Green Information Retrieval Research

Harry Scells Leipzig University, Germany

PART I Context

NLP

[1] Strubell, E. et al. 2019. Energy and Policy Considerations for Deep Learning in NLP. Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

- Large (pre-trained) neural language models
 - Expend high energy for training and inference (comared to traditional models)
 - The energy demands expected to continue growing as size and complexity of models increase
 - Data centers and other infrastructure used to run these models also consume energy

Why?

NLP

[1] Strubell, E. et al. 2019. Energy and Policy Considerations for Deep Learning in NLP. Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

What about IR research?

But what are emissions?

- Energy: amount of work done
 - Measured in joules

But what are emissions?

- Energy: amount of work done
 - Measured in joules
- **Power**: energy per unit time
 - Measured in watts; 1 watt = 1 joule/second

kWh: energy consumed at a rate of 1 kilowatt for 1 hour

But what are emissions?

- Energy: amount of work done
 - Measured in joules
- **Power**: energy per unit time
 - Measured in watts; 1 watt = 1 joule/second
- Emissions: by-products created by producing power

kWh: energy consumed at a rate of 1 kilowatt for 1 hour

• Measured in kgCO₂e; kilograms of carbon dioxide equivalent

NLP

What about IR research?

Isn't this just retrieval efficiency?

[1] Strubell, E. et al. 2019. Energy and Policy Considerations for Deep Learning in NLP. Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

- **Speed** a system is able to retrieve relevant documents or information in response to a query.
- Factors that can impact retrieval efficiency include:
 - Size and complexity of the corpus being searched
 - Effectiveness of the retrieval models or techniques being used
 - Efficiency of the hardware and infrastructure used

Retrieval Efficiency

k = 1000

Effectiveness

Efficiency

Efficiency

Okay, so what does this mean for IR?

Green IR is...

• "research that yields novel results while taking into account the computational cost, encouraging a reduction in resources spent" [2]

[2] Schwartz, R. et al. 2020. Green Al. Communications of the ACM.

Green IR is...

- "research that yields novel results while taking into account the computational cost, encouraging a reduction in resources spent" [2]

[3] Gao, L. and Callan, J. 2021. Condenser: a Pre-training Architecture for Dense Retrieval. Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing [4] Ma, X. et al. 2021. PROP: Pre-training with Representative Words Prediction for Ad-hoc Retrieval. Proceedings of the 14th ACM International Conference on Web Search and Data Mining [5] Tay, Y. et al. 2022. Transformer Memory as a Differentiable Search Index. arXiv preprint arXiv:2202.06991. [6] Zhou, Y. et al. 2022. DynamicRetriever: A Pre-training Model-based IR System with Neither Sparse nor Dense Index. arXiv preprint [2] Schwartz, R. et al. 2020. Green Al. Communications of the ACM.

 Neural methods require pre-trained LMs • Expensive to create Trend in IR towards creating IR-specific LMs

Green IR is...

- "research that yields novel results while taking into account the computational cost, encouraging a reduction in resources spent" [2]
- Neural methods require pre-trained LMs • Expensive to create
- - Trend in IR towards creating IR-specific LMs

[3] Gao, L. and Callan, J. 2021. Condenser: a Pre-training Architecture for Dense Retrieval. Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing [4] Ma, X. et al. 2021. PROP: Pre-training with Representative Words Prediction for Ad-hoc Retrieval. Proceedings of the 14th ACM International Conference on Web Search and Data Mining [5] Tay, Y. et al. 2022. Transformer Memory as a Differentiable Search Index. arXiv preprint arXiv:2202.06991. [6] Zhou, Y. et al. 2022. DynamicRetriever: A Pre-training Model-based IR System with Neither Sparse nor Dense Index. arXiv preprint [2] Schwartz, R. et al. 2020. Green Al. Communications of the ACM.

[3, 4, 5, 6]**Pre-trained LMs come** at a high power and emissions cost

Green IR is...

- "research that yields novel results while taking into account the computational cost, encouraging a reduction in resources spent" [2]
- Neural methods require pre-trained LMs • Expensive to create

 - Trend in IR towards creating IR-specific LMs

- Missing dimension of IR evaluation
 - Effectiveness

 - Efficiency Utilisation

[2] Schwartz, R. et al. 2020. Green Al. Communications of the ACM.

Pre-trained LMs come at a high power and emissions cost

Okay, so what does this mean for IR?

Okay, so how can I measure this?

 $p_t = \frac{\Omega \cdot t \cdot (p_c + p_r + p_g)}{1000}$

 $\sum_{r=1}^{\infty} \frac{\Omega \cdot t \cdot (p_c + p_r + p_g)}{1000}$

• First, measure power consumption:

Running Time

 $\hat{\boldsymbol{\nabla}} \boldsymbol{\Omega} \cdot \boldsymbol{t} \cdot (\boldsymbol{p}_c + \boldsymbol{p}_r + \boldsymbol{p}_g)$ $= \frac{1000}{1000}$

• First, measure power consumption:

CPU, RAM, GPU power draw $\Omega \cdot t \cdot (p_c + p_r + p_g)$ 1000

• First, measure power consumption:

• Next, measure emissions:

watts

PUE Running Time $\Omega \cdot t \cdot (p_c + p_r + p_g)$

1000

• First, measure power consumption:

• Next, measure emissions:

watts $p_t =$

PUE $\Omega \cdot t \cdot (p_c + p_r + p_g)$ Running Time CPU, RAM, GPU power draw 1000

 $\mathbf{kgCO}_{\gamma}\mathbf{e} = \theta \cdot p_t$

• First, measure power consumption:

• Next, measure emissions:

watts $p_t =$

emissions — $\mathbf{kgCO}_{2}\mathbf{e} = \theta \cdot p_{t}$

PUE $\Omega \cdot t \cdot (p_c + p_r + p_g)$ Running Time CPU, RAM, GPU power draw 1000

• First, measure power consumption:

• Next, measure emissions:

watts $p_t =$

PUE $\Omega \cdot t \cdot (p_c + p_r + p_g)$ $\Omega = \frac{1}{2}$ CPU, RAM, GPU power draw 1000

• First, measure power consumption:

watts

PUE Running Time CPU, RAM, GPU power draw $\Omega \cdot t \cdot (p_c + p_r + p_g)$ 1000

- avg. CO₂e (kg) per kWh where experiments took place emissions \rightarrow **kgCO**₂**e** = $\theta \cdot p_t$ p_t of experiments

• First, measure power consumption:

• Next, measure emissions:

Emissions of my search engine:

PUE Running Time CPU, RAM, GPU power draw $\Omega \cdot t \cdot (p_c + p_r + p_g)$ 1000

> avg. CO₂e (kg) per kWh where experiments took place

 $\mathbf{kgCO}_{2}\mathbf{e} = \theta \cdot \Delta_{q} \cdot p_{q}$

• First, measure power consumption:

• Next, measure emissions:

Emissions of my search engine:

PUE Running Time CPU, RAM, GPU power draw $\Omega \cdot t \cdot (p_c + p_r + p_g)$ 1000

> avg. CO₂e (kg) per kWh where experiments took place

 $\mathbf{kgCO}_{2}\mathbf{e} = \theta \cdot \Delta_{a} \cdot p_{a} \qquad \text{Power consumption} \\ \text{of a single query}$

• First, measure power consumption:

• Next, measure emissions:

emissions \rightarrow kgCO₂e = $\theta \cdot p_t$ Power consumption of experiments

• Emissions of my search engine:

PUE Running Time $\Omega \cdot t \cdot (p_c + p_r + p_g)$ $\Omega \cdot t \cdot (p_c + p_r + p_g)$ 1000 avg. CO₂e (kg) per kWh where experiments took place

No. queries issued per unit time **kgCO**₂**e** = $\theta \cdot \Delta_q \cdot p_q$ Power consumption of a single query

Measuring power and emissions in practice

Name	CPU	DRAM	GPU	Network	Repository
CodeCarbon [71]		✓	1	X	https://github.com/mlco2/codecarbon
pyJoules	1	✓	1	×	https://github.com/powerapi-ng/pyJoules
energyusage [47]		~	1	×	https://github.com/responsibleproblemsolving/energy-us
Carbontracker [3]		×	1	×	https://github.com/lfwa/carbontracker
Experiment Impact Tracker [33]	1	×	1	×	https://github.com/Breakend/experiment-impact-tracker
Cumulator [81]		✓	✓	✓	https://github.com/epfl-iglobalhealth/cumulator

from codecarbon import EmissionsTracker

tracker = EmissionsTracker() tracker.start() # Experiment code goes here tracker.stop()

Okay, so what does this mean for IR?

Okay, so how can I measure this?

Okay, so show me what it means in IR research practice!

- Methods:
 - BM25
 - LambdaMART
 - DPR
 - monoBERT
 - uniCOIL
 - TILDEv2

- Methods:
 - BM25
 - LambdaMART
 - DPR
 - monoBERT
 - uniCOIL
 - TILDEv2

Non-neural

- Methods:
 - BM25LambdaMART
 - DPR
 - monoBERT
 - uniCOIL
 - TILDEv2

Non-neural

"Neural"

Collection:MSMARCOv1

• Experiments:

Collection: MSMARCOv1

• Experiments:

- Collection:
 - MSMARCOv1
- Experiments:
 - How many emissions do these methods produce to obtain an experimental result?
 - What are the effectiveness-utilisation trade-offs of these methods?

Collection:MSMARCOv1

- Methods:
 - BM25
 - LambdaMART
 - DPR
 - monoBERT
 - TILDEv2
 - uniCOIL

- Methods:
 - BM25
 - LambdaMART
 - DPR
 - monoBERT
 - TILDEv2
 - uniCOIL

- Methods:
 - BM25
 - LambdaMART
 - DPR
 - monoBERT
 - TILDEv2
 - uniCOIL

IISSIONS (KGUU2e)	4500 3750				
	3000				
	2250				
	1500				
	750				
	U	BM25	LambdaMART	DPR	uniCOIL+TILDE

6000 4500 2000	7500 6000 4500	10500 9000 7500 6000 4500
<u>o</u> 6000	2 7500 2 6000	10500 9000 7500 6000
	2 7500	10500 9000 7500

6080100120140Query Latency (hours)

Time [ms]

PART II Green IR in Practice

A framework for practitioners to remain mindful of potential costs of **IR** research

Reduce

Vs

Reduce

Expend fewer resources

Vs

Reduce

- Straightforward: simply reduce the number of experiments
- Limit expensive computations, e.g., use CPU, FPGAs over GPU
- Prior to starting any research or experiments, ask: How can I perform research with fewer resources?
 - Random hyper-parameter search
 - CPU-based inference

Reuse

Repurpose resources intended for one task to the same task

Reuse

Reuse

- Reuse existing software artefacts such as data, code, or models
- Reuse: take something existing and repurpose it for the same task it was devised for
- Prior to starting any research or experiments, ask: How can I repurpose data, code, or other digital artefacts meant for one task to the same task?
 - Reuse large collections
 - Pre-indexing common collections

Recycle

Recycle

Repurpose resources intended for one task to a different task

Recycle

- Recycle existing software artefacts such as data, code, or models
- Recycle: the action of repurposing an existing artefact for a task it was not originally intended for
- Prior to starting any research or experiments, ask: How can I repurpose existing data, code, or other digital artefacts meant for one task to a different task?
 - Neural query expansion
 - Passage expansion with models like TILDE

reduce, reuse, recycle

- Reduce: Expend fewer resources
- Reuse: Repurpose resources intended for one task to the same task

Recycle: Repurpose resources intended for one task to a different task

PART III Summary

Efficiency is not just query latency

- computation offline
- This computation still costs: time, hardware, energy, emissions
- It is not just a "once off" cost

• There is a trend of "query efficient" neural models which move the heavy

Efficiency is not just latency, energy

- Data efficiency
- Learning with little data

• Frugal models, federated learning, few-shot, zero-shot, prompt learning

it does to NLP and ML

Larger neural models = power-hungry hardware = utilisation of more power • However: increased model size for higher effectiveness may not apply to IR, as

- - it does to NLP and ML
- for IR... pre-train for IR
 - More power and more emissions
 - searching architecture into a single model

Larger neural models = power-hungry hardware = utilisation of more power However: increased model size for higher effectiveness may not apply to IR, as

• Likely trend in neural IR: go beyond PLMs designed for NLP but are specialised

DSI: end-to-end transformers that encapsulate the entire indexing and

- it does to NLP and ML
- for IR... pre-train for IR
 - More power and more emissions
 - searching architecture into a single model
- IR community at a turning point
 - **Bigger/more complex models**
 - Bigger collections of documents, queries

 Larger neural models = power-hungry hardware = utilisation of more power However: increased model size for higher effectiveness may not apply to IR, as

• Likely trend in neural IR: go beyond PLMs designed for NLP but are specialised

DSI: end-to-end transformers that encapsulate the entire indexing and

- it does to NLP and ML
- for IR... pre-train for IR
 - More power and more emissions
 - searching architecture into a single model
- IR community at a turning point
 - **Bigger/more complex models**
 - Bigger collections of documents, queries

• Larger neural models = power-hungry hardware = utilisation of more power However: increased model size for higher effectiveness may not apply to IR, as

• Likely trend in neural IR: go beyond PLMs designed for NLP but are specialised

DSI: end-to-end transformers that encapsulate the entire indexing and

- There is a cost to IR (+NLP, ML) research:
 - Power usage: \$\$\$
 - Emissions: CO₂e

