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Trigger Warnings

Trigger:

o A trigger in media content is a topic or situation that evokes images, memories,
or emotions that cause discomfort or distress.

“Great infernos dotted the city here and there, charring and cremating the still bodies of
those committed souls who now lay still forever.”

evokes .
— Memories of a past war.

triggers ) . .
— Anxiety, feelings of loss or grief, ...
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Trigger warning:

o A warning about a possible trigger for the audience, displayed before the content.

o Originally used in trauma therapy, trigger warnings have been adopted and extensively
expanded by online communities.



Trigger Warnings

Trigger:

o A trigger in media content is a topic or situation that evokes images, memories,
or emotions that cause discomfort or distress.

“Great infernos dotted the city here and there, charring and cremating the still bodies of
those committed souls who now lay still forever.”

evokes .
— Memories of a past war.
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— Anxiety, feelings of loss or grief, ...

Trigger Detection at PAN 2023:

Given a fan fiction document, assign all
appropriate trigger warnings from the given label set.



Task Overview

Dataset:
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Task Overview

Dataset:

o Contains 341,246 English fan fiction documents.
o Documents are 50—-6,000 words long.

o Annotated with 32 warning labels (multi-label).

Evaluation:

o Precision, Recall, F;, all micro and macro averaged.

o Best models: 0.35 macro F{; 0.75 micro F;.
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Task Overview

Dataset:

o Contains 341,246 English fan fiction documents.
o Documents are 50—-6,000 words long.

o Annotated with 32 warning labels (multi-label).

Evaluation:

o Precision, Recall, F;, all micro and macro averaged.

o Best models: 0.35 macro F{; 0.75 micro F;.
Submissions:
o 6 teams submitted.

o Different models, features, and strategies to deal
with long documents and label imbalances.

Number of documents with the
given warning label.
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Dataset

Trigger Warning Taxonomy:

o We curated a trigger warning taxonomy based on
university guidelines (Michigan and Reading).
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Trigger Warning Taxonomy:

o We curated a trigger warning taxonomy based on
university guidelines (Michigan and Reading).
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o It contains 32 closed-set warnings.

Suicide, Eating disorders, Pornography,

o The long tail of rare warnings is captured by
7 open-set warning groups (not used in the task).
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We curated a trigger warning taxonomy based on
university guidelines (Michigan and Reading).

It contains 32 closed-set warnings.
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Dataset

Trigger Warning Taxonomy:

Note: For an updated version of the taxonomy see [Wiegmann et al. (ACL 2023)]
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We curated a trigger warning taxonomy based on
university guidelines (Michigan and Reading).

It contains 32 closed-set warnings.
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https://webis.de/publications.html#wiegmann_2023a

Dataset

Documents:

o We scraped 7.9 million fan fiction documents with
metadata from Archive of Our Own (AO3).

Rating:

Archive Warnings:

Category:
Fandom:

Relationships:

Characters:

Additional Tags:

Language:
Series:

Stats:

Mature

No Archive Warnings Apply, Major Character Death, Graphic
Depictions Of Violence

MM

Harry Potter - J. K. Rowling

Sirius Black/Remus Lupin, Sirius Black & Remus Lupin, James
Potter/Lily Ev:

Remus Lupin, Sirius Black, James Potter, Lily Evans Potter, Peter
Pettigrew, Severus Snape, Minerva McGonagall, Bellatrix Black
Lestrange, Narcissa Black Malfoy, Albus Dumbledore, Mulciber
Sr. (Harry Potter), Horace Slughorn, Mary Macdonald, Marlene
McKinnon, Poppy Pomfrey, Walburga Black, Regulus Black,
Fenrir Greyback

Marauders' Era, Marauders, Marauders Friendship, wolfstar,
Get Together, Slow Burn, so slow, it's slow, seriously,
Complete, Canon Compliant, Angst, Fluff, Fluff and Angst,
Requited Love, Canonical Character Death, First War with
Voldemort, First Kiss, Period Typical Attitudes

English
Part 1 of All the Young Dudes » Next Work —

Published: 2017-03-02 Completed: 2018-11-12 Words:
526,969 Chapters: 188/188 Comments: 30,603 Kudos:
155,026 Bookmarks: 30,939 Hits: 10,623,619

[MsKingBean89, 2018]


https://archiveofourown.org/works/10057010
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Dataset

Documents:

Rating: Mature

Archive Warnings: No Archive Warnings Apply, Major Character Death, Graphic

o We scraped 7.9 million fan fiction documents with

Category: M/M

metadata from Archive of Our Own (AO3). Harry Pote - . . Rowing

Relationships: Sirius Black/Remus Lupin, Sirius Black & Remus Lupin, James
Potter/Lily Evans Potter
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D Select Works based On recency (2009+) 3 Pettigrew, Severus Snape, Minerva McGonagall, Bellatrix Black
Lestrange, Narcissa Black Malfoy, Albus Dumbledore, Mulciber
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McKinnon, Poppy Pomfrey, Walburga Black, Regulus Black,
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Get Together, Slow Burn, so slow, it's slow, seriously,
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Voldemort, First Kiss, Period Typical Attitudes
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(17,104), and test (17,040) documents. e e e
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Dataset

Documents:

Rating: Mature
Archive Warnings: No Archive Warnings Apply, Major Character Death, Graphic

o We scraped 7.9 million fan fiction documents with
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metadata from Archive of Our Own (AO3). . .
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o Stratified sampling into training (307,102), validation e e ste veums oues - s ver -

Stats: Published: 2017-03-02 Completed: 2018-11-12 Words:

(17,104), and test (17,040) documents. e e e

o Determine warning based on the 10 million unique [MsKingBean89, 2018]
freeform tags.


https://archiveofourown.org/works/10057010

Dataset
Warning: Abuse

Determining warning labels:
o Freeform tags are related through tag relations that /// _ JRRN
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Dataset

Determining warning labels:

o Freeform tags are related through tag relations that
were added by community experts
Semi-automatic annotation.

0 Synonymous tags are related.
One synonym is marked as canonical.
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Dataset

Determining warning labels:

o Freeform tags are related through tag relations that
were added by community experts
Semi-automatic annotation.

0 Synonymous tags are related.
One synonym is marked as canonical.

o Canonical tags are in a meta-sub relation.
Sources were annotated with a warning.
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Dataset

Determining warning labels: Warning: Abuse
o Freeform tags are related through tag relations that Sup_ematural// RN
dded b it t (Anime) / Abusive John !
were added by community experts Winchester |

Semi-automatic annotation. Anime i
Abusive John //

/
/

0 Synonymous tags are related.

One synonym is marked as canonical. (like a LOT

of abuse) ,’
/

/

o Canonical tags are in a meta-sub relation.

) . # ’
Sources were annotated with a warning. No O #abuse /
Fandom e
a Parent relations indicate Genre/Fandom. , " Warning:
Warnings are usually children of No Fandom.  Sexual| goy gl
. ‘\\Abuse,' assault
o Annotate ca. 6,000 nodes, infer label for ca. 80% of NP
tags used; 0.95 F;. Tag relations:

M Meta B Synonym M Parent



Results

Submissions:

o XGBoost baseline based on TF-IDF document vectors.

Participant Macro
Prec Rec F;
XGBoost 0.52 0.25 0.301
Participant Micro
Prec Rec F;
XGBoost 0.88 0.57 0.69




Results

Submissions: Participant Macro

_ Prec Rec F;
o XGBoost baseline based on TF-IDF document vectors. Sanin 037 047 0.352

o Sahin et al. Hierarchical classification with a RoBERTa-base

XGBoost 0.52 0.25 0.301
and LSTM, use full documents.

Participant Micro
Prec Rec F;

Sahin 0.73 0.74 0.74
XGBoost 0.88 0.57 0.69
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Results

Submissions: Participant Macro
. Prec Rec F;
o XGBoost baseline based on TF-IDF document vectors. Sahin 037 045 0.352
Su 0.54 0.30 0.350

o Sahin et al. Hierarchical classification with a RoBERTa-base
and LSTM, use full documents.

XGBoost 0.52 0.25 0.301

o Su et al. Hierarchical (siamese) classification with a
RoBERTa-base and CNN, uses the first and last 500 words.

Participant Micro
Prec Rec F;

Su 0.80 0.71 0.75

Sahin 0.73 0.74 0.74

XGBoost 0.88 0.57 0.69




Results

Submissions:

a

a

XGBoost baseline based on TF-IDF document vectors.

Sahin et al. Hierarchical classification with a RoBERTa-base
and LSTM, use full documents.

Su et al. Hierarchical (siamese) classification with a
RoBERTa-base and CNN, uses the first and last 500 words.

Haojie Cao et al. and Guiyuan Cao et al. Classify chunks
with RoBERTa-based voting ensemble.

Participant Macro

Prec Rec F,
Sahin 0.37 0.42 0.352
Su 0.54 0.30 0.350
XGBoost 0.52 0.25 0.301
Cao H. 0.24 0.29 0.228
Cao G. 0.28 0.22 0.225
Participant Micro

Prec Rec F,
Su 0.80 0.71 0.75
Sahin 0.73 0.74 0.74
XGBoost 0.88 0.57 0.69
Cao G. 0.58 0.66 0.62
Cao H. 0.43 0.79 0.56
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XGBoost baseline based on TF-IDF document vectors.

Sahin et al. Hierarchical classification with a RoBERTa-base
and LSTM, use full documents.

Su et al. Hierarchical (siamese) classification with a
RoBERTa-base and CNN, uses the first and last 500 words.

Haojie Cao et al. and Guiyuan Cao et al. Classify chunks
with RoBERTa-based voting ensemble.

Felser et al. MLP based on aggregate embeddings
and topic model features.

Participant Macro
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XGBoost 0.52 0.25 0.301
Cao H. 0.24 0.29 0.228
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Felser 0.11 0.63 0.161
Participant Micro

Prec Rec F;
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XGBoost 0.88 0.57 0.69
Cao G. 0.58 0.66 0.62
Cao H. 0.43 0.79 0.56
Felser 0.27 0.82 0.40




Results

Submissions:

a

a

XGBoost baseline based on TF-IDF document vectors.

Sahin et al. Hierarchical classification with a RoBERTa-base
and LSTM, use full documents.

Su et al. Hierarchical (siamese) classification with a
RoBERTa-base and CNN, uses the first and last 500 words.

Haojie Cao et al. and Guiyuan Cao et al. Classify chunks
with RoBERTa-based voting ensemble.

Felser et al. MLP based on aggregate embeddings
and topic model features.

Shashirekha et al. LSTM based on GloVE embeddings.

Participant Macro

Prec Rec F;
Sahin 0.37 0.42 0.352
Su 0.54 0.30 0.350
XGBoost 0.52 0.25 0.301
Cao H. 0.24 0.29 0.228
Cao G. 0.28 0.22 0.225
Felser 0.11 0.63 0.161
Shashirekha 0.10 0.04 0.048
Participant Micro

Prec Rec F;
Su 0.80 0.71 0.75
Sahin 0.73 0.74 0.74
XGBoost 0.88 0.57 0.69
Shashirekha 0.82 0.50 0.63
Cao G. 0.58 0.66 0.62
Cao H. 0.43 0.79 0.56
Felser 0.27 0.82 0.40




Results

Observations from the Evaluation II:

1. Submissions with good representations of full Length Popularity
documents are more effective (0.05—-0.06) short long low  high

on long than on short documents. Sahin 0.28 0.34 0.30 0.35

Su 0.39 0.27 0.22 0.35
XGBoost 0.24 0.29 0.16 0.30
Cao, H. 023 022 0.19 0.22




Results

Observations from the Evaluation II:

1. Submissions with good representations of full

) Length Popularity
documents are more effective (0.05-0.06)

short long low high

on long than on short documents. Sahin 028 0.34 030 035
. . .. . Su 0.39 027 0.22 0.35
2. Submissions with strong positional representation XGBoost 024 029 016 030

are more effective on short texts (< 500 words). Cao,H. 0.23 022 0.19 022




Results

Observations from the Evaluation II:

1. Submissions with good representations of full
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on long than on short documents.

2. Submissions with strong positional representation
are more effective on short texts (< 500 words).

3. Submissions are more effective on popular works.
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4. Submissions are less effective if documents
have many freeform tags (0.06—0.12).



Results

Observations from the Evaluation II:

1. Submissions with good representations of full

) Length Popularity
documents are more effective (0.05-0.06)

short long low high

on long than on short documents. Sahin 028 0.34 030 035
. . .. , Su 0.39 027 0.22 0.35

2. Submissions with strong positional representation XGBoost 024 029 016 030
are more effective on short texts (< 500 words). Cao,H. 023 022 0.19 022

3. Submissions are more effective on popular works.

4. Submissions are less effective if documents
have many freeform tags (0.06—0.12).

5. Submissions are less effective if documents have the
Choose Not To Use Archive Warnings declaration
(0.04-0.06).



Results

Observations from the Evaluation I:

6. Submissions are effective for common
and less effective for rare warnings.

Porn. Common Rare
P R P R P R

Sahin 0.95 0.96 0.62 0.48 0.12 0.51
Su 0.90 0.97 0.61 0.43 0.57 0.19
CaoH. 0.86 0.98 0.22 0.61 0.16 0.12




Results

Observations from the Evaluation I:

6. Submissions are effective for common
and less effective for rare warnings.

7. Submissions favor either precision or recall,
independently of overall effectiveness.
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Results

Observations from the Evaluation I:

6. Submissions are effective for common
and less effective for rare warnings.

7. Submissions favor either precision or recall,
independently of overall effectiveness.

8. An ensemble of the (best) submissions
improves F; marginally (0.01-0.03).
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Macro F; Micro F;

Sahin 0.35 0.74
Su 0.35 0.75
XGBoost 0.30 0.69

Ensemble (Top 3) 0.36 0.77




Results

Observations from the Evaluation I:

6. Submissions are effective for common
and less effective for rare warnings.

7. Submissions favor either precision or recall,
independently of overall effectiveness.

8. An ensemble of the (best) submissions
improves F; marginally (0.01-0.03).

Contact matti.wiegmann@uni-weimar.de
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