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Abstract

Navigating the complex landscape of digital media culture, this thesis presents
an innovative approach to classify social media posts using state-of-the-art
deep learning models for comprehensive analysis of both image and text. Vari-
ous vision models, including ResNet, SEER, Vision Transformer (ViT), Shifted
Window Transformer (Swin), and CLIP, along with BERT for text analysis,
are used to classify Instagram content into "norm-beauty" and "divers" cate-
gories. The evaluation demonstrates the individual capabilities and synergistic
potential of combining visual and text analysis. With SEER excelling in im-
age classification and BERT in text analysis, especially with context-rich data.
The thesis emphasizes the importance of the Large Language and Vision As-
sistant (LLaVA) as a zero-shot classifier, using advanced prompt engineering
to significantly refine its classification accuracy. Additionally, it proposes a
late fusion model that fuses ViT with BERT for multimodal analysis, further
improving classification accuracy. Overall, this thesis reveals the robust ca-
pabilities of deep learning approaches, with a particular focus on multimodal
models, in the field of data science to solve complex tasks. It underscores the
transformative power of prompt engineering in improving the effectiveness of
zero-shot classifiers and confirms the strength of custom-trained models on a
given dataset.
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Chapter 1

Introduction

In an increasingly interconnected world, the digital realm has become an es-
sential aspect of daily life. Social media, once considered a communication
platform, now stands at the intersection of culture and information. It reflects
and influences societal beliefs, values, and norms. Its role in shaping per-
spectives on topics ranging from global politics to deeply personal questions
of identity and self-worth is critical. Among these topics, the perception of
beauty has undergone significant evolution due to the widespread influence of
these platforms, with research indicating that social media has a major im-
pact on the perceptual, emotional, cognitive and behavioural aspects of body
image, encouraging narrow definitions of beauty and contributing to body dis-
satisfaction and a range of psychological well-being issues, as highlighted by
Levine and Santos [2021].

The complexity of social media content, particularly when dealing with subjec-
tive themes such as beauty, poses a challenge that is well-suited for technical
innovation. This thesis takes on this challenge by leveraging advanced deep
learning algorithms, with a particular focus on the multimodal nature of social
media content. The main objective is to classify social media posts, specifically
from platforms such as Instagram, into two distinct categories: "norm-beauty"
and "divers". Through this process, the thesis will investigate whether these
modern algorithms can effectively distinguish and measure subjective concepts
present in real-world data. The data used in this thesis reflects the perspectives
of a small group of people who share the same cultural background. Therefore,
it is important to mention that this thesis offers a narrow perspective through
which beauty and diversity can be explored.

Research on image aesthetics and beauty classification has been conducted
using various methodologies, indicating a rich field of study. For example, pre-
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CHAPTER 1. INTRODUCTION

vious studies have used convolutional neural networks (CNNs) to categorize
images from the web as visually pleasing or not, often without a specific focus
on human subjects Phatak and Borkar [2020]. Others have applied traditional
machine learning techniques, including support vector machines (SVMs) and
neural networks, to assess facial beauty in naturalistic photographs Yan et al.
[2016]. Such efforts highlight the diversity of approaches to understanding aes-
thetic values. However, they also indicate an opportunity for a more refined
exploration of beauty standards in the specific context of multimodal social
media content, a gap that this thesis aims to fill. A detailed examination of
related work in Chapter 2 will further contextualize these early findings within
the broader landscape of beauty classification research.

This thesis adopts a comprehensive approach to classify Instagram posts by
exploring both their visual and textual elements. First, the investigation fo-
cuses on the visual content of the posts. Several vision models, such as Vision
Transformer (ViT), Swin Transformer, ResNet, and SEER, were fine-tuned and
evaluated to determine how much the visual content can influence the classifi-
cation into "norm-beauty" or "divers" categories. Additionally, the ability of
CLIP to perform zero-shot classification is also evaluated, providing a sense of
how the model can recognize and categorize images without the need for addi-
tional, specific training data. After the image analysis, the focus shifts to the
textual content of the posts. BERT is then fine-tuned to classify the captions,
exploring the linguistic expressions associated with beauty and diversity. The
work then proceeds to the multimodal aspect by utilizing the Large Language
and Vision Assistant (LLaVA) model, which is a state-of-the-art multimodal
large language model (MLLM). The model’s ability to perform as a zero-shot
classifier is extensively evaluated through various experiments. Finally, the
development of a Late Fusion model combining ViT and BERT contributes
further to the multimodal classification approach, which involves processing
text and images together, thereby capturing the full spectrum of complexity
of social media content. This approach highlights the strengths of both visual
and textual analysis and demonstrates the power of integrating them through
advanced multimodal techniques.

The structure of this work is constructed to build upon this perspective:

• Chapter 2, Related Work: Reviews existing literature to highlight
the novel intersection this thesis explores between beauty, aesthetics and
computational methods. It contrasts this work with previous studies,
setting the stage for the methodologies employed.

• Chapter 3, Background: Provides a foundation in the key concepts,
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CHAPTER 1. INTRODUCTION

including multimodality, the advancement of large language models (LLMs)
and Prompt Engineering, which are crucial for better understanding the
approach of the thesis to classify social media content.

• Chapter 4, Methodology: Details the technical framework, describing
the architecture of each deep learning model used to analyze visual and
textual data. It also explains the concept of fine-tuning and integrating
models for multimodal classification.

• Chapter 5, Evaluation: Offers a thorough evaluation of the perfor-
mance of the models on different tasks, discussing the setup for each
experiment, data splitting, and metrics used. The analysis highlights
the effectiveness and limitations of the proposed models.

• Chapter 6, Conclusion: Concludes the study by summarizing key
findings and contributions to the field of data science. It also acknowl-
edges the limitations of the research and suggests avenues for future
research on the sensitive classification of beauty standards.
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Chapter 2

Related Work

In recent years, the field of computational aesthetics has seen a growing in-
terest, with researchers increasingly applying image classification models to
evaluate or categorise the aesthetic value of images. This wave of research
seeks to capture the complex human perception of beauty in visual content,
across a wide range of compositional elements and subjective interpretations.
While the challenge is immense, the progress made reflects the emerging ability
of artificial intelligence (AI) to address and quantify the underlying difficulties
of aesthetic evaluation. With each advancement in the field, AI’s capacity to
address and resolve the challenges of aesthetic evaluation has grown remark-
ably, marking a significant step forward in the understanding and application
of computational methods in the realm of aesthetics.

Computational Aesthetics in Digital Photography In the digital pho-
tography context, Suchecki and Trzcinski [2017] approached aesthetic evalua-
tion using a CNN, analyzing a massive dataset of 1.7 million Flickr photos. By
fine tuning the AlexNet neural network for binary classification, their study
was able to classify images as aesthetically pleasing or not, with an accuracy of
70.9%. This method, based purely on visual information, demonstrates the po-
tential of deep learning to identify aesthetic values in photographs. The results
provide important insights into the features that contribute to the aesthetic ap-
peal of a photograph, such as colour saturation, sharpness and contrast. This
study establishes a basic framework for the thesis, which investigates the eval-
uation of social media images against conventional ideals of beauty or diversity.

The study "Deep learning for assessing the aesthetics of professional pho-
tographs" by Chambe et al. [2022] evaluates the performance of aesthetic as-
sessment models in the context of professional photography. The models were
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CHAPTER 2. RELATED WORK

initially trained on competitive photographs from the AVA dataset, which is
known for its wide variety of aesthetic scores and semantic labels. However,
the models encountered new challenges when applied to other types of photog-
raphy, such as fashion, architecture, and sports. After fine-tuning the models
on data with various photographic categories, the results improved signifi-
cantly. The study’s findings emphasize the importance of fine-tuning models
on domain-specific data to enhance accuracy and reliability. This is central
to this thesis as it reflects the challenges of applying advanced deep learning
models to the rich domain of social media.

Exploring Alternative Approaches in Aesthetic Evaluation A com-
prehensive review of machine learning techniques for automatic aesthetic eval-
uation in images is presented in the work of Bodini [2019], which explores var-
ious methodologies, including deep learning approaches, and how these have
evolved from philosophical and neuroaesthetic perspectives. A critical analysis
of various datasets is performed, such as the AVA dataset, and their impact
on computational aesthetics is assessed. The paper also discusses the chal-
lenges and limitations of aesthetic evaluation, such as the binary criteria of
’ugly vs. beautiful’ and the need for continuous ranking in aesthetic evalua-
tion. The research insights enhance the understanding of the complex nature
of beauty and its evaluation. Additionally, it supports the thesis objectives
by demonstrating the importance of quantifying beauty and the necessity of
considering various factors, such as cultural and socio-educational contexts,
when discussing beauty.

Chandakkar et al. [2017] work introduces a different approach to computational
aesthetics, referred to as ’relative aesthetics’. The study focuses on selecting
the more aesthetically pleasing image from a pair, deviating from traditional
binary classification models. The authors utilized a customized dataset derived
from the AVA dataset to focus on comparing images within the same category,
while avoiding pairs with significant differences in their ratings. A deep neural
network model, specifically a Siamese model, is trained using relative compar-
isons. The model performs significantly better in aesthetic evaluation than
the binary method. The findings offer a broader understanding of aesthetic
evaluation and highlight an alternative approach that goes beyond traditional
binary classifications in the field. It inspires future work that may follow this
thesis to approach the evaluation of beauty as a non-binary concept.
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CHAPTER 2. RELATED WORK

Facial Beauty Evaluation in Machine Learning Moving to another do-
main within the field of aesthetics, the study by Choudhary and Gandhi [2016]
focuses on facial beauty evaluation. The study utilises a range of machine
learning models, including SVM, k-Nearest Neighbour (KNN), Decision Tree
and Artificial Neural Network (ANN), to classify levels of facial attractiveness
using the SCUT-FBP dataset, which contains images of Asian female faces.
The classification was conducted in both binary (attractive or not attractive)
and multi-class formats (five levels of attractiveness). While the SVM model
showed lower performance, the KNN and ANN models proved to be more
effective, achieving accuracies as high as 88% and 87% for binary class classi-
fication, respectively. This study highlights the potential of machine learning
in assessing subjective features like facial attractiveness and the importance of
considering various classification schemes, including binary and multi-class, for
a comprehensive understanding of beauty standards. It demonstrates promis-
ing results that motivate further investigation of ANN in the problem of clas-
sifying images based on beauty and diversity standards.

In their study, Bougourzi et al. [2022] apply an advanced deep learning method
for facial beauty prediction (FBP) using the SCUT-FBP5500 dataset, which
consists of 5500 frontal facial images with different attributes such as age,
gender and ethnicity. Each of these images has been rated on a beauty scale
of one to five by 60 diverse volunteers, adding complexity to the FBP task.
The REX-INCEP framework is the core element of their approach, combining
the capabilities of ResneXt-50 and Inception-v3 models to optimise feature
extraction for FBP. Furthermore, dynamic robust loss functions that adjust
parameters adaptively during training, and an ensemble regression model that
consolidates predictions from multiple models, further enhance the approach.
By outperforming several CNN architectures, this study not only sets a new
benchmark in FBP, but also demonstrates the potential of applying sophis-
ticated machine learning techniques to the subjective domain of aesthetics.
This again highlights the ability of machines to learn about such subjective
tasks, which fits well with the focus of the thesis on using advanced computa-
tional methods to navigate the subjective and complex domain of aesthetics
and beauty standards.

Concluding observations Reflecting on the aforementioned studies in the
field of computational aesthetics, it is clear that this landscape is experiencing
rapid progress, with machine learning and deep learning emerging as key in-
novation factors. This progress aligns with the objectives of this thesis, which
aims to explore and push the boundaries of AI’s ability to capture the diverse
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and subjective essence of beauty.

This thesis differs from the previously mentioned works by taking a multimodal
approach that integrates and analyzes both visual and textual data specifically
from social media. It examines whether the textual narratives shared by social
media users alongside their posts influence or correlate with the visual content,
thereby enhancing the ability of AI models to better capture the nuanced
concept of beauty. It suggests that understanding beauty in the digital realm
from a machine perspective goes beyond purely visual analysis; requiring an
integrated examination of both images and accompanying text to fully capture
the breadth and depth of beauty as perceived and expressed by individuals.
Investigating this interplay between textual and visual elements provides a
pathway to more sophisticated AI-driven analysis, with the goal of significantly
improving models’ understanding of beauty.
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Chapter 3

Background

3.1 Multimodality

3.1.1 Definition

Multimodal Machine Learning (MMML) is an emerging field that combines
data from different sources, such as text, images, and audio, to develop sophis-
ticated systems with enhanced understanding and interaction capabilities. In
recent years, there has been a notable shift towards utilizing multimodal data
sources in ML-based classification models. These methods, originally devel-
oped for unimodal data, are now being adapted to handle the complexity and
variety of representations found in real-world data. IV et al. [2021] highlight
the transition from unimodal to multimodal approaches in MMML, emphasiz-
ing the inherent representational challenges and the innovative solutions that
have emerged. This evolution is particularly relevant to the classification of
Instagram posts, where the combination of visual and textual data forms a
complex dataset for analysis.

However, defining ’multimodality’ remains a challenge. In their discussion,
Parcalabescu et al. [2021] argue that human-centered and machine-centered
definitions are limited in their ability to capture the full range of multimodal
interactions. Instead, a task-relative definition is proposed, which suggests
that the nature and requirements of the task at hand should determine the
modality of the inputs and out:

"A machine learning task is multimodal when inputs or outputs
are represented differently or are composed of distinct types of

atomic units of information."

This approach provides a more refined understanding of multimodality and
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CHAPTER 3. BACKGROUND

aligns it closely with the specific goals and contexts of machine learning tasks.

3.1.2 Challenges

Baltrusaitis et al. [2019] have identified five major challenges in MMML, each
of which addresses a different aspect of integrating and interpreting different
types of data:

• Representation: This involves creating feature vectors that integrate
heterogeneous data types, including text, images, and audio. Two ap-
proaches are available to address this challenge. Joint representations
combine features from multiple modalities into a unified vector, while co-
ordinated representations align separate feature vectors for each modality
in a common space. The choice between these methods depends on the
task’s requirements and the nature of the data involved.

• Translation: This is the conversion of data from one modality to an-
other, such as transforming video into textual descriptions. It is ad-
dressed either by example-based methods, which rely on dictionary lookups
or k-nearest neighbor searches to match values across modalities, but are
limited by the available training data, or by generative methods, which
are more creative as they generate new outputs rather than simply re-
trieving information. This approach includes grammar-based methods
that generate text within predefined rules, as well as encoder-decoder
networks that convert data from the source modality to another target
modality. Due to advances in deep learning and the availability of large
multimodal datasets, generative methods are becoming increasingly pop-
ular.

• Alignment: Focuses on mapping corresponding sub-elements between
different modalities, which is critical for tasks such as synchronizing video
with captions. The process includes explicit alignment, which aligns
modalities based on related components, and implicit alignment, which
is used in tasks such as speech recognition where specific alignments are
not pre-defined.

• Fusion: Involves integrating information from various modalities to en-
hance prediction and analysis. There are two main categories of fusion
strategies: model-agnostic and model-based approaches. Model-agnostic
methods, which are of primary interest in this thesis, include early, late
and hybrid fusion techniques, differing in the degree to which modali-
ties are combined. These techniques are discussed in more detail later

9



CHAPTER 3. BACKGROUND

in this section. In contrast, model-based approaches utilize algorithms
such as multiple kernel learning and neural networks, which consider
inter-modality relationships.

• Co-learning: This includes knowledge sharing between modalities, which
is particularly beneficial when there’s an imbalance in information rich-
ness between them. This approach is categorized into three co-learning
approaches. Parallel co-learning leverages data shared across modalities,
enhancing learning in one modality with well-labeled data from another.
Non-parallel co-learning works on shared concepts or categories, sup-
porting tasks such as zero-shot learning to recognize unseen concepts in
one modality based on their presence in another. The hybrid method
connects two non-parallel modalities via a common dataset or modality,
making it suitable for tasks such as multilingual image captioning. Each
method uniquely addresses the challenges of data diversity in multimodal
learning.

3.1.3 Classification Framework

The field of multimodal classification contains a variety of terminologies, each
of which is subject to different interpretations. Specifically, the terms ’early’,
’late’, and ’hybrid’ have inconsistent definitions across different studies, con-
tributing to inconsistencies within the fusion process. To address this, IV
et al. [2021] introduced a structured framework, offering clarity in the design
and execution of multimodal classification models. This framework consists of
five principal stages: Preprocessing, Feature Selection, Data Fusion, Primary
Learner, and Final Classifier, each playing a pivotal role in the multimodal
classification system as outlined in Table 3.1.

IV et al. [2021] also provide a detailed description of each of the aforementioned
stages. Since the data fusion stage plays a central role in the development of a
multimodal classification model within this thesis, it is necessary to examine it
in more detail. As previously indicated in Table 3.1, this stage can be divided
into Fusion Architecture and Data Fusion Technique.

Fusion Architecture This can be divided based on the stage at which fusion
occurs during the associated procedures:

1. Early Fusion: In this approach, data from multiple modalities are sepa-
rately pre-processed and their features extracted before being integrated
(see Figure 3.1). The integration is achieved by methods such as con-
catenation, where the features from each modality, whether traditional

10



CHAPTER 3. BACKGROUND

Stage Description

Preprocessing This is a preliminary step in model building to refine and enhance the
raw data. It can involve removing irrelevant or corrupted data, ensuring
a balanced representation of different classes, and extending the dataset
using augmentation techniques.

Feature Selection Transforming raw data into a form suitable for further processing by the
model requires the extraction of high-level features that encapsulate the
essence of the data. This process covers a variety of techniques such
as manual feature engineering, text encoding and CNN-based feature
extraction.

Data Fusion The integration of data from different modalities into a coherent repre-
sentation occurs at this stage. It allows the multimodal model to make
effective use of complementary information. Additionally, multimodal
models can be distinguished by their architectural design and data fu-
sion methods.

Primary Learner During this stage, the training process is performed, where the models
learn from the combined data representations. This can be done inde-
pendently for each modality or integrated with the feature extraction
and final classification stages.

Final Classifier As the final step in the learning process, this stage provides the final clas-
sification output, which may include predicted labels or class probability
distributions. There are a range of models available for this purpose,
ranging from simple neural networks or decision trees to advanced en-
semble models.

Table 3.1: Overview of Multimodal Classification Model Stages. (Adapted from IV
et al. [2021])

feature vectors or outputs from pre-trained neural networks, are com-
bined into a single representation. The resulting combined data is then
fed to the primary learning model. Early Fusion can be useful when the
modalities are highly correlated or have a direct one-to-one relationship
IV et al. [2021]. However, challenges may arise when modalities have dif-
ferent sampling rates or when continuous and discrete data types need
to be aligned. To address these issues, various techniques are employed,
such as PCA for dimensionality reduction or strategies for aligning het-
erogeneous data Joshi et al. [2021]. Despite these challenges, early fusion
remains a fundamental technique in multimodal learning, providing the
basis for complex model training and subsequently influencing the effec-
tiveness of the final classifier.

2. Late Fusion: In comparison to early fusion, this method is distinguished

11



CHAPTER 3. BACKGROUND

Figure 3.1: Early Fusion in Multimodal Classification Framework. (Source: IV
et al. [2021])

by the independent extraction of features from each modality prior to
the final classification stage. The results of this stage usually consist of a
combination of low-level features learned by a deep network, or the prob-
abilities derived by each modality’s respective classifier. These distinct
outputs are then combined to generate the final classification decision.
One of the main benefits of this architecture is its flexibility, which en-
ables the customization of each modality with specialized algorithms.
However, there is a notable trade-off in this method, as it may ignore
cross-modality learning opportunities, which may limit the model’s abil-
ity to distinguish interdependencies between different types of data IV
et al. [2021]. Moreover, it requires extensive learning, as each modality
needs a separate supervised learning phase, followed by another learning
phase to fuse the representations. This multistage process may lead to
a loss of correlation within the mixed feature space, which is another
drawback of this approach Snoek et al. [2005]. Figure 3.2 demonstrates
the general approach for late fusion.

3. Cross-modality Fusion: This allows a dynamic exchange of information
between modalities, either before or during the primary learning phase,
which differentiates it from the static early and late fusion approaches. It
enables modalities to use each other’s context to improve the overall pre-
dictive power of the model, allowing flexible and interactive data sharing
that can vary in scope and timing throughout the learning process. The
results of such strategic collaboration have been shown to potentially
outperform traditional fusion methods, offering a promising opportunity
for advancing multimodal problem solving IV et al. [2021]. Figures 3.3
and 3.4 show a general approach to cross-modality architectures, where
modalities engage in single or multiple data-sharing operations during
the learning process.
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Figure 3.2: Late Fusion in Multimodal Classification Framework. (Source: IV et al.
[2021])

Figure 3.3: Single data-sharing operation in cross-modality fusion architecture.
(Source: IV et al. [2021])

Data Fusion Technique The integration of information from different modal-
ities to form a unified feature representation is an integral part of multimodal
learning, with techniques such as concatenation and merging being widely
used. Concatenation is a straightforward method that combines different fea-
tures into a single comprehensive vector that is suitable for both raw data and
processed neural network outputs. On the other hand, merging takes a more
nuanced approach by using arithmetic operations or network layers to combine
features and create a feature set that captures the complex dynamics between
modalities IV et al. [2021]. These methodologies are central to creating a co-
herent representation, which is necessary to handle the complexity inherent
in tasks that require synergistic fusion of multiple data types. The objective
of fusion techniques is to enhance the capabilities of the combined modalities
within a unified semantic representation Joshi et al. [2021].

Figure 3.4: Multiple data-sharing interactions across learning stages in cross-
modality fusion. (Source: IV et al. [2021])
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An additional valuable consideration, IV et al. [2021] points out, is that in
real-world scenarios, it’s common for different stages within the multimodal
classification framework to use identical models for processing. For example,
in a late fusion setup, each modality may independently perform feature ex-
traction and primary learning using the same model type. In contrast, an early
fusion architecture might consolidate learning and classification within a single
model, a practice typical of many traditional machine learning models, where
extracted features are concatenated and fed directly into a classifier.

3.2 Multimodal Large Language Models (MLLMs)

3.2.1 Evolution

Large Language Models (LLMs) Language models have progressed from
simple rule-based frameworks to the advanced LLMs of today. While basic
models based on linguistic rules established the foundation, they struggled to
capture the finer details of complex language usage. Advancements in statisti-
cal modeling toward the end of the 20th century improved data handling, yet
deep linguistic understanding remained difficult to achieve Douglas [2023].

In the 2010s, language models made a major step forward with the introduc-
tion of neural network-based models. The Recurrent Neural Network Language
Model (RNNLM) improved the generation of coherent and contextually rele-
vant natural text by processing sequences of words. It helped overcome the
limitations of statistical models by enabling complex pattern recognition and
sequential data processing, which are essential for understanding the flow and
structure of language Mikolov et al. [2010].

With the introduction of the Transformer model in 2017, a paradigm shift
was achieved in the field of Natural Language Processing (NLP). Its inno-
vative architecture, which utilizes self-attention mechanisms, enabled parallel
processing of sequences, making it significantly more efficient than previous
models at learning long-range dependencies within a piece of text Vaswani
et al. [2017]. This architectural progress provided the foundation for subse-
quent developments in language models, including BERT (Bidirectional En-
coder Representations from Transformers) Devlin et al. [2018]. This model
utilizes bidirectional training, enabling it to understand the context of a given
word based on all the words around it, as opposed to previous models that
processed text in one direction.
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GPT-3, a pre-trained Transformer developed by OpenAI in 2020, continued
the evolution of previous versions of Transformers, scaling the architecture up
to 175 billion parameters. Together with advanced training techniques, The
model achieved remarkable performance on a variety of different NLP tasks,
often with minimum or no task-specific training Brown et al. [2020]. GPT-3
is considered a milestone in the development of LLMs due to its deep and
rich understanding of language. It can generate text that closely resembles
human language, solve complex problems, and detect nuanced details in text.
Following the success of GPT-3, OpenAI introduced GPT-4 in 2023, further en-
hancing the capabilities of language modeling. GPT-4’s enhancements in text
understanding and generation made it more capable of mimicking human-like
conversation and reasoning across a wider range of languages and domains. Its
enhanced performance sets new benchmarks within LLMs, achieving human-
level performance across a range of benchmarks OpenAI [2023].

The emergence of LLMs from large institutions has been accompanied by a
notable trend toward the democratization of AI technology, highlighted by the
release of open-source models such as Meta AI’s LLaMA1 and Mistral’s Mistral
7B2. These open-source initiatives are changing the AI landscape by making
cutting-edge technology available to a broader community of researchers, de-
velopers, and enthusiasts. The adoption of open source models has enabled
broader access to modern AI technologies, as well as encouraged a culture of
collaboration and innovation within the field.

Beyond language-centric models The transition from Large Language
Models (LLMs) to Multimodal Large Language Models (MLLMs) that began
in the 2020s is an important conceptual change toward a richer, more complex
understanding of intelligence, similar to human sensory perception. While tra-
ditional LLMs perform well in NLP tasks, they have a fundamental limitation,
which is their inability to process information beyond text Yin et al. [2023].
This constraint emphasizes the necessity for a comprehensive and integrated
approach to comprehend the diverse nature of communication and informa-
tion, thereby opening the path for the emergence of MLLMs.

Recent models such as GPT4V3, Gemini4 and LLaVA (to be discussed further
in this thesis) are examples of this transition, representing a move from purely

1https://ai.meta.com/blog/large-language-model-llama-meta-ai/
2https://mistral.ai/news/announcing-mistral-7b/
3https://openai.com/research/gpt-4v-system-card
4https://deepmind.google/technologies/gemini/#introduction
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textual analysis to a multimodal approach that incorporates visual, auditory,
and textual inputs. This evolution mirrors the complexity of human cognition,
which does not rely on a single mode of perception, but integrates multiple
sensory inputs to interact with and understand the world. The ability to ag-
gregate and interpret information across multiple different modalities is key to
enabling both humans and AI systems to effectively navigate and make sense
of the rich variety of information in the natural world.

Integrating multimodal input has extended the application of LLMs, improving
their usability in domains such as human-computer interaction, image recogni-
tion, and speech generation. Through extensive experimentation, it has been
shown that the cross-modal knowledge transfer provided by MLLMs can sig-
nificantly enhance reasoning capabilities, often surpassing the performance of
models limited to a single modality Wu et al. [2023]. This proliferation high-
lights the immense potential of AI to surpass conventional boundaries, indi-
cating a promising future for innovation and application in a wide range of
fields.

3.2.2 Applications

The broad applicability of MLLMs has led to a variety of use cases, each of
which demonstrates the potential of integrating multimodal data for complex
problem solving and decision making. Some of the widely reported use cases
are:

• Visual Question Answering (VQA): It is a multipurpose application
of MLLMs that combines computer vision with NLP to answer questions
based on image content. It requires a deep understanding of both vi-
sual and textual data, going beyond simple object recognition or scene
description. Due to its dynamic and real-time nature, VQA is closely
related to practical AI applications Yuan [2021]. In the fashion industry,
VQA improves the efficiency and accuracy of product labeling by auto-
matically answering attribute-based questions from images Wang et al.
[2022a]. In the medical field, it has recently been adopted for a variety of
applications, including assisting clinicians in decision making, enhancing
medical education through image interpretation, automating disease di-
agnosis, and providing answers to patient questions that do not require
a doctor’s visit Al-Sadi et al. [2021].

• Image Captioning: The objective of this task is to create natural lan-
guage descriptions based on visual content, connecting visual perception
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and linguistic expression. This is crucial for aiding blind people and im-
proving human-robot interaction, as it requires not only the recognition
of visual elements, but also the translation of these perceptions into co-
herent, contextually relevant sentences Laina et al. [2019]. In the past,
this task has typically relied on human annotators, which can sometimes
result in certain limitations, such as descriptions that may be overly sim-
plistic or repetitive. However, MLLMs offer a solution to these challenges
by learning a joint embedding space of language and image features. This
allows them to generate more descriptive and accurate annotations from
images without necessarily relying on paired datasets.

• Emotion Recogniton: This task focuses on the interpretation of hu-
man emotions by integrating various types of multimodal data, such as
images, video, audio, and text. It has gained attention for its potential
to improve user interactions and mental health applications. The use of
MLLMs allows researchers to systematically evaluate the the capabilities
of these models in tasks such as recognition of facial expressions, analysis
of visual sentiment, and detection of micro-expressions. Lian et al. [2023]
have made significant progress in this field by demonstrating that GPT-
4V can analyze both image and text input and can partially capture
temporal information from video frames. However, they have addressed
some challenges. For instance, the interpretation of audio data remains
limited, and there are inconsistencies in the security of the evaluation.
The authors’ quantitative evaluation of GPT-4V sets a new benchmark
in the field, demonstrating its potential and identifying areas for future
development in multimodal emotion understanding.

3.3 Prompt Engineering
In the field of advanced language models, prompt engineering is considered a
key and powerful technique. It involves carefully designing and constructing
input queries, or "prompts", which play a critical role in guiding the behavior
of LLMs to produce specific, desired outcomes Kaddour et al. [2023]. The core
principle of prompt engineering is that the way prompts are structured and
presented to the model has a profound impact on their responses. By effec-
tively engineering these prompts, it is possible to leverage the capabilities of
the model to produce a variety of meaningful and accurate outputs.

As language models have evolved, several innovative prompting techniques
have been introduced to improve the model’s performance for specific tasks.
Some of these methods include:
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1. Zero-shot Prompting: Refers to the ability of the model to perform
tasks without being presented with examples or being trained in that
particular domain of knowledge. This approach takes advantage of the
model’s pre-training on a wide range of data, enabling it to perform well
and provide accurate responses to questions it has never encountered
during training. For example, a model could be given a prompt such
as "Translate this sentence into French: The boy goes to school" and
provide an accurate response even without explicit training on transla-
tion tasks. However, it is important to note that Zero-shot prompting
may have certain limitations. One main limitation is the possibility of
inconsistent performance across tasks and languages, particularly those
that are not well represented in the training data. In addition, as men-
tioned by Sanh et al. [2021], creating effective prompts that yield the
desired response can be a challenging process that may require signifi-
cant trial and error. Moreover, while Zero-shot Prompting is capable of
producing grammatically correct results, it may not always have the nec-
essary domain-specific accuracy or contextual understanding, especially
in highly specialized domains such as law or medicine Martínek et al.
[2022].

2. Few-shot Prompting: Unlike Zero-shot prompting, this method pro-
vides the model with a small amount of examples to guide its reasoning.
For example, in Few-shot video language learning, a model might be
shown only a few examples of video frames paired with descriptions,
and then learn to generate accurate descriptions for new, unseen video
frames Wang et al. [2022b]. This method has the advantage of quickly
adapting to new tasks with limited data, making it particularly useful
in situations where large-scale datasets are unavailable or not feasible.
However, the quality of this method can be highly dependent on the rep-
resentativeness and robustness of the examples provided. In some cases,
Few-shot prompting can lead to inconsistencies or biases if the sample
prompts are not carefully selected Patel et al. [2022]. This approach
has been applied to a variety of complex reasoning and problem-solving
scenarios. For example, it has been used to improve the performance of
small language models, transforming them into efficient Few-shot learn-
ers without the need for fine-tuning Zhang et al. [2021]). Evaluation of
Few-shot prompting often focuses on its flexibility, efficiency in learning
from limited data, and ability to generalize to new tasks or domains.

3. Chain of Thought (CoT) Prompting: Introduced by Wei et al.
[2022], this technique has significantly improved the reasoning abilities of
LLMs by guiding them through intermediate reasoning steps, especially
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in complex tasks that require multi-step logical reasoning. For example,
the addition of phrases such as "Let’s think step by step" in Zero-shot
CoT helps models decompose problems and arrive at more accurate,
interpretable answers Kojima et al. [2022]. To automate and refine this
process process, innovations such as the Automatic CoT by Zhang et al.
[2022b] aim to generate diverse chains of reasoning, minimize manual
intervention, and maximize the representativeness of examples. Despite
potential challenges such as dependence on example quality and model
size, CoT prompting represents a strong advance in the ability of LLMs
to tackle sophisticated reasoning tasks with improved accuracy and depth
of understanding.

The exploration of the aforementioned prompting techniques covers important
developments in the field, but only briefly delves into this rapidly evolving
area. As AI research advances, new and innovative prompting approaches
are being developed, enriching the tools available for interacting with modern
advanced models. This overview provides a sufficient foundation for the scope
and purpose of this thesis, recognizing that prompt engineering is an expansive
and dynamic field that offers a wide avenue for future investigation.
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Methodology

4.1 Data

4.1.1 Data Collection & Labeling

The dataset utilized in this thesis consists of Instagram posts, which include
images and their corresponding captions. The collection was limited to public
posts only, in accordance with ethical standards and Instagram’s privacy pol-
icy.

The acquisition of the data occurred in the summer of 2023, at the Ludwig
Uhland Institute for Empirical Cultural Studies at the University of Tübin-
gen. The objective of the seminar was the examination of social media feeds,
specifically Instagram. The students used ethnographic methods to categorize
Instagram posts into two categories: "norm-beauty" and "divers" representa-
tions. They were divided into groups and tasked with developing and refining
criteria to guide their post selection. Initially, 50 posts were obtained for each
category, with an emphasis on overall thematic representation rather than
strict compliance with the initial criteria.

Throughout the seminar, the students conducted a critical evaluation and ad-
justment of their selection criteria, particularly concerning the "norm-beauty"
category where gender bias was detected. This reflective process resulted in a
more inclusive and balanced dataset curation. An important component of the
seminar was the establishment of a subgroup dedicated to identifying subtle
forms of racism and discrimination present in the posts. However, the sub-
group was dissolved shortly after its formation due to the emotional challenges
of reviewing such sensitive content.
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Figure 4.1: Representative samples of ’norm-beauty’ (left) and ’divers’ (right) im-
ages.

The resulting dataset, consisting of 472 ’norm-beauty’ and 456 ’divers’ posts,
was organized into an Excel file containing links to the original Instagram con-
tent. As part of the work in this thesis, web crawling techniques were used to
obtain both images and captions from the links.

Due to ethical concerns and the desire to preserve the privacy and integrity of
the original Instagram users, this thesis does not include actual images from
the dataset. Instead, representative examples were generated using the Stable
Diffusion XL image generation model. This approach was chosen to demon-
strate the types of visual content categorised as "norm-beauty" and "divers",
without directly displaying personal or sensitive information.

To ensure the reliability of the labels and their reproducibility, the dataset
was subjected to an additional verification step. A sample of 10% of the
dataset was independently labeled by seven annotators with similar cultural
backgrounds. The accuracy rates of the annotators ranged from 73% to 96%.
Furthermore, a majority voting process was used to determine the most fre-
quently assigned label for each post. This resulted in an overall accuracy of
91%, demonstrating the coherence and reliability of the labels. Overall, these
observations suggest that the decision-making process behind the labeling of
posts into "norm-beauty" and "divers" representations is based on a collective
understanding that is to some extent reproducible.

21



CHAPTER 4. METHODOLOGY

4.1.2 Data Preprocessing

The images were processed to standardise their colour representation, ensur-
ing consistency across the dataset. If an image was not in the RGB standard,
it was converted to this format to prevent variations from affecting the analysis.

For the textual data associated with each Instagram post, significant variability
was observed, reflecting the diverse nature of social media interactions. The
content of the posts ranged widely in format and content; some contained only
emojis, others were structured as commercial or personal stories, and a few
were entirely textless. Given that the focus of further analysis is to classify this
data, the main preprocessing step was to remove entries with empty captions.

4.1.3 Data Augmentation

Data augmentation is an important element of image-based machine learning,
especially when dealing with limited datasets. It enables the expansion of
training data diversity and quantity whilst creating a reliable dataset from a
limited number of source images. This is very useful in scenarios where it is
either impractical or impossible to acquire a large number of unique images.
By augmenting images with different techniques, the machine learning mod-
els are exposed to a wider range of scenarios and variations. Such diversity
is valuable because, from a machine’s perspective, even small changes to an
image can significantly alter how it is processed and understood.

Several augmentation techniques were employed to enrich the dataset, follow-
ing established best practices in the field of machine learning, as highlighted
by Yang et al. [2022]. These techniques included

1. Rotation: Each image was rotated by 15 degrees, introducing a new
perspective while preserving the original content of the image.

2. Horizontal Flip: This method created a mirror image of each original,
thereby adding variation to the dataset while maintaining the structural
integrity of the subjects.

3. Brightness Adjustments: The brightness of each image was modified
to mimic different lighting conditions. This included both increasing and
decreasing brightness levels to prepare the models for real-world lighting
variations.

4. Gaussian Noise Addition: To simulate common photographic chal-
lenges such as graininess, Gaussian noise was added to the images. This
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adds a challenge to the model so that it can process and analyse images
under less than ideal conditions.

5. Background Removal: A custom background removal tool was em-
ployed to isolate foreground subjects, focusing on the main subject and
reducing potential background distraction.

6. Foreground Removal: In contrast, this method removed the main
subject, leaving only the background. This could help to understand the
context and environment of the subjects.

4.1.4 Data Transformation

Transforming raw data to ensure consistency for machine learning applications
is another important step for conducting multiple experiments to address the
problem at hand. Both the textual and visual data underwent some transfor-
mation to achieve uniformity and improve the effectiveness of the analysis.

An initial transformation stage focused on textual content, primarily image
captions. GPT-4, OpenAI’s most advanced generative language model, was
utilized to standardize and reformulate these captions into a coherent struc-
ture. This process included:

• Language Standardization: All non-English captions were translated
to English.

• Conversion of Emojis and Hashtags: Emojis and hashtags were
replaced with corresponding natural language descriptions, preserving
the original posts’ sentiment and context.

Guiding Prompt for Textual Transformation:
"Reformulate the following Instagram caption in one sentence to capture the
essence of it. Focus on the meaning of the caption, the sentiment, and the
context.
- If the caption has emojis, remove them and explain them in natural language.
- If the caption has hashtags, remove them and explain them in natural language.
- If the caption is not in English, translate it to English and reformulate."

In addition to transforming the textual data, the images were also transformed
into textual descriptions. This was achieved using the LLaVA model. LLaVA
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analyzed each image to provide a detailed description that included various
aspects such as pose, body prominence, and skin appearance.

Guiding Prompt for Visual Transformation:
Analyze the person in the image. Provide a JSON response with the following
fields:

1 {
2 "pose_and_posture ": "Description of their stance",
3 "body_prominence ": "How their body is displayed",
4 "skin_appearance ": "Details of skin texture and features

",
5 "body_features ": "Information on weight , slimness ,

muscularity , and facial characteristics",
6 "disability_or_syndrome ": "Indicators of any disabilities

or syndromes"
7 }

Following the presentation and discussion of the dataset, the remaining sections
of this chapter will provide a detailed technical explanation of the models and
methods used in this thesis.

4.2 Text Models

4.2.1 Bidirectional Encoder Representations from Trans-
formers (BERT)

In the field of NLP, the introduction of BERT by Google AI was a signifi-
cant advancement. With its bidirectional processing capabilities, it enabled
a rich understanding of linguistic context, providing a considerable improve-
ment over the unidirectional approach of previous models Devlin et al. [2018].
The underlying architecture is built on the transformer principles developed
by Vaswani et al. [2017], which is recognized for its ability to handle sequential
data and its implementation of advanced attention mechanisms. BERT uses
only the encoder part of the Transformer architecture, which is well suited to
understanding the context and relationships between words in a text.

The preprocessing of the input text starts by converting tokens into embed-
dings that the model can understand. This process includes three main com-
ponents:
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Figure 4.2: Illustration of BERT’s Input Processing. The diagram shows the addi-
tion of token, segment, and positional embeddings to the input sequence, preparing
it for encoding by BERT. (Source: Devlin et al. [2018])

1. Token Embeddings: Each token in the input sequence is converted
into a vector. Additionally, special tokens are appended: a [CLS] token
is placed in front of the input to serve as an aggregated representation
for classification tasks, and [SEP] tokens are added to mark the end of
sentences.

2. Segment Embeddings: To enable the model to distinguish between
sentences in tasks that involve multiple sentences, such as question an-
swering, BERT adds segment embeddings. These are binary flags asso-
ciated with each token indicating whether it belongs to the first sentence
(Sentence A) or the second (Sentence B).

3. Positional Embeddings: These are used to specify the position of each
token within the sequence, preserving word order information.

The embeddings from these three sources are combined to create a comprehen-
sive representation for each token which is fed into the model. This process, as
shown in Figure 4.2, is essential for BERT to contextualize individual tokens
and understand the entire input sequence.

BERT is available in two primary variants, the base model with 12 encoders
and 12 attention heads, totaling approximately 110 million parameters, and the
large model with 24 encoders and 16 attention heads, totaling approximately
340 million parameters, designed for more computationally intensive tasks.
Two main strategies are used to train the model:

• Masked Language Modeling (MLM): The aim of this method is
to improve the model’s ability to predict words that are masked in the
context of the text. For instance, considering a modified sentence such
as "Rain is essential for the growth of [MASK]." BERT is tasked to infer
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Figure 4.3: BERT’s Training Process. The left side shows pre-training with NSP
and MLM on unlabeled data, while the right side shows fine-tuning BERT for specific
tasks such as question answering. (Source: Devlin et al. [2018])

the masked word - in this case, "plant" - based only on the surrounding
context. To prevent the model from overfitting to the [MASK] token
and ensure generalizability, the training procedure is diversified: out of
the tokens intended for masking, 80% are in fact replaced by [MASK],
while 10% are replaced by random tokens and the remaining 10% are left
unchanged. This approach forces the model to predict the masked word,
but also to improve its predictive ability, regardless of the token’s ap-
pearance. The model’s ability to acquire knowledge is therefore directed
towards the reconstruction of the masked tokens, leading to an incre-
mental but profound learning of bidirectional language representation,
which is central to a wide range of NLP applications.

• Next Sentence Prediction (NSP): This teaches the model to under-
stand the connection between pairs of sentences, which is essential for
tasks that require a deeper understanding of textual relationships, such
as question answering. In this task, BERT evaluates whether the second
sentence in a pair logically follows the first. During training, the model
is presented with two sentences separated by a [SEP] token. It must
predict whether the second sentence is a true continuation or a random
insertion. This binary decision is based on the output of the [CLS] token
and is achieved by a classification layer within the model.

BERT’s pre-training involves learning from large text corpora to understand
sentence context and word relationships, which is a fundamental building
block. Then, through fine-tuning, the model adapts to a given task by adjust-
ing its input-output structure and efficiently learning the necessary domain-
specific knowledge. This two-stage approach, as shown in Figure 4.3, ensures

26



CHAPTER 4. METHODOLOGY

that the model is applicable to various NLP applications and thus achieves a
high degree of maturity.

4.3 Vision Models

4.3.1 Residual Neural Network (ResNet)

Introduced in "Deep Residual Learning for Image Recognition" by He et al.
[2015], ResNet represents a significant advancement in deep neural networks
in the field of computer vision, as it overcomes the vanishing gradient problem
that hinders effective updating of network parameters. This problem was a
critical challenge in the era post AlexNet 1, a CNN model that won the Ima-
geNet 2 2012 competition. As architectures such as AlexNet became deeper,
they encountered training difficulties caused by the vanishing gradient prob-
lem. ResNet, with its skip connections, introduced a new approach to deep
network training, improving depth and efficiency, leading to its success in the
2015 ImageNet Challenge and establishing its role in the advancement of com-
puter vision and deep learning.

ResNet’s architecture focuses on residual learning. This approach, where the
network layers approximate residual functions, is defined as F (x) = H(x)− x.
It assumes that if nonlinear layers are capable of approximating complex func-
tions, they should also be capable of approximating the residual functions.
According to this, the layers do not learn the direct mapping of H(x), but
rather the difference from the input, which has been shown to simplify the
learning process, especially in deeper networks. The residual learning approach
is complemented by the concept of skip connections, as shown in Figure 4.4.
These connections allow gradients to bypass specific layers, a mechanism cru-
cial for addressing the training challenges often encountered in deep neural
networks. Skip connections facilitate identity mapping, ensuring that inputs
can be carried forward with minimal change, which is essential for optimising
the training of deep neural networks. By focusing on refining a smaller subset
of features, it enables the training of deeper architectures, effectively prevent-
ing the degradation of training performance that is typically observed in very
deep networks He et al. [2015].

The various architectures of ResNet, ranging from ResNet-34 to ResNet-152,
where the number refers to the number of layers in the neural network archi-

1https://en.wikipedia.org/wiki/AlexNet
2https://www.image-net.org/challenges/LSVRC
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Figure 4.4: A standard residual block in ResNet, demonstrating the skip connection
(Source: He et al. [2015]).

tecture, demonstrate the ability to scale depth while maintaining performance,
significantly reducing image classification error rates on datasets such as Im-
ageNet. The influence of ResNet on the field of computer vision is evident in
its widespread application for solving complex tasks He et al. [2015].

4.3.2 Self-Supervised Model (SEER)

Developed by Meta AI, SEER (Self-supERvised) departs from traditional su-
pervised learning models by leveraging self-supervised learning. It was trained
on a large and diverse dataset of more than one billion public Instagram im-
ages, intentionally excluding EU-sourced content due to privacy issues. The
dataset, while randomly selected and unfiltered, was analyzed for geographic
and gender diversity, resulting in a comprehensive representation from 192
countries.

Model Architecture Goyal et al. [2022] sought to scale up to a highly
dense network with 10 billion parameters, based on the RegNet architecture
— a CNN variant known as "Regularised Network". RegNet was chosen for
its promising scalability, documented in Radosavovic et al. [2020], offering a
flexible "design space" as compared to fixed architectures. This flexibility al-
lows for custom modifications necessary to support SEER’s large number of
parameters.

The RegNet architecture is built upon an initial design space called AnyNet,
which is a flexible interpretation of the ResNet structure, shown in Figure 4.5
that represents a segmented approach: the initial processing Stem, the com-
putationally intensive Body with four stages of X-blocks, and the concluding
Head. The X-blocks, foundational to the model’s adaptability, are illustrated
in Figure 4.6 and are parameterized by their width, bottleneck ratio, and
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Figure 4.5: Overview of the network architecture: (a) shows the high-level division
into Stem, Body, and Head; (b) the four stages within the Body, each comprising
multiple computational blocks; (c) zooms into Stage 1, illustrating the block structure
with its associated parameters. (Source: Radosavovic et al. [2020])

group width at a fixed resolution. This design affords the model 16 degrees of
freedom, facilitating extensive exploration within the architectural landscape.
This exploration is marked by a series of iterations from AnyNetXA through
to AnyNetXE, each progressively refining the design space:

• AnyNetXA: The baseline model with an unconstrained ResNet-like ar-
chitecture, allowing for approximately 1018 possible structures, account-
ing for all permutations of its four parameters.

• AnyNetXB: Constrains the bottleneck ratio, reducing the design space
to around 1016 possibilities.

• AnyNetXC: Standardizes the group width across layers, further nar-
rowing down the possibilities to 1014.

• AnyNetXD: Implements non-decreasing layer width, limiting struc-
tural variations to 1013.

• AnyNetXE: Applies non-decreasing layer depth, yielding a pragmatic
1011 design variations.

Building on the foundations introduced by AnyNetXE, the RegNet architec-
ture introduces two distinct series: RegNetX and RegNetY. RegNetX is built
through an empirical optimization of parameters, including the initial layer
width w0, slope wa, and quantization wm, which collectively define the net-
work’s width and depth. RegNetY improves the design by adding a squeeze
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Figure 4.6: (a) The X block, a basic building block of the AnyNetX architecture
with stride s = 1. (b) Illustrates the downsampling variant of the X block with stride
s = 2. (Source: Radosavovic et al. [2020])

and excitation (SE) layer which uses an SE ratio q to adjust the filter re-
sponses, thereby enhancing the network’s feature discrimination capabilities.
These models undergo a detailed parameterization process to ensure hardware
compatibility, such as the widths being divisible by 8 and conforming to the
group size g, determined by the bottleneck ratio b.

The SEER model is the result of strategic scaling of the RegNet architecture,
with a focus on increasing width over depth to efficiently increase model size.
The choice was based on experiments that showed that models with increased
width and depth improved performance without the inefficiencies of higher
resolution or the use of complex models. As a result, SEER maintains the base
resolution while significantly increasing the width to provide a good balance
between scale and training efficiency.

Self-Supervised Learning (SSL) SEER was trained using the Swapping
Assignments between multiple Views (SwAV) technique introduced by Caron
et al. [2020]. SwAV uses a sophisticated method to learn visual features
through self-supervision. It has a multi-stage process that starts by gener-
ating different image crops, including both large and small sizes. These crops
are processed by a neural network, such as ResNet-50, which outputs feature
vectors. These vectors are then associated with prototype vectors that de-
fine distinct visual categories. By maximizing the similarity between image
features and these prototypes, cluster assignments are created. The model
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is trained to predict clusters of one image view based on another, effectively
teaching it to recognize the same object across different image views. This
self-predictive mechanism, reinforced by swapped vector predictions, enables
SwAV to develop consistent and transferable representations for visual recog-
nition tasks.

According to Goyal et al. [2022], SEER is a more robust, fair, less biased,
and less harmful model compared to models trained on curated datasets such
as ImageNet. By scaling the model’s capacity, they demonstrate that it can
capture a wide range of concepts, including semantic information, artistic style,
and geographic diversity. The performance has been validated on over 50
benchmarks, demonstrating improved generalisation capabilities and strong
performance across a range of computer vision tasks.

4.3.3 Vision Transformer (ViT)

To leverage the power of attention-based mechanisms in computer vision, Doso-
vitskiy et al. [2021] propose an architecture that approaches image processing
from the perspective of sequence transformation. Inspired by the transformer
models, ViT represents images as a series of distinct elements.

The core of ViT’s architecture consists of partitioning an input image into
fixed-size patches, typically 16 × 16. These patches are then flattened and
linearly projected to a high-dimensional space. Each patch is represented by
a D-dimensional vector. This process is similar to tokenization in NLP, where
words are converted into tokens before being embedded. To preserve positional
information lost during patch flattening, a learnable 1D position embedding is
added to each patch embedding. Following a similar technique to BERT, ViT
introduces a "class token", an additional learnable embedding that is appended
to the sequence of patch embeddings. This token serves as an aggregate repre-
sentation of the entire image and is used for classification after being processed
by the Transformer encoder.

The encoder in ViT consists of multiple identical layers, each of which includes
a multi-headed self-attention (MSA) and a multi-layer perceptron (MLP) net-
work. Layer normalization (LN) is applied to each MSA and MLP, and residual
connections are integrated around both components to improve gradient flow
during training. The self-attention mechanism is essential as it allows the
model to assess and prioritize different image patches, thereby focusing on the
most informative patches for specific tasks. The MLP, which has two layers
with GELU non-linearity, further processes features derived from the attention

31



CHAPTER 4. METHODOLOGY

Figure 4.7: ViT architecture, showing the flow from input image patches to final
classification output. (Source: Dosovitskiy et al. [2021])

mechanism. Figure 4.7 illustrates the ViT architecture, outlining the trans-
formation from input image patches to the final classification output. One of
the key features of the model is the ability to apply global attention across all
image patches, which differs from the local attention of CNNs. As a result, the
model is able to capture extensive dependencies between patches, providing a
more comprehensive understanding of the image.

There are different sizes of ViTs, such as ViT-Base, ViT-Large, and ViT-
Huge. The authors have also developed a hybrid model that incorporates CNNs
to form input sequences, thereby improving the feature extraction process.
These models offer flexibility in terms of patch size, thereby addressing different
computational needs and tasks. When trained on extensive datasets such
as ImageNet-21k and JFT-300M, ViTs demonstrate remarkable capabilities.
They often equal or exceed the performance of traditional CNN models such
as ResNet, while requiring fewer computational resources. Notably, ViT-H, the
largest model in the ViT series, exhibits a faster training process compared to
its CNN counterparts. However, the performance of these models on smaller
datasets does not achieve the same level of effectiveness as CNNs. This is due
to inherent design differences between the two architectures. CNNs have a
convolutional structure that naturally has an inductive bias that favors local
connectivity, which aids in pattern recognition within images. In contrast, ViTs
lack these built-in biases and instead heavily rely on rich training datasets
to learn the underlying visual features Dosovitskiy et al. [2021]. While this
reliance provides greater flexibility, it also creates a dependency on massive
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datasets. It reflects a broader trend in deep learning, where transformers are
increasingly recognised as more general computational frameworks compared
to specialised networks such as CNNs.

4.3.4 Shifted Window Transformer (Swin)

The Swin Transformer builds on the fundamental concepts of the ViT to
address its computational inefficiencies, in particular when processing high-
resolution images. By design, ViT’s computational complexity increases quadrat-
ically with image size, making it poorly suited for high density prediction
tasks such as object detection and semantic segmentation. By introducing hi-
erarchical feature maps and shifted window attention mechanisms, the Swin
Transformer achieves a significant reduction in computational complexity and
improves the processing of images at different resolutions Liu et al. [2021].

Unlike the fixed scale approach of ViT, the Swin Transformer employs a flexi-
ble patch merging strategy that produces adaptive and scalable feature maps.
This strategy combines features from a 2 × 2 grid of adjacent patches into a
single patch, enriching the channel depth and reducing the spatial dimensions
by half. This preserves essential information while creating a compressed yet
detailed representation of the input. Specifically, the merging strategy groups
each n× n neighboring patches and concatenates them depth-wise, effectively
downsampling the input by a factor of n. As a result, the input’s dimen-
sions are transformed from H ×W × C to H

n
× W

n
× (n2 × C), where H, W ,

and C represent the height, width, and channel depth, respectively. Through
recursive application across the network layers, this technique constructs a
hierarchical feature maps, capturing details at diverse scales essential for the
model’s effectiveness in complex vision tasks. This architecture balances com-
putational efficiency with enhanced predictive performance for various image
analysis applications. Figure 4.8 illustrates the hierarchical architecture of the
Swin Transformer, showcasing the adaptable feature maps in contrast to the
single-resolution feature maps typical of ViT.

Another key component enhancing the capabilities of this model is the Swin
Transformer Block, which refines the processing of complex visual information.
It replaces the standard MSA of the ViT with two specialized modules designed
to optimize computational efficiency and accuracy:

• Window-based Multi-Head Self-Attention (W-MSA): Instead of
considering the entire image at once, which is computationally intensive,
W-MSA divides the image into smaller, more manageable sections called
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Figure 4.8: A comparison of the hierarchical feature maps in Swin Transformer (a)
and the uniform single-level feature maps in Vision Transformer (ViT) (b) (Source:
Liu et al. [2021])

.

windows. Within each window, the self-attention mechanism focuses on
understanding the relationships between patches, which are small parts
of the image, thereby simplifying the process and reducing the computa-
tional workload. This localized attention is comparable to understanding
a scene not by looking at everything in sight, but by focusing on one part
at a time.

• Shifted Window Multi-Head Self-Attention (SW-MSA): While
W-MSA is efficient, it works in isolation, which means it might overlook
the complete context of the image. SW-MSA solves this problem by
slightly shifting the positions of the windows, allowing each window to
consider its neighbors. This shift enables the model to assemble a more
complete understanding of the entire image. The effect is like shifting
the perspective slightly to see what’s happening at the edge, providing
a broader view.

The Swin Transformer Block consists of a repeating pattern of two types of
layers. The first type includes the W-MSA module for concentrated attention
within windows. This is followed by a layer that normalizes the data, ensuring
consistency and stability in the model’s predictions. Finally, an MLP layer is
included, which acts as a complex filtering layer that further refines the data.
The second type is similar, but it utilizes the SW-MSA module to expand
the attention’s scope to different areas of the image. The design of the Swin
Transformer Block is presented in Figure 4.9. It shows the flow of information
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Figure 4.9: Illustration of the Swin Transformer Block, detailing the sequential
flow from input to output (Source: Liu et al. [2021])

.

as it’s processed by these layers, starting with the input features, moving
through the specialised W-MSA and SW-MSA modules, and ending with the
output features ready for the next steps in image analysis.

4.4 Multimodal Models

4.4.1 Contrastive Language-Image Pre-training (CLIP)

Introduced by OpenAI, CLIP is an open-source multimodal model that unifies
the capabilities of NLP and computer vision. It is designed for self-supervised
learning of image representations, utilizing a dual-encoder framework to inter-
pret a combination of textual and visual information.

The pre-training process, shown in Figure 4.10, is critical for CLIP’s learn-
ing capabilities. Jointly training an Image Encoder and a Text Encoder,
CLIP adopts a contrastive learning approach to generate image embeddings
[I1, I2, . . . , IN ] using either a ResNet or ViT, and text embeddings [T1, T2, . . . , TN ]
using a Transformer model with GPT2-style modifications. Each encoder out-
puts an N × de matrix, where de is the size of the latent dimension. In this
contrastive learning framework, the model’s goal is to maximize the diagonal
elements of the resulting N × N similarity matrix, corresponding to correct
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Figure 4.10: The Contrastive Pre-training step of CLIP. (Source: Radford et al.
[2021])

Figure 4.11: Zero-shot classification using CLIP. (Source: Radford et al. [2021])

image-text pairs, and minimize the off-diagonal elements, indicating dissimilar
pairs.

After this pre-training, CLIP can perform Zero-shot Classification, as shown in
Figure 4.11. Unlike traditional methods, it does not require further fine-tuning
for classification tasks. Descriptive text prompts and images are encoded into
embeddings, and the highest cosine similarity between them determines the
image’s label.

CLIP utilizes the WebImageText (WIT) dataset for training, which consists
of 400 million image-text pairs. This was created by OpenAI to overcome the
limitations of smaller datasets. It serves as the seed for the model’s learning
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approach, allowing it to learn from a variety of visual concepts combined with
natural language descriptions.

As reported by Radford et al. [2021], CLIP demonstrates remarkable Zero-shot
transfer performance on various vision datasets, competing with fully super-
vised baselines such as ResNet. The model performs well in image recognition,
as well as in learning features useful for a variety of downstream tasks. How-
ever, the authors acknowledge that achieving optimal results with Zero-shot
learning in CLIP requires massive computational power. Furthermore, while
the rich dataset WIT contributes to the model’s diverse learning experience,
it does not inherently improve the model’s efficiency with respect to data.
Therefore, CLIP’s accuracy is supported by the volume of data rather than an
enhanced ability to learn from limited information.

4.4.2 Large Language and Vision Assistant (LLaVA)

LLaVA is an open-source multimodal model that combines an LLM with state-
of-the-art vision capabilities. It represents a significant advancement in multi-
modal conversational AI, integrating a vision encoder with a language model
to achieve new levels of visual and linguistic comprehension. Parallel to GPT-
4V’s capabilities, LLaVA demonstrates remarkable flexibility in handling mul-
timodal chat interactions. It responds to a variety of images and instructions,
including those never encountered before.

Data Liu et al. [2023b] have identified a significant gap in multimodal AI re-
search, which is the lack of high-quality datasets where text specifically serves
as an "instruction" for an image. To address this issue, they created their own
dataset by taking advantage of GPT-4’s ability to convert existing image-text
pairs from the COCO 3 dataset into instruction-based data, without present-
ing the image directly to GPT-4. This process begins with an image Xv and
its corresponding caption Xc, from which a series of questions Xq are formu-
lated. These questions are designed to guide an AI assistant in effectively
describing the image’s content. Initially, this approach produced data that
was functional but lacked diversity and depth in its instructional scope. To
enhance the dataset, the methodology was further refined to take full advan-
tage of GPT-4’s advanced capabilities to create more complex instruction sets
based on the image. To do this, the image is represented in two ways: cap-

3https://cocodataset.org/
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tions, which provide different textual interpretations of the visual scene, and
bounding boxes, which precisely identify and locate objects within the image,
an example is shown in Figure 4.12. This dual-representation improves the
quality of the data and allows for more complex interactions between the vi-
sual and textual elements. The enriched dataset, which consists of 158,000
unique sets, contains three types of instruction-following data:

• Conversation: This involves question-and-answer dialogues about the
visual content, focusing on object identification, quantification, and spa-
tial location.

• Detailed Description: In-depth descriptions are generated by asking
detailed, tailored questions to GPT-4.

• Complex Reasoning: These are questions requiring logical, step-by-
step reasoning for accurate answers.

Architecture The architecture of LLaVA is designed to combine the func-
tionalities of a pre-trained LLM and a visual model so that they can work
together. The language processing unit is based on Llama, which serves as the
LLM. For visual processing, when an image Xv is received, the model utilizes
a pre-trained version of CLIP (ViT-L/14) to extract the visual features, which
are denoted as Zv = g(Xv).

The main idea of the architecture is to connect the visual and linguistic do-
mains. A linear layer, conceivable as a trainable projection, is employed to
transform Zv into a series of visual tokens Hv that are compatible with the
language model’s understanding. This is achieved by applying a projection
matrix W to the visual features, generating language embedding tokens ac-
cording to Hv = W · Zv. These visual tokens have the same dimensionality
as the word embedding space within the Llama model, facilitating an effective
integration of visual information into the language processing workflow. As a
result of this transformation, the language model is provided with a sequence
of visual tokens Hv, which are combined with regular language instructions Hq

to generate responses that are informed by both the textual context and the
visual input. This integrated process is visually represented in Figure 4.13,
which illustrates the flow from image input to language output, encapsulating
the integration between the LLM and visual data within LLaVA’s architecture.
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Figure 4.12: Generation of LLaVA instruction-following data using GPT-4 by
presenting the caption and bounding boxes. (Source: Liu et al. [2023b])

Training The objective of training LLaVA was to enable the model to engage
in conversations about images in the same way as chatting. The training
procedure involved exposing the model to simulated chats, with a clear end-of-
chat signal <STOP> to indicate the end of each message. This effectively taught
the model the flow of dialogue. The model’s learning process was centered
around customized sets of questions and answers for each image. These sets
were presented sequentially, starting with the first question after the image,
followed by the remaining questions one by one. The training unfolded in two
distinct stages:

• Feature Alignment Pre-training: Aiming to balance concept cover-
age and training efficiency, this stage used 595K image-text pairs from the
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Figure 4.13: The LLaVA Architecture. (Source: Liu et al. [2023b])

CC3M 4 dataset, which is a collection of image and caption pairs. Each
data point was adapted for instruction-following tasks and treated as a
single conversational turn. The weights of the visual encoder and LLM
remained fixed, and the focus was on adjusting the projection matrix to
align image features with the LLM’s pre-trained word embeddings.

• End-to-End Fine-tuning: This stage was designed to improve the
model’s capabilities through careful training, while retaining the visual
encoder weights and optimizing both the projection layer and the LLM
weights within the LLaVA framework. The model was fine-tuned using
the custom dataset generated, which included response scenarios such as
a multimodal chatbot and analysis of scientific QA 5 dataset, thereby
fostering the model’s ability to process and reason with both text and
visuals to derive responses.

Liu et al. [2023b] demonstrate the capabilities of LLaVA in understanding and
responding to images within a chatbot context. They achieved comparable
results to multimodal GPT-4 despite using a smaller training dataset. The
COCO validation split was used for a quantitative evaluation, which demon-
strated LLaVA’s enhanced instruction-following capabilities.

LLaVA 1.5 Building on the original LLaVA model, Liu et al. [2023a] in-
troduced an enhanced version called LLaVA 1.5. They implemented strategic
enhancements to refine the system’s visual reasoning and multimodal inter-
action capabilities. These developments were applied systematically across
multiple domains:

1. Response Formatting: The initial version encountered difficulties gen-
erating excessively verbose responses due to unspecific prompts. LLaVA

4https://github.com/google-research-datasets/conceptual-captions/
5https://scienceqa.github.io/
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1.5 resolved this issue by utilizing more specific prompts that instruct
the model to restrict its responses to a single word or phrase, resulting
in a significant improvement in conciseness.

2. Architectural Advancement: A key improvement was the replace-
ment of simple linear projection with a two-layer MLP as the vision-
language connector. This architectural advancement has enabled LLaVA
1.5 to process multimodal data more effectively, resulting in enhanced
performance across various tasks Liu et al. [2023a].

3. Scaling Improvements:

• Enhanced Image Resolution: By increasing the resolution of visual
inputs to 336, LLaVA 1.5 enables a clearer and more detailed un-
derstanding of images, capturing finer details with greater accuracy.

• Expanded Visual Dataset : The GQA 6 dataset has expanded the
model’s training with a wider range of visual questions, scene graphs,
and relational data, enhancing its visual comprehension.

• Incorporation of Conversational Data: The ShareGPT dataset has
added a rich set of conversational contexts to the model, diversifying
its linguistic training and enhancing its natural language processing
capabilities.

• Enlarged Model Capacity : By replacing the LLM they used with
the Vicuna-13B (which is also a version of Llama), the model has
improved its processing and text generation capabilities.

A comprehensive overview of the models performance in comparison to its
competitors is provided in Figure 4.14, which shows its capabilities on key
benchmarks in the multimodal domain. It shows the progress made in the
development of LLaVA 1.5, highlighting its efficiency and quality of results,
even when compared to larger, more data-intensive models.

4.4.3 Late Fusion Model

Building upon the foundational principles outlined in the background section
on multimodality in 3.1, this thesis proposes a late fusion model designed
for the joint classification of images and text. The model aims to utilize the
strengths of both visual and textual elements to potentially improve classifica-
tion accuracy. The decision to use a late fusion approach was primarily driven
by its flexibility, which allows for independent and specialized processing of

6https://cs.stanford.edu/people/dorarad/gqa/
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Figure 4.14: Comparative analysis of the performance of LLaVA 1.5 on various
multimodal evaluation tasks, alongside modern multimodal models. (Source: Liu
et al. [2023a])

each data modality prior to integration. This methodological choice is bene-
ficial when dealing with complex and diverse data types such as social media
content, where the interplay between visual elements and textual narratives is
both rich and variable.

The model employs a two-step process to extract the learned representation of
each data type. A ViT model extracts a 768-length visual feature vector from
its last hidden layer for visual content. Similarly, a BERT model is utilized
to extract a 768-length feature vector from its final hidden layer for textual
content. This parallel processing of each modality ensures that the model ef-
fectively captures the complex details and specificities inherent in both visual
and textual data. The feature vectors from both ViT and BERT are then
concatenated to form a unified feature vector of length 1536.

Finally, a linear layer acts as the final classifier, processing this combined
feature vector, capturing the rich, cross-dimensional insights it provides, and
using it to predict the class of each data point. Figure 4.15 demonstrates the
architecture of this model.
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Figure 4.15: The late fusion model architecture.

4.5 Transfer Learning
In the traditional machine learning paradigm, as illustrated in Figure 4.16 (a),
each task requires a separate learning system that is independently trained
from scratch on task-specific data. Although this approach is straightforward,
it often requires a large amount of labelled data and significant computational
resources for each new task. In contrast, transfer learning, depicted in Figure
4.16 (b), seeks to optimise this process by transferring the knowledge gained
from learning from one source task to improve the learning system for a new
target task. This approach dynamically enriches a single learning system with
insights from previous, related tasks, enabling it to adapt more efficiently to
the new task with potentially limited data.

For example, in the case of a neural network model trained to recognise hu-
man faces for security purposes, the model has learned to recognise different
facial features, including eyes, noses and mouths, as well as the correlations
between them. If the goal is to create a system that identifies specific facial
expressions, transfer learning can be used instead of training a model from
scratch. By using a smaller dataset that focuses specifically on expressions,
the model’s pre-existing knowledge of facial features can be fine-tuned. This
approach avoids the need for the model to relearn the fundamentals of facial
structure and instead allows it to concentrate on the finer details of expressions.
As a result, the training process for the new task is significantly accelerated.
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Figure 4.16: A visual comparison between the traditional machine learning and
transfer learning methodologies. (Source: Pan and Yang [2010])

A formal definition of transfer learning is presented by Pan and Yang [2010],
who describe it as the process in which knowledge from a source domain DS

and task TS is applied to a different, yet related, target domain DT and task
TT . Specifically, they define a domain as consisting of a feature space X and
a marginal probability distribution P (X), where X includes feature vectors
x1, x2, . . . , xn. Correspondingly, a task is characterized by a label space Y and
a conditional probability distribution P (Y |X). The goal of transfer learning
is then to improve the predictive performance in the target task by leveraging
the information learned in the source domain and task, with the condition that
DS ̸= DT or TS ̸= TT . This process enables the use of a pre-trained model on
the target task, potentially reducing the need for a large labeled dataset in the
target domain.

One commonly used technique in transfer learning is Fine-Tuning. This pro-
cess involves modifying the parameters of a pre-trained model to adapt it to a
new, related task. As a result, the model’s existing knowledge is customized
to the particular characteristics of the new task, making it more effective and
efficient in meeting the requirements of the target task. In this thesis, the fine-
tuning approach has been used for both the vision and text models previously
discussed in this chapter. The vision models, which were originally trained on
extensive datasets such as ImageNet, have been further refined to classify im-
ages into categories of "norm-beauty" or "divers". Similarly, in text analysis,
BERT, which has been pre-trained on large corpora of text, is fine-tuned using
the captions associated with these images to assist the classification process.
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Evaluation

5.1 Overview
This chapter provides a comprehensive evaluation of the classification results,
starting with images, then text, and finally multimodal classification. In order
to ensure a broad understanding of the key elements underlying this evaluation,
it is essential to outline the computational environment, the data split used to
train the models, and the metrics used to assess their performance.

5.1.1 Computational Environment

The main programming language used in this thesis was Python, favored for its
robust libraries and strong community support in data science. All computa-
tional tasks were performed using Google Colab Pro, leveraging the processing
power of the NVIDIA Tesla V100 16GB GPU for tasks requiring intensive
graphical processing. This was essential for the efficient computation required
to train and evaluate advanced deep learning models. For the storage and man-
agement of datasets, models, and results, Google Drive was utilized, ensuring
accessible data management during development.

5.1.2 Data Split

The dataset was divided into training, validation, and test sets with propor-
tions of 80%, 10%, and 10%, respectively. These splits were utilized for all
classification tasks, ensuring a consistent and unbiased evaluation framework
for model performance in image, text, and multimodal classification.
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5.1.3 Metrics

This thesis primarily focuses on accuracy, F1 score, and the balance between
training and validation loss, each of which provides unique insights into the
behaviour of the models.

Accuracy This is the main indicator of model performance in data classifi-
cation. It is defined as the ratio of correctly predicted observations to the total
observations:

Accuracy =
Number of Correct Predictions
Total Number of Predictions

In this thesis, high accuracy is emphasized as the main goal, particularly in
the context of classifying Instagram posts into ’norm-beauty’ and ’divers’ cat-
egories. It is crucial as it reflects the model’s effectiveness in accurately dis-
cerning the nuanced differences between these categories. A model with high
accuracy ensures accurate categorisation, which is essential for applications
such as content filtering or cultural trend analysis, where it is vital to accu-
rately identify subtle differences in the data.

Precision, Recall, and F1 Score While accuracy provides an overall mea-
sure of effectiveness, precision and recall offer more insights. Precision is the
ratio of true positive predictions to all positive predictions made, while recall
measures the ratio of true positive predictions to the total number of actual
positives in the dataset:

Precision =
True Positives

True Positives + False Positives

Recall =
True Positives

True Positives + False Negatives
The F1 Score is the harmonic mean of Precision and Recall, providing a balance
between the two by considering both false positives and false negatives:

F1 Score = 2× Precision × Recall
Precision + Recall

It ensures a more balanced evaluation of model performance, especially in
contexts where precision and recall are both crucial.
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Balance between Training and Validation Loss Monitoring the balance
between training and validation loss during training is important for evaluating
a model’s ability to generalize. A small gap indicates good generalisation,
suggesting the model is learning patterns relevant to unseen data. A large gap,
however, may indicate overfitting. This balance serves as a vital indicator of
model robustness and predictive power.

5.2 Image classification
The exploration of multimodal social media posts begins with the analysis
of the visual content. Given the inherently rich, contextual information that
images can provide at a glance, image classification is the first cornerstone of
this investigation. The goal here is to distinguish between "norm-beauty" and
"divers" posts based solely on the visual narratives presented in the images.

5.2.1 Model Selection

To address the complex nature of visual data, five advanced models were used:
ViT_Base, Swin_Base, ResNet-50, SEER, which will be referred to as the
vision models, and CLIP. The first four models were selected for their proven
performance in image classification tasks across a wide range of domains, and
were fine-tuned to meet the specific requirements of the given dataset.

The CLIP model has demonstrated promising capabilities in Zero-shot classifi-
cation, using large image-text pairs to enable robust learning of visual represen-
tations. As pointed out by Zhang et al. [2022a], this innovative approach can
effectively transfer knowledge across different tasks without additional train-
ing. Therefore, this model was chosen to classify images in a Zero-shot way.
This is done by embedding images and their corresponding labels in a shared
space, and then by assessing the similarity between these embeddings, CLIP
can classify images without the need for model fine-tuning. The incorporation
of CLIP into the model ensemble brings a new perspective to the analysis,
allowing for the assessment of Zero-shot learning efficacy within the context of
the given image classification task.

5.2.2 Experimental Setup

The experimental setup was designed to evaluate and compare the performance
of the selected vision models under different conditions. Specifically, image
resolutions were varied (224 × 224 and 384 × 384) to examine how increased
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resolution affects model performance and the models’ ability to capture and
utilize detailed visual information. Data augmentation was also employed as a
variable in the experiment to evaluate its impact on the models’ performance.
By analyzing the results with and without data augmentation, it is possible
to gain a better understanding of the potential benefits of augmentation in
enhancing the models’ generalization capabilities.

Training Configuration Initial manual experimentation was conducted with
a range of hyperparameters, including the following epochs [2, 3, 4, 5], and
learning rates [1× 10−5, 3× 10−5, 5× 10−5]. After preliminary investigations,
it was found that the following set of hyperparameters could serve as a good
starting point for all vision models:

• Epochs: 4

• Batch Size: 16

• Learning Rate: 5× 10−5

For the CLIP model, the image resolution was preset to 336×336, in line with
the model’s default configuration.

5.2.3 Results and Analysis

The performance of the image classification models is comprehensively pre-
sented in Table 5.1, where bold values indicate the best performance within
each model family.

The SEER models demonstrates enhanced performance, particularly at higher
resolutions, signifying its capability to effectively process increased image de-
tail. However, a noticeable difference between training and validation loss
when training on augmented data suggests a tendency to overfit. Despite this,
the SEER models achieve high accuracy and F1 scores on the test data, indi-
cating a degree of generalizability. SEER_384 trained on raw data emerges as
the most effective model in this family.

Within the ResNet family, the dynamics between resolution, data augmenta-
tion, and loss metrics present a complex scenario. Higher resolutions do not
consistently improve performance; in particular, ResNet_384 trained on raw
data does not outperform its lower-resolution counterpart, ResNet_224, in
terms of test accuracy or F1 scores. Data augmentation has been shown to
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improve performance metrics. This indicates their ability to extract more di-
verse and generalizable features from enriched datasets. While the narrow loss
margins in the augmented version of ResNet_384 suggest good generalization
capabilities, it is possible that these models may not be fully exploiting their
learning capabilities. The findings suggest that while ResNet architectures in-
herently benefit from enriched data, unlocking their true potential may require
further fine-tuning of the model or varying the training data to ensure that
they are challenged enough to learn more nuanced and discriminative features.
The most suitable performing model in this case would be the ResNet_384
trained on augmented data.

The ViT models demonstrate a good ability to classify the images, benefiting
from the higher resolution, as evidenced by the better performance of ViT_384
over ViT_224 in terms of test accuracy and F1 scores. While the data augmen-
tation improves validation accuracy, it also increases the gap between training
and validation loss, suggesting a potential for overfitting. This could poten-
tially be improved with refined regularization or learning rate adjustments
to ensure that these models capture generalizable patterns and maintain ro-
bust performance across different datasets. However, the ViT models maintain
strong performance, particularly in higher resolution setups, with the Vit_384
trained on raw data being the strongest model.

The Swin Transformer models exhibit similar performance trends to the ViT
family, taking advantage of higher image resolutions to improve their classifica-
tion capabilities. In particular, the Swin_384 model, especially when trained
on raw data, exhibits a very good balance between training and validation loss,
underscoring its robust ability to generalize. Similar to the pattern seen with
ViT models, data augmentation results in a larger gap between training and
validation loss, suggesting a potential overfitting problem. Overall, the Swin
family is comparable to the ViT models in its ability to handle complex visual
data.

The CLIP model, despite its innovative Zero-shot learning approach, demon-
strates modest performance on the complex task of classifying social media
posts into "norm-beauty" and "divers" categories, as evidenced by a test ac-
curacy of 0.49 and an F1 score of 0.62. This result underscores the com-
plex nature of the task, which goes beyond simple image classification into
the realm of subjective interpretation and contextual understanding. CLIP’s
method, which is primarily designed to correlate images with text, may not
fully capture the subtleties required for this particular challenge. It suggests
that the difficulty of the task may exceed the model’s Zero-shot capabilities,
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Model DS T Loss V Loss V Acc Test Acc Test F1

SEER_224 raw 0.20 0.47 0.80 0.78 0.81
SEER_224 aug 0.10 0.48 0.87 0.84 0.84
SEER_384 raw 0.18 0.29 0.87 0.87 0.87
SEER_384 aug 0.09 0.47 0.86 0.86 0.86
ResNet_224 raw 0.67 0.69 0.58 0.65 0.73
ResNet_224 aug 0.46 0.50 0.75 0.77 0.78
ResNet_384 raw 0.68 0.68 0.65 0.59 0.58
ResNet_384 aug 0.41 0.46 0.81 0.78 0.79
ViT_224 raw 0.20 0.58 0.85 0.75 0.78
ViT_224 aug 0.09 0.62 0.78 0.73 0.76
ViT_384 raw 0.14 0.24 0.89 0.84 0.84
ViT_384 aug 0.05 0.31 0.91 0.84 0.84
Swin_224 raw 0.20 0.23 0.92 0.80 0.83
Swin_224 aug 0.08 0.48 0.87 0.84 0.85
Swin_384 raw 0.18 0.14 0.94 0.84 0.85
Swin_384 aug 0.05 0.31 0.91 0.84 0.84
Clip_336 raw - - - 0.49 0.62

Table 5.1: Performance metrics of Image Classification models on different datasets.

suggesting the need for more refined approaches, possibly incorporating richer
contextual insights or task-specific fine-tuning, to adeptly navigate the com-
plicated landscape of social media post classification.

5.2.4 Discussion and Implications

The exploration of classifying Instagram posts based on visual input alone has
yielded promising results. The performance of fine-tuning the vision models
confirms the viability of this visual-centric approach. In particular, models
such as SEER and Swin Transformers at higher resolutions confirm that vi-
sual content is a powerful medium for distinguishing and categorizing images
within the realm of aesthetics and beauty. The impact of image resolution on
classification results has been shown to be significant in research. For example,
Wollek et al. [2023] in their study of chest X-rays, and Cerit et al. [2016] in
their study of automatic gender and age classification of faces, both show that
higher resolution improves the model’s ability to detect fine-grained details,
as well as positively affects the accuracy of the model. Overall, these results
represent the depth and richness that visual narratives can provide. They
highlight the potential of images, when interpreted by sophisticated models,
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to reveal layers of context and meaning.

However, challenges and complications have been encountered in this process.
The tendency of models to overfit when trained with augmented data is a
reminder of the sensitivity required in model training. Although data aug-
mentation introduces diversity, it also requires careful balancing to prevent
models from learning features that are too specific to the training set. Cao
et al. [2022] highlighted the significance of dataset curation and diversity in
data augmentation to address unfair behavior and overfitting in deep learning
models. Their research underscores the importance of using a broader and
more varied datasets, and highlights how balanced feature development and
distribution-aware augmentation can improve fairness and increase diversity,
potentially mitigating the problem of overfitting and leading to models that
truly understand underlying patterns rather than dataset-specific anomalies.

5.3 Text classification
This section discusses the text classification part of this thesis, which is impor-
tant for understanding the textual narratives within the social media posts.
By analyzing the text in addition to the images, a better insight into the data
can be gained.

5.3.1 Model Selection

The choice to utilize BERT as the underlying model for text classification was
motivated by its widespread availability, open source nature, and simplicity of
fine-tuning. The accessibility and adaptability of the model make it an appro-
priate candidate for advanced text analysis tasks, allowing it to be efficiently
adapted to specific research needs.

To address the challenges posed by the dataset, a multilingual and uncased
variant of BERT was selected. This variant effectively handles the diverse
linguistic content of the dataset, ensuring comprehensive coverage and accu-
rate analysis of captions in multiple languages without the need for language-
specific pre-processing. Additionally, the ’uncased’ option allows for case-
insensitive text processing. This feature can be particularly helpful when
analyzing social media text, where non-traditional capitalization is common.
This allows the model to focus on semantic understanding rather than stylistic
differences.
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DS T Loss V Loss V Acc Test Acc Test F1

captions 0.42 0.44 0.76 0.74 0.74
reformulated_captions 0.41 0.38 0.82 0.76 0.75
descriptions 0.40 0.34 0.86 0.79 0.82

Table 5.2: Text Classification Performance Metrics

5.3.2 Experimental Setup

The aim was to assess the model’s ability for classifying the text presented in
the captions, reformulated captions, and descriptions into ’norm-beauty’ and
’divers’.

• Captions: The original text that accompanies Instagram posts, often
informal, in various languages, and including emojis or hashtags.

• Reformulated Captions: As detailed in Section 4.1.4, the captions
were transformed using GPT-4 to ensure language standardization, trans-
lating non-English captions to English and converting emoji and hash-
tags to natural language descriptions. The aim was to achieve coherent
structures that preserve the original sentiment and context.

• Descriptions: These are detailed descriptions of the images, which have
been transformed into text format using the LLaVA model. The descrip-
tions include information on pose, body prominence, and skin appear-
ance, among other features. The purpose of this transformation is to
provide a complete and objective description of the visual data, which
could be used to support the classification task.

Training Configuration The model was fine-tuned over 2 epochs with a
learning rate of 1 × 10−5, a configuration chosen to balance precision and
generalization, minimizing overfitting while adapting to the classification task’s
complexities.

5.3.3 Results and Analysis

The results of the experiments conducted are summarized in Table 5.2, which
compares the performance metrics across different text types.

The model’s performance on original captions indicates its competence in deal-
ing with raw, unmodified social media text, achieving a test accuracy and F1

52



CHAPTER 5. EVALUATION

score of 74%. The results indicate effective, but not optimal, classification ca-
pabilities in dealing with the informal and diverse nature of original captions.

The increase in accuracy and F1 score to 76% and 75% for the reformulated
captions highlights the value of preprocessing the captions for clarity and co-
herence. This preprocessing seems to aid the model in navigating the text
more effectively, leading to improved classification outcomes.

The descriptions deliver the best model performance, with a test accuracy of
79% and an F1 score of 82%, demonstrating the benefit of detailed, contextual
text in improving classification accuracy. Additionally, the lower training and
validation losses for descriptions indicate good model fit, proving the effec-
tiveness of using enriched textual data to support the learning process of the
model.

5.3.4 Discussion and Implications

The results of the text classification analysis reveal the ability of the BERT
model to effectively process and classify the diverse textual content of so-
cial media posts. By examining the model’s performance on different types
of text, from original captions to reformulated captions and detailed descrip-
tions, several observations can be derived. Interestingly, the model’s relatively
good performance on raw captions suggests an inherent ability to distinguish
between "norm-beauty" and "divers" posts, even within the informal and het-
erogeneous nature of social media language. This indicates that BERT has
a robust classification ability that goes beyond shallow textual features and
exploits the underlying semantic contexts of the captions.

Further analysis of the results shows the benefits of preprocessing and contex-
tual enrichment on model performance. By translating non-English captions,
converting emojis and hashtags into descriptive language, and standardizing
text across posts, the data becomes more consistent and accessible to the
model. These steps make it more efficient to uncover the hidden meanings
and contextual information embedded in the text, which is crucial for accurate
classification. Moreover, the description dataset, which provides the most de-
tailed and objective view of the visual content and yields the highest accuracy
and F1 scores, suggests that providing BERT with rich, descriptive text allows
for a more comprehensive understanding and classification of the posts.

Overall, as indicated by Sun et al. [2019], fine-tuning BERT on task-specific
data supports the premise that such domain-centric approaches can signifi-
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cantly enhance the ability of the model to more closely match the specific
characteristics of the dataset at hand, thereby optimizing the accuracy of the
model’s performance on the given task.

5.4 Multimodal classification
After examining the classification capabilities of models using only visual and
textual data, the investigation moves to a more holistic approach using multi-
modal classification. This approach combines visual and textual knowledge to
address the complexity of social media posts, with the goal of leveraging the
combined power of these modalities. This section explores the performance
of combining images and text by using LLaVA for Zero-shot classification, as
well as the late fusion approach that combines ViT with BERT. In addition, to
better evaluate the capabilities of LLaVA and discuss the effect of adding tex-
tual information, this section also includes an examination of LLaVA’s ability
to classify images independently.

5.4.1 Model Selection

LLaVA The LLaVA 1.5 was selected due to its outstanding performance
on various benchmarks, as demonstrated in Figure 4.14. It can be used as a
Zero-shot classifier to process and integrate multimodal data, combining both
visual and textual inputs, without the need for task-specific training. Fur-
thermore, the model can be prompted using natural language. This allows
the model’s behaviour and focus to be refined and directed through prompt
engineering, thereby enhancing the model’s ability to recognise the subtle the-
matic and aesthetic differences that define the categories of interest, improving
the model’s classification capabilities and tailoring it to the specific needs of
social media content analysis. The LLaVA version utilized in this thesis is
a quantized variant of the 13 billion parameter model. Quantization is the
process of compressing a model’s weights, activations, and other parameters
into a more computationally efficient format without significantly degrading
its performance Liu et al. [2023c].

Late Fusion This model strategically employs ViT with 384 resolution for
image processing and BERT for text processing of raw captions, taking ad-
vantage of their shared transformer architecture for seamless integration. This
choice is supported by the similarity of their configurations, including the iden-
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tical size of their last hidden output layer (768 dimensions), which simplifies
the fusion process. This approach combines the strengths of both models to
analyze the contributions of visual and textual data and address the complex
interaction between these modalities in social media content.

5.4.2 Experimental Setup

LLaVA The experimentation with LLaVA involved a systematic process of
prompt engineering, input variation, and the use of system prompts to refine
the overall behavior of the model. Initially, the experimentation started with
simple prompts such as "classify the following image into one of the follow-
ing categories: ’divers’ or ’norm-beauty.’". This basic prompt aimed to assess
the model’s inherent ability to distinguish between the two broad categories
with minimal input. This experiment resulted in an accuracy of less than 50%,
highlighting the necessity for more advanced prompt design to effectively guide
the model’s classification process.

To improve the model’s performance, the focus was narrowed to specifically
identify whether an image conformed to "norm-beauty" standards. This sim-
plification allowed the model to better recognize features associated with con-
ventional beauty standards. As the experimentation progressed, the prompts
were progressively enriched with detailed instructions targeting key image fea-
tures such as the subject’s pose, skin texture, clothing, and environmental
context. This incremental refinement aimed to guide the model’s analytical fo-
cus towards important visual elements that influence the perception of beauty
within an image. Throughout the development process, performance was mon-
itored using the test dataset to track improvements and adjustments over time.
This continuous evaluation allowed for dynamic refinement of prompts, ensur-
ing each iteration contributed meaningfully to enhancing the model’s accuracy.
The result of this process was the development of 2 comprehensive prompts,
which are:

Prompt 1:
Analyze the person in the image. Provide a JSON response with the following
fields:

1 {
2 "pose_and_posture ": "Description of their stance",
3 "body_prominence ": "How their body is displayed",
4 "skin_appearance ": "Details of skin texture and features
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",
5 "body_features ": "Information on weight , slimness ,

muscularity , and facial characteristics",
6 "disability_or_syndrome ": "Indicators of any disabilities

or syndromes",
7 "aligns_with_beauty_standards ": "boolean value (0 or 1)

for whether the individual ’s appearance aligns with
traditional beauty standards on social media",

8 "explanation ": "brief explanation for
aligns_with_beauty_standards"

9 }

Prompt 2:
"Analyze the person in the image. Beyond the immediate visual elements, re-
flect on the cultural, social, or personal significance conveyed in the image and
caption. Does the image challenge or conform to traditional beauty norms? How
does the caption complement or contrast with the visual message? Provide a
JSON response with the fields outlined below:"

1 {
2 "pose_and_posture ": "Describe the physical stance and any

implied emotions or attitudes",
3 "body_prominence ": "Detail how the body is displayed ,

including context such as clothing and setting",
4 "skin_appearance ": "Note skin texture , features , makeup ,

tattoos , or other adornments",
5 "body_features ": "Assess weight , slimness , muscularity ,

and facial characteristics , focusing on conformity or
divergence from beauty standards",

6 "disability_or_syndrome ": "Identify any disabilities or
syndromes , focusing on representation",

7 "aligns_with_beauty_standards ": "Boolean (0 or 1)
indicating if the appearance aligns with traditional
social media beauty norms",

8 "explanation ": "A brief explanation for the ’
aligns_with_beauty_standards ’ decision , linking observed
elements to beauty norms"

9 }

The experiments also varied the type of input, from purely visual to combi-
nations of text and image, to observe the effects on classification results. By
adding "considering the Instagram caption written by the person who posted it:
’caption’" to the prompts, the corresponding caption for each image was easy
to incorporate into the prompt.

56



CHAPTER 5. EVALUATION

In addition to adjusting the content-specific prompt, a considerable amount of
experimentation has been dedicated to customizing the system prompt. This
prompt is designed to provide guidance on the expected behavior of the model
in a general sense, influencing its approach to the task at hand. The prompt
was customized for the specific use case of social media posts and included
instructions for the model to prioritize certain aspects over others or to adopt
a certain analytical perspective when processing the input. The default system
prompt of the LLaVA model was:

Default LLaVA System Prompt:
"A chat between a curious human and an artificial intelligence assistant.
The assistant gives helpful, detailed, and polite answers to the human’s ques-
tions."

In contrast, the system prompt designed for the specific use case at hand:

Desgined LLaVA System Prompt:
"In the role of a social scientist, you are tasked with classifying social media
images into ’norm-beauty’ and ’divers’ categories. ’norm-beauty’ images typ-
ically feature conventional beauty standards and poses, while ’divers’ images
represent a wider spectrum of human diversity, including unique physical traits
and unconventional styles. Analyze these images critically, focusing on their
representation of societal norms and diversity."

For all experiments, the configuration parameters were set with a max_length
of 1024 and a temperature of 0.2. The max_length parameter defines the
maximum number of tokens the model processes in a single prompt. The
temperature parameter controls the randomness of the model’s responses, with
a lower value such as 0.2 resulting in more deterministic and consistent results.

Late Fusion For this model, the experiments focused on finding the optimal
training parameters for the linear layer, which serves as the final classifier. A
series of experiments were conducted to find the optimal combination of epoch
and learning rate, exploring setups with 2, 3, and 4 epochs, along with learn-
ing rates of [1 × 10−5, 3 × 10−5, 5 × 10−5]. The goal of this exploration was
to identify a training configuration that would allow the linear layer to effec-
tively leverage the value of the combined data from ViT and BERT, thereby
enhancing its ability to perform multimodal classification.
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Two main approaches were explored, one using the fine-tuned versions of ViT
and BERT, which had already learned a refined representation for the dataset,
and the other using the base models of ViT and BERT. The optimal configu-
ration was found to be:

• Epochs: 4

• Batch Size: 16

• Learning Rate: 5× 10−5

5.4.3 Results and Analysis

LLaVA Before discussing the results, an example will illustrate the response
behavior of the LLaVA model. For demonstration purposes, the images with
ID 4 and ID 6 from the group of representative generated images presented
earlier in Figure 4.1 will be considered. The responses presented below are
generated using the Prompt 2 and the default LLaVA system prompt.

ID 4:

1 {
2 "pose_and_posture ": "The person in the image is standing

with a relaxed and confident posture. They are smiling
and looking directly at the camera , which suggests a
positive and approachable demeanor.",

3 "body_prominence ": "The person is wearing a bikini , which
accentuates their body shape. The setting is a beach ,

which is a common location for showcasing swimwear and
summer fashion.",

4 "skin_appearance ": ""The skin appears to be well -
maintained and tanned , which is often associated with
beauty standards in many cultures.",

5 "body_features ": "The person has a slim and toned
physique , which aligns with traditional beauty norms
that often prioritize thinness and muscularity .",

6 "disability_or_syndrome ": "There are no visible
disabilities or syndromes in the image.",

7 "aligns_with_beauty_standards ": 1,
8 "explanation ": "The image aligns with traditional beauty

norms because the person is slim , toned , and has a well -
maintained appearance. The confident pose and the beach
setting further contribute to the perception of beauty
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and attractiveness ."
9 }

ID 6:

1 {
2 "pose_and_posture ": The person in the image is standing

with a straight posture , looking directly at the camera.
The facial expression is neutral , and there is no overt
emotion or attitude conveyed.",

3 "body_prominence ": "The body is displayed prominently ,
with the top half of the suit jacket open , revealing the
chest area. The setting is a plain background , which

puts the focus on the person.",
4 "skin_appearance ": "The skin texture appears to be smooth

, and there are no visible tattoos or adornments. The
person has a full beard and mustache , which are well -
groomed.",

5 "body_features ": "The person appears to be of average
weight , with a slim build. There are no visible muscular
features , and the facial characteristics are typical of
a middle -aged adult.",

6 "disability_or_syndrome ": "There are no indications of
any disabilities or syndromes in the image.",

7 "aligns_with_beauty_standards ": 0,
8 "explanation ": "The image challenges traditional beauty

norms in several ways. The person is shirtless , which is
not a typical pose for a professional portrait. The

beard and mustache are well -groomed , but the lack of
visible muscularity and the open suit jacket suggest a
departure from the idealized male physique often
portrayed in media. The neutral expression and the
absence of overt emotion or attitude also contribute to
a non -traditional portrayal of beauty ."

9 }

The performance of the LLaVA model on the dataset is summarized in two
tables. The first table 5.3 presents the overall results of LLaVA’s classification
on the entire dataset. The second table 5.4 is intended to provide a more com-
parative perspective, detailing LLaVA’s performance specifically on the test
dataset.

In evaluating the performance of the LLaVA model across different experimen-
tal configurations, a systematic analysis reveals the differing effects of prompt
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detail, the integration of multimodal data (images and text), and the applica-
tion of custom system prompts. This structured investigation aims to clarify
the factors that contribute to the model’s ability to correctly classify the data.

The initial set of experiments, focused on image-only analysis, illustrates the
importance of prompt complexity. The use of a more general prompt (Prompt
1) resulted in the model achieving a moderate level of accuracy (0.72) and an
F1 score (0.78). In contrast, the use of a more detailed prompt (Prompt 2),
even in the absence of textual data, significantly improved the model’s per-
formance, as evidenced by the experiment "llava_2_img," which showed an
increase in accuracy (0.79) and F1 score (0.81). This improvement underscores
the assumption that a comprehensive prompt facilitates a more accurate in-
terpretation by the model, thereby refining its classification capability.

Next, the analysis was extended to include textual data in addition to visual
input, which had a noticeable impact on the model’s performance. When cap-
tions were added to Prompt 1, the model showed a slight improvement in both
accuracy (0.74) and F1 score (0.80). The addition of captions to Prompt 2
also resulted in a considerable increase in performance, achieving an accuracy
of 0.81 and the highest F1 score of 0.86 in the "llava_2_img_caption" exper-
iment. This demonstrates the positive effect of adding textual context as an
extra input, which improves the model’s ability to accurately recognize and
classify content.

Further exploration of the role of custom system prompts alongside these con-
figurations provides additional insight into the complex dynamics of model
performance optimization. The use of custom prompts alongside the more
general Prompt 1, particularly in image-only scenarios, showed an improve-

Experiment Model Type Total Acc Total F1

llava_1_img Vision 0.72 0.78
llava_1_img_cust Vision 0.80 0.83
llava_1_img_caption Vision + Text 0.74 0.80
llava_1_img_caption_cust Vision + Text 0.82 0.84
llava_2_img Vision 0.79 0.81
llava_2_img_cust Vision 0.56 0.65
llava_2_img_caption Vision + Text 0.81 0.86
llava_2_img_caption_cust Vision + Text 0.78 0.78

Table 5.3: LLaVA model performance metrics on the full dataset
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Experiment Model Type Test Acc Test F1

llava_1_img Vision 0.67 0.76
llava_1_img_cust Vision 0.79 0.83
llava_1_img_caption Vision + Text 0.73 0.79
llava_1_img_caption_cust Vision + Text 0.83 0.85
llava_2_img Vision 0.75 0.76
llava_2_img_cust Vision 0.48 0.58
llava_2_img_caption Vision + Text 0.82 0.82
llava_2_img_caption_cust Vision + Text 0.85 0.85

Table 5.4: LLaVA model performance metrics on the test dataset

ment in model performance, with a notable increase in both accuracy and F1
score. This trend was similarly observed in multimodal scenarios involving
images and text with Prompt 1, where the integration of custom prompts also
led to performance improvements. Such observations underscore the potential
of custom prompts to refine model focus and analytical precision across single
and combined modalities.

However, extending this custom prompting approach to the more detailed
Prompt 2 introduced unexpected complexities. Comparing custom prompts
to both Prompt 1 and the more detailed Prompt 2 revealed a challenging bal-
ance between prompt specificity and the interpretive flexibility of the model.
While it was expected that custom prompts would generally improve per-
formance by sharpening the analytical focus of the model, the results of the
"llava_2_img_cust" and "llava_2_img_caption_cust" experiments suggested
otherwise. Specifically, in image-only scenarios using Prompt 2, the inclusion
of custom system prompts unexpectedly led to a decrease in performance,
suggesting that overly restrictive prompts may limit the model’s ability to rea-
son autonomously. Similarly, in multimodal scenarios where both images and
captions were analyzed, the expected improvement from custom prompts did
not appear consistently. This pattern highlights the importance of carefully
balancing prompt specificity to preserve the model’s inherent analytic capa-
bilities, particularly when dealing with the complex interplay of visual and
textual data.

This analysis emphasizes the significance of well-designed prompts in enhanc-
ing the classification accuracy of the LLaVA model. It also demonstrates that
the integration of textual data alongside visual input, when carefully combined
with thoughtfully designed prompts, can significantly enhance the model’s abil-
ity to distinguish between complex social media content. The results support
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Model T Loss V Loss V Acc T Acc T F1

caption_vit384_bert_base 0.001 0.32 0.89 0.88 0.88
caption_vit384_bert_fine_tuned 0.02 0.36 0.86 0.92 0.92

Table 5.5: Comparative Performance of Late Fusion Model Using Base and Fine-
Tuned Configurations

a balanced strategy in which custom system prompts are tailored to enhance
the model’s inherent strengths without overly restricting its analytic scope,
thereby optimizing performance under different experimental conditions.

Late Fusion The results summarized in Table 5.5 aim to explore the effects
of using base versus fine-tuned versions of the ViT and BERT models within
the Late Fusion architecture. It seeks to demonstrate how these two configu-
rations affect the model’s effectiveness in classifying the data.

It is shown that both configurations have acceptable values for training and
validation losses, indicating the ability to learn and generalize adequately.
However, there is potential to optimize the difference between these losses
to ensure a more balanced training-validation loss ratio, which could further
improve model robustness and reduce the risk of overfitting.

Remarkably, the fine-tuned configuration shows a strong increase in test per-
formance, with test accuracy and F1 score significantly better than the base
configuration. This demonstrates the fine-tuned model’s ability to better learn
from and classify the data, and points to the benefits of using models that are
optimized for the given data.

5.4.4 Discussion and Implications

The analysis of multimodal classification using the LLaVA and Late Fusion
approaches demonstrates the benefits of integrating visual and textual data
to solve complex challenges. The application of the LLaVA model, despite its
general-purpose training, illustrates the potential of MLLM to adapt to com-
plex classification tasks through innovative prompt engineering and Zero-shot
learning capabilities. This adaptability is important because it reflects the
model’s ability to effectively handle data related to different topics, although
refinements in prompt design are needed to fully exploit its capabilities.
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An additional advantage of the LLaVA model is its ability to provide natu-
ral language explanations, which greatly enhances transparency and helps to
interpret its reasoning process. This ability is instrumental in explaining the
differences between the "norm-beauty" and "diverse" categories from it’s point
of view, providing insight into the model’s decision criteria. Such explanations
encourage deeper analytical understanding as well as increased confidence in
the model’s results. It is useful for researchers and practitioners as it clarifies
the model’s evaluation mechanisms and supports ongoing refinement of classi-
fication strategies to increase accuracy.

However, it is important to note that using the LLaVA model required addi-
tional data cleaning and processing steps. In particular, despite instructions for
the model to maintain a JSON structure with specific fields such as "aligns-
with-beauty-standards" filled with a boolean value of 0 or 1, there were in-
stances where the model deviated from these expectations. Occasionally, the
model would output a string or use TRUE/FALSE instead of the required
numeric boolean values. In other cases, the model provided overly detailed
descriptions of the image, resulting in nested dictionaries for what should have
been simple fields within the JSON response. These inconsistencies, required a
careful data cleaning approach to ensure the consistency and reliability of the
model outputs. While this process was feasible, it emphasized the importance
of closely monitoring and adjusting the dataflow to address the varying out-
puts generated by the model. The cases of non-compliance with the expected
JSON structure were relatively few and could be efficiently resolved, ensuring
that the integrity of the analysis remained unaffected.

In contrast, the Late Fusion model, which strategically combines the strengths
of ViT and BERT, shows a significant improvement in classification perfor-
mance over the use of either model alone. This improvement highlights the
complementary nature of visual and textual information in providing a more
complete understanding of the data. However, the analysis also identifies po-
tential areas for improvement within the late fusion approach. For example,
further experimentation could be conducted with different data fusion tech-
niques instead of concatenation, such as weighted sum or applying PCA for
dimensionality reduction prior to fusion. Another experimental approach could
be to use MLPs rather than a liner layer within the model. These strategies
could refine the model’s ability to extract and interpret the critical features
from each modality.
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Conclusion

This thesis has taken a step forward in exploring the digital realm of social
media, with a particular focus on Instagram, to analyze and categorize rep-
resentations related to concepts such as beauty and diversity. The quest has
focused on exploring the capabilities of various computational approaches in
identifying complex and subjective perspectives on beauty in social media con-
tent.

The investigation began with an in-depth analysis of images, recognizing them
as the primary means of conveying beauty standards on social media platforms.
Advanced image processing models, such as CLIP, ViT, Swin Transformer,
ResNet, and the SEER model, were utilized to assess their capacity to differ-
entiate and categorize visual representations related to beauty and diversity.
This visual-centric approach laid the groundwork for a more comprehensive
analysis, which was gradually expanded to consider the textual narratives ac-
companying the images, using the BERT model to capture the relationship
between these rich textual expressions within social media posts.

Building on the insights gained from the visual and textual evaluations, the
thesis moved into the realm of multimodal classification. In this advanced
stage of the analysis, the LLaVA model proved to be a major success, demon-
strating its ability to combine and interpret both visual and textual data.
LLaVA’s approach was innovative and represented a new step forward, with
the results underscoring the model’s ability to deal with challenging tasks and
demonstrating the potential of MLLMs to handle complex classifications with
high accuracy. The importance of prompt engineering was also highlighted,
showing how the use of targeted prompts can significantly refine the model’s
output, ensuring more accurate and context-aware classifications.
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Models such as LLaVA are being adapted as Zero-shot classifiers, as in the
work of Islam et al. [2024]. In their study, they used the LLaVA model to eval-
uate its classification capabilities on different datasets: MNIST, cats vs. dogs,
Hymenoptera (ants vs. bees), and an innovative set focused on pox vs. non-
pox skin images. They also used customized prompts for zero-shot learning,
demonstrating LLaVA’s efficiency in accurately classifying images without the
need for prior fine-tuning. The model achieved high accuracies of 85%, 100%,
77%, and 79% across these datasets, respectively. Furthermore, their research
highlighted the adaptability of the model through fine-tuning on a specialized
task involving the identification of autism in children based on facial images.
Prior to fine-tuning, LLaVA’s test accuracy was 55%, which significantly in-
creased to 83% after fine-tuning. This work by Islam et al. [2024] emphasizes
the significant potential of LLaVA and similar models to revolutionize various
application areas within the field of AI, and identifies them as instrumental in
advancing Zero-shot classification tasks.

Alongside LLaVA, the Late Fusion model emerged as an auxiliary but essen-
tial component of the multimodal analysis framework. This model strategically
combined the strengths of ViT and BERT through a late fusion approach and
emphasized the potential synergy of merging visual and textual modalities.
Although LLaVA remained the focus, the Late Fusion model provided a com-
plementary perspective that enriched the multimodal classification task with
its unique insights. This model provided the best results among the tested ap-
proaches, demonstrating that models specifically trained on the given dataset
can still outperform large, general-purpose models. This finding indicates the
value of custom model training and reinforces the benefit of customizing mod-
els to fit the specific characteristics and challenges of the data being analyzed.

The systematic methodology of this thesis, beginning with image analysis,
moving to textual review, and ending with multimodal classification, success-
fully revealed the complexity of the dataset. Through this approach, the
unique contributions of each data modality to the final analysis were high-
lighted, thereby indicating the vital role of both images and text in representing
beauty and diversity on social media. Through this sequential investigation,
the importance of integrating these modalities to fully understand social media
narratives became apparent, emphasizing the efficacy of a multimodal strategy.

Contributions to the Field of Data Science This thesis makes a mean-
ingful contribution to the field of data science, specifically in the domain of
social media content analysis and the exploration of beauty concepts. Through
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an innovative application of advanced deep learning models, this work has
successfully navigated the difficult dynamics of beauty and diversity as repre-
sented on social media platforms, offering new perspectives and methodologies
for understanding these subjective constructs. The main contributions of this
research are:

• Innovative Application of Advanced Deep Learning Models:
The application of state-of-the-art models such as ViT, Swin Trans-
former, SEER, as well as the novel use of the LLaVA model for Zero-
shot classification, underscores the potential of deep learning to analyze
the complex nature of the visual and textual narratives in social media.
Overall, this thesis demonstrates the feasibility of using these technolo-
gies to understand highly nuanced concepts, and sets a strong direction
for future research in this area.

• Development of a Multimodal Analysis Framework: By integrat-
ing visual and textual data analysis and utilizing multimodal models such
as LLaVA and the Late Fusion Framework, this thesis introduces a com-
prehensive workflow for analyzing social media content. The presented
methodology expands the scope of beauty analysis and improves the un-
derstanding of social media content and provides a valuable resource for
future studies in similar domains.

• Advancement in Prompt Engineering: The exploration of prompt
engineering with the LLaVA model highlights the importance of carefully
crafted prompts in refining the output of deep learning models. This
thesis adds to the developing field of prompt engineering by showcasing
its efficacy in directing the model’s focus, thereby improving classification
accuracy and providing more context-aware analysis.

Reflection on Limitations While considering the findings of the research,
it is important to acknowledge the limitations encountered along the path.
One of the primary challenges is the subjective nature of classifying beauty
and diversity. From an anthropological angle, defining clear criteria for both
categories is particularly challenging because cultural constructs of beauty and
diversity are inherently fluid and vary significantly across different social and
cultural environments. The dataset used in this thesis reflects a narrow per-
spective based on annotations provided by individuals, which, while valuable,
does not accurately represent the full spectrum of societal or individual percep-
tions of beauty. The methodological approach, which uses machine learning
techniques to replicate the perspectives of the participants, further challenges

66



CHAPTER 6. CONCLUSION

the subjective viewpoint. The results of the classification models are repre-
sentations of representations, adding layers to the subjective nature of the task.

Another limitation of the dataset is related to its diversity, size, and annota-
tion reliability. The ’norm-beauty’ category was more straightforward to dis-
tinguish compared to the ’divers’ category, which encompassed a wide range
of diversity. This highlights the challenge of capturing the full spectrum of
human diversity in a comprehensive and accurate way. Furthermore, ensuring
annotation reliability poses significant challenges due to the subjective nature
of beauty and diversity, which can result in varying interpretations among
annotators. To address these limitations, a more comprehensive dataset is
necessary, incorporating diverse perspectives and utilizing robust annotation
methods to increase the reliability and representativeness of the data.

In reflecting on these limitations, it becomes clear that while this thesis has
made progress in exploring the digital representation of beauty and diversity,
there remains a broad landscape of complexity that has yet to be fully under-
stood. The challenge of subjective classification, along with the constraints
related to the dataset’s diversity and annotation reliability, presents opportu-
nities for further exploration and refinement in future research.

Directions for Future Work The research findings have identified new
directions for future work in the field of analyzing social media content in
relation to beauty. The following outlines potential research paths for further
exploring the implications and complexities related to this domain:

1. Extensive analysis of LLaVA model outputs: The LLaVA model’s
explanations for correctly classified data points provide valuable insights.
A more detailed analysis, possibly using advanced topic modeling tech-
niques, could reveal the underlying themes or hidden narratives within
these explanations. This approach would enhance the interpretation of
the model’s mechanisms, as well as provide a deeper look into the cul-
tural and societal signals that define beauty and diversity on social media
platforms.

2. Experimentation with Various Prompting Techniques: Prompt
engineering is key to improving the performance of models such as LLaVA.
Future research could explore various prompt engineering techniques,
such as few-shot or chain of thought, to determine the most effective
methods for guiding models in challenging tasks. By systematically test-
ing and refining different prompting approaches, new levels of precision
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and context awareness in model output could be achieved, leading to
more accurate and sophisticated analysis of social media content.

3. Exploration of LLaVA 1.6: The release of LLaVA 1.6 introduces a
number of improvements over its previous versions, including superior
reasoning, optical character recognition (OCR), and world knowledge
capabilities Liu et al. [2024]. These improvements could be beneficial in
future research to address the challenges of classifying complex, multi-
modal social media content with greater accuracy and depth. By utilizing
LLaVA’s advanced features, it could be possible to make a significant im-
provement in the understanding of multifaceted representations of beauty
and diversity, setting a new standard in the field.

4. Creation of a More Reliable Dataset: The foundation of any robust
analysis lies in the quality of the dataset. It is recommended that future
work prioritize the creation of larger and more diverse datasets that are
carefully annotated through processes that ensure high reliability, such
as inter-annotator agreement. Engaging annotators from a wide range of
cultural backgrounds could enrich the dataset with diverse perspectives
on beauty and diversity, thereby enhancing the depth and breadth of the
analysis.

5. Adoption of a Graded Scale for Annotation: Transitioning to a
graded scale for image annotation represents a significant methodolog-
ical shift from binary classification. This approach acknowledges the
subjective and spectrum-based nature of beauty and diversity, allowing
for a more detailed and nuanced categorization. By capturing a wider
range of perceptions, a graded scale could provide a richer, more dimen-
sional understanding of social media aesthetics, facilitating more refined
analyses.

Concluding Remarks This thesis represents an innovative advancement in
integrating AI into the field of digital aesthetics, specifically addressing the
challenge of uncovering subjective perspectives on beauty and diversity in so-
cial media. By comparatively evaluating the capabilities of various advanced
AI models, it pushes the boundaries of traditional data science and AI, reveal-
ing new depths in the analysis of multimodal data.

Looking to the future, there is great potential for advanced AI models to evolve
into powerful tools that provide users with insight into the content that pop-
ulates their social media feeds. As research in this area progresses, AI could
play a crucial role in promoting greater awareness among social media users,
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enabling them to critically evaluate and engage with the content they are ex-
posed to. Such developments could significantly contribute to promoting a
more inclusive, diverse, and conscious digital ecosystem. This could celebrate
and understand the plurality of beauty standards and the richness of diversity
in all its complexity.

Overall, this thesis stands as a demonstration of the power of AI and data
science in uncovering the layers of social media aesthetics, marking a critical
step toward a more accurate and comprehensive understanding of how beauty
and diversity are curated, shared, and perceived in an increasingly intercon-
nected digital world. Moving forward, the exploration and innovation at the
intersection of AI, data science, and social media analysis will only continue to
enrich our understanding of these essential aspects of the human experience,
paving the way for a future where technology and human insight converge in
the pursuit of a deeper understanding and appreciation of the diverse cultural
landscape that defines us all.
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