

¹Bauhaus-Universität Weimar ²Leipzig University

webis.de

1

Context-sensitive word search engines retrieve words that match a given context.

□ Trivially: Thesauri, idiom collections, ...

Context-sensitive word search engines retrieve words that match a given context.

□ Trivially: Thesauri, idiom collections, ...

Context-sensitive word search engines retrieve words that match a given context.

- □ Trivially: Thesauri, idiom collections, ...
- \Box Context allows wildcard queries $q = q_l$? q_r and ranking.

N etspeak	One	word leads t	o another.		
the ? dog				i	ХЭ
the little dog				150,000	14%
the wonder dog				100,000	9.6%
the lazy dog				94,000	8.3%
the <mark>hot</mark> dog				80,000	7.1%
the <mark>black</mark> dog				66,000	5.8%
the family dog				66,000	5.8%
the talking dog				65,000	5.7%

Context-sensitive word search engines retrieve words that match a given context.

- □ Trivially: Thesauri, idiom collections, ...
- \Box Context allows wildcard queries $q = q_l$? q_r and ranking.
- Counting frequencies beats predictions and smoothing for word search.

Netspeak	One	word leads t	o another.		
the ? dog				i	ХЭ
the little dog				150,000	14%
the wonder dog				100,000	9.6%
the lazy dog				94,000	8.3%
the <mark>hot</mark> dog				80,000	7.1%
the <mark>black</mark> dog				66,000	5.8%
the family dog				66,000	5.8%
the talking dog				65,000	5.7%

Context-sensitive word search engines retrieve words that match a given context.

- □ Trivially: Thesauri, idiom collections, ...
- \Box Context allows wildcard queries $q = q_l$? q_r and ranking.
- Counting frequencies beats predictions and smoothing for word search.
 - \rightarrow Context-sensitive word search engines are build on *n*-gram collections.

Netspeak	One	word leads t	o another.		
the ? dog				i	ХЭ
the little dog				150,000	14%
the wonder dog				100,000	9.6%
the lazy dog				94,000	8.3%
the <mark>hot</mark> dog				80,000	7.1%
the <mark>black</mark> dog				66,000	5.8%
the family dog				66,000	5.8%
the talking dog				65,000	5.7%

Problem: Increasing *n* requires exponential observations; We're limited to $n \le 5$.

 \rightarrow Infer the answers to wildcard queries and their probabilities from a (large) language model.

N etspeak	One word leads to another.		
over the ? dog		i	ЮX
over the lazy dog		88,000	100%
	\sim		

Problem: Increasing *n* requires exponential observations; We're limited to $n \le 5$.

- \rightarrow Infer the answers to wildcard queries and their probabilities from a (large) language model. Contributions:
 - □ Tune large language models to *n*-grams while preserving corpus characteristics and idioms.
 - □ Predict the ranking with frequency.

N etspeak	One word leads to another.		
over the ? dog		i	ЮX
over the lazy dog		88,000	100%

Solving wildcard queries $q = q_l$? q_r with:

1. Masked Language Modeling We used DistillBERT

2. Coditional Language Modeling We used BART

Solving wildcard queries $q = q_l$? q_r with:

1. Masked Language Modeling We used DistillBERT

Pretrain and Predict

2. Coditional Language Modeling We used BART

Solving wildcard queries $q = q_l$? q_r with:

1. Masked Language Modeling We used DistillBERT

Pretrain and Predict

2. Coditional Language Modeling We used BART

Pretrain and Predict

Solving wildcard queries $q = q_l$? q_r with:

1. Masked Language Modeling We used DistillBERT

Pretrain and Predict

2. Coditional Language Modeling We used BART

Language Models as Context-sensitive Word Search Engines Experimental Evaluation

- **Data:** 3 and 5-grams from Wikitext and CLOTH.
- □ **Models:** DistillBERT, BART, DistillBERT_{ft}, BART_{ft}, Netspeak.
- Experiment 1: Predict masked word; Measure position in the result set via MRR.
- Experiment 2: Predict the observable ranking. Measure nDCG. High frequency results have a higher relevance.

Language Models as Context-sensitive Word Search Engines Experimental Evaluation

- **Data:** 3 and 5-grams from Wikitext and CLOTH.
- □ **Models:** DistillBERT, BART, DistillBERT_{ft}, BART_{ft}, Netspeak.
- **Experiment 1:** Predict masked word; Measure position in the result set via MRR.
- Experiment 2: Predict the observable ranking. Measure nDCG. High frequency results have a higher relevance.

Language Models as Context-sensitive Word Search Engines Experimental Evaluation

- **Data:** 3 and 5-grams from Wikitext and CLOTH.
- □ **Models:** DistillBERT, BART, DistillBERT_{ft}, BART_{ft}, Netspeak.
- **Experiment 1:** Predict masked word; Measure position in the result set via MRR.
- Experiment 2: Predict the observable ranking. Measure nDCG. High frequency results have a higher relevance.

Core Results:

□ Finetuned models within 5 p.p. of Netspeak for queries with observable answers.

- Finetuning doubles MRR and nDCG, depending on word class and wildcard position. No substantial difference between model types.
- □ 80% of 5-gram queries have no obserable results:
 - \rightarrow Laguage models can answer, Netspeak can not;
 - \rightarrow Average MRR loss of 7 p.p.
- Runtime per Query: 5ms for BERT and Netspeak, 11 ms for BART

Core Results:

- □ Finetuned models within 5 p.p. of Netspeak for queries with observable answers.
- Finetuning doubles MRR and nDCG, depending on word class and wildcard position. No substantial difference between model types.
- □ 80% of 5-gram queries have no obserable results:
 - \rightarrow Laguage models can answer, Netspeak can not;
 - \rightarrow Average MRR loss of 7 p.p.
- Runtime per Query: 5ms for BERT and Netspeak, 11 ms for BART

Core Results:

- □ Finetuned models within 5 p.p. of Netspeak for queries with observable answers.
- Finetuning doubles MRR and nDCG, depending on word class and wildcard position. No substantial difference between model types.
- □ 80% of 5-gram queries have no obserable results:
 - \rightarrow Laguage models can answer, Netspeak can not;
 - \rightarrow Average MRR loss of 7 p.p.
- Runtime per Query: 5ms for BERT and Netspeak, 11 ms for BART

Core Results:

- □ Finetuned models within 5 p.p. of Netspeak for queries with observable answers.
- Finetuning doubles MRR and nDCG, depending on word class and wildcard position. No substantial difference between model types.
- □ 80% of 5-gram queries have no obserable results:
 - \rightarrow Laguage models can answer, Netspeak can not;
 - \rightarrow Average MRR loss of 7 p.p.
- **Runtime per Query: 5ms for** BERT and Netspeak, 11 ms for BART

www.netspeak.org/demo