
Bauhaus-Universität Weimar
Faculty of Media
Degree Programme Computer Science and Media

Building a Corpus for
Hyperpartisan News Detection

Master’s Thesis

Payam Adineh

∞ Referee: Prof. Dr. Benno Stein

Submission date: September 12, 2018

Declaration

Unless otherwise indicated in the text or references, this thesis is
entirely the product of my own scholarly work.

Weimar, September 12, 2018

. .
Payam Adineh

Abstract

As the polarization of societies increases, news publishers that cater to spe-
cific extreme views become attractive to more people. Such hyperpartisan
news publishers, however, tend to draw a simple picture of their views being
the only truth, thus furthering the divide in the society. As a small step to-
wards countering this trend, this thesis aims to provide the tools to distinguish
hyperpartisan news from impartial ones. These tools will enable others to in-
vestigate, monitor, and act upon the spread and effects of hyperpartisan news.

The main contributions of this work are the construction of a corpus of
1.5 million political news articles from 358 different news publishers and a de-
tailed analysis of this corpus with regards to the use of hyperlinks within and
between the publishers, the reuse of articles, and an automatic classification
of the articles by publisher bias.

Contents

1 Introduction 1

2 Related Work 4
2.1 Fact Checking and Misinformation 4
2.2 Ecosystem of Partisan Websites 4
2.3 Hyperpartisan and Fake News Detection 5

3 Article Collection 6
3.1 News Producers Discovery . 6

3.1.1 BuzzFeed Partisan News Sites List 6
3.1.2 Media Bias/Fact Check (MBFC) 7
3.1.3 Buzzfeed And MBFC Overlap 8
3.1.4 NewsIR16 Corpus . 9

3.2 Article URL Collection . 10
3.2.1 Facebook Pages . 10
3.2.2 Sitemap . 11
3.2.3 Link Statistics . 13

4 Corpus Construction 19
4.1 Archiving . 19

4.1.1 Tool . 19
4.1.2 Checking The Producers 21
4.1.3 Archive Quality Assurance 23

4.2 Distributed Storage . 28
4.2.1 Hadoop Distributed File System 29
4.2.2 MapFile . 29
4.2.3 MapFile Creator . 29

4.3 Distributed Archiving . 30
4.3.1 Task Control Automation 30

4.4 Main Content Extraction . 32
4.4.1 Writing the Wrappers 32

i

CONTENTS

4.5 Corpus Formatting . 34
4.5.1 JSON Line . 35
4.5.2 XML . 35

5 Analysis 37
5.1 Corpus Statistics . 37
5.2 Corpus Anchor Element Analysis 39
5.3 Duplicate Article Detection . 39

5.3.1 Text Reuse Analysis Pipeline 41
5.4 Classification Experiment . 42

5.4.1 Logistic Regression . 42
5.4.2 Naive Bayes . 46
5.4.3 Random Forest Classifier 47
5.4.4 Experiment on SemEval 2019 Corpus 49

6 Conclusion 50

Bibliography 52

ii

The conscious and intelligent manipulation of the
organized habits and opinions of the masses is an

important element in democratic society. Those who
manipulate this unseen mechanism of society constitute
an invisible government which is the true ruling power

of our country[2005].
– Edward Bernays

Acknowledgements

My sincere thanks go to Johannes Kiesel and Dr. Martin Potthast, who guided
me through the whole work.

I also want to thank my family for the continuous love and encouragement,
and my colleagues for their valuable support Sarah Alburakeh, Masoud Allah-
yari, Milad Alshomary, Alexander Bondarenko, Negin Yaghoobisharif.

Thanks to everyone who made a mark in my life!

iv

Chapter 1

Introduction

Partisanship, in the world of journalism and news producers, refers to the
ideologically biased creation and distribution of news by authors and organi-
zations. To be more precise, partisan journalists present their perspective on
political incidents in a way that it seems they are living in a parallel universe,
in which every step and action that their favorable party takes is absolutely
and unmistakably right. Hyperpartisanship has similar meaning, and is used
especially when news producers extremely manipulate the coverage of the re-
ality with a tendency to the right or left wing political parties

These days, partisanship, in addition to the widely spread fake news, has
resulted in a huge threat to the political awareness of people, by publishing
not only partially manipulated versions of reality but also totally made-up
and untruthful stories, as well. According to Mitchel Stephens, a journalism
professor at New York University, this is not new: “Journalism in the United
States was born partisan and remained, for much of its history, loud, boister-
ous and combative”1. With the advent of the Internet and social media, these
hyperpartisan news producers have become more powerful in the matter of
distribution and consequently more influential on public opinion. Partisanship
and fake news have become highly prevalent, widely known and controversial,
specifically after the 2016 United States election. There has been much re-
search on the effects of such news on the aforementioned election, and how it
led the society to a massive political division. However, this partisan separa-
tion is of great importance for the societies; thinking thoroughly about it, one
can realize a continuous spectrum of different thoughts is an ultimate demand
to enjoy a decent democracy and without that people can only hear one voice
of totalitarianism. Consequently, partisanship has its merits for society; Nev-

1https://www.politico.com/magazine/story/2017/06/26/
goodbye-nonpartisan-journalism-and-good-riddance-215305

1

https://www.politico.com/magazine/story/2017/06/26/goodbye-nonpartisan-journalism-and-good-riddance-215305
https://www.politico.com/magazine/story/2017/06/26/goodbye-nonpartisan-journalism-and-good-riddance-215305

CHAPTER 1. INTRODUCTION

ertheless, people ultimately need to be aware of this paradox: democracy does
not work properly without partisanship, but in the situation that partisanship
becomes a top priority and more important than anything else, it can not
be considered as an advantage anymore. As political scientist Lilliana Mason
[2016] convincingly argues, “The more partisan we become, the more emotion-
ally we react to normal political events.” And when emotions are heightened,
everything becomes a threat to status. Politics becomes more about anger.
And, here’s the warning from Mason: “The angrier the electorate, the less
capable we are of finding common ground on policies, or even of treating our
opponents like human beings.”2

Moreover, biased journalism affects people’s life from both the political
and nonpolitical side; They not only manipulate people’s minds, but also af-
fect their identity. In 2009, Sean Westwood, conducted research over National
Election Study, a survey that collects Americans’ political opinions and behav-
ior[]. “I didn’t expect the political conflict to spill over from political aspects
of our lives to nonpolitical aspects of our lives, and I saw that happening in
my social group, Partisanship, for a long period of time, wasn’t viewed as part
of who we are,” he also mentioned. “It wasn’t core to our identity. It was just
an ancillary trait. But in the modern era, we view party identity as something
akin to gender, ethnicity or race - the core traits that we use to describe our-
selves to others.”. Considering this vast impact of extreme partisanship on the
society, it is necessary to find a solution to both decline the consequences and
increase the awareness.

In this thesis, we focus on creating a platform to recognize and distinguish
extremely biased news and their orientation from unbiased ones. However,
to follow that direction one needs to have a proper dataset of news articles,
which has not existed thus far; therefore, we create the required dataset. To
do so, we chose more than 600 news producers whose orientation was labeled
in 5 different categories, from the left to the right bias, by BuzzFeed3 and
Media Bias Fact Check4. The next step was to extract news articles links from
those news producers, and afterwards all the links were crawled to create a
large-scale corpus of approximately 1,5 million articles for the further study
and analysis. It is worth mentioning that in the field of Computer Science,
there have been several studies in this regard. For comparison, in Potthast
et al. 2017 from Webis group of Bauhaus-Universität Weimar, such research

2https://www.vox.com/the-big-idea/2017/9/5/16227700/
hyperpartisanship-identity-american-democracy-problems-solutions-doom-loop

3https://www.buzzfeed.com/craigsilverman/inside-the-partisan-fight-for-your-news-feed
4https://mediabiasfactcheck.com/

2

https://www.vox.com/the-big-idea/2017/9/5/16227700/hyperpartisanship-identity-american-democracy-problems-solutions-doom-loop
https://www.vox.com/the-big-idea/2017/9/5/16227700/hyperpartisanship-identity-american-democracy-problems-solutions-doom-loop
https://www.buzzfeed.com/craigsilverman/inside-the-partisan-fight-for-your-news-feed
https://mediabiasfactcheck.com/

CHAPTER 1. INTRODUCTION

was done on a corpus of 1,627 articles from 9 different publishers.

This thesis aims to achieve two major objectives. Firstly, creating a corpus
of news articles from the variety of news producers that produce political news
with their specific point of view in the United States. Secondly, analyzing the
corpus with different learning methods in order to train a model which is able
to detect biased news articles with a high accuracy.

1. The process of collecting articles and constructing the corpus:

• Find political partisan news producer.

• Find political news articles using the producers’ Facebook feed and
sitemap

• Crawl and archive all the news articles while continuously monitor-
ing the archive quality.

• Extract the main information from the archived articles, such as
title, author, time, content.

2. Analysis the corpus:

• Analyze the main information to recognize duplicate and near du-
plicate documents.

• Train classifiers with different machine learning models to distin-
guish extreme bias and also articles orientation.

3

Chapter 2

Related Work

In this chapter, we describe an overview of several studies that we found related
to our topic. These related works will be introduced in different sections. First,
we present researches about fact-checking and misinformation detection, then
studies about hyperpartisan and fake news detection.

2.1 Fact Checking and Misinformation
In the contemporary world of journalism, a rapid growth of misinformation is
considered as a huge concern, which requires attempts to enhance the way that
we detect and respond to misinformation. A research by Zhang et al.[2018]
was done regarding this subject. They used 40 of the most shared articles on
social media for this research. Moreover, they employed 6 skilled annotators,
3 for content and 3 for context annotation. Then, they offered a set of initial
indicators for article credibility in two major categories content and context
signals. Content signals can be found from the text of an article, and a context
signal can be found from external sources or metadata of an article. In the next
phase, to analyze the annotation data, they focused on two measures: “(1) How
much annotators agreed with one another when identifying indicators, and (2)
how much the annotators’ assessments of overall article credibility agreed with
domain experts’ assessments.” Finally, they offered a template for creating a
standardized set of indicators for evaluating content credibility.

2.2 Ecosystem of Partisan Websites
The 2016 US Presidential election led to a confusion about the factors that
affected Trump’s victory. There are several aspects such as socio-economic,
cultural, political and technological to discuss. One of the most important

4

CHAPTER 2. RELATED WORK

answers to that confusion is the creation of a fabricated news sites ecosystem.
BuzzFeed News’s Craig Silverman did a study1 about this discussion, which
inspected 667 hyperpartisan websites and their corresponding Facebook pages
in the last three months before US presidential election. They realized 20
top-performing false stories about the election from hyperpartisan sites gen-
erated 8,711,000 shares, reactions, and comments on Facebook. On the other
hand, 19 major news websites generated 7,367,000 in the same period of time.
In addition, they mentioned that the top election content from major out-
lets had been outperformed by fake election news on Facebook. This study
also indicates that hundreds of these websites are begin run by now-famous
Macedonian teens2, and in one example a Facebook page which is run by a
Macedonian teenager frequently outperforms some of the larger conservative
pages operated by Americans. In addition, Bhatt et al.[2018] in another sim-
ilar research reached to the conclusion that lots of these news websites that
were being established during the election campaign time were then abandoned
after the election. They also indicate that this ecosystem directs users traffic
by creating a link from one site to another and liking each other’s pages and
posts.

2.3 Hyperpartisan and Fake News Detection
In this regard, Potthast et al. [2017] is an good example, which employed the
BuzzFeed-Webis fake news corpus with 1,627 articles from 9 different news
producers. These articles have been fact-checked by BuzzFeed journalists.
They also are categorized into three categories namely, main-stream, left-wing
and right-wing. In this approach, they used common features in a combination
with ones related to the news domain. The part-of-speech and n-grams are
the common features, and the ratios of quoted words and external links, the
number of paragraphs and their average length are the domain specific features.
They utilize several baseline models including, a top-based bag-of-words model,
a model using only the domain-specific features and finally naive baselines.
They concluded that with style analysis hyperpartisan news from unbiased
news (F1=0.78), and satire from both (F1=0.81) are distinguishable. It is also
mentioned that left-wing and right-wing news enjoys more stylistic similarity
compared with ones from the mainstream.

1https://www.buzzfeednews.com/article/craigsilverman/
viral-fake-election-news-outperformed-real-news-on-facebook

2https://www.buzzfeednews.com/article/craigsilverman/
how-macedonia-became-a-global-hub-for-pro-trump-misinfo

5

https://www.buzzfeednews.com/article/craigsilverman/viral-fake-election-news-outperformed-real-news-on-facebook
https://www.buzzfeednews.com/article/craigsilverman/viral-fake-election-news-outperformed-real-news-on-facebook
https://www.buzzfeednews.com/article/craigsilverman/how-macedonia-became-a-global-hub-for-pro-trump-misinfo
https://www.buzzfeednews.com/article/craigsilverman/how-macedonia-became-a-global-hub-for-pro-trump-misinfo

Chapter 3

Article Collection

The first step to creating a corpus of partisan news articles is to find a straight-
forward method to collect the articles. There are lots of obstacles in this regard,
for instance, how do we find the news producers? how do we discover URLs of
news articles? how do we make sure to only collect the political articles? In
this chapter, we describe our solutions to overcome these difficulties.

3.1 News Producers Discovery
Finding general information about political news producers was our first prior-
ity. We obliged to depend on some reliable sources of information to maintain
a list of news producers in addition to their political view preferences. Media
Bias Fact Check and BuzzFeed are two sources that were used for this purpose.

3.1.1 BuzzFeed Partisan News Sites List

BuzzFeed is a cross-platform media network, which assumes that they have
both infrastructures of a tech company and innovation of being a culturally
obsessed corporation. BuzzFeed concentrates on shaping a media platform for
today’s world, and the future. For this thesis, an article from BuzzFeed is used
which is described in Section 2.2. As a part of the study they provide a list1
of political news producers, plus extra information including the bias category
and the Facebook page of each producer-if they have any-. This list contains
677 political news websites with information as exemplified in Table 3.1.

In this list, bias categories are shortened into the two major groups of
conservative and liberal. Moreover, we need to find the articles on the websites,

1https://github.com/BuzzFeedNews/2017-08-partisan-sites-and-facebook-pages/
blob/master/data/all-partisan-sites.csv

6

https://github.com/BuzzFeedNews/2017-08-partisan-sites-and-facebook-pages/blob/master/data/all-partisan-sites.csv
https://github.com/BuzzFeedNews/2017-08-partisan-sites-and-facebook-pages/blob/master/data/all-partisan-sites.csv

CHAPTER 3. ARTICLE COLLECTION

Site Political Category Facebook Id

100percentfedup.com right 311190048935167
21stcenturywire.com left 182032255155419

24dailynew.com right 515629708825640
aattp.org left 108038612554992

Table 3.1: Excerpt list of BuzzFeed news producers

but every website looks different. To find the articles in these producers,
checking the Facebook pages and going through the sitemaps are two different
approaches that were applied. First, all of the items in the list are checked for
Facebook Id entry. Following that, all the pages which have an active Facebook
page were labeled and also all the other items that don’t have a Facebook page
are examined for the availability of sitemap. As Table 3.2 shows that out of
490 producers that are supposed to possess a Facebook page, 351 items own an
active and available Facebook page and the other Facebookpages are removed
or deactivated. In addition, 107 news producers websites have sitemaps. The
other 219 entries are not used for the next stage of the thesis owing to either
unavailability of their website or duplication of producers in the BuzzFeed
list. Table 3.2 displays that 48 items on the list are duplicate entries and 171
websites are not available anymore.

Sites Left Right Total

Total Number 178 499 677
Duplicate 9 39 48
Unavailable 31 140 171
Facebook 120 231 351
Sitemap 18 89 107

Table 3.2: Availability of the Facebook pages and sitemap of the BuzzFeed list

3.1.2 Media Bias/Fact Check (MBFC)

MBFC is a fact-checking website which labels websites according to their po-
litical view in different categories from right to left wing bias. As mentioned
on the website their objective is to inspire action and a rejection of overtly
biased media and moreover to return to an era of straightforward news re-
porting. However, their index includes a huge list of websites from all over

7

CHAPTER 3. ARTICLE COLLECTION

the world that focused on a variety of topics like politics, economy, and sport
to name but a few. MBFC categorized websites into five major categories,
namely extreme left, left-center, least biased, right-center, and extreme right.
Since we had enough websites for extreme left and right from the BuzzFeed
list, we only focused on both right-center and left-center, in addition to the
least bias websites. However, due to the lack of left-wing articles, we decided
to find new left sources from MBFC. In this website for each category, there is
a large list of websites, and for each of them, they provide a detail page which
has brief information about the producer. Therefore, we needed to go through
the detail page to check if it fits our criteria.

Criteria:

1. It must cover the United States news.

2. It must have a political section.

3. The website must own a proper sitemap.

We found that 109 websites out of 1310 fulfill our criteria and are thus
included in our corpus. Table 3.3 illustrates the statistics of websites that
were checked during this phase of the thesis.

Left Leftcenter Least Rightcenter Total

All Subjects 290 447 362 211 1310
Political 12 49 28 20 109

Table 3.3: Media Bias/Fact Check indexed sites statistics

3.1.3 Buzzfeed And MBFC Overlap

During the process of finding news producers from MBFC, we also check for
the producers that both Buzzfeed and MBFC share in common, however, these
two have a disagreement over labeling some of the producers. Considering this
ambiguity, we decided to collect the articles but not to include them in the
corpus. One can find the list of these news producers which have different
labels in BuzzFeed and MBFC in the Table 3.4.

8

CHAPTER 3. ARTICLE COLLECTION

News Producer MBFC BuzzFeed

consortiumnews.com least left
amgreatness.com rightcenter right

rare.us rightcenter right
theamericanconservative.com rightcenter right
washingtonexaminer.com rightcenter right

liberalmountain.com leftcenter left
billmoyers.com leftcenter left

mintpressnews.com leftcenter left
secondnexus.com leftcenter left

Table 3.4: MFBC and BuzzFeed disagreement over bias label

3.1.4 NewsIR16 Corpus

The Signal Media One-Million News Articles Dataset2 was released by Signal
Media to assist research on news retrieval. The corpus is in JSON format and
each article has the following fields:

• id: a unique identifier for the article

• title: the title of the article

• content: the textual content of the article (may occasionally contain
HTML and JavaScript content)

• source: the name of the article source (e.g. Reuters)

• published: the publication date of the article

• media-type: either "News" or "Blog"

For several apparent reasons, we decided not to use this corpus. Firstly,
it only covers news from September 2015 that make this corpus too specific.
Secondly, it contains news articles from a huge variety of publishers around the
world, and Thirdly, it contains not only political news, which does not serve
our task to collect the articles relevant to US politics.

2http://research.signalmedia.co/newsir16/signal-dataset.html

9

http://research.signalmedia.co/newsir16/signal-dataset.html

CHAPTER 3. ARTICLE COLLECTION

3.2 Article URL Collection
The next stage after discovering the news producers is to find URLs of the news
articles. One option to find the URLs would be to use a crawler which starts
from the homepage of the news websites and extracts all the internal links
that it finds, then the crawler adds them to a queue and continues crawling all
the pages and add new links to the queue. However, using a crawler is time-
consuming and has its own technical difficulties. Therefore, we decided to go
in another direction and to use a shortcut, we used the Facebook page and
sitemap of the news producers. We assume that news producers which own a
Facebook page, also share their news articles in that medium to influence more
people due to the engagement of social media in modern human life. Moreover,
most well-design and well-organized websites follow a special standard of using
sitemap which contains all the links that one can find in a website.

3.2.1 Facebook Pages

Facebook is a social networking website which was created in 2004 and since
then has gained tremendous growth and popularity over time. Due to the
popularity of this platform, most of the news producers tried to absorb a new
audience as well as keep the current ones by using this medium. As a result,
a news producer not only publishes the news on their website, but also they
share a link to their new articles on Facebook as well.

Facebook Graph API

By using the so-called Graph API3 one can access user-related data program-
matically. To collect data from Facebook pages we focused on three entities
namely, post, comments, and reactions. Basically, we went through the list of
Facebook pages that we find in the BuzzFeed list, then we retrieve all the posts
that they published. The next step was to collect reactions and comments from
the users on each post, which we thought would be useful for other types of
research and studies. The information that we collected for each entity can be
found in the table 3.5.

We collected the data from the Graph API and stored post, comments,
and reactions in a relational database. However, since the process of retrieving
comments and reactions was so time-consuming, we decided to deactivate that
feature for this thesis.

3https://developers.facebook.com/docs/graph-api/

10

https://developers.facebook.com/docs/graph-api/

CHAPTER 3. ARTICLE COLLECTION

Post
Post ID
Content
Link

Creation Time
Page ID

Comment
Comment ID

Content
Creation Time

User ID
Username
Post ID

Reaction
Reaction ID
Username

Type
Post ID

Table 3.5: Facebook entities accessible through the Graph API

3.2.2 Sitemap

A sitemap is a systematic and hierarchical view of the website in an XML
format. The sitemap protocol was introduced by Google4 to standardize and
uniform existing approaches. This protocol is quite helpful and practical specif-
ically when it comes to those links that needed a user interaction on a form to
generate the links. Considering all the benefits of sitemap protocol, we used
this method to find articles’ links for all the 109 news producers that we found
in the Media Bias/Fact Check. We also used a sitemap for 107 news producers
from the BuzzFeed list to compensate for a prevalence of right-wing articles.

Sitemap Link Extractor

In order to develop a tool to extract the links from a sitemap, one needs to be
aware of the standard structure of this protocol.

In principle, there are two main types of XML sitemaps which are
URL sitemap and Index sitemap.

• The URL sitemap contains the URLs of the website. These files usually
are in XML format and in some cases for archiving purposes, publishers
stored them in a compressed format of xml.gz.

• The Index sitemap contains a list of all the URL sitemap of that website.

By going through the URL sitemap structure, three more categories
of URL sitemap can be found.

• sitemap for web pages which has all the information regarding the links
in a webpage.

4https://www.google.com/sitemaps/protocol.html

11

https://www.google.com/sitemaps/protocol.html

CHAPTER 3. ARTICLE COLLECTION

• Image sitemap which contains images detail and their URL in a website.

• Video sitemap that includes information about the videos and their cor-
responding URL.

By considering all the aforementioned information in mind, the tools that we
needed to use for extracting the URLs should support all of these details.
Moreover, for all of the news producers that we have, we need to collect a lot
of extra information as follows:

1. URL.

2. Is it index sitemap?

3. Is it compressed?

4. Does the sitemap show the category of the news articles such that one
can directly use only articles from the political section?

The first three items in the lists are obligatory information that is needed
to have access to a sitemap. In addition, the last parameter which is not
mandatory gives us an ability to filter URLs, due to the factor that we only
want political articles and some website also have other subjects to report.
For filtering the URLs there are several methods. First, we can use a specific
keyword as a filter in a sitemap index, and it will only consider sitemap URLs
that contain that keyword which can be seen in figure 3.1. Second, a special
keyword can be used in order to restrict the URLs in a URL sitemap and
Figure 3.2 is an example. Finally, the last parameter that can be used in order
to limit the URLs is using a pair of tag and value which for instance can be
seen in figure 3.3.

Our implementation of extracting URLs with features that were described
can be simply used by running the following command.

$ python extract_urls.py --url "http://site.com/sitemap.xml"
--domain "site.com" --siteid "siteid" [--not_index] [--gzip]
[--sitemap_filter "keyword"] [--url_filter "keyword"]
[--tag_value_filter "tag*value"]

Command Parameters:

• –url: URL of the sitemap

• –domain: Host of the website

12

CHAPTER 3. ARTICLE COLLECTION

Figure 3.1: A sample for finding a keyword to filter URLs in a index sitemap

Figure 3.2: A sample for finding a keyword to filter URLs in a URL sitemap

• –siteid: Identification number for the website

• –not_index: This parameter is optional and is needed when URL pa-
rameters is not referring to the index sitemap

• –gzip: This parameter should be used only in the situation that sitemap
URL is in compressed format

• –sitemap_filter: This parameter can be used, if a user wants to apply
filter on the list of URL sitemap in an index sitemap

• –url_filter: This parameter is useful for filtering URLs in a URL sitemap

• –tag_value_filter: To apply filter on the metadata in a URL sitemap
using a key and value, users can use this parameter

3.2.3 Link Statistics

In this section, we focus on a basic analysis of data that we collect using our two
major techniques to find articles’ links from news producers. Considering the

13

CHAPTER 3. ARTICLE COLLECTION

Figure 3.3: A sample for choosing a tag and value to filter data in a URL sitemap

fact that for BuzzFeed producers we apply both techniques and for MBFC we
only used the sitemap approach, these statistics will be introduced separately
in two subsections.

BuzzFeed producers

In the process of link extraction from the news producers that we found on
BuzzFeed websites, 458 news producers were involved. We managed to extract
links from the Facebook pages for 351 news producers. Furthermore, for the
other 107 producers, we used sitemaps to discover the links.

Facebook Pages
By using Facebook Graph API, we were able to find 1,239,955 posts for

both liberal and conservative news producers. During this process, we found
out that not all the links belong to those news producers, since in lots of cases
they have shared contents from other sources which we called them third-party
sources in this thesis. This incident happened especially when the content
suits their political perspective, and as you can see in table 3.6, approximately
two-thirds of the posts are not produced originally by the actual publishers.
However, this proportion is slightly different for left and right wing parties. the
actual publisher produced 37 percent of the content shared on Facebook pages
of left-wing pages; moreover, 67 percent of news shared by right-wing websites
are shared from third-party news producers. Finally, we only considered the
original articles from news producers, which amounts to 423,764 news articles;
the share of the left party is 169,091 articles, and 254,673 news articles are the
original ones for conservative producers. In figure 3.4, the proportion of the
All news articles to Original news articles can be found, in which the blue color
represents all the posts including third-party sources and orange color is used
for original article; It also shows all the producers that we have investigated

14

CHAPTER 3. ARTICLE COLLECTION

with Facebook graph API approach.

Absolute Average per site

Number of articles Left Right Total Left Right Total

Third-Party 288,552 527,639 816,191 2,327 2,162 2,217
Original 169,091 254,673 423,764 1,409 1,102 1,207

Total 457,643 782,312 1,239,955 3,690 3,206 3,369

Table 3.6: Article statistics from the BuzzFeed list using Facebook Graph API

Figure 3.4: Number of all news article to the original ones per site

We also went a bit further in this analysis, as we wanted to be well-informed
about the following facts: Which third-party sources were referenced more by
our producers? How often did our producers reference one another? For
instance, figure 3.5a indicates how often news producers have shared content
from the other producers in our list, and figure 3.5b shows the list of top 10
news producers that produced the most viral news articles. As one can see,
westernjournalism.com with a huge margin is at the top of the list and it seems
that they produced more content that is worth sharing by the others. The other
significant detail about this list is that 90 percent of it consists of conservative
websites and the only liberal producer is newscorpse.com. From this statistics,
we can conclude that conservative websites have a more organized network to
share one another materials.

15

CHAPTER 3. ARTICLE COLLECTION

(a) BuzzFeed producers shared by other
BuzzFeed producers (b) Top 10 BuzzFeed list news producers

referenced by the other BuzzFeed produc-
ers

Figure 3.5: Statistics of publishers being referenced by other news producers in the
BuzzFeed list

Figure 3.6 displays the top 10 third-party sources that their content was
shared by the producers on our list. Moreover, as is obvious from the list, there
is no partisan news producer on the list that we missed to include in this study.
In addition, it also shows, links to the Facebook pages and Youtube5 videos,
and also services to shorten URLs are very common to use in the Facebook’s
posts.

Figure 3.6: Top 10 third-party sources that produced content which is shared by
the BuzzFeed news producers list

Sitemaps
To continue the links extraction process, we applied the sitemap approach

to discover links to news articles for 107 BuzzFeed news producers; we only
5http://youtube.com

16

http://youtube.com

CHAPTER 3. ARTICLE COLLECTION

tried to apply this approach on the news producers that didn’t have a Facebook
page or we could not find any article for them using Facebook Graph API.
Table 3.7 shows, 972,866 articles were found during this process. However,
some extra filtering over the obtained data was required, since there were
a great number of links, including tags, authors homepages, and categories,
which do not point to a news article. Finally, we found 579,208 links, 70,279
links from the left-wing party and the other 508,929 from the right-wing party.
On average for each site, we discovered 5,413 articles. Moreover, if we go
into more detail, the average number of liberal articles per site is 3,904 and
conservative producers have 5,718 articles on average.

Absolute Average per site

Number of articles Left Right Total Left Right Total

Original 70,279 508,929 579,208 3,904 5,718 5,413

Total 101,273 871,593 972,866 5,626 9,793 9,092

Table 3.7: Article statistics of the BuzzFeed list using sitemap approach

Media Bias/Fact Check producers

In addition to the articles obtained through the BuzzFeed list, we obtained
3,191,915 articles from 109 news producers of Media Bias/Fact Check. As
Table 3.8 illustrates Left-center biased producers have 1,392,187 articles and
on average each producer possesses 28,411 news articles. The share of least
bias and right-center producers was 750,872 and 420,218 news articles. Least
bias websites have on average 26,816 pieces of news, and right-center ones have
29,283 articles. Finally, out of 12 news producers that we found in the MBFC
owing to the reason that we didn’t have enough articles for the left wing party,
we discovered 628,638 links in general which become 52,386 article on average
for each producer.

Final Statistics

After article collection the corpus contains approximately 4.2 million URLs.
Table 3.9 shows the number of URLs that are attempted to be archived in
Chapter 4.

17

CHAPTER 3. ARTICLE COLLECTION

Absolute

Number of articles left Left-center Least Right-center Total

Total 628,638 1,392,187 750,872 420,218 3,191,915
Average per site

Number of articles left Left-center Least Right-center Total

Average 52,386 28,411 26,816 29,283 26,425

Table 3.8: Article statistics found from MBFC news producers

Absolute

Number of articles left Leftcenter Least Rightcenter Right Total

BuzzFeed Facebook 169,091 - - - 254,673 423,764
BuzzFeed Sitemap 70,279 - - - 508,929 579,208
MBFC Sitemap 628,638 1,392,187 750,872 420,218 - 3,191,915

Total 868,008 1,392,187 750,872 420,218 763,602 4,194,887

Table 3.9: Corpus statistics after article collection

18

Chapter 4

Corpus Construction

In this chapter, the process of creating the corpus is described in detail. It
includes several steps to deal with different obstacles that we encountered, and
also our solution to solve each problem. After the article collection phase, we
had 4,194,887 news articles to crawl for the further use in this study. Accord-
ingly, we need a reliable method to both crawl and store the articles. Moreover,
we need to find the main content in the articles and store all the important
fields of the articles in the formats that we want to construct the corpus.

4.1 Archiving
We want to store all of the web pages that we found during article collection
in our storage owing to the reason that a lot of web pages are disappearing
from the Internet. Accordingly, we want to archive them in a way that we can
access the web page as we have access to them when they are still available
and online. For this purpose, the most significant concern for us is the quality
of the archived page and having access to every part of a web page from the
text to the media that producers used in their articles.

4.1.1 Tool

There are several ways to crawl a web page from the Internet and which one
to choose absolutely depends on the kind of content that one wants to archive.
Here we briefly describe the four major approaches1 to archive a web page,
and moreover the reason that we have chosen one to archive our web pages.

1https://www.labnol.org/internet/archive-web-pages/20192/

19

https://www.labnol.org/internet/archive-web-pages/20192/

CHAPTER 4. CORPUS CONSTRUCTION

Archiving Methods

Text Content
There are many application and browser extensions like Evernote2 and OneNote3

which help users to save the text of a webpage and make it available to access
the content through the application.

Packaged
Packaged archiving is a simple way to have access to the content of a web
page without a demand for an additional extension. Storing web pages in a
PDF format is one example and PDF writers exist in the features of modern
browsers.

Local Copy
All the modern browsers have a feature to store a web page entirely in the
local machine. Also tools like wget is a good example to save a URL, however,
it stores nothing more than the HTML content.

Web ARChive
Internet archives like http://Archive.org/web/ and http://Archive.is/
are websites that store an archived version of a URL including all the Javascript
files, and all the other assets in a Warc format. It is possible to download a
Warc file from Archive.is, but the problem is that it doesn’t have all the pages
that users are looking for.

Choosing the Method
Considering the brief description that is mentioned above, one can see the
latest method provides us with the highest quality of archiving a page, due
to the fact that we can store an entire page and access content in the way
that it originally existed on the Internet. In addition, we already have a well-
implemented archiving tool in the Webis group[2018].

Webis Web Archiver
Using simple methods like just crawling the HTML content of a page is not
enough to have exact results as we normally see in the actual page. This
happens for several reasons, for instance, web pages have so many external
resources like CSS files or JavaScript files and also multimedia files which do
not exist in the HTML page. In addition, in some cases, the web page needs

2https://evernote.com/
3https://www.onenote.com/

20

http://Archive.org/web/
http://Archive.is/
https://evernote.com/
https://www.onenote.com/

CHAPTER 4. CORPUS CONSTRUCTION

to load the content by calling client-side scripts. As a result, we needed to
find a way to solve all of these issues. Therefore, we employed Webis Web
Archiver[2018] as a required tool which simulates modern browsers’ behavior
to create a standard WARC web archive. The WARC files which are produced
by Webis Web Archiver are compatible with the other third-party tools. This
tool has also introduced another vital feature to render and reproduce a web
page using its WARC file. Moreover, archiving and reproduction can be done
as follows.

$./archive.sh --url "url" --scriptsdirectory "directory" --script
"script" --output "output"
$./reproduce.sh --url "url" --archive "directory" --scriptsdirectory
"directory" --script "script" --output "output"

Parameter Definition:

• –url: The URL of the web page that the user wants to archive or repro-
duce.

• –scriptsdirectory: The path to the directory where the user stores user
simulation scripts

• –script: The name of the script class.

• –output: Path to the directory where the user wants to store the result.

• –archive: Path to the WARC file that the user want to reproduce.

4.1.2 Checking The Producers

In our list, we have a huge number of news producers and news article to crawl
and archive. To begin with, we wanted to make sure our archiving software
works properly, also we wanted the output to be satisfying and in the way
that we expected. Therefore, from each news producer, we randomly chose 3
samples to crawl. Then, after finishing the crawling process, we investigate
the output. Table 4.1 displays different types of issues that we faced during
this process.

Problem Definition:

• Modal Windows: In 140 of websites, we have extra windows open on
the top of the news articles. For instance, modal windows for newsletter
application, petition, and advertisement have occurred the most often.
Figure 4.1 shows four examples of modal windows.

21

CHAPTER 4. CORPUS CONSTRUCTION

Problem Number Of Sites

Modal Windows 140
Down 68

Short URLs 7
Share Others 5
Read More 3
Homepage 3
Captcha 2

Table 4.1: Archiving Errors

• Down: After crawling these samples from each news producer, we real-
ized 68 of them are not available anymore. For some instances, the server
was out of order and down and also for some others even the domain was
for sale.

• Short URLs: There are 7 websites in the list in which all the URLs
that we collected are in short format.

• Share Others: 5 websites in the list only share news from other pro-
ducers.

• Read More: In 3 websites when a user sends a request for a news
article, the article does not load completely and the user still needs to
click on read more button to access the entire article. Figure 4.2 displays
one example of this kind.

• Homepage: All the links that we collected from 3 websites are pointed
to the homepage of the website.

• Captcha: Only in two samples, we encountered a request for a captcha.

Solution:
Out of 220 problematic news producers, we found a solution for two groups
of problems namely, modal windows, and read more buttons. For all of these
additional windows, there is a close button that should be pressed to remove
the windows from the screen. In addition, for read more button it is absolutely
clear that users have to click on the button. Consequently, we decided to
simulate user interaction during the archiving process. To do so, we load a
page, the next step is to wait for the scrolling action to be finished, then
we simulate the user click on necessary buttons. For this purpose, we run

22

CHAPTER 4. CORPUS CONSTRUCTION

javascript codes. All of these 143 producers have their specific layout and they
are totally different from one another. Therefore, in this stage, we rechecked
all of these websites and write down the necessary javascript codes to do the
required action. Finally, in the code according to the requested host, we can
simply decide which ones to execute. In the following code, you can see two
examples for two different websites http://americasfreedomfighters.com/
and http://angrypatriotmovement.com/, and their required javascript code
to close the modal windows.

domain = uri.getHost();
switch (domain) {
case "americasfreedomfighters.com":

code = "document.querySelector('#modaal-close').click();";
break;

case "angrypatriotmovement.com":
code = "document.querySelector('#revexitcloseme').click();";
break;

}

Figure 4.1: Modal Windows Examples

4.1.3 Archive Quality Assurance

Archive quality check is one of the important steps of creating a high-quality
corpus. Due to the reason that we had a huge number of web pages to crawl,

23

http://americasfreedomfighters.com/
http://angrypatriotmovement.com/

CHAPTER 4. CORPUS CONSTRUCTION

Figure 4.2: Read More Example

we extremely felt the need of a feature to make sure that the archiving process
had worked absolutely fine. To do this, we employ a feature of archiving
tool to perform this action. This method[2018], utilizes machine learning in
order to predict the quality by comparison features that are extracted from the
archive and reproduction screenshots. To label the data for the classification
stage, human annotators evaluate 6,386 of the 10,000 pages in the Webis Web
Archive 17. The annotators score the similarity of the archive screenshots and
reproduction in the rage of 1 to 5; Score of 1 means part of the page are just
moved up or down a bit and 5 means that main content is missing and the page
is not usable. In addition, Deep convolution neural networks are the machine
learning method that has been applied to train the classifier. To extract the
features, the first step is to crop the images to 4098 pixels, then they indicate
the image is converted to grayscale. The next step is to scale down the image to
384x128 pixels. Then, for this size, to match the receptive field of the neurons
in the constitutional layers of the network, icons with the usual width of 32
pixels are scaled down to a width of 3 pixels. Finally, using the aforementioned
model and required code, we are able to predict the similarity between a pair
of the archive and reproduction screenshots.

Archive Quality Check Of Producer Samples

To make sure that we can archive articles from all the news producers in a
proper manner, we decided to randomly choose 100 samples from each news
producer. Then, we archived and reproduced all of them. We performed this
operation to realize whether we are able to successfully crawl all the producers

24

CHAPTER 4. CORPUS CONSTRUCTION

and make sure that the data we have collected is reliable. As you can see in
table4.2, out of 475 news producers we have 450 producers with at least one
successful crawl. In addition, 38,409 news articles out of 44,806 are successfully
archived. Moreover, we used the collected data and evaluate them manually
and automatically. The other important finding is that 25 websites do not
have any successful crawl, out of which 14 of them faced problems during the
archiving process, and the other 11 websites are unavailable and their server
is down.

Sites / Article Number

Total Sites 475
Sites With At Least One Successful Crawl 450

Total Number Of Articles 44,806
Number Of Successful Archived Article 38,309

Table 4.2: Archived samples statistics

Automatic

For this purpose, we collected all the screenshots in two folders. For each
article, we have one image in the archive folder and another one in reproduction
folder with the exact same name. Then we need to run the following command
to predict the result.

$./evaluate.sh --imagesa archive --imagesb reproduction --output prediction

Parameters Definition:

• –imagesa: Path of the folder that contains archived images.

• –imagesb: Path of the folder that contains reproduction images.

• –output: Path of a file to store the output.

Figure 4.3 displays, almost 96 percent of the samples are categorized with
a score of 1 or 2, which means they are mostly similar with some minor differ-
ences. A score of 3 means small changes, for example, the comment section of
reproduction image is missing and 783 articles are in this category. Category 4
and 5 mean striking difference and unusable page which contains 1,651 articles.

25

CHAPTER 4. CORPUS CONSTRUCTION

Figure 4.3: Automatic archive quality check scores

In this phase, we also measure the mean archive quality check the score for
each news producer. Figure4.4 demonstrates the result of this study. As one
can see, only 2 news producers have a mean score of 4 or 5 and 115 number
of producers produce identical reproduction image. In addition 333 producers
also produce reliable archive and reproduction output.

Figure 4.4: Median archive quality score per site

In figures 4.5a and 4.5b two samples of failed and successful archived and
reproduced samples are shown.

Manual

To double check the result, we decided to randomly choose 10 instances from
the samples that we have already archived and reproduced. We combined

26

CHAPTER 4. CORPUS CONSTRUCTION

(a) Score 5 (b) Score 1

Figure 4.5: Automatic archive quality samples

each pair of images, side by side in one image. Then we manually checked
the images. During this process we realized, there are several cases where the
crawled pages are unusable even though the images are the same and archive
quality check put them in the first category.

Problematic Sites Statistics

In table 4.3 you can observe, statistics about the number of sites and different
error that we found when we inspect archive quality check result. For all the
issues that are mentioned in the table we only figure out a way to solve modal
windows problem and for the rest of errors, we just ignored the news producers
in further phases of the thesis.

Problem Definition:

• Modal Windows: In 33 of the websites, we still had the modal windows
problem, which their Javascript code was fixed to solve the issue.

• Park Domain: For 25 news producers, the result page shows that the
domain is for sale. Therefore, the archive quality check works quite well
but the crawled page was not what we asked for.

27

CHAPTER 4. CORPUS CONSTRUCTION

Problem Number Of Sites

Modal Windows 33
Park Domain 25

Reproduction Problem 8
Gateway Error 3

Archiving Problem 2
Captcha 1

Sitemap Issue 1

Table 4.3: Problematic news producers found by archive quality assurance

• Reproduction Problem: For 8 news producers, we were able to archive
the page, however, we faced a problem during the reproduction process,
which means for these instances archiving does not work properly.

• Gateway Error: In output files of 3 producers, we found out it gives
us gateway error during the archiving process. Also, in this case, archive
quality categorized them in the first category but the crawled page was
problematic.

• Captcha: Only in one sample, we encountered with a request for captcha.
We have the same images in the archive and reproduction process but
we cannot use the page.

• Sitemap Issue: Finally, one of the news producers has a corrupted
sitemap file; all the links in the sitemap pointed to the homepage of the
website!

4.2 Distributed Storage
By considering the fact that the process of archiving all web pages is so time-
consuming, it was essential for us to store the data in a reliable storage, while
we did not want to repeat the process owing to unexpected hardware failures.
Therefore, we decided to make use of Webis Betaweb cluster4.

4https://www.uni-weimar.de/en/media/chairs/computer-science-department/
webis/facilities/

28

https://www.uni-weimar.de/en/media/chairs/computer-science-department/webis/facilities/
https://www.uni-weimar.de/en/media/chairs/computer-science-department/webis/facilities/

CHAPTER 4. CORPUS CONSTRUCTION

4.2.1 Hadoop Distributed File System

The Hadoop Distributed File System (HDFS)[2009]5 is a distributed file system
which is designed to store very large data sets reliably. HDFS is highly fault-
tolerant and is designed to be deployed on low-cost hardware.

4.2.2 MapFile

Since we have produced a huge number of files in the archiving process, we did
not want to copy all the files directly into HDFS. Therefore, we utilize a format
to store files which is more convenient for HDFS for both storage and future
computation. MapFile6 is the format that we used. MapFile is directory which
contains two SequenceFile7 data file and index file. SequenceFile is a persistent
data structure for storing pairs of binary key and values, which are append-
only and keys are not removable and editable. Data file in a mapfile format
have all keys and values records. In addition, index file holds information
about each key and starting byte position of the records which adds an extra
feature to the data file. This index file works as a lookup file, and due to the
small size, it can simply fit in the memory.

4.2.3 MapFile Creator

To create mapfiles, we implement Java program which gets a list of the files as
an input and converts all the files to a single mapfile. In this implementation,
we put the path of the main directory of each article into the input file. In ad-
dition, for each entry, we add 5 files into the mapfile namely, archive.html,
archive.png, archive.warc.gz, reproduction.html, and reproduction.png. To
generate the keys, we used a combination of article id, URL, and file name,
which are separated by space. Our implementation of mapfile creator can be
used as follows:

$ java -jar ConvertToMapFile.jar InputFile OutPutDirectory

Parameter Definition:

• Inputfile: List of the root directories of archived articles.

• OutPutDirectory: A path to store the mapfile.
5https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
6https://wiki.apache.org/hadoop/io
7https://wiki.apache.org/hadoop/SequenceFile

29

https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://wiki.apache.org/hadoop/io
https://wiki.apache.org/hadoop/SequenceFile

CHAPTER 4. CORPUS CONSTRUCTION

4.3 Distributed Archiving
After observing the result of archive quality check, we ignored several prob-
lematic news producers; 3,651,229 news articles were left for us to crawl. By
using a single machine, we could approximately crawl 600 pages per day; so,
with a simple calculation, it would take us about 6,000 days to crawl all pages.
To overcome this issue and speed up the crawling, we employed 80 machines
from Betaweb cluster. In each machine, we had a list of approximately 45,000
articles to crawl.

4.3.1 Task Control Automation

Due to the reason that manual control of all the 80 machine was so time-
consuming and also required a lot of effort, we create a crawling baseline to
automatically perform the archiving, quality check, and also mapfile creation.

Archiving and Reproduction

In this part, on each machine, we have a list of URLs to archive. Moreover, we
wanted to have three parallel threads on each machine to crawl three different
pages simultaneously. To do so, we employ a task manager from Webis Com-
mands. This command uses a text file as a list of task parameter as an input,
which has to be named tasks.txt. Also, it requires an executable file next to
the tasks.txt file, and this file has to be named task. Then, you should run the
following commands as many times as you want to have simultaneous threads.

$ webis util task work

During the crawling process, we realized there are some cases in which these
threads become suspended. To solve this issue, we needed to reset the task
manager. Therefore, we used the algorithm 1 to fix this problem. In this
algorithm, we check the number of successful and failed tasks every 15 minutes.
Then we check if numbers did not change from the last time that we had

30

CHAPTER 4. CORPUS CONSTRUCTION

checked, we reset the task manager.
while successfull tasks + failed tasks != total number of tasks do

Get number of current successful tasks;
Get number of current failed tasks;
if current failed tasks = old failed tasks
AND current successful task = old successful task > then

Restart the task server;
else

old successful tasks = current successful tasks;
old failed tasks = current failed tasks;
Wait for 15 minutes;

end
end

Algorithm 1: Algorithm to reset suspended threads

Archive Quality

Archive Quality is employed to check if the archiving process works reliably.
To do this, we use algorithm 2 which works on a daily basis. It finds the news
archived instances, then it copies all the archive and reproduction images in
two separate directories. The next step is to run the archive quality checker
over these images.

while Archiving task is still running do
Copy archive and reproduction images in two different folders;
Run archive quality check;
Wait for 24 hours;

end
Algorithm 2: Daily Archive Quality Check

MapFiles Creation

Creating mapfiles and also copy them to HDFS, was another task that should
be handled automatically. To perform this, we find all the successfully archived
crawls which are also confirmed by archive quality checker. Then, we create
a list of this instances, and every 1,000 items of the list will convert to a
mapfile. In the end, this algorithm copies all the generated mapfiles to HDFS.

31

CHAPTER 4. CORPUS CONSTRUCTION

while Archiving task is still running do
Recognize news successfully finished tasks;
Create lists of maximum 1000 entries;
Convert last step lists to mapfiles;
Copy the mapfiles to HDFS;

end
Algorithm 3: Daily mapfile creation

4.4 Main Content Extraction
After crawling all the articles, the main task is to find a way to extract the
main part of the news articles; we considered the following entities as the most
important part of an article.

Article Fields

• ID: Article unique ID.

• Headline: Title of the article.

• Content: Main content of article.

• Author: The person who wrote the article.

• Date: The date of publication.

• URL: URL of the article.

• Orientation: Article biased label.

• Publisher: The news producer that published the article.

Several items of article fields’ list are the information we already had at that
stage such as ID, URL, Orientation, and Publisher. Moreover, the rest of the
fields are information that we need to extract from the crawled news articles.

4.4.1 Writing the Wrappers

In this stage, we checked all the news producers that at least had one successful
crawl and the crawl page also passed the archive quality check; the number
amounts to 383 news producers. Each of these producers in the list has their
specific web layout, and as a result, it was impossible to develop a general
wrapper which is able to extract the required fields from this variety of layouts.
Consequently, we were left with no choice other than going through the layout

32

CHAPTER 4. CORPUS CONSTRUCTION

of each of these websites and writing their own special query selector to find
required information for each field. the following code is an example of writing
a wrapper for http://leftvoice.org/ and its required query selectors to
extract the information from the HTML article.

wrappers.addWrapper(new UriSpecificWrapper(
// This wrapper will only be used for leftvoice.org
// optional second parameter for path matching
new UriPredicate("leftvoice.org"),
// This wrapper
new SelectorBasedWrapper()

.withTag(Wrapper.TAG_TITLE, "article div.header-articulo h1")

.withTag(Wrapper.TAG_AUTHOR, "article div.autor-articulo a")

.withTag(Wrapper.TAG_DATE, "article div.row:nth-of-type(2)
div.col-md-12 span")

.withTag(Wrapper.TAG_CONTENT, new String[] {
"article div.articulo p",

})));

Implementation

We stored all the crawled news articles into mapfiles and as mentioned be-
fore we copy the mapfiles on HDFS. Accordingly, we found MapReduce[2008]8
as the most convenient programming model to implement our application.
MapReduce is a programming paradigm which is designed to process a large
amount of data on the cluster in parallel and distributed algorithm. Our im-
plementation of content extraction gets a list of mapfiles as input, then it uses
all mapfile files as an input of the mapper application. The mapper distributes
the records of keys and values to executors. Each executer checks the key and
if this record contains the "page.html" file, it starts to perform the content ex-
traction. To do so, it finds the domain of the article, and it uses HTMLReader
library to find the needed HTML elements by using domain and HTML con-
tent of the article. For all the elements including title and author we only keep
the plain text without any extra and unnecessary HTML tags. Moreover, for
content and date, we obey the following standard.

Content
Storing content needed more thought to realize which HTML tags are helpful
and necessary to keep for the further analysis. Finally, we decided to keep
paragraph, quote, and anchor elements from HTML code and remove all the

8https://en.wikipedia.org/wiki/MapReduce

33

http://leftvoice.org/
https://en.wikipedia.org/wiki/MapReduce

CHAPTER 4. CORPUS CONSTRUCTION

other tags. In addition, for anchor elements, we considered extra criteria and
we added an extra property to anchor as internal or external.

• Internal: When the anchor link pointed to the news producer that
published the article, we consider that as internal and then we removed
the "href" property from the anchor element.

• External: We consider an anchor element external when its link pointed
to other websites. In this case, we also kept the "href" property for that
element.

Date
We have a great variety of formats of date, while each of these news producers
has their own specific way to display the publication date. Therefore, we
required a method in order to recognize the date from text regardless of the
format. Natty9 is the library that we employed to extract the date from a text.
Finally, we stored the data in ISO 860110 which 2000-02-20 is an example.

4.5 Corpus Formatting
We produce the corpus in two different formats JSON11 lines and XML12. We
mostly used the JSON line format for analysis which is described in more
detail in section 5. Furthermore, XML format was also produced to present
the corpus to participants of our task in SemEval 201913.

Field Description:

• id: Article id which is a number with 7 digits.

• published-at: A date in ISO 8601 format in which a news producer
published the article.

• title: Headline of the article.

• content: The field content is used to store the main content of the
article.

9http://natty.joestelmach.com/
10https://en.wikipedia.org/wiki/ISO_8601
11https://en.wikipedia.org/wiki/JSON
12https://en.wikipedia.org/wiki/XML
13https://pan.webis.de/semeval19/semeval19-web/

34

http://natty.joestelmach.com/
https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/XML
https://pan.webis.de/semeval19/semeval19-web/

CHAPTER 4. CORPUS CONSTRUCTION

• bias: This field indicates the orientation of an article which can be "left",
"left-center", "least", "right-center", or "right".

• hyperpartisan: Hyperpartisan is a boolean value. It is "true" when
bias value is "left" or "right", otherwise the value of this field is "false".

• url: In this field the URL of the article is stored.

• author: Name of the author of the article can be found in this field.

4.5.1 JSON Line

Here, one can see the structure of an article and the way we stored in it in
JSON format. In the end, the corpus contains several text files, and in each
of these files, each line represents an article as a JSON object.

{
"id":"0000001",
"published-at":"YYYY-MM-DD",
"title":"Headline",
"content":"Main Content",
"hyperpartisan":"true",
"bias":"right",
"url":"URL",
"author":"Author"

}

4.5.2 XML

We used the XML format to produce the hyperpartisan corpus for our SemEval
2019 task(Kiesel et al.[2018]). For each article in a corpus, we produce a
separate XML file as you can see a sample below. In addition, for each article,
we add an article tag in ground truth file which contains the properties id,
hyperpartisan, bias, url, and labeled-by. The field labeled-by is only used for
SemEval task and is filled by value publisher for the all the articles that we
have collected in this thesis.

Article Instance:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<articles>

<article id="0000001" published-at="YYYY-MM-DD" title="HeadLine">
Content

35

CHAPTER 4. CORPUS CONSTRUCTION

</article>
</articles>

Ground Truth:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<articles>

<article id='0000001' hyperpartisan='true' bias='right'
url='URL' labeled-by='publisher'/>

<article id='0000002' hyperpartisan='true' bias='least'
url='URL' labeled-by='publisher'/>

</articles>

36

Chapter 5

Analysis

In this chapter, we focused on an analysis of the corpus. We begin with basic
statistics about the articles, then we inspect the links that we found in the
corpus and we extract some statistics about the anchor elements inside the
corpus. The next step was to check the articles for text reuse. Finally, we
tried several machine learning methods to predict news articles orientation
and also biased from the unbiased news.

5.1 Corpus Statistics
In this stage of the thesis, we extract basic statistics about the number of the
articles in general, in addition to the number of articles per each bias category
in the corpus. Moreover, we also calculate article length and by that we mean
how many words each article contains. Considering the length of the articles,
we were wondering how many articles we might potentially lose if we consider
a specific number for a minimum number of words per articles. Accordingly,
we choose 4 different thresholds for this minimum length which are 2, 50, 100,
and 150 words. According to the table 5.1 and 5.2, in total we have 2,282,423
news articles in the corpus. We then decided to stay with 50 words length as
the minimum threshold for the article length since 50 words is a reasonable
length for minimum length and also we do not lose so many articles. As a
result, in the final corpus, we have in total 1,493,601 articles with the average
length of 694 words, in which the share of the left category is 207,354, left-
center 227,709, least bias 243,606, right-center 476,801, and 339,997 right wing
articles.

Figure 5.1 displays a list of top 20 producers that have the most and the
least number of articles in our corpus.

37

CHAPTER 5. ANALYSIS

Articles left Leftcenter Least Rightcenter Right Total

Total 311,511 837,422 551,673 335,552 442,461 2,478,620
Min. 2 words 262,345 228,467 459,324 272,239 362,164 1,583,173
Min. 50 words 253,311 214,598 423,675 262,078 334,413 1,488,075
Min. 100 words 243,863 203,245 396,570 238,297 313,334 1,395,309
Min. 150 words 232,717 189,475 365,429 212,733 290,031 1,289,785

Table 5.1: Corpus statistics about number of articles with different length

Average Length left Leftcenter Least Rightcenter Right Total
Min. 2 words 867 549 593 750 570 691
Min. 50 words 893 580 637 775 612 691
Min. 100 words 924 608 676 844 648 732
Min. 150 words 965 643 723 930 690 782

Table 5.2: Corpus statistics about average number of words in the articles

(a) Producers with the most articles (b) Producer with the least articles

Figure 5.1: List of top 20 producers with the most and least articles

38

CHAPTER 5. ANALYSIS

5.2 Corpus Anchor Element Analysis
In this section, we inspect the hyperpartisan corpus for anchor elements. As
it was mentioned earlier in Corpus Construction Chapter 4, we categorized
links into two categories, which are namely internal, and external. Internal
links point to other articles from the same news producer and External links
point to the URLs outside of the news producer. Table 5.3 demonstrates
statistics about the number of links in the corpus in general, as well as the
total number of links for each bias category. In total, we have 6,627,813 links
and approximately 79 percent of all the links are external links. The other
interesting fact is that on average, left category article have 7.45 links per
article, the left-center ones have 5.72, least bias articles have 4.57, right-center
have 3.04, and right bias articles have 4.21 links per article.

Article left Leftcenter Least Rightcenter Right Total

Total 1,545,640 1,230,138 967,071 1,453,404 1,431,560 6,627,813
Internal 368,951 341,425 289,446 141,971 280,257 1,422,050
External 1,176,689 888,713 677,625 1,311,433 1,151,303 5,205,763
Average 7.45 5.72 4.57 3.04 4.21 4.43

Table 5.3: Corpus anchor elements statistics

We also calculate the average number of the internal and external links per
producer. Figure 5.2 shows the regarding statistics in the stacked bar chart in
which the blue color represents the number of external links and the orange
color shows the number of internal links per news producer.

Figure 5.3 displays the top 20 news producers in our corpus which are
referenced in articles from other news producers. At the top of the list, we
have the New York Times1 and Washington Post2 being referenced 135,591
and 97,001 times, both of which are left-wing news producers. Moreover, 7
news producers in this list are categorized as left bias, 6 left-center, 4 right,
and 3 least bias category.

5.3 Duplicate Article Detection
The next obstacle of this thesis was to go through the corpus to examine
the articles for similarity metrics. We wanted to be cognizant of how often

1http://nytimes.com
2http://washingtonpost.com

39

http://nytimes.com
http://washingtonpost.com

CHAPTER 5. ANALYSIS

Figure 5.2: Average number of internal and external links per producer

Figure 5.3: Top 20 news producers referenced by other producers

40

CHAPTER 5. ANALYSIS

news producers reused the content from one another. Therefore, we focused
on finding a way to recognize duplicate and near duplicate articles in the
corpus. To overcome this problem, we employed a part of a pipeline that was
introduced in Alshomary’s thesis [2018] for text reuse analysis.

5.3.1 Text Reuse Analysis Pipeline

The actual goal of this pipeline is to find all possible pairs of text reuse from two
collections of documents. This task has three subtasks including text prepro-
cessing, candidate filtering, and text alignment. Text preprocessing subtask
also has its steps, content extraction, text cleaning, and feature extraction.
However, from the first subtask, we only need to use the feature extraction
step. The second subtask computes the similarity measure and removes the
pairs with low similarity. Computing the similarity measure is the only step
that we used from the second subtask; consequently, we totally ignored the
third one. Therefore, we used our hyperpartisan corpus as an input, then we
employed a representation method based on TF-IDF weighting scheme to rep-
resent each document in the dataset in a set of feature vectors. Then, we utilize
candidate similarity measure subtask, which uses cosine similarty3 method to
perform a pairwise similarity comparison on all the possible pair of articles.
Figure 5.4 displays the statistics about the number of documents in the corpus
that we can keep with different cosine similarity threshold from 0.0 to 1.0.

Figure 5.4: Number of article / cosine similarity score

After extracting pairwise similarity scores, we wanted to decide about which
3https://en.wikipedia.org/wiki/Cosine_similarity

41

https://en.wikipedia.org/wiki/Cosine_similarity

CHAPTER 5. ANALYSIS

similarity score is the most reasonable one to remove duplicate and near du-
plicate articles. To do so, we extract several pairs of articles with different
similarity scores namely, 0.5, 0.75, 0.95, and 0.95. Next, we inspected each
pair manually for text reuse. We then decided to stay with the score of 0.90.
Furthermore, to remove one of the pairs in the corpus and keep the other
one, we utilize a very simple method. The first priority is to keep the article
which was published most recently, and in the cases that articles do not have
a publishing date, we delete one randomly.

5.4 Classification Experiment
In this section, we concentrate on the other important objective of this thesis,
which is developing a pipeline to detect both hyperpartisan news articles and
their orientation as well. Accordingly, we developed a two different pipeline
which gets our corpus as an input and one of them creates a model for hyper-
partisan detection and the other one predicts articles orientation. The hyper-
partisan detector is a binary classifier which predicts if an article is extremely
biased or not, and the orientation detector enjoys a multi-class classifier which
predicts the article bias category such as left, left-center, least, right-center,
and right. For hyperpartisan detector, we balanced the number of articles, and
we used 250K articles from each left and right wings, in addition to other bias
categories we also include 167K articles each.

5.4.1 Logistic Regression

Logistic regression4 is one the most used methods for binary classification
which gives a discrete binary between 0 and 1 as an outcome. It measures
the relationship between dependent variables(labels) and independent vari-
ables(features) and it estimates the probabilities using its regression function.
In our experience, we follow these steps.

• Tokenizing the articles to the words.

• Removing stop words.

• We use the bag-of-words5 model to represent the articles in the vector
space.

• We randomly split the data to train and test data, which share of the
train data is 70 percent.

4https://en.wikipedia.org/wiki/Logistic_regression
5https://en.wikipedia.org/wiki/Bag-of-words_model

42

https://en.wikipedia.org/wiki/Logistic_regression
https://en.wikipedia.org/wiki/Bag-of-words_model

CHAPTER 5. ANALYSIS

• Finally, we trained the classifier using the logistic regression algorithm.

In this approach we produced two different classifiers, the first one is trained to
predict the orientation of the algorithm, and the second one is used to detect
partisan articles from least biased ones. Table 5.4 displays the performance
of this algorithm over our corpus, and we were able to predict hyperpartisan
article with a recall of 0.84, and also we predict the bias category of articles
with a recall of 0.71.

f1 Precision Recall Accuracy

Orientation 0.7077 0.7394 0.7126 0.7126
Hyperpartisan 0.8388 0.8385 0.8390 0.8398

Table 5.4: Logistic Regression outcome

(a) Bias category detection (b) Hyperpartisan detection

Figure 5.5: Confusion matrix of Logistic Regression algorithm

Method Two

This method also works similar to the previous one, However, in this experi-
ence, we used tf-idf6 to convert articles to the vector space. Table 5.5 illustrates
that using TF-IDF is not as successful as bag-of-words model. We achieved
a recall of 0.82 for Hyperpartisan prediction and 0.68 to recognize the bias
category of articles.

6https://en.wikipedia.org/wiki/Tf-idf

43

https://en.wikipedia.org/wiki/Tf-idf

CHAPTER 5. ANALYSIS

f1 Precision Recall Accuracy

Orientation 0.6732 0.7110 0.6807 0.6807
Hyperpartisan 0.8239 0.8236 0.8231 0.8236

Table 5.5: Logistic Regression - TF-IDF

(a) Bias category detection (b) Hyperpartisan detection

Figure 5.6: Confusion matrix of Logistic Regression algorithm

44

CHAPTER 5. ANALYSIS

5-fold Cross Validation

Cross validation7 is a method to increase the stability of the machine learning
method. It tries to both find the correct pattern and remove the noises from
the training data. K-fold cross-validation randomly splits the training data
into K different subsets, then it trains the classifier K time, in each iteration,
it considers one subset as the test data. Finally, the effectiveness of the model
will be increased by averaging the error estimation of all K-folds. We also used
this method in combination with our experience logistic regression algorithm
and using the bag-of-words model, which increased the recall of hyperpartisan
detection to 0.85 and 0.75 for the bias categorization. More detail can be seen
in table 5.6.

f1 Precision Recall Accuracy

Orientation 0.7495 0.7600 0.7522 0.7522
Hyperpartisan 0.8507 0.8498 0.8492 0.8508

Table 5.6: Logistic Regression with 5-fold cross validation

(a) Bias category detection (b) Hyperpartisan detection

Figure 5.7: Confusion matrix of Logistic Regression with 5-fold cross validation

7https://en.wikipedia.org/wiki/Cross-validation_(statistics)

45

https://en.wikipedia.org/wiki/Cross-validation_(statistics)

CHAPTER 5. ANALYSIS

5.4.2 Naive Bayes

Naive Bayes8 is a probabilistic classifier based on Bayes theorem which is
very popular for the text classification. The fundamental rule of Naive Bayes
is the independence of the features, and it presumes that the existence of a
specific feature in a class is unrelated to the presence of any other feature.
The steps that we took to prepare the data is similar to what we had for
Logistic Regression method 5.4.1. First, we tokenize the articles to words,
then we removed the stop words. The next step was to use the bag-of-words
model to represent the articles in the vector space. Finally, we split the data
into training and test set, and we trained the classifier using the Naive Bayes
algorithm. Table 5.7 shows that we reached recall of 0.78 for hyperpartisan
detection and 0.59 for orientation categorization.

f1 Precision Recall Accuracy

Orientation 0.6023 0.6304 0.5954 0.5954
Hyperpartisan 0.7761 0.7784 0.7768 0.7776

Table 5.7: Naive Bayes algorithm outcome

(a) Bias category detection (b) Hyperpartisan detection

Figure 5.8: Confusion matrix of Naive Bayes algorithm

8https://en.wikipedia.org/wiki/Naive_Bayes_classifier

46

https://en.wikipedia.org/wiki/Naive_Bayes_classifier

CHAPTER 5. ANALYSIS

5.4.3 Random Forest Classifier

Random Forrest9 is a supervised machine learning model, and it produces the
model by merging several decision trees to increase the accuracy and stability
of the model. We also utilize this algorithm in our study. Here also we followed
the steps that we had in the Logistic Regression section 5.4.1. The outcome
was not as impressive as our other experiments. The recall value that we
achieved for hyperpartisan detection is 0.73 and 0.38 for the bias category
detection which can be seen in more detail in table 5.8.

f1 Precision Recall Accuracy

Orientation 0.3005 0.5681 0.3887 0.3887
Hyperpartisan 0.7306 0.7384 0.7328 0.7322

Table 5.8: Random Forest algorithm outcome

(a) Bias category detection (b) Hyperpartisan detection

Figure 5.9: Confusion matrix of Random Forest algorithm

5-fold Cross Validation

In this experiment, we train the classifier using random forest and also with
5-fold validation method to make it more accurate. Table 5.9 demonstrates
that the recall for hyperpartisan and bias category detection slightly increased
to 0.75 and 0.41.

9https://en.wikipedia.org/wiki/Random_forest

47

https://en.wikipedia.org/wiki/Random_forest

CHAPTER 5. ANALYSIS

f1 Precision Recall Accuracy

Orientation 0.3300 0.6070 0.4114 0.4114
Hyperpartisan 0.7484 0.7559 0.7501 0.7501

Table 5.9: Random Forest with 5-fold cross validation

(a) Bias category detection (b) Hyperpartisan detection

Figure 5.10: Confusion matrix of Random Forest with 5-fold cross validation

48

CHAPTER 5. ANALYSIS

5.4.4 Experiment on SemEval 2019 Corpus

We produced this corpus for the participants in our SemEval 2019 Task. It
contains 1 million articles, 800K articles for training and 200K articles for the
test set. The training set has 200K left, 400K least, and 200K right articles,
in addition, the test set has 50K left, 100K least, and 50K right articles.
Moreover, we divided the data in the way that the training and test set share
no news producers in common. Finally, the task is to predict the extreme bias
of the news articles. We applied the most successful method that had in our
experiment on this corpus, and consequently, we archive the recall of 0.64. The
main reason that has this decrement in the accuracy is that in the previous
experiment the classifier was trained over data from all the news producers.
However, to increase the difficulty, in this corpus test set and training set have
no news producer in common.

Figure 5.11: Confusion matrix of Logistic Regression with 5-fold cross validation
on SemEval 2019 corpus

49

Chapter 6

Conclusion

In this study, we concentrate on a way to deal with ideological creation and
contribution of political news. To do so, we felt a demand for a decent news
articles dataset, and in order to overcome this issue, we create a hyperpartisan
corpus as the first contribution of this thesis. To begin with, we found a list
of news producers with their corresponding ideological agenda from two trust-
worthy sources namely, BuzzFeed, and Media Bias/Fact Check. In the next
stage, we inspected Facebook pages and sitemaps of the websites of those news
producers, which led us to extract all the links of their news articles. Then,
we utilize the Betaweb cluster, in the combination of Webis Web Archiver
tool to crawl all the links. In this phase, we develop an automatic tool which
does the crawling process in combination with a quality check to guarantee
the quality of the task. In the next step, we developed a wrapper to extract
the main content from HTML pages, which is completely compatible with 358
news producers web layouts. Finally, we construct the corpus of 1.5 million
articles in two different formats JSON lines and XML. The XML format was
built exclusively for the participants of our SemEval 2019 task.

As the second contribution of this thesis, we analyze the corpus to answer
several questions. First, we investigate hyperlinks in the articles, and the way
news articles pointed to one another. Second, we perform a pairwise similarity
check between all the possible pairs of articles in the corpus. This stage helped
us to recognize duplicate and near duplicate articles in the corpus. Finally,
we developed two pipelines, which utilize several machine learning methods
to predict the article’s orientation, and also hyperpartisanship. According to
our best result that we achieved in our experiments, using Logistic Regression
with 5-fold Cross Validation and our pipeline, we were able to distinguish
orientation with ((F1=0.74)) and hyperpartisanship of news articles with a
remarkable score of ((F1=0.85)).

50

CHAPTER 6. CONCLUSION

Future Work
Building on our contributions in this thesis, there are still possibilities to en-
hance the quality of the corpus. One example could be further analysis of the
data and topic classification in order to eliminate the non-political articles. In
addition, there is always a chance to add new articles in the corpus. We can
also take advantage of the statistics we collected to detect duplicate and near-
duplicate documents, and we can go further in this regard to detect possible
text reuse in the corpus. Considering our experiments on the data, we are
looking forward to using another pipeline from Johannes Kiesel[2018], which
owing to time limitation we were not able to utilize it. However, we adopt the
implementation to be compatible with our corpus and it is quite interesting to
figure out how it can perform with a big corpus, that we have constructed.

51

Bibliography

Milad Alshomary. A Pipeline for Scalable Text Reuse Analysis. Master’s
thesis, Bauhaus-Universität Weimar, Fakultät Medien, Computer Science
and Media, July 2018. 5.3

E.L. Bernays and M.C. Miller. Propaganda. Ig Publishing, 2005. ISBN
9780970312594. URL https://books.google.de/books?id=3De8nd_B_
C8C. (document)

Shweta Bhatt, Sagar Joglekar, Shehar Bano, and Nishanth Sastry. Illuminat-
ing an ecosystem of partisan websites. In Companion Proceedings of the
The Web Conference 2018, WWW ’18, pages 545–554, Republic and Can-
ton of Geneva, Switzerland, 2018. International World Wide Web Confer-
ences Steering Committee. ISBN 978-1-4503-5640-4. doi: 10.1145/3184558.
3188725. URL https://doi.org/10.1145/3184558.3188725. 2.2

Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing
on large clusters. Commun. ACM, 51(1):107–113, January 2008. ISSN 0001-
0782. doi: 10.1145/1327452.1327492. URL http://doi.acm.org/10.1145/
1327452.1327492. 4.4.1

Milad Alshomary Benno Stein Matthias Hagen Martin Potthast Jo-
hannes Kiesel, Florian Kneist. Reproducible web corpora: Interactive archiv-
ing with automatic quality assessment. Journal of Data and Information
Quality, 2018. 4.1.1, 4.1.1, 4.1.3, 6

Johannes Kiesel, Martin Potthast, Maria Mestre, Rishabh Shukla, Benno
Stein, David Corney, Emmanuel Vincent, and Payam Adineh. SemEval
2019 Task 4 - Hyperpartisan News Detection SemEval 2019 Task 4 - Hy-
perpartisan News Detection, July 2018. URL https://doi.org/10.5281/
zenodo.1400316. 4.5.2

Lilliana Mason. A cross-cutting calmhow social sorting drives affective polar-
ization. Public Opinion Quarterly, 80(S1):351–377, 2016. doi: 10.1093/poq/
nfw001. URL http://dx.doi.org/10.1093/poq/nfw001. 1

52

https://books.google.de/books?id=3De8nd_B_C8C
https://books.google.de/books?id=3De8nd_B_C8C
https://doi.org/10.1145/3184558.3188725
http://doi.acm.org/10.1145/1327452.1327492
http://doi.acm.org/10.1145/1327452.1327492
https://doi.org/10.5281/zenodo.1400316
https://doi.org/10.5281/zenodo.1400316
http://dx.doi.org/10.1093/poq/nfw001

BIBLIOGRAPHY

Martin Potthast, Johannes Kiesel, Kevin Reinartz, Janek Bevendorff, and
Benno Stein. A stylometric inquiry into hyperpartisan and fake news. CoRR,
abs/1702.05638, 2017. URL http://arxiv.org/abs/1702.05638. 1, 2.3

Iyengar Shanto and Westwood Sean J. Fear and loathing across party lines:
New evidence on group polarization. American Journal of Political Science,
59(3):690–707. doi: 10.1111/ajps.12152. URL https://onlinelibrary.
wiley.com/doi/abs/10.1111/ajps.12152. 1

Tom White. Hadoop: The Definitive Guide. O’Reilly Media, Inc., 1st edition,
2009. ISBN 0596521979, 9780596521974. 4.2.1

Amy X. Zhang, Aditya Ranganathan, Sarah Emlen Metz, Scott Appling, Con-
nie Moon Sehat, Norman Gilmore, Nick B. Adams, Emmanuel Vincent,
Jennifer Lee, Martin Robbins, Ed Bice, Sandro Hawke, David Karger, and
An Xiao Mina. A structured response to misinformation: Defining and
annotating credibility indicators in news articles. In Companion Proceed-
ings of the The Web Conference 2018, WWW ’18, pages 603–612, Republic
and Canton of Geneva, Switzerland, 2018. International World Wide Web
Conferences Steering Committee. ISBN 978-1-4503-5640-4. doi: 10.1145/
3184558.3188731. URL https://doi.org/10.1145/3184558.3188731. 2.1

53

http://arxiv.org/abs/1702.05638
https://onlinelibrary.wiley.com/doi/abs/10.1111/ajps.12152
https://onlinelibrary.wiley.com/doi/abs/10.1111/ajps.12152
https://doi.org/10.1145/3184558.3188731

	Dedication
	Introduction
	Related Work
	Fact Checking and Misinformation
	Ecosystem of Partisan Websites
	Hyperpartisan and Fake News Detection

	Article Collection
	News Producers Discovery
	BuzzFeed Partisan News Sites List
	Media Bias/Fact Check (MBFC)
	Buzzfeed And MBFC Overlap
	NewsIR16 Corpus

	Article URL Collection
	Facebook Pages
	Sitemap
	Link Statistics

	Corpus Construction
	Archiving
	Tool
	Checking The Producers
	Archive Quality Assurance

	Distributed Storage
	Hadoop Distributed File System
	MapFile
	MapFile Creator

	Distributed Archiving
	Task Control Automation

	Main Content Extraction
	Writing the Wrappers

	Corpus Formatting
	JSON Line
	XML

	Analysis
	Corpus Statistics
	Corpus Anchor Element Analysis
	Duplicate Article Detection
	Text Reuse Analysis Pipeline

	Classification Experiment
	Logistic Regression
	Naive Bayes
	Random Forest Classifier
	Experiment on SemEval 2019 Corpus

	Conclusion
	Bibliography

