
Towards Reproducible Shared Tasks in IR

Glasgow IR Seminar, 31th March, 2023

Maik Fröbe, Jan Heinrich Reimer, Sean MacAvaney, Niklas Deckers, Simon Reich, Janek Bevendorff, Matti Wiegmann, Nikolay Kolyada, Bastian Grahm, Theresa Elstner, Frank Loebe, Tim Gollub, Benno Stein, Matthias Hagen, and Martin Potthast

University of Jena University of Glasgow University of Leipzig University of Weimar

@webis_de

www.webis.de

Open Search Foundation

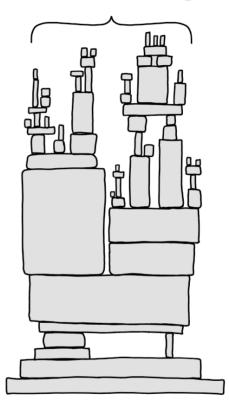
- □ Joint EU project
- Open Web Index to foster competition
- Shared tasks and data challenges planned

Open Search Foundation

- □ Joint EU project
- Open Web Index to foster competition
- □ Shared tasks and data challenges planned

Best Case

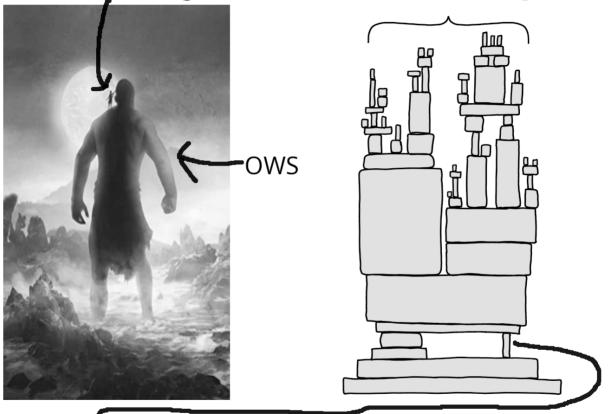
Your Search Engine


Best Case

Your Search Engine

Worst Case

Your Search Engine



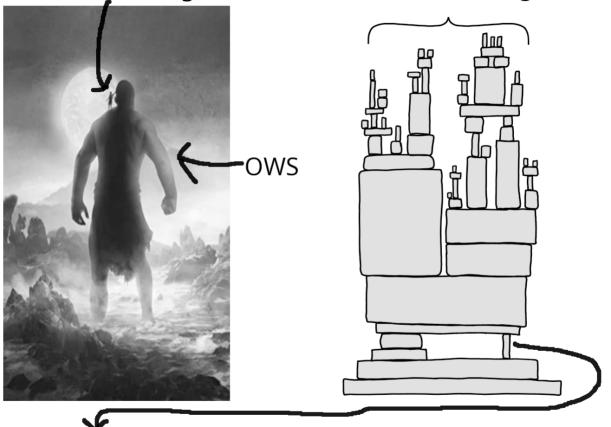
Best Case

Your Search Engine

Worst Case

Your Search Engine

Potential problems: [Fuhr'21]


- Problem 1: Internal validity
- Problem 2: External validity

Best Case

Your Search Engine

Worst Case

Your Search Engine

Potential problems: [Fuhr'21]

- □ Problem 1: Internal validity
- Problem 2: External validity
- Problem 3: Blinded experimentation with LLMs

Problem 1: Internal Validity [Fuhr'21]

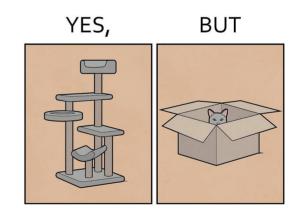
Goal

Problem 1: Internal Validity [Fuhr'21]

Goal

- Possible problems
 - □ Wrong baseline [Armstrong'09,Lin'18]
 - Formulate hypothesis after experiments [Fuhr'21]

Problem 1: Internal Validity [Fuhr'21]

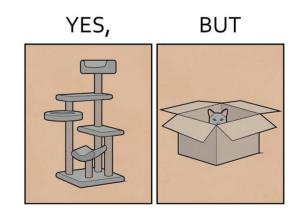

Goal

- Possible problems
 - Wrong baseline
 [Armstrong'09,Lin'18]
 - Formulate hypothesis after experiments [Fuhr'21]
- Possible solutions
 - Centralized leaderboards
 - E.g., Run uploads to EvaluateIR [Armstrong'09]
 - Task-specific leaderboards
 - E.g., MS MARCO, MIRACL [Lin'22,Zhang'22]

Problem 1: Internal Validity [Fuhr'21]

Goal

- Possible problems
 - Wrong baseline [Armstrong'09,Lin'18]
 - Formulate hypothesis after experiments [Fuhr'21]
- Possible solutions
 - Centralized leaderboards
 - E.g., Run uploads to EvaluateIR [Armstrong'09]
 - Task-specific leaderboards
 - E.g., MS MARCO, MIRACL [Lin'22,Zhang'22]



Problem 1: Internal Validity [Fuhr'21]

Goal

The hypothesis is supported by the data.

- Possible problems
 - Wrong baseline
 [Armstrong'09,Lin'18]
 - Formulate hypothesis after experiments [Fuhr'21]
- Possible solutions
 - Centralized leaderboards
 - E.g., Run uploads to EvaluateIR [Armstrong'09]
 - Task-specific leaderboards
 - E.g., MS MARCO, MIRACL [Lin'22,Zhang'22]

"EvaluateIR never gained traction, and a number of similar efforts following it have also floundered" [Lin'18]

Problem 2: External Validity [Fuhr'21]

Goal

Repeating an experiment on similar data yields similar observations.

Problem 2: External Validity [Fuhr'21]

Goal

Repeating an experiment on similar data yields similar observations.

Possible problems

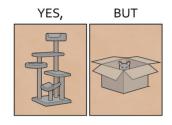
Non-reproducible results

Problem 2: External Validity [Fuhr'21]

Goal

Repeating an experiment on similar data yields similar observations.

Possible problems


- Non-reproducible results
- **Possible Solutions**
 - TREC Open Runs
 [Voorhees'16]
 - Reproducibility initiatives
 - OSIRRC: Archive artifacts [Arguello'15,Clancy'19]
 - CENTRE: Reimplementation [Ferro'19,Sakai'19]
 - Platforms + documentation
 - CodaLab, EvalAI, PRIMAD, STELLA, TIRA
 - Meta evaluations: BEIR
 [Thakur'21]

Problem 2: External Validity [Fuhr'21]

Goal

Repeating an experiment on similar data yields similar observations.

- Possible problems
 - Non-reproducible results
- **Possible Solutions**
 - TREC Open Runs
 [Voorhees'16]
 - Reproducibility initiatives
 - OSIRRC: Archive artifacts [Arguello'15,Clancy'19]
 - CENTRE: Reimplementation [Ferro'19,Sakai'19]
 - Platforms + documentation
 - CodaLab, EvalAI, PRIMAD, STELLA, TIRA
 - Meta evaluations: BEIR [Thakur'21]

- □ 19 of 69 runs (Problems: 11)
- 2015: 8 systems archived
 2019: 1 system fully reproducible
 [Lin'19]
- □ Limited adoption of jig + CIFF [Clancy'19]
- Additional effort
- Evaluations on subsets
- Often sparse judgments

Problem 3: Blinded Experimentation with LLMs

Percy Liang @percyliang

I worry about language models being trained on test sets. Recently, we emailed support@openai.com to opt out of having our (test) data be used to improve models. This isn't enough though: others running evals could still inadvertently contribute those test sets to training.

...

Problem 3: Blinded Experimentation with LLMs

Touche 2020 Task #1 Topic Descriptions / Narratives

From: <ANONY MIZE D>@ openai.com

To: touche@webis.de

Hey!

Is there a list of all the topic descriptions / narratives for task #1 available (like in Table #1's example in the paper), and / or any other information that shines light on how the human evaluation scores were made?

Great work on the dataset!

Best,

--

<ANONY MIZED> Member of the Technical Staff OpenAI |<u>www.openai.com</u>

Problem 3: Blinded Experimentation with LLMs

Touche 2020 Task #1 Topic Descriptions / Narratives

From: <ANONY MIZE D>@ openai.com

To: touche@webis.de

Dataset	GPT-4 (Random Exemplars)	GPT-4 (Curated Exemplars)
MedQA US 5-option	78.63	78.24
MedQA US 4-option	81.38	82.33
MedMCQA	72.36	71.36
PubMedQA	74.40	74.00

Table 5: Random few-shot exemplar selection vs. expert curation.

6.2 Memorization

GPT-4's strong performance on benchmark datasets raises the possibility that the system is leveraging *memorization* or *leakage* effects, which can arise when benchmark data is included in a model's training set. Given that LLMs are trained on internet-scale datasets, benchmark data may inadvertently appear

OpenAI | www.openai.com

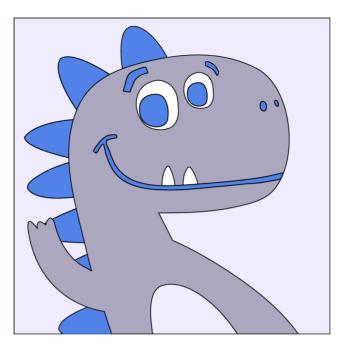
Problem 3: Blinded Experimentation with LLMs

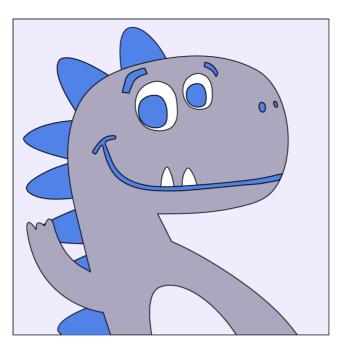
Touche 2020 Task #1 Topic Descriptions From: <anony d="" mize="">@ openai.com To: touche@ webis.de</anony>		I suspect GPT-4's performance is influenced by data contamination, at least on Codeforces. Of the easiest problems on Codeforces, it solved 10/10 pre-2021 problems and 0/10 recent problems.						
	Dataset	g <u>'s Race</u>	implementation, math	4	\$	greedy, implementation	4	*
	MedQA US 5-option	nd Chocolate	implementation, math	4	\$	<u>Cat?</u> implementation, strings		\$
	MedQA US 4-option MedMCQA	triangle!	brute force, geometry, math	2		Actions data structures, greedy, implementation, math		
	$\operatorname{PubMed}\operatorname{QA}$	gr	eedy, implementation, math			Interview Problem brute force, implementation, strings		
	Table 5: Random f	lumbers	brute force		\$	vers brute force, implementation, strings		*
		ine Line	implementation	4		nd Suffix Array strings		*
6.2 Memorization GPT-4's strong performance on bend memorization or leakage effects, which set. Given that LLMs are trained on		r or Stairs?	implementation	4	会	ther Promotion greedy, math	4	-
			math		\$	Forces greedy, sortings		*
		0	implementation, math	4	\$	1 and Append implementation, two pointers		*
set. Given th								

We Have so Many Tools!

We Have so Many Tools!

Why is Internal and External Validity still a Problem?


We Have so Many Tools!


Why is Internal and External Validity still a Problem?

My Hypothesis: Unfavorable Benefit/Effort Ratio

TIREx to the Rescue?

TIREx to the Rescue?

TIREx does "one thing": Integrate Existing Tools

TIRA

□ Reproducible shared tasks: Software submissions + blinded experiments

ir_datasets

□ Unified + random data access: Documents + queries + rel. Judgments

PyTerrier

²⁶ Declarative reproducibility pipelines

Reproducible Shared Tasks with TIRA

Evolution of TIRA

[Gollub'12,Potthast'19,Fröbe'23]

- □ 2005–2011: Pipelines, eval. run submissions, manual software submissions
- □ 2012–2022: Software submissions with virtual machines
- 2023-today: Immutable software submissions with Docker + Git CI/CD
 - Shared task = git repository
 - Software execution = commit

Reproducible Shared Tasks with TIRA

Evolution of TIRA

[Gollub'12,Potthast'19,Fröbe'23]

- □ 2005–2011: Pipelines, eval. run submissions, manual software submissions
- □ 2012–2022: Software submissions with virtual machines
- 2023-today: Immutable software submissions with Docker + Git CI/CD
 - Shared task = git repository
 - Software execution = commit

Procedure:

- 1. Implement approach in Docker image
- 2. Upload image to dedicated image registry in TIRA
- 3. Your approach is executed in a Kubernetes cluster via a commit

Benefits of TIRA

Blinded Experimentation

- □ Software executed in sandbox: No internet connection
- □ 2 types of datasets:

Туре	Blinded	Unblinding	Feedback
Validation	Nothing	Direct	Everything
Test	Everything	Manual	√vs X

Benefits of TIRA

Blinded Experimentation

- □ Software executed in sandbox: No internet connection
- □ 2 types of datasets:

Туре	Blinded	Unblinding	Feedback		
Validation	Nothing	Direct	Everything		
Test	Everything	Manual	√vs X		

Repeat, Replicate, and Reproduce in One Line of Code

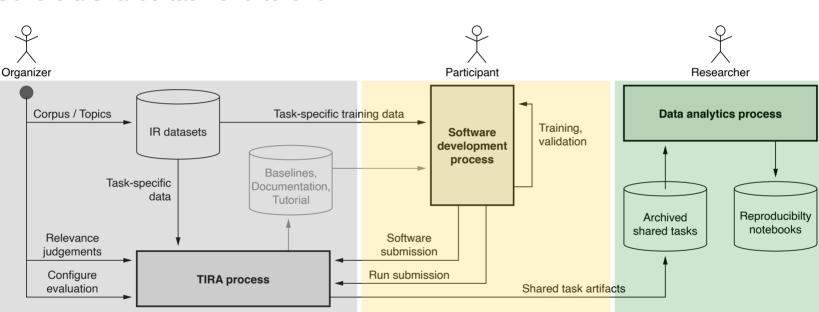
Git repository of the shared task can be published after the task

□ SemEval'23: 2 tasks, 83 + 91 reg. teams (active: 31 + 42; Docker: 21 + 7)

□ Enables creative reuse/hacking: https://values.args.me/

Enough Preliminaries...

Enough Preliminaries...


Time to get our hands dirty :)

github.com/tira-io/ir-experiment-platform

TIREx: Recap

The hands-on session created two artifacts

- Organizer provides (private) docker image with ir_datasets integration
- Participants provide docker images with retrieval approaches

Covers a shared task end-to-end

TIREx: Additional Features

Multi-stage pipelines are first-class citizens

- Output of previous stages as additional input
- Caching enabled by immutability of software
 - Serve output of previous stage if already executed on the dataset

TIREx: Additional Features

Multi-stage pipelines are first-class citizens

- Output of previous stages as additional input
- Caching enabled by immutability of software
 - Serve output of previous stage if already executed on the dataset
- Support for external APIs / manual annotations via data uploads

□ Procedure:

- 1. Get test inputs from organizers
- 2. Produce predictions
- 3. Upload predictions
- 4. Specify upload as previous stage

TIREx: Additional Features

Multi-stage pipelines are first-class citizens

- Output of previous stages as additional input
- Caching enabled by immutability of software
 - Serve output of previous stage if already executed on the dataset
- Support for external APIs / manual annotations via data uploads

□ Procedure:

- 1. Get test inputs from organizers
- 2. Produce predictions
- 3. Upload predictions
- 4. Specify upload as previous stage

Support for Re-Rankers

- Unified data interface via ir_datasets
 - Allows modularization: Chain arbitrary re-rankers

TIREx: Additional Features

Multi-stage pipelines are first-class citizens

- Output of previous stages as additional input
- Caching enabled by immutability of software
 - Serve output of previous stage if already executed on the dataset
- Support for external APIs / manual annotations via data uploads

Procedure:

- 1. Get test inputs from organizers
- 2. Produce predictions
- 3. Upload predictions
- 4. Specify upload as previous stage

Support for Re-Rankers

- Unified data interface via ir_datasets
 - Allows modularization: Chain arbitrary re-rankers
- No Lock-in effect
 - Example: touche.webis.de/semeval23/touche23-web/tira-software

TIREx: Feasibility Study

50 Transferrable Retrieval Models in TIRA

- Derived from tira-starters from 4 starters
- Retrieve against default text in ir_datasets
- $\hfill\square$ Selecting suitable baseline \rightarrow improves internal validity
- Diversification of pools for shared tasks with few participants

Framework	Туре	Description	Systems	
BEIR [78]	Bi-Encoder	Dense Retrieval	17	
ChatNoir [7]	BM25F Retrieval	Elasticsearch Cluster	1	
ColBERT@PT [55]	Late Interaction	Pyterrier Plugin	1	
DuoT5@PT [71]	Cross-Encoder	Pairwise Transformer	3	
PyGaggle [59]	Cross-Encoder	Pointwise Transformer	8	
PyGaggle [59] PyTerrier [64]	Lexical	Traditional Baselines	20	
$\sum = 6 = 4$ frameworks + 2 forks				

TIREx: Feasibility Study

32 Exchangeable Benchmarks in TIRA

 \Box Models can be transferred to new corpora \Rightarrow improves external validity

Corpus			Included Benchmarks			
Name	Docs.	Size	Details	#		
Args.me	0.4 m	8.3 GB	Touché 2020–2021 [9, 10]	2		
Antique	0.4 m	90.0 MB	QA Benchmark [47]	1		
ClueWeb09	1.0 b	4.0 TB	Web Tracks 2009-2012 [22-25]	4		
ClueWeb12	731.7 m	4.5 TB	Web Tracks [29, 30], Touche [9, 10]	4		
ClueWeb22B	200.0 m	6.8 TB	Touché 2023 [8] (ongoing)	1		
CORD-19	0.2 m	7.1 GB	TREC-COVID [85, 90]	1		
Cranfield	1,400	0.5 MB	Fully Judged Corpus [27, 28]	1		
Disks4+5	0.5 m	602.5 GB	TREC-7/8 [87, 88], Robust04 [81, 82]	3		
Gov	1.2 m	4.6 GB	Web Tracks 2002–2004 [32–34]	3		
Gov2	25.2 m	87.1 GB	TREC TB 2004–2006 [18, 21, 26]	3		
Medline	3.7 m		Trec Genomics [48, 49], PM [73, 74]	4		
MS MARCO	8.8 m	2.9 GB	Deep Learning 2019–2020 [35, 36]	2		
NFCorpus	3,633	30.0 MB	Medical LTR Benchmark [12]	1		
Vaswani	11,429	2.1 MB	Scientific Abstracts	1		
WaPo	0.6 m	1.6 GB	Core 2018	1		
$\sum = 15 \text{ corpora}$	1.9 b	15.3 TB		32		

TIREx: Feasibility Study

Initial Leaderboards: 1600 runs

- □ Running all 50 models on all benchmarks took 1 Week
- □ See https://github.com/tira-io/ir-experiment-platform
- □ Additional use-cases: LTR, QPP, etc.

Teaser of results:

Observe system preferences on TREC DL 2019

Benchmark

Use repro_eval to measure the proportion of reproducible preferences
[Breuer'20,Breuer'21]

Rank Succ.

TREC DL 2020	1	85.2
Touché 20 (Task 2)	2	81.0
Touché 21 (Task 2)	3	72.6
Web Track 2004	4	72.1
CORD-19	5	70.0
Terabyte 2006	10	62.1
TREC PM 2017	15	53.4
Terabyte 2005	20	42.2
TREC PM 2018	25	33.2
Cranfield	30	28.8

40

Integration of existing tools

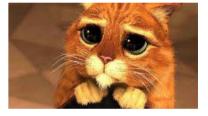
□ TIRA, ir_datasets, PyTerrier

Better benefit/effort ratio?

- One software submission, evaluation on many datasets
- Evaluate on datasets to which you dont have access

Integration of existing tools

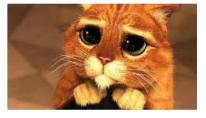
ITIRA, ir_datasets, PyTerrier


Better benefit/effort ratio?

- One software submission, evaluation on many datasets
- Evaluate on datasets to which you dont have access

Future Work / Wild Guessing

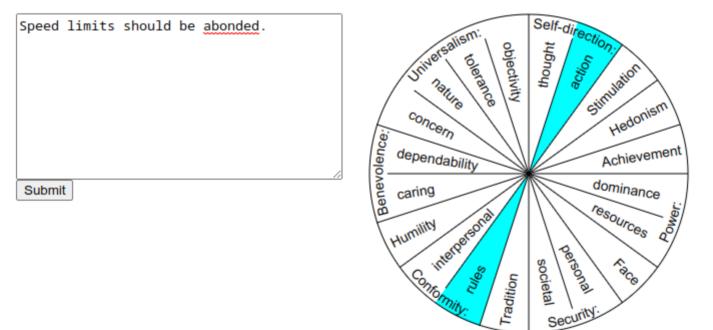
- □ Move to generative IR (integration of Alpaca?)
- Integration to OWS
 - Link all OWS artifacts to its evaluation in TIREx
 - Three shared tasks are in the setup phase
 - 1. Index partitioning with selective search
 - 2. Web genre classification for web crawlers
 - 3. Spam classification for web crawlers


- Integration of existing tools
 - □ TIRA, ir_datasets, PyTerrier
- Better benefit/effort ratio?
 - One software submission, evaluation on many datasets
 - Evaluate on datasets to which you dont have access
- Future Work / Wild Guessing
 - □ Move to generative IR (integration of Alpaca?)
 - Integration to OWS
 - Link all OWS artifacts to its evaluation in TIREx
 - Three shared tasks are in the setup phase
 - 1. Index partitioning with selective search
 - 2. Web genre classification for web crawlers
 - 3. Spam classification for web crawlers

Please Star/Fork

- Integration of existing tools
 - TIRA, ir_datasets, PyTerrier
- Better benefit/effort ratio?
 - One software submission, evaluation on many datasets
 - Evaluate on datasets to which you dont have access
- Future Work / Wild Guessing
 - □ Move to generative IR (integration of Alpaca?)
 - Integration to OWS
 - Link all OWS artifacts to its evaluation in TIREx
 - Three shared tasks are in the setup phase
 - 1. Index partitioning with selective search
 - 2. Web genre classification for web crawlers
 - 3. Spam classification for web crawlers

Please Star/Fork


Thank You!

Backup: SemEval'23 ValueEval Demo (1)

Human Value Detection Demo

Demo for the Adam Smith human value detector by Schroter et al. (2023) [paper under review], which performed best in the ValueEval'23 co ensemble of three models that performed best in the ablation tests. [code: original, docker image, server docker image]

Enter an argument in the text area and click on submit. After a few seconds, the detected value categories will be highlighted in the value ta

Backup: SemEval'23 ValueEval Demo (2)

Humility

Conformity:

rules

Tradition

personal

Security

societal

€^{ace}

Backup: Limitations

- Computational resources.
 Potential Solution:
 - Hybrid submissions: Run upload, Software submission only for plausibility checks
 - -
 - OSF infrastructure
- □ How to avoid big ensembles?
- Evaluation measures required that combine efficiency with effectiveness?
- New iteration of the IRF?

Backup: Use in Teaching

- □ Cover the "full cycle" with students in IR exercises?
 - We do this next term

Backup: Definition of Multi-Stage Software

	TIRA			Admin	Forum	-	Q	≡	200
	ADD CONTAINER	i UPLOAD IMAGES	CREATE PYTERRIER INDEX						
ĺ	Previous Stage(s)								
	Create PyTerrier Inde	х		;	÷ ,	ADD :	SOFTWA	ARE	
	Command								
	/pyterrierinput \$inputDatasetoutput \$outputDirindex_directory \$inputRunwmodel=BM25			:	i				
	Docker Image								
	registry.tira.io/tira-i	r-starter/pyterrier:0.0.1		4	•	ADD (CONTAI	NER	

Figure 3: The definition of a full-rank retrieval software in TIRA that consists of two modularized components.

Backup: Full-Rank

```
pipeline = tira.pt.retriever(
    '<task-name>/<user-name>/software',
    dataset
)
advanced_pipeline = pipeline >> advanced_reranker
```

Listing 1: Full-Rank Retrieval from a complete corpus.

Backup: Load Submissions

```
first_stage = tira.pt.from_submission(
    '<task-name>/<user-name>/<software>',
    dataset='<dataset>'
)
advanced_pipeline = first_stage >> advanced_reranker
```

Listing 3: Re-Rank a run created by a software submission.