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Context-sensitive word search engines retrieve words that match a given context.

o Trivially: Thesauri, idiom collections, ...
o Context allows wildcard queries ¢ = ¢; / ¢ and ranking.
o Counting frequencies beats predictions and smoothing for word search.

— Context-sensitive word search engines are build on n-gram collections.
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Motivation

Problem: Increasing n requires exponential observations; We're limited to n <= 5.
— Infer the answers to wildcard queries and their probabilities from a (large) language model.
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Motivation

Problem: Increasing n requires exponential observations; We're limited to n <= 5.
— Infer the answers to wildcard queries and their probabilities from a (large) language model.

Contributions:

o Tune large language models to n-grams while preserving
corpus characteristics and idioms.

o Predict the ranking with frequency.

Netspeak One word leads to another.
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Language Models as Context-sensitive Word Search Engines
Experimental Evaluation

Data: 3 and 5-grams from Wikitext and CLOTH.
Models: DistillBERT, BART, DistillBERT;, BARTy, Netspeak.
Experiment 1: Predict masked word; Measure position in the result set via MRR.

Experiment 2: Predict the observable ranking. Measure nDCG. High frequency results
have a higher relevance.
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Language Models as Context-sensitive Word Search Engines
Results

Core Results:

o Finetuned models within 5 p.p. of Netspeak for queries with observable answers.
0 Finetuning doubles MRR and nDCG, depending on word class and wildcard position. No
substantial difference between model types.

o 80% of 5-gram queries have no obserable results:
— Laguage models can answer, Netspeak can not;
— Average MRR loss of 7 p.p.
0 Runtime per Query: 5ms for BERT and Net speak, 11 ms for BART
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