are build on n-gram collections.
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Language Models as Context-sensitive Word Search Engines
Motivation

Problem: Increasing n requires exponential observations; We’re limited to n <= 5.
→ Infer the answers to wildcard queries and their probabilities from a (large) language model.
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Language Models as Context-sensitive Word Search Engines
Motivation

Problem: Increasing n requires exponential observations; We’re limited to n <= 5.
→ Infer the answers to wildcard queries and their probabilities from a (large) language model.

Contributions:

q Tune large language models to n-grams while preserving
corpus characteristics and idioms.

q Predict the ranking with frequency.
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Language Models as Context-sensitive Word Search Engines
Language Modeling for Word Search

Solving wildcard queries q = ql ? qr with:

1. Masked
Language Modeling
We used DistillBERT

2. Coditional
Language Modeling

We used BART
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Language Models as Context-sensitive Word Search Engines
Experimental Evaluation

q Data: 3 and 5-grams from Wikitext and CLOTH.
q Models: DistillBERT, BART, DistillBERTft, BARTft, Netspeak.
q Experiment 1: Predict masked word; Measure position in the result set via MRR.
q Experiment 2: Predict the observable ranking. Measure nDCG. High frequency results

have a higher relevance.
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Language Models as Context-sensitive Word Search Engines
Experimental Evaluation

q Data: 3 and 5-grams from Wikitext and CLOTH.
q Models: DistillBERT, BART, DistillBERTft, BARTft, Netspeak.
q Experiment 1: Predict masked word; Measure position in the result set via MRR.
q Experiment 2: Predict the observable ranking. Measure nDCG. High frequency results

have a higher relevance.

the little dog
the lazy dog
the wonder dog

the <mask> dog 2
1the lazy dog
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Language Models as Context-sensitive Word Search Engines
Experimental Evaluation

q Data: 3 and 5-grams from Wikitext and CLOTH.
q Models: DistillBERT, BART, DistillBERTft, BARTft, Netspeak.
q Experiment 1: Predict masked word; Measure position in the result set via MRR.
q Experiment 2: Predict the observable ranking. Measure nDCG. High frequency results

have a higher relevance.
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Language Models as Context-sensitive Word Search Engines
Results

Core Results:

q Finetuned models within 5 p.p. of Netspeak for queries with observable answers.
q Finetuning doubles MRR and nDCG, depending on word class and wildcard position. No

substantial difference between model types.
q 80% of 5-gram queries have no obserable results:

→ Laguage models can answer, Netspeak can not;
→ Average MRR loss of 7 p.p.

q Runtime per Query: 5ms for BERT and Netspeak, 11 ms for BART
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www.netspeak.org/demo
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