A new Resource for Analyzing Collaborative Writing Styles and One-Sidedness

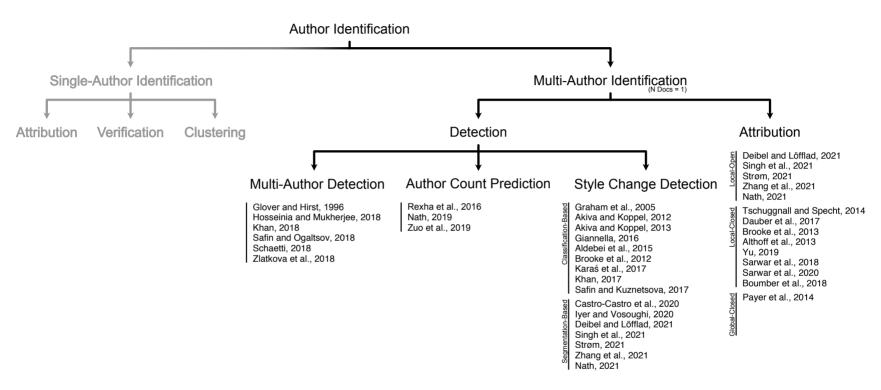
Scientific Authorship and Peer Review: Between a Means of Governance and Structural Meaning?

01.-02.09.2022, HU Berlin

Erik Körner

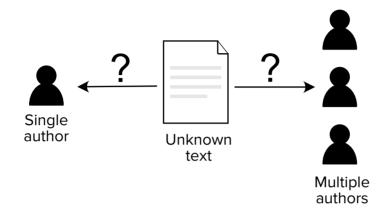
Harry Scells

Benno Stein

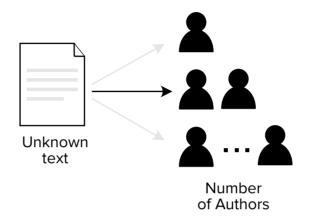

Outline

- ① Multi-Authorship Identification
- ② Collaborative Writing Styles
- ③ SMAuC The Scientific Multi-Authorship Corpus
- Researching Algorithmic Bias

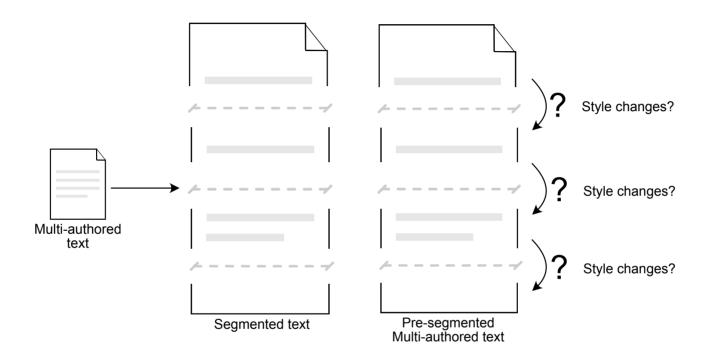
Introduction


- Multi-Authorship Identification/Analysis an important variant of the vanilla (Single) Authorship Identification problem
 - Single-Author: "Who is the author?" of a letter, an article, or a book
 - Multi-Authorship Identification: questions and issues about documents written by a group of authors
- □ Authorship in academia → often multiple authors
 - Intentional, collaborative writing
 - Text reuse, plagiarism, . . .
- Increased attention and application of Multi-Authorship Identification
 - Numerous tasks, datasets and methods over the years
 - PAN, various shared task and datasets
 - However, style of collaborative writing mostly the same
 - Very little (public) academic datasets, affects and hinders comparability of approaches against each other

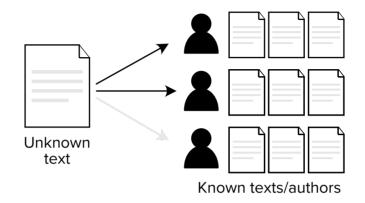
Author Identification Tasks in Literature


- □ Single-Author: [Thomas Corvin Mendenhall 1887]
- Multi-Author: [Glover and Hirst 1996]

Multi-Author Detection


- Task: Single author or multiple authors?
- Only very few studies that solely address this problem
- Often as consequence or reduction of more complex result, e.g. author count, style changes
- Many datasets with assumption that texts are multi-authored and then just application of more 'sophisticated' methods

Author Count Prediction


- Task: Number of authors?
- Fundamental multi-author identification task
- Application not limited to human-readable texts, e.g. compiled binary software

Style Change Detection

- Task: Identify boundary where style of text changes.
- Sub-tasks that require to first segment the text vs. pre-segmented texts

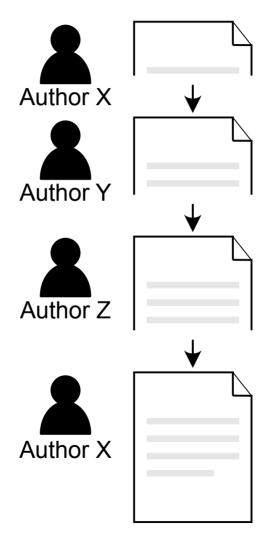

Multi-Author Attribution

Task: Attribution of text segments

- Sub-tasks:
 - Authors: closed-set vs. open-set
 - Document: local vs. global

Multi-Author Attribution Sub-Tasks

Introduction


- At PAN, multi-authorship identification datasets have been constructed so far by combining texts that are written by single authors into a single, multi-authored text.
- Multi-Author Attribution research often only focuses on the metadata of the text, e.g. author list of journal articles.
- But Collaborative Writing Styles are not really taken into account when developing methods to address Multi-Author Identification.
- What are the different types a text can be written collaboratively?
- Where does research (currently) happen?

Types of Writing Styles

- Sequential
- □ Group Single
- Horizontal Division
- Stratified Division
- Reactive

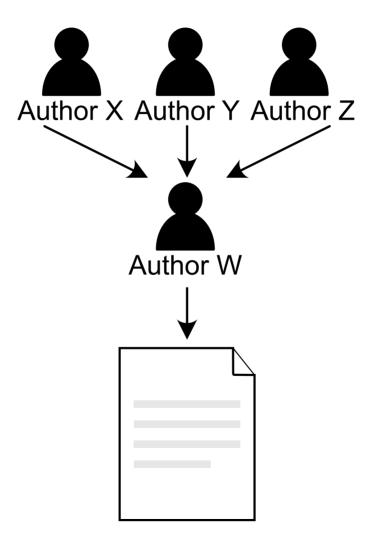
Building a Taxonomy and Nomenclature of Collaborative Writing to Improve Interdisciplinary Research and Practice [Lowry et al. 2004]

Sequential Writing Style

Sequential Writing Style

Characteristics

- Each author writes a section of the text, sequentially, independently
- Boundaries of authorial style explicitly defined, co-authors are not allowed to edit outside of their section of text


Examples

Collaboration of a PhD student and supervisor on a research paper;
 supervisor writing the introduction and conclusion, student the content in between

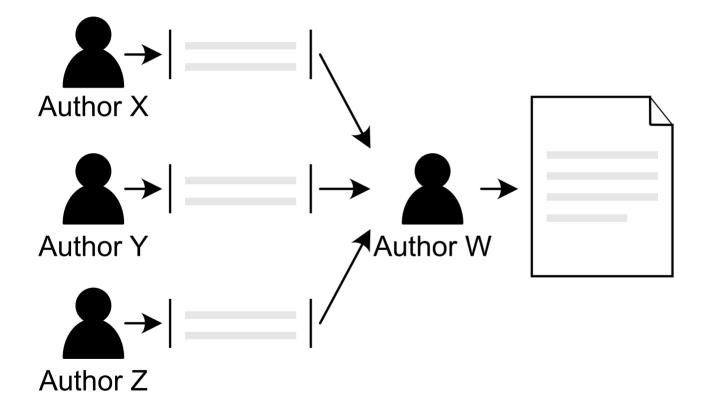
Tasks

Multi-Author Detection, Style Change Detection, Multi-Author Attribution, . . .

Group Single Writing Style

Group Single Writing Style

Characteristics


- Several authors contribution to the ideation phrase of writing
- Single author compiles these into a single text
- Consistent authorship style, yet involvement of multiple authors in creation

Examples

15

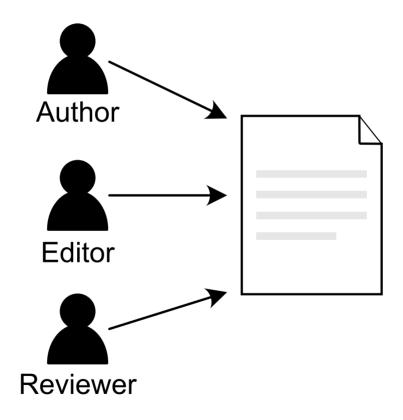
- Grant writing: many principal investigators or collaborators involved in ideation, chief investigator writes proposal document
- → Multi-Authorship Identification methods may not be applicable?
 - Are there style boundaries for Style Change Detection?
 - Multi-Author Detection may be possible?

Horizontal Division Writing Style

Horizontal Division Writing Style

Characteristics

- Several authors contribute 'sub-documents'
- Single authors compiles these into a single text
- Compiled text may contain authorship styles of co-authors, depending on the amount of editing applied


Examples

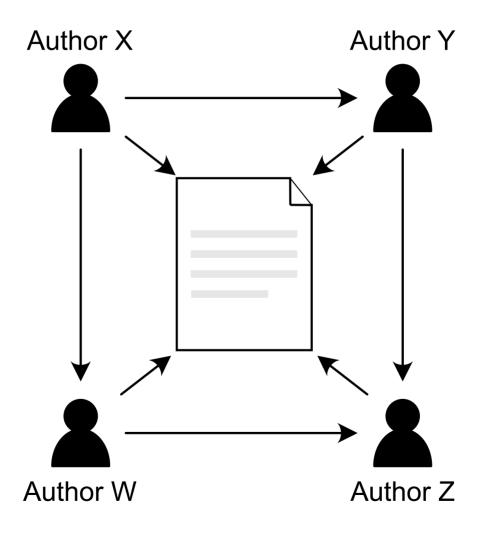
- Academic book: several academics write different chapters, an editor combines them into a cohesive manuscript
- Text Reuse

Notes

- Mainly targets Style Change Detection task
- Easiest and most obvious way to create artificial datasets

Stratified Division Writing Style

Stratified Division Writing Style


Characteristics

- Similar to Horizontal Division
- Each co-author plays a certain role in the creation of a text, e.g. author, editor, reviewer

Examples

 Scholarly article: one author writes majority of text, another author edits the text, an independent reviewer provides critical feedback that feeds back into the creation process

Reactive Writing Style

Reactive Writing Style

Characteristics

 Authors write synchronously on the same text while adjusting the writing of others

Examples

- Several undergraduate students in a group assignment writing a report together
- Collaborative writing platforms, e.g. Overleaf, Etherpad, Google Docs

Notes

- Blurred authorial style boundaries
- Most complex in terms of developing Multi-Author Identification methods

Observations

- Different writing styles may be easier or harder to apply Multi-Author Identification methods to
- Boundaries are more clearly defined in Horizontal Division compared to Reactive Writing Style
- Some multi-authorship approaches are impossible to apply,
 e.g. Style Change Detection to Reactive Writing Style
- In literature most datasets for Multi-Author Identification are created using Horizontal Division!

Observations

- Different writing styles may be easier or harder to apply Multi-Author Identification methods to
- Boundaries are more clearly defined in Horizontal Division compared to Reactive Writing Style
- Some multi-authorship approaches are impossible to apply,
 e.g. Style Change Detection to Reactive Writing Style
- In literature most datasets for Multi-Author Identification are created using Horizontal Division!
- → Existing methods may not be robust against different Collaborative Writing Styles.
- → The way in which multi-authored texts are created is fundamental to which tasks are applicable and to the difficulty in applying methods to those tasks.

Overview over Datasets and Methods

Dataset	Dataset Task		aborative ting Style		Users
Multi-Author Detection (MAD)	Task	WIII	ting Otylo	11/ Va/ 10 Opins	
[Glover et al. 1996]	AV	film summaries	HD	20	self
MULTI-AUTHOR ATTRIBUTION (MAA)	ΑV	IIIII Suilillailes	טוו	20	SCII
PAN12 AA [Patrick Juola 2012]	AA/AC	Feedbooks	HD	170	2
[Brooke 2013]	AC	The Waste Land, poems		21	self
[Althoff et al. 2013]	AA	arXiv	HD, S	594	self
[Tschuggnall et al. 2014]	MAD	Gutenberg/FED	HD, G	75	self
[Payer et al. 2014]	AA	conference papers	S	3,516/-/378	self
[Dauber et al. 2017]	AA	Wookiepedia	R	-	self
[Sarwar et al. 2018]	MAA	Gutenberg/arXiv	HD, S	6,173	<i>self</i> +1
MLPA-400 [Boumber et al. 2018]	MAA	ML papers	S	400	self
[Brian Yu 2019]	MAA	Gutenberg	HD	-	self
AUTHOR COUNT PREDICTION (ACP)					
[Rexha et al. 2016]	ACP	PubMed	S	6,144	self
[Alrabaee et al. 2019]	ACP	open-source code	HD	31,150	self
PAN19 SCD [Zangerle et al. 2019] &	ACP	StackExchange	HD	2,546/1,272/1,210	PAN: 2
STYLE-CHANGE DETECTION (SCD)					
[Graham et al. 2005]	SCD	Usenet	HD	-	self
[Brooke et al. 2012]	SCD	The Waste Land, poems	HD	51	self
[Akiva et al. 2012]	SCD/AC	Biblical/Blogs/NYT	HD	14	self
[Akiva et al. 2013]	SCD/AC	Biblical/Blogs/NYT	HD	-	self +2
PAN16 AD [E. Stamatatos 2016]	AD	Webis-TRC-12	HD	174/-/8	PAN: 2
PAN17 SCD [Tschuggnall et al. 2017]	SCD	Webis-TRC-12	HD	187/-/99	PAN: 3
PAN18 SCD [Kestemont et al. 2018]	MAD	StackExchange	HD	2,980/1,492/1,352	PAN: 5
PAN20 SCD [Zangerle et al. 2020]	SCD	StackExchange	HD	11,448/5,732/5,696	PAN: 2
PAN21 SCD [Zangerle et al. 2021]	SCD	StackExchange	HD	11,200/2,400/2,400	PAN: 5

HD: Horizontal Division (randomly combining text fragments from different authors), R: Reactive,

S: scientific papers (combination of *Group-single*, *Stratified Division*, *Reactive*; no stylistic 'editing' by dataset creators)

Motivation

- Scientific writing as a new and interesting domain for authorship analysis, especially for Multi-Authorship Analysis
- Most datasets lack material from science domain or required metadata
- Research often only with small unpublished datasets using arXiv preprints,
 PubMed articles or journal papers
 - → Reproduction and comparability difficult due to varying approaches for data proprocessing and dataset curation
- Very few publication that publish their research,
 e.g. MLPA-400 [Boumber et al. 2018]
- → Requirement for large, openly accessible dataset of scientific works

Motivation

- Scientific writing as a new and interesting domain for authorship analysis, especially for Multi-Authorship Analysis
- Most datasets lack material from science domain or required metadata
- Research often only with small unpublished datasets using arXiv preprints,
 PubMed articles or journal papers
 - → Reproduction and comparability difficult due to varying approaches for data proprocessing and dataset curation
- Very few publication that publish their research,
 e.g. MLPA-400 [Boumber et al. 2018]
- → Requirement for large, openly accessible dataset of scientific works

SMAuC - The Scientific Multi-Authorship Corpus 💥

Dataset Sources

- □ CORE database [Knoth et al. 2011] [Knoth and Zdrahal 2012]
 - Collection of metadata and full texts of open access scientific publications
 - Dump from 2018-03-01¹
 - 123M metadata items, 85.6M items w/ abstracts, 9.8M items w/ full texts
- Microsoft Open Academic Graph (OAG) [Sinha et al. 2015]
 - Openly accessible heterogeneous knowledge graph based on scientific articles, authors, and institutions
 - Source for identifying and disambiguating authors and fields of study
 - Version 2 of the OAG [Hu et al. 2020]²
 - 179M nodes, 2B edges

¹https://core.ac.uk/services/dataset

²https://www.microsoft.com/en-us/research/project/open-academic-graph/

Dataset Curation Process

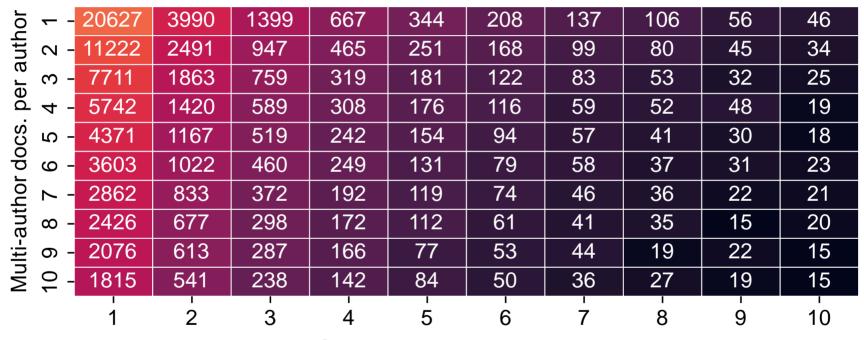
Conditions applied	Number of documents			
CORE	123,988,821	(100.00%)		
\hookrightarrow full texts	9,835,064	(7.93%)		
\hookrightarrow text language filtering	6,531,442	(5.27%)		
\hookrightarrow OAG matching	3,508,509	(2.82%)		
\hookrightarrow text quality assurance	3,356,686	(2.70%)		

- High requirements on data quality
 - Multi-step language filtering with fastText
 - Improved mapping of full texts and OAG metadata using DOIs and titles
 - Manual mapping of heterogenous OAG field of study → DFG Classification of Scientific Disciplines and Research Areas [DFG 2016]
 - Removal of markup, non-ASCII characters; lowercasing, collapsing whitespaces
 - Additional (heuristical) filtering for text quality, e.g. text length, language

Counts for all types of documents and their total

Document Type	Count		
Single author w/o multi author	711,471		
Single author w/ multi author	261,629		
Multi author w/o single author	1,481,106		
Multi author w/ single author	894,945		
No author information	7,535		
Total	3,356,686		

Number of documents in the corpus by text length in characters and document type with percentage per row


Length	Total	Single author		Multi au	ithor
≤ 3,000	39,300	13,680	(1.41%)	25,567	(1.07%)
-5,000	96,067	32,059	(3.29%)	63,832	(2.69%)
-50,000	2,273,246	467,844	(48.07%)	1,799,435	(75.73%)
-250,000	771,756	301,975	(31.03%)	468,473	(19.72%)
> 250,000	176,317	157,542	(16.19%)	18,744	(0.79%)
Total	3,356,686	973,100	(100.00%)	2,376,051	(100.00%)

Document counts by research area [DFG 2016]

Research Area	SA	MA	A	TL
Engineering Sciences	55,015	375,206	3	28,467
Humanities	58,317	199,926	3	37,224
Life Sciences	48,723	715,218	5	32,616
Natural Sciences	147,024	651,076	3	26,103

Single author documents (**SA**), multi author documents (**MA**), median authors per document (**A**) and median text length (**TL**).

Total author count over the number of single-author and multi-author publications per author

Single-author docs. per author

Publication and Access

- Features
 - Full-text extracts, annotated with author metadata
 - Publications from different scientific domains, stylistically diverse texts
 - Monographs and multi-authored documents
- Paper currently under review
 SMAuC The Scientific Multi-Authorship Corpus
- Dataset will be made accessible via Zenodo, restricted to academia

Ongoing experiments in context of multi-authorship and algorithmic bias

Motivation

Background

- □ Increasing reliance on *machine learning* processes in various domains, esp.
 - Plagiarism Detection,
 - Authorship Attribution of scientific research,
 - Digital Text Forensics.

Problem

- Detection of Plagiarism or Authorship Attribution may perform worse or fail for

 (a) one gender compared to another, or (b) non-native speakers compared
 to native speakers e.g. in court decisions, job assessment, etc.
- **u** ...
- → Unfair advantages, faulty predictions, monetary loss, etc. due to ML model bias

Focus

- Scientific domain / academia
- Algorithmic bias

Types

- Native Speakers (English)
- Gender

Data

SMAuC - The Scientific Multi-Authorship Corpus

Work in Progress

- Manually annotating gender and native language for authors in SMAuC
- □ Prototype using Generalized Unmasking [Koppel and Schler 2004] [Bevendorff et al. 2019]

Future Plans

 Creating experiment framework to easily substitute different algorithms and datasets/autorship tasks

Work in Progress

- Manually annotating gender and native language for authors in SMAuC
- □ Prototype using Generalized Unmasking [Koppel and Schler 2004] [Bevendorff et al. 2019]

Future Plans

 Creating experiment framework to easily substitute different algorithms and datasets/autorship tasks

Thank you for your attention!