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• Rendition of arguments may affect user beliefs, and cognitive biases (Wachsmuth et al., 2017b; Kiesel et al., 2020, 2021) 

➜ Users expect good quality arguments, sensibly organized 

• Personal biases in the arguments can hamper unbiased decisions (Durmus and Cardie, 2018)

➜ Most arguments on the web are exchanged outside “professional circles”

• Conventional snippet generation is insufficient (Alshomary et al., 2020) 

➜ Highlighting search query appearances in the arguments is not enough

OASiS: Objective Argument Summarization in Search



5

OASiS: Objective Argument Summarization in Search

What are the important properties of snippets in argument search?
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OASiS: Objective Argument Summarization in Search

What are the important properties of snippets in argument search?

• Hypothesis 1: Snippets should summarize the argument

• Hypothesis 2: Snippets should be as “objective” as possible

What does objective mean?

• ≈ Appropriateness:

• An argument has an appropriate style if the used            

language supports the creation of credibility and                   

emotions as well as if it is proportional to the issue.   
(Wachsmuth et al., 2017a)

• The minimal required quality of an argument that                

makes it worthy to be considered in a discussion.       
(Ziegenbein et al., 2023)
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Approach Overview
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Data

The Args.me corpus (Ajjour et al., 2019)

• 387,606 arguments from debate portals

• Filtered by length and inappropriateness (Ziegenbein et al., 2023)

• Top 10 most frequent used queries 

• Top five pro and con arguments for each query based on the args.me API

➜ Total of 99 arguments for manual annotation studies

Snippet generation

+

Argument search
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Data

The Args.me corpus (Ajjour et al., 2019)

• 387,606 arguments from debate portals

• Filtered by length and inappropriateness (Ziegenbein et al., 2023)

• Top 10 most frequent used queries 

• Top five pro and con arguments for each query based on the args.me API

➜ Total of 99 arguments for manual annotation studies

The Appropriateness Corpus (Ziegenbein et al., 2023)

• 2,191 arguments from three genres, manually annotated with 14 flaw dimensions

• Filtered by length and inappropriateness

➜ Random sample of 100 arguments for manual annotation studies

Snippet generation

+

Argument search

Argument 

neutralization
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(Supervised) Extractive-Sum. (Alshomary et al., 2020)

• TextRank balancing the centrality and argumentativeness of an argument given a search query

• Extract the main claim and supporting premise as an argument snippet

Snippet Generation
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(Supervised) Extractive-Sum. (Alshomary et al., 2020)

• TextRank balancing the centrality and argumentativeness of an argument given a search query

• Extract the main claim and supporting premise as an argument snippet

(Supervised) Abstractive-Sum. (Lewis et al., 2020)

• BART finetuned to the task of abstractive news summarization

(Unsupervised) Instruction-Sum. (Taori et al., 2020)

• LLaMA finetuned to followed instructions (Alpaca)

Snippet Generation

### Instruction: The following is an argument on the topic "<topic>". 

Extract a coherent gist from it that is exactly two sentences long. 

### Input: <argument> 

### Response:



16

What defines a “good” snippet?

• Similarity to the original argument (ROUGE, BERTScore)

• Fluency (Perplexity)

• Appropriateness

Evaluation: Snippet Generation
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What do we expect from a “good” snippet?

• Similarity to the original argument (ROUGE, BERTScore)

• Fluency (Perplexity)

• Appropriateness

Which approach is the best?

• Ranking the snippet generation approaches (5 annotators, 99 examples, Kendall’s τ 0.22)

➜ Similarity appears to be most important

➜ Trade-off between appropriateness and similarity

➜ Abstractive summarization is preferred

Evaluation: Snippet Generation
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Argument Neutralization

(Unsupervised) Instruction-Neut. (Taori et al., 2020)

• LLaMA finetuned to followed instructions (Alpaca)

### Instruction: Rewrite the 

following argument on the topic of 

"<topic>" to be more appropriate 

and make only minimal changes to 

the original argument. 

### Input: <argument> 

### Response:
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Argument Neutralization

(Unsupervised) Instruction-Neut. (Taori et al., 2020)

• LLaMA finetuned to followed instructions (Alpaca)

### Instruction: Rewrite the 

following argument on the topic of 

"<topic>" to be more appropriate 

and make only minimal changes to 

the original argument. 

### Input: <argument> 

### Response:

(Reinforced) Aligned-Neut. (Ziegenbein et al., 2024)

• LLaMA finetuned to followed instructions (Alpaca)

• RLHF inspired alignment balancing appropriateness and semantic similarity

+
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What do we expect from a “neutral” version of an argument?

• Similarity to the original argument (ROUGE, BERTScore)

• Fluency (Perplexity)

• Appropriateness

Evaluation: Neutralization
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What do we expect from a “neutral” version of an argument?

• Similarity to the original argument (ROUGE, BERTScore)

• Fluency (Perplexity)

• Appropriateness

Which approach is the best?

• Ranking arguments by their tendency to lead to a productive discussion (5 annotators, 100 examples, Kendall’s τ 0.48)

➜ Appropriateness appears to be most important

➜ Trade-off between appropriateness and semantic similarity

➜ RL-aligned neutralization is preferred

Evaluation: Neutralization
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Evaluation: Argument Search

What do we expect from a “good” snippet?

• Similarity to the original argument (ROUGE, BERTScore)

• Fluency (Perplexity)

• Appropriateness
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What do we expect from a “good” snippet?

• Similarity to the original argument (ROUGE, BERTScore)

• Fluency (Perplexity)

• Appropriateness

Which approach is the best for argument search?

• Ranking snippets by their likelihood to be clicked on when searching for a given topic
(5 annotators, 100 examples, Krippendorff’s α 0.29)

➜ Appropriateness appears to be most important

➜ Trade-off between appropriateness and semantic similarity

➜ Abstractive summarization + RL-aligned neutralization is preferred

Evaluation: Argument Search
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What are the influential properties of the evaluated approaches?

• Manually analyzed ~500 comments from our annotation studies

Qualitative Evaluation
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What are the influential properties of the evaluated approaches?

• Manually analyzed ~500 comments from our annotation studies

Qualitative Evaluation
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Limitations

• Stance flipping (not really reflected in similarity measures)

• Happens rarely, but when it happens it is very bad

• Content addition

• Hallucination vs. Clarification
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Limitations

• Stance flipping (not really reflected in similarity measures)

• Happens rarely, but when it happens it is very bad

• Content addition

• Hallucination vs. Clarification

What we did not test for:

• The effect of clicking on a neutralized snippet and then seeing the original argument

• Should the arguments also be neutralized?

• First neutralize vs. first summarize?

• Stakeholder disagreement (author vs. reader vs. provider)

• Readers prefer appropriateness

• What do authors/providers prefer?
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Summary and Outlook

An evaluation of snippet generation approaches 

➜ Similarity appears to be most important

➜ (Supervised) Abstractive summarization is preferred
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Summary and Outlook

An evaluation of snippet generation approaches 

➜ Similarity appears to be most important

➜ (Supervised) Abstractive summarization is preferred

An evaluation of neutralization approaches

➜ Appropriateness appears to be most important

➜ (Reinforced) Aligned neutralization is preferred

An improved snippet generation approach for argument search

➜ Abstractive summarization + RL-aligned neutralization

➜ Appropriateness appears to be most important

Takeaways

➜ Trade-off between appropriateness and semantic similarity

➜ The effects of using “objective” snippets in a real search setting 

remain to be investigated

https://github.com/webis-de/RATIO-24

Corpus & Code
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Summary and Outlook

An evaluation of snippet generation approaches 

➜ Similarity appears to be most important

➜ (Supervised) Abstractive summarization is preferred

An evaluation of neutralization approaches

➜ Appropriateness appears to be most important

➜ (Reinforced) Aligned neutralization is preferred

An improved snippet generation approach for argument search

➜ Abstractive summarization + RL-aligned neutralization

➜ Appropriateness appears to be most important

Takeaways

➜ Trade-off between appropriateness and semantic similarity

➜ The effects of using “objective” snippets in a real search setting 

remain to be investigated

https://github.com/webis-de/RATIO-24

Thank you!

Corpus & Code
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