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Abstract

It is an immensely challenging task for search engines to generate a suitable
snippet, defined as a short description of a web page since the textual content
on the Internet is constantly decreasing and being replaced by the hypermedia.
This work aims to address the issue of web document summarization and
investigate an alternative approach to improve the quality of snippets.

Our hypothesis is that the surrounded texts of a link could possibly be
related to its target and could, therefore, be used to generate snippets. First,
we will describe a pipeline which receives a link as input and retrieves sev-
eral ranked lists of snippet candidate generated from surrounded texts (anchor
fragments) of the links. consequently, we divide this pipeline into three major
procedures. The first one finds and mines the text from the web documents.
The second procedure tries to enhance the quality of the extracted texts and fi-
nally, the last procedure ranks the texts with different methods. Subsequently,
we evaluate the results of this pipeline by conducting an online user study,
which measures the satisfaction of participants on the results. Eventually, the
effectiveness of each ranking method will be assessed based on participants
votes.

Our findings include that (1) the most effective way of ranking fragments
depends on the frequency of the similar fragments existing in different web
pages, and (2) combining the fragments which have an identical part has a
great impact on improving the quality of the fragments.
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Life is like riding a bicycle. To keep your balance, you
must keep moving.

– Albert Einstein



Acknowledgements

A very special gratitude goes out to Prof. Dr. Matthias Hagen and Wei-Fan
Chen. Without their dedication and help, this work would have never been
achieved. I am also grateful to the Web Information System group staff for
giving me the opportunity to be part of their continuous ambitious research.

I would like to thank Prof. Dr. Benno Stein and Prof. Dr. Norbert Sieg-
mund for accepting my work under their supervision.

My sincere thanks also goes to my dear friend Jale Babajani, for her advices
and knowledge and suggestions. There is no way to express the thanks I need
to.

I also thank my colleagues for being always around for help when it was needed.
Namely: Payam Adineh, Milad Alshomary, Arefeh Bahrami, Alexander Bon-
darenko, Ehsan Fatehifar, Nikolay Kolyada , and Negin Yaghoubi Sharif. It
was a fun and enjoyable working with you.

And finally, last but by no means least, I am grateful to my sibling, my mother
and father, who have supported me along the way.

Thanks for all your encouragement!

iv



Chapter 1

Introduction

Textual information is growing dramatically on the Internet and information
retrieval systems have a more difficult task to help users find their desired
information as fast as possible. Not only retrieving the ranked list of relevant
documents for a user’s query is one of the most important tasks of a search
engine, also to present these results is extremely important. Making the results
page informative enough helps users find the most relevant documents to the
searched query faster. The search engines’ results usually possess some parts
of the document’s content alongside with the URL and title of the document,
which will give users a preview of the document. This part of document’s con-
tent is called snippet. Each snippet can have a fixed or variable length which is
usually two or three lines extracted automatically from the target document.
There have been so far several approaches conducted to generate a snippet,
however, there is yet no ideal solution. All of these mentioned approaches suf-
fer from some issues, to describe which, first the approaches have been briefly
introduced and then the issues will also be presented. Consequently, our solu-
tion will be introduced.

Automatic text summarizing techniques play an important role in search
engines to help them select the useful parts of a document for generating snip-
pets. Query-dependent and query-independent are two common approaches
in automatic text summarization that search engines are using to generate
snippets [18]. Most common query-independent approaches are dealing with
identifying important parts of the documents, usually sentences. Furthermore,
meta-data description and other external resources, such as web directories
which are already generated by the authors or webmasters might be used in
this approach [18]. It is also called context-based snippet. Query-dependent
approaches generate the snippet based only on the query terms and not any
other features of the document. This approach extracts the sentences contain-
ing query terms. In the next chapter, these two approaches will be explained
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CHAPTER 1. INTRODUCTION

in more detail.
After having investigated some commercial search engines and also having

read Google webmaster central blog1, we found out that they mostly use the
query-dependent approach and sometimes a combination of both methods.
Usually, they see how relevant the meta-data description and the body text is
to the query, and choose either one or a combination of the two. For example,
in Figure 1.1 the first fragment is the meta-description and the rest is from
the content of the same target page.

Figure 1.1: Snippet from query-dependant(1) and query-independent(2) ap-
proaches

However, these approaches do not always perform very well and might
have some complications. For example, Figure 1.2 shows unfamiliar topics to
the users cause them to enter a short query. As a result, a bad snippet is
generated in the query-dependent approach. In addition, snippet generating
methods cannot produce a good snippet when web pages contain less textual
information. In these cases, search engines usually rely only on the external
resources such as meta-data description or web directories. However, most of
them only use one meta-data description for all pages of the website, while each
page should have a different description. Web directory, on the other hand,
could be considered as a good resource of a web page as well. Web-directory is
an online list of websites which categorizes websites by their subjects. There is
also a short description of the context of each website which has been written
by humans instead of a software. DMOZ, for instance, was the most famous
multilingual web directory. Based on a report from Google blog1, Google used
to use DMOZ’s content when the description for a page was more useful than
the site’s meta description or content. But on 17th of March 2017, DMOZ was
officially shut down, because AOL refused to further support the project. Thus,
the search engines stopped following it. Furthermore, these web directories do
not hold a fresh list of all the information on web pages.

As described above, external reliable resources might help solve the men-
tioned issues, as to that, we presume that anchor fragments can be considered

1http://webmasters.googleblog.com/2017/06/better-snippets-for-your-users.html
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CHAPTER 1. INTRODUCTION

Figure 1.2: Example of a bad snippet: query is only one word and web page does
not have meta-data description. That makes the search engine to take the first
paragraph of web page and generate a bad snippet.

as another external resource to generate snippets. In this work, this idea will
be investigated. What we call an anchor fragment is the sentences around
an anchor text. Anchor text is the text of a link which points to the other
web page. Usually, these anchor texts are relevant, descriptive or contextual
information about the content of the target web page. However, anchor texts
cannot be used in generating snippet because they are too short. In that re-
gard, our hypothesis is that the sentences around the anchor text could be
related to the web page Figure 1.3.

Figure 1.3: Example of anchor fragment: “here” is Anchor Text which points to
“www.docs.docker.com/install” and Anchor Fragment is “Docker CE. Installation
instructions for Windows, Mac and various Linux distros can be found here. Select
the stable channel,and follow the instructions for your particular platform.” which
describes content of the pointed link.
Source: https://www.uni-weimar.de

In this thesis, we would show how to extract the anchor fragments, clean
them and rank them. The main aim of this thesis is to investigate different
methods to rank anchor fragments for each link and then evaluate them to
see which one is better. A few studies have been published similar to this
hypothesis, however, there is still considerable ambiguity in their approaches.
That is why our main focus is not on generating a snippet but studying differ-
ent methods to rank fragments and to select best of them. Afterward, these
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CHAPTER 1. INTRODUCTION

methods will be evaluated to see which one generates better results. Each of
these procedures is described in detail in the following chapters.

The next chapter gives an overview of the current status of research in
automatic text summarization together with web summarization and then a
review on similar approaches to our work. In chapter 3 our approach is redun-
dantly described. First, we explain how to extract the anchor fragments and
their challenges. Some of these fragments might contain noise and therefore
not adequate to be considered as a snippet. In the next step, filtering and
cleaning the fragments is described. And finally, all different ways to rank the
fragments are shown. Our experiments and our approaches are discussed in
chapter 4. For evaluating the results, we conducted a user study; the method
alongside with its results are shown. In the last step, the future steps and
conclusion are discussed in the last chapter.
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Chapter 2

Background and related works

As pointed out previously, automatic text summarization plays an important
role in generating snippets. There are numerous approaches in the field of au-
tomatic text summarization, but not many on the snippet generation. Firstly,
in order to have a better understanding of automatic text summarization,
we will introduce the theoretical background and some important research
in that field. Then, different approaches to summarize web pages will be
demonstrated. Furthermore, some works very similar to this thesis have been
reviewed.

2.1 Automatic text summarization techniques
Automatic text summarization is not an easy task. To summarize a given text,
It is vital to understand it properly and generate a shorter and self-contained
text. Without sufficient linguistic knowledge, it is difficult for machine learning
models to provide a qualified text like humans.

To approach this task, there are two main streams in the domain of auto-
matic text summarization, namely Extractive and Abstractive. In extractive
approaches, the generated text is a composition of important sentences in the
original text. On the other hand, the output of abstractive approaches, in
general, uses different words to rewrite it [2]. In the following, we will discuss
the details and provide examples of this two main approaches.

2.1.1 Extractive text summarization

There are a considerable number of research conducted on this approach. The
aim of all the approaches is to extract the important sentences from the origi-
nal document to show the concept of the document. Luhn [1958] had proposed
the first approach to extract important sentences according to the occurrences
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CHAPTER 2. BACKGROUND AND RELATED WORKS

of “significant” words in the document. Edmundson [1969], later on, described
new methods for screening purposes. Luhn, in his approach, has focused on
finding the most significant sentences based on the frequency of keywords;
Edmundson’s approach calculates the weight of sentences based on three ad-
ditional methods:

1. Cue Method: based on certain cue words in the cue dictionary.

2. Title Method: based on occurrences of certain words in the title and the
headings of a text.

3. Location Method: based on the location of sentences appearing at the
beginning of document or beginning of each paragraph.

Many other studies have been published for extracting significant sentences;
such as location-based summarization. This approach assumes that the first
and sometimes the last sentences of the first and last paragraph of a docu-
ment could be good candidates for the summary of that document. Moreover,
Abrae Os and Lopes [2002] suggested another method to retrieve most signif-
icant paragraphs when the text is long and it is not only on one topic. They
used term frequency/inverse document frequency (TF/IDF) to select impor-
tant paragraphs. Although these approaches seem to be promising, they have
several drawbacks:

1. The generated summary might be incoherent since there are no language
processing techniques used in it.

2. Long sentences, selected to build the summary, have some unnecessary
parts which lead to wasting the space.

3. Sometimes the important information of a text is distributed throughout
the document.

4. The pronouns lose their references in most cases.

2.1.2 Abstractive text summarization

Abstractive summarization methods, similar to humans, do not simply extract
sentences, but they create a new shorter text which describes the most impor-
tant information of the original text in a new way. In other words, they use
natural language processing (NLP) to understand the text and generate a new
shorter text, describing the most critical information of the original text. This
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new text should be grammatical and easy to read for the users and it could con-
tain some sentences that are not in the original text, which requires advanced
language generation and compression techniques and redundancy removal [22].

According to Saggion and Poibeau [2013], abstractive summarization tech-
niques can broadly be classified into two categories: Structured-based and
Semantic-based. Different methods that use structured based approach are as
follows: tree base method, template-based method, ontology-based method,
lead and body phrase method and rule-based method. Similarly, methods
using semantic-based approach are as follows: Multi-modal Semantic model,
Information item based method, and semantic graph based method.

Multi-document summarization, has later been invented as a result of the
increase in the amount of information. This approach tries to make a summary
from many documents with the same topic [7]. Lin and Hovy [2002] proposed
a system to select important content using sentence position, term frequency,
topic signature, and term clustering from multiple documents on the same
topic.

2.1.3 Web summarization

In contrast to the great number of work that has been undertaken in automatic
text summarization, there has been much less work on web summarization.
Several years ago, web summarization techniques were proposed for different
purposes for example for blind people or handheld devices which have a limita-
tion on the screen [6]. Later, search engines used them to generate the snippet.
Different documents’ structure and lack of textual information in world wide
web, make web summarization a very difficult task. Web pages sometimes
contain even more hypermedia information, such as picture, video, and audio
than text. Thus, they should be summarized in a different way.

Generating snippets which, nowadays, is one of the most important features
of a search engine relies on automatic text summarization. Query-dependent
and query-independent which are the common approaches to generate snippets
are described briefly in the previous chapter. Both query-dependant and query-
independent summarization are categorized in extractive text summarization
since they do not generate any new text. Some of the issues of these common
approaches are addressed in the previous chapter as well.

For query-independent approach, search engines simply use common strate-
gies of extractive summarization, such as location-based summarization (first
or last paragraph) [1] or Luhn’s approach [17]. One major issue of these ap-
proaches is dealing with web pages that have information from diverse sources.
A blog, for instance, has usually some posts in each page which are not related
to each other and might be completely different. One post could be about
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the weather and the other about politics. There are also a few other studies
conducted for this purpose. For instance, all the words appearing in the title
and the headings of a web page are considered as important. Therefore, the
weight of a sentence is computed based on the frequency of these words.

On the other hand, in query-dependent approaches, snippets are generated
based on the location of the query terms in the documents. First, they search
for the complete query in the document; if it is found in a phrase, that phrase
will be shown as the snippet and if not, some fragments of the document which
have some of the query terms will be selected [18]. Natural language processing
techniques in query-dependent approach are very useful to find the best part
of the document which is readable, short enough and very similar to the query.

As shown in the first chapter, external resources play an important role
when a search engine cannot rely on the content and meta-description of a
page. There we have also shown that external descriptions of a web page such
as descriptions in web-directories and anchor fragments could be considered as
acceptable external resources. The concept of using anchor text is not new in
web information retrieval, especially in crawling and ranking. Search engines,
for example, follow the links to find the new pages and to rank a page. The
frequency of the pointed link to this page increases the score of the page.

To the best of our knowledge, current commercial search engines have not
used the idea of anchor fragments so far. However, there have already been
some works conducted using anchor fragments for generating a snippet. Ami-
tay and Paris [2000] proposed the concept of using the semantic context of a
link to generate snippets. They mentioned that if the author of a web page
adds a link of another web page into the main content of the page, the anchor
text of this link is most probably relevant in the overall context of his web page.
They used InCommenSense system with the purpose of generating snippets for
search engines. Their idea relies on the structure of hypertext and the way
people describe information of the links. Using this system (InCommenSense),
for each document, they were able to collect all the pages containing this link.
To do so, InCommenSense used a query type (“link: URL”) in a commercial
search engine to fetch the pages having links to the document and then extract
the surrounding paragraph of the link. They categorized the paragraphs into
four different categories:

1. Paragraphs which have only one anchor text and begin with the same
anchor text.

2. The paragraphs which have only one anchor and it is neither at the
beginning nor at the end of the segment.

3. Paragraphs which have only one anchor text but it is at the end of the

8
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Segment.

Figure 2.1: Different types of anchor paragraphs
Source: Amitay and Paris [2000]

According to their study of Amitay [2000], paragraphs in the first category
are most probably about the context of the anchor text. To choose the most
accurate paragraphs among those which have the first pattern, they proposed
a filtering system with more than 60 features, such as length, punctuation,
use of verbs, the position of verbs, etc. Afterward, they compared the results
from more than 700 people with AltaVista Style and Google Style to evaluate
the generated snippets. A snippet in AltaVista style is generated from the
top X words of a document. While in Google style, phrases containing the
query terms are used as a snippet. On average, people preferred the results
generated by the InCommenSense system from anchor texts.

Later, Delort et al. [2003] pointed out some issues of Amitay and Paris’s
approach and improved it by using an algorithm which to select a sentence
about the same topic covering as many aspects of the web page as possible.
Partiality and topicality are some of the issues that they have mentioned about
Amitay and Paris’s work. Partiality is the links which point not to the doc-
ument entirely, but to a part of the document. Topicality is the paragraphs
which are about the content of a target, not the context. For instance, a link
and its surrounded texts points out a specific piece of news from CNN, and
not the context of the CNN. The purpose of their work was to generate con-
text base snippet though. They generated the snippet for each document as
follows:

• Split a document into fragments and then extract all the fragments that
have the links to the document and they want to generate the snippet
for.

9



CHAPTER 2. BACKGROUND AND RELATED WORKS

• Filter the fragments.
Remove the sentences containing more than 7 links, or with a total

number of words larger than 50 or less than 3.
Use part-of-speech (POS) tagger to remove sentences with either no

verb or more than 4 unknown tags.
Keep only words tagged as adjectives, verbs or nouns.

• Measure the overlap between each sentence of the context and text of
the web page.

• Rank them based on this measurement and keep those which have the
highest value in summary.

As research proceeded, Wang et al. [2007] used sentences from anchor texts
and the content of a page to show the feasibility of using machine learning
approaches for sentence selection in generating a snippet. They categorized
sentences to content and context. All the sentences containing a link to the
page are extracted and categorized in context. The models were SVM and
ranking SVM which use “Relevance” and “Fidelity” as the features. The oc-
currences of query terms in a sentence are defined as the “Relevance” feature
and the properties of the sentence such as location and format are defined by
the “Fidelity”. For the evaluation, they used a dataset of 175 documents of 10
random queries from TREC (Web Tracks TREC-2003)1. The content of each
document and their context (anchor text phrases) were extracted. Then they
summarize these 175 documents manually by two human evaluators. Intrinsic
evaluation which introduced by Robertson and Walker [1994] and tests the
summarization system in itself was adopted to measure the precision, recall,
and F1 score. After all, their results showed ranking SVM outperform SVM
classifier.

2.2 Summary
In this chapter, we gave an overview of related work in the field of text auto-
matic summarization and reviewed some works very similar to this study.

According to this research, since 2007 when Wang carried out a research on
anchor fragments there has been no more research on using anchor fragments
for the purpose of generating a snippet. Furthermore, a serious weakness of all
of these three works is that they have focused on generating snippets query-
independent. Their results might have been more interesting if they would
have taken query into account in their approach as well.

1http://trec.nist.gov/overview.html
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Chapter 3

Proposed approach

This section gives you an end-to-end description of our proposed approach
from mining anchor fragments to ranking them.

The approach is divided into four steps which are explained below. The first
step demonstrates how to extract the anchor fragments from web pages. Then,
we explain how to remove noisy data and will show some strategy to reduce
the identical information. In the third step, it is described how to optimize the
system by indexing the fragments and their attributes. Finally, our strategies
for ranking the extracted fragments will be discussed. The most noticeable
difference between our approach to the similar approaches is in our strategies
to rank and retrieve the top fragments. In order to fully understand our
desired system, primarily the architecture of the system is expressed, followed
by a more detailed description of each part.

3.1 The architecture of proposed system
In this section, we show how our suggested system looks like. The goal in our
approach is to provide a system in which its inputs are a link and a query
related to that link, and its output is a ranked list of anchor fragments. These
outputs should be readable and could be considered as a snippet.

11



CHAPTER 3. PROPOSED APPROACH

Figure 3.1: Architecture of the desired system

Figure 3.1 provides evidence that the system has four different parts, namely:
Extractor, Preprocessor, Indexer, and Ranker. In order to make each part more
clear, an example in a real scenario will be described in the following. Assum-
ing that a search engine, in its first page showed 10 documents for a search
query “Wind power”. The search engine wants to use our system in order
to make a snippet based on anchor fragments for the first link in its results.
The inputs will be the link of the first document with a searched query which
is “Windpower”. In the initial stage of the process, the Extractor will take
the link and go through the corpus of web documents. This corpus contains
the raw source of web pages written in HTM. Next, the Extractor tries to
find the documents having this link. Afterwards, it extracts the surrounded
text (fragment) of the found link from each document and sends them to the
Preprocessor. The Preprocessor has some policies to remove or merge some

12
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parts of the fragment or the whole fragment. After anchor fragments have
been cleaned by Preprocessor, Indexer will index the link as key and all the
fragments as values. Fragments are now ready for the next step. Finally, the
Ranker will give each fragment a score in seven different methods, sort them
according to this score and will send them to the output.

3.2 Extracting anchor fragment
Anchor fragment mining is the first step involved in extracting a textual frag-
ment from an HTML document. In this section, methods and challenges of
extracting anchor fragments will be discussed.

The surrounded text of a link is the text which we guess is about the context
of a link. While the first challenge is to find out how many of the sentences
could be about that link, the second challenge is how to extract them among
the unstructured text of a web document.

After having found an anchor text in a text, there are two methods to define
the scope of an anchor fragment. The first way is to take some sentences before
and after the anchor text which we call Surrounded text. The second one is
the whole paragraph of anchor text, named Paragraph. Both of them, have
some advantages and disadvantages, will be described in more details in the
next section.

3.2.1 Surrounded text or paragraph

To deal with Surrounded text method, we first need to tokenize the text into
sentences and then we should know the number of surrounded sentences. A
sentence is a sequence of words which is finished with one of these special
characters “? ! .”. However, there are some cases where these characters are
not always playing the role of the sentence break. For example, decimal point,
email address, or when there is a sentence in quotations inside the sentence.

To find out the number of surrounded sentences a maximum number of
sentences should be defined. In that regard, sentences closer to the anchor
text might be more relevant to it. Furthermore, the maximum number of
sentences should sound rational. For instance, the possibility of the relevancy
of the 10th sentence after the anchor text to the anchor text should not be
high. As soon as we define this number, sentences, which are not related to
the link, could be removed from the fragment. Since we do not incorporate
a highly secure algorithm to detect the relevancy of the link and a sentence,
some of the suitable sentences could be removed through this method.

On the other hand, for the Paragraph idea, we only need to tokenize the
text into paragraphs and retrieve the paragraph having the anchor text. A
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paragraph is a sequence of sentences which is finished by a line break. There
are some hidden characters inside the digital texts which make this task unchal-
lenging for us. Depending on the operating system, the line break is defined
by “\n”, “\r”, or a combination of both.

Although the Paragraph method is very simple and could be more relevant
to the anchor text, it has some drawbacks. This method restricts the scope to
only the sentences inside that paragraph, while in the web, the users’ writing
behavior is different. TL;DR (too long;did not read) is an Internet slang,
indicating that the user will ignore the text in case it would be too long. For
this very reason, web pages’ authors try to make the text as short as possible.
For example, instead of a long paragraph, they break the text into a list and
exhibit it with bullet points. Furthermore, in some documents, anchor text
is in the title of an article and the following paragraph is related to that. In
this case, only the title will be retrieved and the interesting paragraph will
be skipped. In that regard, there was an experiment carried out, in order to
figure out the probability of the mentioned issue.

Experiment

As expressed in the former, the following experiment was conducted to grasp
a better understanding of the paragraph approach. Our interest was to find
the percentage of relevancy of a paragraph to the context of its embedded
link. Furthermore, we wanted to see how often it is possible to have an anchor
fragment in the headings of a web page. We randomly opened fifty different
pages using “www.uroulette.com”, a website to open a random link. Once the
experiment was completed, the following report was delivered:

Figure 3.2: Percentage of occurrences of a link in paragraphs, short sentences, or
headings

14
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Figure 3.3: Percentage of the relevancy of paragraphs to their embedded links

As suggested in Figure 3.2 on average the possibility of the occurrences of
links in paragraphs is high. They are most probably relevant to their embed-
ded link (see Figure 3.3). This test revealed that paragraph method is reliable
enough to be used in our system. Furthermore, this method is relatively chal-
lenge free. As a result, the Paragraph method was used in the Extractor.

3.2.2 Extractor

Distinguishing a paragraph and extracting it in a web page are not as un-
complicated as it sounds. Paragraphs can be tokenized easily with the line
breaks when we are dealing with a document, made of pure text, while web
pages are written in hypertext markup (HTML) format, making the task more
challenging. The simplest solution is to change the HTML to a readable text,
the same as what a user sees in a browser without any hypermedia. To do
that, the content of each node should be extracted and added to a container.
To make this easy, we should parse each HTML as a hierarchy tree structure
using document object model (DOM)1. After parsing it with DOM, each tag
of HTML represents a node of the tree. Therefore, we can go through each
node and its children to find the content and extract them. Furthermore, some
elements need to change to line breaks and some of them to tab spaces. For
instance tag <br/> always means line break. Tag <td> and sometimes tag

1http://en.wikipedia.org/wiki/Document_Object_Model
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<div> could be tab space. Since our goal is to find the surrounded paragraph
of a text, we change both cases to line breaks.

Figure 3.4: Example of DOM hierarchy in an HTML document
Source: From http://wikipedia.org/wiki/Document_Object_Mode

When Extractor is seeking for pages with an interesting URL, it should
end and extract all the anchor fragments pointing to the host of that URL.
For example, if the URL is “www.example.com/blog/1020”, it should extract
all the fragments pointing to “www.example.com”. On the other hand, If we
restrict the scope of Extractor to the exact URL, we would probably end up
with very small anchor fragments or even nothing; because web authors usually
drop some general points about the other web pages and rarely about a specific
page on that website. Since the structure of a website is hierarchical, most of
the times, all the web pages of a website have the same context. The home
page of a Web site often promotes a general idea about the context of the site.
Therefore, the Extractor should extract anchor fragments from all the web
pages having the same host as the interesting URL has. However, the exacted
URLs within fragments should be preserved for the Ranking algorithm.
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Although dealing with HTML to extract paragraphs is challenging, it also
benefits from some advantages. In the Ranking sections, we will explain that
some of the attributes of the text are very useful and important. For instance,
the format of the text such as being bold or italic, the location of text in
the document and etc. A self-contained text cannot hold this information
while in HTML they are added by some additional tags or attributes of a tag.
This is precisely why, during the parsing process, we should preserve this kind
of information with the same format (HTML) or changing them to another
format, which means we will be able to parse them more easily later. For
example, a tag <b> or <strong> makes its embedded text bold, meaning that
this part of the text is more important than the other parts. Or, embedded
text within tags <h1>, <h2> and <h3> shows this text is a fraction of an
article.

Different steps of Extractor are elaborated in the following:

• Extracting the host name of the interesting URL

• The HTML of Webpages having the host name should be parsed with
DOM

• Starting from the root nodes of node BODY

• Going through each node to the lowest level

• Changing nodes "div", "p", "br" "li", "ol" and "td" to line breaks which
in text file it is "\n"

• Keeping important tags

"b", "strong": bold

"h1", "h2", "h3": headings

"em": emphasized text

"mark": marked text

"i": Italic

"a": link

• Generate the output and return it

• Table 3.1 shows the suggestion of Extractor ’s output
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Table 3.1: Suggested output for the Extractor

Key(URL) Target Attributes

Free content and city guide
in your site...

mytt.tv/sitemapcust.html h2:city guide

Medications that may cause
heartburn...

heartburn.about.com/cs/longt... b:heartburn

bookmooch is a community
for exchanging...

es.bookmooch.com/detail/999...

3.3 Preprocessing anchor fragments
Preprocessing plays a very important role in our system. It removes the un-
readable fragments and improves their quality. As we are dealing with un-
structured data from web pages and from unknown authors, it is very probable
that they are vastly noisy and unclear. Furthermore, during our experiments
of parsing the HTML to extract the paragraphs, we ended up with a great
number of meaningless fragments.

There are a great deal of reasons for making the web pages noisy. For
instance, a poorly written text could be found in web pages, blogs, discus-
sion forums, users’ comments, and wikis. Furthermore, web pages usually
contain some information that may not be interesting for the user, such as
information in the footer and navigation menus, or even advertisements. Gib-
son et al. [2005] in their study has provided evidence that 40% to 50% of the
information in the web is noisy and this volume is growing at a rate of between
6% to 8% per year. This noisy data makes our extracted anchor fragments
noisy or in the other word unreadable. Figure 3.5 is an example of an anchor
text in a noisy web page.

Figure 3.5: The extracted text of this anchor fragment will be "TRENDING: MIT
ROMNEY | RON PAUL | RICK" which is a meaningless phrase.

Discovering a pattern or using machine learning are some of the approaches
to preprocess data. It is well known that an annotated dataset is needed to
apply any algorithm of machine learning for preprocessing. Regarding our time
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restriction and budget, first, we investigate to identify a pattern to find out if
it could be useful or not.

To establish a pattern, we need to manually check some of the data and
define some rules. Therefore, we manually categorized 4000 of the extracted
anchor texts from different links into two categories: meaningless and mean-
ingful. An anchor fragment is meaningless when it is unreadable or it is not
fit enough to consider it as a snippet. We collected some additional labels for
meaningless fragments to determine the reasons for making them meaningless.
Therefore, each fragment could incorporate more than one label. Finally, we
came up with 3057 meaningless fragments (around 75% of 4000) and seven
different reasons that make them meaningless, which will be explained in the
next section.

3.3.1 Features of meaningless fragments

As formerly demonstrated, we did an experiment to find some pattern which
makes the anchor fragments meaningless. As a result, five different reasons
were identified, which will be explained in more detail in this segment.

Figure 3.6 illustrates the number of meaningless fragments for each reason.
Although the number of meaningless fragments with the label of No Sentence
is the largest issue (2365) which is around 24% of all, considering Too Long
and Too Short jointly as one label, which describes the length of fragments,
will account for the largest one (together 2551 around 26%). The number of
links, fragments having more than one link, has the next largest amount of
meaningless fragments around 20%. Fragments including stop phrases, have
also similar amount to the number of links label, around 18%. The chart shows
two more labels which have the smallest numbers: Different Language around
3% and 8% for Contain Date Time.
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Figure 3.6: Reasons which make the anchor fragments meaningless

Although the number of meaningless fragments with label of No sentence
has the largest number (2365) which is around 24% of all, Too long and Too
short could be combine to one label describing the length of fragments and
be the largest one (together 2551 around 26%). Number of links, fragments
having more than one link, has the next largest amount of meaningless frag-
ments around 20%. Fragments having Stop Phrases has also similar amount
to Number of links label, around 18%. The chart shows two more labels which
have the smallest numbers: Different Language around 3% and 8% for Contain
date time. Each of these reasons is explained in the following:

Length of fragments

As evident in Figure 3.6, short and long sentences are the most likely causes
of making fragments meaningless. Due to the unstructured data in the web,
there are some possibilities to have some fragments containing text with no
end of sentence punctuation. HTML errors, such as unclosed tags, are another
reason letting the system extract a very long sentence. For these reasons, our
system might extract very short sentences.
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Figure 3.7: Reasons which make the anchor fragments meaningless

Figure 3.7 provides clear evidence that, sentences with the length of more
than 400 and less than 30 characters are always meaningless. However, as
there were not enough annotated fragments, we did not completely rely on
this report.

Fragments without sentence

A big portion of meaningless fragments had a label of No Sentence. This label
was defined for the fragments which do not have the structure of a sentence.
Table 3.2 shows some anchor fragments without any sentences. A sentence is a
set of words, containing at least a subject and a verb, that expresses a thought.
A simple pattern is to tokenize sentences and then check if each one has the
structure of a sentence or not. In our case, the occurrence of a verb in the
sentence could be enough regardless of expressing the thought (main clause).
POS tagger, which is a well-known procedure in NLP and a framework or piece
of a software to assign parts of speech, such as Noun, Verb, Adjective and etc,
can be used to identify verbs in a fragment.

Table 3.2: Some examples of extracted fragments which does not have sentence
structure

- author michael pollan on this topic here
- deepak chopra audio book
- Brian Rudy Recent blogs 10 Feb 2012.
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Fragments having links

Anchor fragments benefiting from more than one link are another reason caus-
ing the system to extract meaningless anchor fragments. Links in the naviga-
tion bar, footer or link farm web pages are the most common source of this
problem. A link farm is an expression for any group of web pages all linking
to one another. They do that for the purpose of increasing their score for
search engines. Nowadays, search engines are improved enough to recognize
such pages and consider them as Spam pages although there are still lots of
them on the Internet.

Figure 3.8: A diagram of a link farm. Each circle represents a website, and each
arrow represents a pair of hyper-links between two websites.
Source: www.wikipedia.org/wiki/DLink_farm

Fragments having Date Time

The occurrence of a date time in a fragment does not necessarily make it noisy
or unreadable, however, it does make it a bad fragment to consider as a snippet.
Therefore, we should only add a tag to these fragments to reduce their score in
the ranking process. “comment about robots.net on April 2, 2012”, “28 March
2011 by lonely planet” or “September 8, 2011, Szev report” are some examples
to support this idea. Figure 3.9 provides evidence that, one of the big sources
of these kinds of fragments is comments or forums.
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Figure 3.9: Example of links with date time
Source: www.ben.stupidfool.org

Fragments in different language

Anchor fragments which have a different language than the language of their
target web page (the content of their embedded link) are considered as mean-
ingless fragments. For instance, when a web page is in English, it could have
some anchor fragments in any other language. Since the goal is to make a
snippet about this web page and it is in English, there is no need for the
anchor fragments which are not in English. Figure 3.10 provides an example
on an anchor fragment extracted from a Persian language blog which points
to a news in bloomberg.com. This piece of news is English, while its anchor
fragment is in Persian.

Figure 3.10: Example of a fragment in different language than its embedded link
Source: www.jadi.net
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Fragments with stop phrases

Stop phrases, which are the most common phrases appearing in the fragments,
also showed a great portion of meaningless fragments. Regarding the Consis-
tency rule for web designers, they try to have very common patterns in their
content which are very familiar to users. For example, instead of an informa-
tive text for a link, they use common anchor texts, such as, “Click here”, “next
page”, “«”, “»”, and etc., which will lead to the appearance of stop phrases in
the fragments. According to our experiment, occurrences of such stop phrases
in fragments was a reason to make a fragment meaningless. Therefore, we need
to identify them and try to remove them from the fragments.

There is a simple solution, which is partially automatic, to identify stop
phrases. By tokenizing the texts to N-gram Word and counting the frequency
of each token, we can make a list of most common phrases. Because the number
of very long stop phrases will not be very high, we can restrict the scope of
tokenizer to 8-gram. Now, if we run this algorithm on our extracted anchor
fragments corpus, there will be a great number of good common phrases among
them, which can not be considered as stop phrases, such as, “I am”, “we are”,
“he should”, “if you want to”, “on the other hand”, “it will be a”, and etc. For
this very reason, this part could not be applied automatically and has to be
checked manually afterward. As soon as we sort the list from high to low, we
should check them one by one and take the stop phrases to a new list which
is called stop phrases list. During our experiment, which will be explained in
the next chapter, we made a list of stop phrases containing 200 of them, some
of which are illustrated in Table 3.3.

Similar fragments, Redundant information

Removal of fragments redundancy is one of the crucial steps to optimize the
system and make it ideal. During our experiment, which will be explained in
the next chapter, we came up with a great number of fragments which were
either identical or very similar to each other. Furthermore, some of these frag-
ments could be generated with the common approaches of snippet generation
(query dependent and independent); while, we need fragments which are dif-
ferent regarding the goals of the system. In the following, some ideas have
been proposed regarding each.

There are lots of reasons causing the system to generate similar fragments.
For instance, an advertisement for a website has usually a link and system
would extract it as an anchor fragment. Since this advertisement has the same
content in different web pages, the system will extract all of them with an
identical content. In addition, Sidebar, Footer, and Header of the website are
usually identical for all of its web pages. As a result, links which are in these
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Table 3.3: Some examples of stop phrases extracted in our experiment

you are here home download read buy online for more information

for more information on for more information about read the full article

below are links to listed below are links listed below are links to

links to weblogs that to learn more about for more information visit

can be found at all text is available the rest of the

click here to read the full reviews on

to share with friends click here for find out more about

share with friends more information about the learn more about the

click here to read to find out more click here for more

read the rest of read the full you are here home

parts are the other resources causing the system to generate similar fragments.
To avoid having fragments similar to the snippets which might be generated

with the common approaches (query dependent and independent), there is
a simple solution. As the common approaches rely on the content of web
pages, we should remove those of the extracted anchor fragments which are
very similar to the content of their target or their meta-data description. To
do so, we should extract all sentences of the target of each link altogether
with its meta-data description. Then, the fragments which are very similar
to these sentences (query dependent and independent) should be removed and
the similarity between each fragment and these sentences should be measured.

To remove the rest of redundant fragments, very similar fragments should
be removed and fragments which differ in some parts should be combined to
one fragment. You can see a good example in the Figure 3.11.
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Figure 3.11: A good example of combining very similar fragments

Although similar fragments are not valuable in our system, we may need
them when we are ranking the fragments. One of our ranking fragments meth-
ods is based on the frequency of similar fragments, which we will explain it in
the next chapter. Since this method only needs the number of similar frag-
ments, we may only keep one of these similar fragments with the number of
its frequency. This should add to one of the fragment attributes and later in
ranking part, we can use this number. As already explained, similar fragments
with one host name are not valuable and therefore, only fragments with a
different host name should be counted.

To find and remove very similar fragments, they should simply be compared
with each other. We define “very similar fragments” as fragments which are
almost identical to each other regardless of case sensitivity of the characters,
stop words, non-alphabet characters, such as, punctuation marks and numbers.
For instance, this fragment “The company, which Hardwick co-founded in 2012,
did not respond” should be identical to this phrase “Company, which hardwick
co founded didn’t respond”. Thus, as soon as we change all the characters
to lowercase, we should remove all of their stop words and then remove non-
alphabet characters. Moreover, the Stemming algorithm can be applied to
the fragments to remove more redundant fragments. The Stemming algorithm
identifies the root or stem of a word. For example, the words “argue”, “argued”,
“argues”, “arguing”, and “argus”, all can be stemmed to “argu”. In Table 3.4 a
good example is demonstrated.
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Table 3.4: All of these fragments will be identical after applying Stemm algorithm
and removing stop words

fragment After stemm and stop words removal

Here you can find chinese new year

Find chines year lesson plan activFind chinese new year, lesson, plans , activi-
ties and more here

Find the chinese new year, lessons, plans and
activities

You can find more about the chinese new
year, lessons, plans and activities here

Combining the fragments which have an identical part is a very complex
process. To find the identical part of each fragment, each fragment should
be tokenized to N-gram Word. Then each token of each fragment should be
compared with all the other tokens. To make this a little bit easier, we can
limit this algorithm to find the overlapping of each token with fragments when
it occurs only at the beginning of fragments. As a result, each token should
be compared to the fragments and not to the tokens of fragments, resulting in
decreasing the computations to a high extent. Furthermore, since there will
be too many identical phrases up to three words, each token should at least
have four words. Table 3.5 pictures some of the combined fragments.

Table 3.5: Some example of combined similar fragments

Result of combination procedure

- Book reviews and compare prices for carruth hayden, chatwin bruce, costikyan
greg, sterling bruce, burnejones edward, crane hart, cavelos jeanne, cadigan pat,
carr emily, chalker jack

- Website for favorite baby names, boys name asher, popular girls names , appellation
mountain, nameberry nine, unusual names for boys, baby name indiana, unique
names for boys, jewel names, top unisex names, names that end with x

- More info about anaphase i, anaphase ii, gene
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3.3.2 Preprocessor

As already described, we are seeking for a pattern to distinguish the fragments
which are not suitable to be considered as a snippet. This section explains what
exactly this pattern is. In the previous chapter, we extracted some features
which make the anchor fragments Meaningless. We need to investigate more
on these features because the number of fragments in our experiment was not
high enough to rely on this report.

Some features only make some parts of the fragments noisy. For instance,
if a fragment contains stop phrases, it does not mean that it is a bad fragment
and by omitting that part we can save this fragment. Therefore, fragments
having data time, stop phrase or different language should not be removed
completely, we should only remove that part containing these features. When
we remove a part of a fragment, we should check it with the length threshold
which has been defined in the Extractor in order to make sure if it can still
pass this condition, otherwise it needs to be removed.

Very short fragment, less than 30 characters, was another reason of making
fragments meaningless. The goal of our system is not to make the snippet but
to suggest some fragments which are the good candidates to be considered as
fragments. A short fragment can be combined to another one and generate
a good fragment later. Consequently, our threshold should only restrict the
maximum length of fragments. Although fragments without sentence struc-
ture could be one of the issue making fragments meaningless, there could be
some fragments without any verb but a very good candidate to consider as
a fragment. For instance, “An Unpublished Essay on the Trinity Jonathan
Edwards (1703-53)” or “A Brief Declaration and Vindication of the Doctrine
of the Trinity” are two long fragments which we found later on the Internet.
This kind of phrases are usually written for a title of an article and when they
contain a link, our system will extract them as anchor fragment which does
not have the structure of sentence but it is readable and very good to con-
sider as a snippet. Accordingly, we did not apply this feature to the pattern
for recognizing the meaningless fragments. Our suggested features to identify
meaningless fragments are elaborated in the following:

• Fragments which their length are more than 400 characters should be
removed

• Fragments which have more than two links are inside them should be
removed

• Stop phrases should be identified and removed from the fragments

• Date time patterns should be identified and removed from the fragments
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• Language of the target of each fragment should be identified and each
parts of fragment which is in different language should be removed

3.4 Indexing anchor fragments information
In order to optimize speed and performance in our system, we will show how
indexing can be used and what information we need to index in this part.
Indexing is a technique in the information retrieval to access the data quickly
without scanning all the available data. As the ranking algorithm in our system
happens online, when a user enters a query, the system should retrieve a ranked
list of the fragments as fast as possible.

Although the amount of anchor fragments for each link is not huge, the
ranking algorithm could be very complex, consequently causing the system to
work extremely slowly. For each request, the ranker needs to scan all frag-
ments, extract those belonging to the request. Then it should extract some
information from each fragment and finally rank them based on its algorithms.
However, some parts of ranking algorithm rely on the user’s query and there-
fore, ought to be done online. Hence, all the steps before the ranking shall
be processed and all information we need in ranking could be prepared and
indexed. Consequently, the ranking algorithm will process the information
faster.

The required information in indexing can be divided into two parts. The
first part is for all the information belonging to anchor fragments, such as text
attributes (being bold or in the heading), embedded links and the frequency
of the similar anchor fragment. The second category keeps the information
from the target of anchor fragments together with their home pages. Main
content, First paragraph, Important sentences, Meta-data description, Title,
and headings are some of the information which can be extracted from the
target or home page of each link and be indexed. In the next chapter, we will
explain how to extract this information, and the reason that we need them one
by one.

3.5 Ranking anchor fragments
In this section, the different strategies will be discussed to rank the fragments,
namely the most important part of the system. When the last steps have
been completed, we have some fragments for each URL which are meaningful
and readable but would not be necessarily considered as a snippet. As it is
not easy to know which fragment is the best candidate for the snippet, the
methods which can help us choose the best candidates, should be investigated.
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We describe how to sort suggested snippets based on their score of similarity to
six different resources. Furthermore, another approach will be explained which
is based on the frequency of the similar fragments from different resources.

Since six of our suggested methods are based on the similarity between two
texts, our suggested algorithms to measure the similarity will be explained at
first.

3.5.1 Computing the similarity

Measuring similarity in text retrieval information is usually between a short
text and a long text (document). In our system, we need to compare two short
texts, fragments up to 400 characters and the extracted text up to one para-
graph. Therefore, we should use different methods to measure the similarity.
Term Frequency Score and ROUGE metric are our two measurements, which
we suggest to use. We have proposed to use Term Frequency, in the case one of
the texts is too short, up to five words and Rouge metric when they are longer.
These two methods are described in the following along with their algorithms:

Term frequency score

Term frequency is how frequently a term occurs in a particular document or in
our case fragments. Suppose we have a set of fragments and plan to find the
most relevant one to the query, “symptoms of the heart attack”. A simple way
to begin, is by removing fragments that do not contain all four terms “symp-
toms”, “of”, “heart”, and “attack”. Nevertheless, we would still be left with
many fragments containing some of them. Then, we should count the number
of occurrence of each term in each fragment. This is called term frequency.
Regarding [web.stanford.edu/class/linguist289/luhn57.pdf], we can measure it
by this formula:

TF (t) =
(Occurences of term in document)

(Total number of terms in the document)
We can improve this algorithm to involve not only the fragments containing

the exact terms but also fragments which have synonym or stem of each term.
Furthermore, we should skip the stop words in both query and fragments
to make the process simpler. As soon as stop words are removed from the
fragments, Stemming, which has been explained in the last section, should be
applied to them. Then all the synonyms of each term have to be extracted
and involved in the comparisons. There are some databases which possess all
the synonyms of words. For example, WordNet could be used if dealing with
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the English language. WordNet is a database of English words linked together
by their semantic relationships. The pseudo-code of our suggested algorithm
is in the following:

Algorithm 1: Coumpute Term Frequency score
1 function CoumputeTermFrequency (query, fragment);
Input : String query, String fragment
Output: Decimal F1_Score
/* Remove stop words */

2 query = RemoveStopWords(query);
/* Stem words */

3 stemmedfragment =ApplyStemming(fragment);
4 stemmedfragmentWords=TockenizeWords(stemmedfragment);
/* Initialize an ampty list for synonyms and tf for

computing term frequency */
5 listOfSynonyms= null;
6 tf= 0;
/* Iterate over each word of query */

7 foreach word in TockenizeWords(query) do
/* Get synonym of each word */

8 synonymWords= GetSynonymList(word);
9 foreach synonym in synonymWords do

10 stemmedOfSynonym = ApplyStemming(synonym);
11 wordNumber=CountWordInText(stemmedOfSynonym,stemmedfragment)

tf += wordNumber / GetSize(stemmedfragmentWords);
12 end
13 end
14 return tf ;
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Rouge

In recent years there has been considerable number of metrics to automati-
cally evaluate summaries. ROUGE is the most widely used metric for auto-
matic evaluation. Lin [2004] introduced a set of metrics called ROUGE, or
Recall-Oriented Understudy for Gisting Evaluation, to evaluate the quality of
a machine-generated summary (System) by comparing it to human-generated
summaries (Reference). There are several ROUGE measures which we explain
the most broadly used ones briefly here:

ROUGE-N: How many overlaps with the words (and/or n-grams) between
the human reference summaries appeared in the machine-generated summaries.
This works based on recall-based measure and comparison of n-grams. For
instance, ROUGE-1 refers to the overlap of unigrams between the system
summary and reference summary. ROUGE-2 refers to the overlap of bigrams
between the system and reference summaries. The score is computed as:

ROUGE −N =
Number of overlapping n-grams

Total number of n-grams extracted from refrence summary

ROUGE-L: This measures longest common subsequence (LCS) of texts.
Two summaries are more similar when the LCS between them are longer in
this metric. The advantage of this metric is that there is no need to define the
length of n-gram. Although this metric is more flexible than the previous one,
it has a drawback that all n-grams must be consecutive.

The pseudo-code of our proposed ROUGE-N algorithm is discussed in the
following:
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Algorithm 2: Compute RougeN metric
1 function ComputeRougeN (query, fragment);
Input : Integer nGRAM , String refrenceSummary, String

systemSummary
Output: Decimal F1_Score
/* Remove stop words in both refrence and system summary */

2 refrenceSummary = RemoveStopWords(refrenceSummary);
systemSummary = RemoveStopWords(systemSummary);
/* Stem words in both refrence and system summary */

3 refrenceSummary = ApplyStemming(refrenceSummary);
systemSummary = ApplyStemming(systemSummary);
/* Generate two list of 1 to N gram for both system and
refrence summary */

4 refrenceSummaryNGrams =
GetNGram(ngram,refrenceSummary);
systemSummaryNGrams =
GetNGram(ngram,systemSummary); /* Initialize an ampty
list for synonyms and overlapp for computatng overlapps */

5 listOfSynonyms=null; overlap = 0 /* Iterate over all generated
NGrams of systemSummary */

6 foreach systemSummaryNGram in systemSummaryNGrams do
/* Split each NGram to a list of words */

7 unigramList = TockenizeWords(systemSummaryNGram);
foreach unigram in unigramList do

8 listOfSynonyms.add(GetSynonymList(unigram)) /* for each
synonym, check if the reference summary contains
it. if at least one matches, then this is a hit */

9 foreach synonym in listOfSynonyms if
(refrenceSummaryNGrams contains synonym) /* remove
it from refrenceSummary NGrams */

10 refrenceSummaryNGrams.remove(synonym); /* Increase
the overlap */

11 overlap += 1;
12 end
13 end

/* Compute Precision and Recall */
14 recall = overlap / hsrefOriginal.size() precision = (overlap) /

refrenceSummaryNGrams.size() /* Compute F1 score */
/* **beta for F1-score * */

15 beta=1.0; f1 = ((1 + Math.pow(beta, 2)) * recall * precision) /
((Math.pow(beta, 2) * precision) + recall) return f1;
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3.5.2 Ranking methods

This part of the thesis discusses the methods for ranking anchor fragments.
For each method, we will describe the reasons that we believe a method could
be useful. Furthermore, how to prepare data and how to rank them will be
shown.

For most of the methods, we need to extract some information not only
from the target of fragments but also from their homepage. Because in the
Extractor, we extract all anchor fragments which have the root of our URL,
it is possible to generate a context-based snippet as well. We define context-
based snippet as a snippet which is about the whole website, not a specific
web page. To do so, we need to extract information from the main pages of
each website as well. The initial page of a website is called main page or home
page. Therefore, we have an alternative ranked list which, in case the score of
ranked fragments are not high enough, the system can rely on. The methods
will be explained in more detail in the following.

Frequency of similar anchor fragments

One of our hypothesis is that if an anchor fragment with very similar words
has been repeated in different web pages, it could be important. For exam-
ple, when five anchor fragments of a web page mentions something similar
about cosmetic and only one mentions something else, the possibility of the
relevancy of fragments which mentioned cosmetic should be higher than the
others. Because the links which are in Sidebar, Footer, and Header of a web-
site are usually identical, their anchor fragments will be identical as well. As
a result, in this method, such anchor fragments will get a high rank. To avoid
such problem, our solution is to count only the frequency of identical fragments
which are from different hosts and simply remove the identical one with the
same host name.

In the last chapter, the method to count the similar fragments has been
explained in detail. Furthermore, we mentioned that we index this number
as an attribute of each anchor fragment. In addition, another method was
demonstrated to combine the fragments which start with an identical phrase.
The combined fragments will get more score per merge and therefore, they are
usually on the top of results of this method. In this method, we only need to
retrieve a sorted list of the anchor fragments based on their frequency number
which has been computed already.
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Title

The site title appearing on the top web browsers, usually contains very im-
portant information on the web page and could be very useful to rank our
fragments. A title tag is paramount for the web authors as it helps search
engines understand what a web page is about and search engines show this ti-
tle to users in their result page. Therefore, anchor fragments containing more
title words could possibly be more vital than the ones not possessing any title
terms. Because search engines do not display all the titles, usually up to 60
characters, and omit the rest by inserting “...”, this title is usually very short.

The title of a Web page can be extracted easily from the title field of the
HTML document. A web page title exist in the top of an HTML document
inside the <head> tag:

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Bauhaus-Universität Weimar: Programme structure</title>
</head>

As a result of the limitation of search engines for showing the web page title,
this title is usually very short. Therefore, for measuring the similarity we
should use our Term Frequency algorithm. A very common way to write the
title is to have the company or site name in the first part of the title and then
depending on the content of each page generate a unique text. It could also
be the other way around which would be even fitter for SEO (search engine
optimization).

Heading and title of articles

Similar to the titles of web pages, headings or titles of the content of web pages
also hold very important information. Headings describe what a paragraph or
piece of text is about. They are signposts guiding readers through a web page.
Furthermore, they have an effective impact on search engines’ rank algorithm.
Therefore, we could extract this information from the target anchor web pages
and rank our fragments based on the similarity to them. Anchor fragments
containing more title words could possibly be more influential.

Headings can be simply extracted from a HTML document by identifying
Heading tags. Heading tags have a top-down hierarchy from <h1> to <h6>:

<H1>This is heading 1</H1>
<p>This is some text related to heading 1.</p>

35



CHAPTER 3. PROPOSED APPROACH

<H2>This is heading 2</H2>
<p>This is some other text related to heading 2.</p>

<H3>This is heading 2</H3>
<p>This is some other text related to heading 2.</p>

The most important heading tag is <H1> which is usually used for the
main title of contents. Other headings, usually, are being used when there is a
hierarchical structure in the content. As a result, <H2> comes before <H3>
within a topic. <H4>, <H5> and <H6> rarely exist in web pages. Usually,
when the content is very long, authors might use them to add an extra layer
to the page structure. Furthermore, they can be used for sidebar or footer
headings.

Ranking the fragments based on extracted heading is similar to the title
approach but we can improve it by involving the importance of heading tag
(number of heading tag shows the importance). Therefore, fragments which
are similar to <h1> heading should have more raking score than the others
similar to an <h2> heading.

Using heading on the Internet is not always for the purpose of important
information. Sometimes, web authors, use headings as text format to empha-
size something which is not related to the content of web page; for example,
“Follow us on Tweeter” which is written in an <h2> tag could be found in
most of the websites. accordingly, we should remove the irrelevant heading.
There are some methods to find out the context of a web page. When we know
the context, we can remove the heading not relevant to the context. Since our
goal is to generate fragments for a query dependant snippet, we can only rely
on the users’ query. As a result, headings which do not have any query terms
should be removed.

Meta-data description

Meta-data description, which is very well known in this work, could be also a
good resource to rank anchor fragments based on their similarity to it. In the
first chapter, we explained that one of the most common ways for generating
snippet is using the exact meta-data description. Therefore, we can extract
this information from both web page and its homepage. As the length of
this information is variable, we should measure the similarity either with TF
algorithm or ROUGE algorithm depending on the length of this information.

Similar to the other methods, meta-data description can be extracted easily
from a HTML document:

<!DOCTYPE html>
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<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta tag="description" content="page’s description" >

Significant sentences (Luhn’s approach)

Important sentences of a web page are very reliable resources to rank the
fragments based on them. Using Luhn’s approach, these sentences can be
extracted. As mentioned in the second chapter, the first approach in auto-
matic text summarization and the snippet was Luh’s approach. To apply his
algorithm, we need to find the most frequent words first. Stop words should,
however, first be removed from the document. As soon as we find the top
words, we can find the top sentences. This can be done by counting the num-
ber of top words in each sentence. Therefore, the top sentence contains most of
the top words. This method works well if there is enough textual information
in a web page. As this text will be a long text, the ROUG algorithm should
be used.

Applying Luhn’s approach to a web page is a bit challenging. Web pages
are written in HTML and therefore should be parsed to the text. Style sheets,
scripts, comments, and meta-data tags are some of the components of a web
page to make it user-friendly, interactive, responsive for different size of screens
and optimize it for the search engines. If we extract the significant sentences
from this data, we might come up with some Javascript or CSS code. The
simple way is to parse this document to a readable text using DOM, similar to
what we do in extracting the anchor fragments. Furthermore, web pages usu-
ally have some information, not related to the topic of that page. Figure 3.12
shows that most of the web pages usually have a header, navigation menu,
footer and some advertisements on their sidebar and the main content in the
middle. Therefore, we should extract the significant sentences from the con-
tent of web pages. Kohlschütter et al. [2010] proposed an approach to extract
a cleaned HTML for scraping content out of boilerplate like navigation and
advertisements. An implementation of their system which is described in their
study is available under an Apache 2.0 license2.

2http://github.com/kohlschutter/boilerpipe
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Figure 3.12: Common anatomy of web pages

First paragraph

Similar to the last method (significant sentences), the first paragraph of a web
page might hold an overview of a web page. To extract the first paragraph we
need to parse the document and extract the main content of it. To prevent
any errors such as extracting a heading as the first paragraph, we can count
the sentences of the founded paragraph and if it has more than one sentence
then it is the first paragraph. This method also works properly, if there is
enough textual information in a web page. Since this text paragraph should
at least have two sentences, the length of this text would be long; therefore,
the ROUG algorithm should be used.
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Similarity to query

The query is another available data, based on similarity to which, the anchor
fragments can be sorted. Search engines retrieve a page in their result when
it is very relevant to the user’s query. Therefore, this query should have very
relevant terms for us to rank our fragments.

3.6 Summary
In this chapter, we presented our approach towards building a system for
extracting and ranking meaningful anchor fragments from a web corpus. At the
beginning of the chapter, a formal overview of the architect of the system has
been given. Then our suggested strategies to extract fragments from HTML
documents, and remove the meaningless fragments was presented. Later in
the chapter, all of our suggested approaches to rank the fragments were given.
In the following chapter, we proceed to implement the system and analyze the
output.
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Evaluation

The experiments in this chapter are performed in order to ascertain aspects of
the effectiveness for the proposed ranking methods. Here, we will first intro-
duce the common methods of snippet evaluation and propose our subjective
evaluation method. Then, we describe both the implementation of the system
to develop the output (anchor fragments), and the steps of conducting the user
study. Finally, the result of our evaluation will be shown and analyzed.

4.1 Common approaches
Inasmuch as there is no clear-cut definition for a high-quality snippet, the
evaluation and assessment of an effective snippet has been a controversial issue
in text retrieval information. Before describing our subjective evaluation to
assess the quality of our ranking methods, we will explore the other possible
snippets’ methods of evaluation.

Since a snippet could be considered as a summary of a webpage, sum-
mary evaluations methods could be taken into account to evaluate them. Al-
though automatic text summarization dates back to Luhn’s work in the 1950s,
evaluation of a summary has still remained a complicated task. The biggest
problem is that there are no criteria for the definition of an ideal summary.
Broadly, the most common evaluation methods can be categorized into the
fully-automated evaluation, semi-automated evaluation, and manual evalua-
tion. There is a number of literature referring to these methods, such as Jones
and Galliers [1996] and Sanderson [2000].

According to Saggion and Poibeau [2013] study, the readability of a sum-
mary and inclusivity of the important parts of a document are of a major diffi-
culty in the fully-automatic and semi-automatic summary evaluation. There-
fore, the simplest and safest way to evaluate a summary is to do so manually,
which is done by human evaluators. Human experts take many factors into

40



CHAPTER 4. EVALUATION

account when scoring a summary, namely: grammer, non-redundancy, integra-
tion of most important pieces of information, structure, and coherence [2].

Although a snippet could be considered as the summary of a web page,
our snippet candidates, anchor fragments, are not necessarily the summaries
of web pages. The anchor fragments could be written by machines or humans,
and might only hold some information about their targets. As a result, we do
not follow the summary evaluation approaches.

However, since the goal of our evaluation is to assess the quality of the
ranking methods, and this evaluation is subjective, human judgment has been
utilized for evaluation.

The theory of using human judgments for evaluating snippets is pretty
simple; however, there exist some drawbacks. First, it is very costly due to the
scale of the task. Second, the time restriction brings about the need for more
evaluators in number to assess the anchor fragments. Nevertheless, thanks
to the availability of crowdsourcing platforms like Crowdflower1 and Amazon
Mechanical Turk2, we were able to assess all the available data in a short period
of about 48 hours via MTurk. A moderate budget was also provided by the
University, which made it possible for us to run the task for a small number
of fragments. Another impediment of manual evaluation, making it a complex
task, is that the human evaluator may not be able to perceive exactly what we
are looking for. In order to tackle this, we made up with a very informative
instruction page to make the demand explicit. In the next section, these steps
are specified in more detail.

4.2 Experiment setup
In the previous chapter, it was explained, that we used human judgments
via a crowdsourcing platform to assess the quality of anchor fragments. In
order to provide the data to evaluate, we initially implemented the system by
following the suggested approaches for the Extractor, Preprocessor, and Ranker
to generate anchor fragments. Since the Indexer is helpful for a real scenario
such as search engine, we did not implement it in our experiment. Then, we
assess the outputs of each ranking method by running an online survey via
Amazon Mechanical Turk (MTurk), which is an online platform that allows
researchers annotate data with the help of human evaluators time-effectively.

1www.figure-eight.com
2www.mturk.com
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4.2.1 Dataset

Regarding the architecture of the system, which is elaborated in the third
chapter, our system needs a list of links and related queries to each link as the
inputs and also a corpus of web pages as the web corpus. Furthermore, the
Ranker needs the content of the target of links together with the content of
the home page of links.

For the web corpus we used a full version of ClueWeb123 corpus. ClueWeb12
contains around 733 million pages crawled from a large general English-language
web corpus, collected between February 10, 2012, and May 10, 2012.

Generating some random queries was a pretty straightforward task, but
since the relevant links to these queries from the same corpus (ClueWeb12) of
the Extractor was required, using a search engine which works with this corpus
was essential. Fortunately, we have found some queries and their relevant web
pages in some of the last Text REtrieval Conference (TREC) tracks. We used
the queries and relevance judgments fromWeb Tracks in TREC-2013 4, TREC-
20145 and Session Track6 in TREC-2014. A total of 50 queries were available
for each task. Therefore, 150 queries with all of their relevant judgments were
chosen, about 19975 relevant documents.

Since only Trec-Id of the relevant web pages is available in TREC judg-
ments’ results, the links for these Trec-Ids needs to be detected. Furthermore,
the content of this document along with the content of their homepage is also
required. Therefore, we first implemented a MapReduce job to go through all
of the available documents and extract the relevant document together with
their URL from all of the selected Trec-Ids. In addition, we extracted the
content of home pages of extracted URL. In total, 29802 documents were ex-
tracted. As some of the URLs can have the same hostname, 19975 documents
of the URLs and 9827 documents their home pages.

4.2.2 Implementation of approaches

As the size of ClueWeb is enormous, 5.54 TB compressed and 27.3 TB uncom-
pressed, we integrated MapReduce techniques to our system to process the
documents efficiently. The Extractor and the Preprocessor procedures were
distributed into several machines using Hadoop. Due to the complexity of the
Preprocessor, only some parts of the Preprocessor were used in each node,
namely: links and length threshold. Therefore, counting and removing similar
fragments and combining them have been applied after this step.

3www.lemurproject.org/clueweb12.php
4www.trec.nist.gov/data/web2013.html
5www.trec.nist.gov/data/web2014.html
6www.trec.nist.gov/data/session2014.html
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Figure 4.1: This pie chart shows the statistics of preprocessing which has happened
during the extraction of anchor fragments

Figure 4.2: The bar chart shows the statistics of preprocessing which has happened
separately after extracting then anchor fragments

As mentioned in the index, it was necessary to extract some more informa-
tion from the target and the homepage of each link. Based on the proposed
approaches, meta-data description, title, headings, important sentences, and
the first paragraph of these web pages (target of links and their home pages)
were extracted. Since the main content of web pages, excluding header, footer,
sidebars, and advertisements, was required for some of this information, we had
to extract these contents as well. We used Boilerpipe [13] to extract the main
content of web pages.

To develop a list of stop phrases we followed our proposed approach in
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chapter 3, and consequently, a list of 200 stop phrases were built after having
checked them manually.

Finally, we generated the outputs (anchor fragments) for all the available
links. Having all the seven ranking algorithms implemented, for each URL we
saved 12 ranked lists of fragments separately. As we had five more information
for the information extracted from the homepage of the targets, for each URL,
we got 12 ranked lists. We used common open source Java and Python libraries
for all NLP processes which are elaborated in the Table 4.1.

Table 4.1: Libraries or frameworks which are used in the implementation

Processor Library

Stemmer Porter stemmer[20]

Pos Tagger Maximum entropy tagger[24]

Language Detection TIKA - Language Detection7

Stop words list NLTK’s list of English stop words

Date time finder datefinder8 which is a python module

4.2.3 Mturk setup

In this section, we walk through all the steps carried out to conduct the survey
on Mechanical Turk. First, the preparation of required data will be described.
Then, we explain different parts of the user interface. Afterwards, our strate-
gies to improve the quality of the survey and prevent cheating are elaborated.
finally, the general result of the task will be discussed and in the future sections
we will analyze the results.

There are some specific definitions in MTurk, which should be made clear.
Each ratting task, done by multiple workers is called a Human Intelligence
Task (HIT). Each HIT, done by a worker is called Assignment. Workers are
also called Turkers in MTurk. The reward is the amount of money, defined for
the assignment.

Scenario

In the following, the desired scenario of this study will be explained. In order to
have the opinion of the workers about the anchor fragments, the workers would
be shown a screenshot of a webpage, a query and bunch of fragments to rate.
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The workers should see a page with instructions and the task to fulfill when
they start working. As a consequence, the instruction should be very short and
easy to understand. In case of the complexity of the task, an extra tutorial
would be required to make the task more clear. When a worker understands
the task and starts it, she should see a screenshot of a web page along with its
related query and a bunch of fragments ready to rank. He or she can rank each
fragment to one of these labels: Bad, Mediocre, Good, and Awesome. Finally,
we are able to collect the rates and analyze them. Table 4.2 describes the
rating scheme we developed for evaluating the quality of fragments on MTurk.

Table 4.2: This scheme shows the definition of each rate

Rating Details
Bad The fragment has major problems.
Mediocre The fragment has a minor problem.
Good The fragment is very good but has some minor problems.
Awesome The fragment does not have problems and it is awesome.

Data

To set up the task, each HIT needs three main data. First of all, workers
need to see the content of target links to have an idea about the expected
fragments. Therefore, we decided to capture a screenshot of each webpage.
Secondly, workers should see the related query to this link. Third, the most
important data is a list of anchor fragments categorized by seven ranking
methods.

In order to prepare these data and in regards to our budget, we should
choose some of the available anchor fragments which comply with some con-
ditions. However, regarding the preparing of screenshots, there occurred an
issue. ClueWeb has only the content of web pages and not the other resources
such as images and script files. Therefore, the screenshots captured from this
corpus are useless. To solve this problem, the easiest way was to check the
available content of the URL on the Internet to see whether it is still the same
as it was in 2012 or not. In this case, we simply capture web page entirely
with an add-ons called FireShot9.

On the other hand, the number of fragments for each HIT should pass a
threshold to be fair for the workers and quality of the task. We computed
the cost of each HIT by estimating the time that takes a worker to complete
a HIT. Therefore, we should have a fixed number of fragments for each HIT.

9addons.mozilla.org/en-US/firefox/addon/fireshot
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Furthermore, to assess the ranking methods we should have the same amount
of rated fragments for each method. The list of ranked fragments of some
ranking methods could be zero or a big number. For example, if a page does
not have a meta-data description, the output of related method will be empty.

To sum up, the required data was prepared, taking these two conditions
and our budget into consideration. Firstly, we run a pilot study, 3 HITs ratted
by 3 workers, in order to estimate an average time for completing a HIT, and
also to discover the user interface’s bugs. After dividing the average time in
the budgets, we found out that we can run the task for 600 HITs. As we
wanted to have at least three different opinions of workers for each anchor
fragment, we prepared data for 200 HITs. In order to benefit from various
information, we chose four links from 50 queries. We chose links which have at
least three fragments for each ranking method and their content is the same
as the available content on the Internet.

User Interface

In order to adapt the task (rating fragments) to the MTurk format, we designed
two web-based graphical user interfaces using HTML and Javascript. One
template page which allows the workers to rate the fragments called HIT page
as well as a tutorial page to make the task clear for the workers, which is called
tutorial page.

We divided the HIT page into two sections: Instruction, and Task. Fig-
ure 4.3 reveals the instructions and descriptions of the task, and workers are
able to open the tutorial page in it. Figure 4.4 exhibits the other part which
is the main section. Workers could see a clear screenshot in each HIT and a
query related to this web page with a fragment which they should rate. In
order to keep the query and web page always on top, only one fragment was
shown to the workers each time. After they rate each, the next one was shown
to them automatically. To let the workers correct their mistakes, we made a
navigation bar below the fragment which allows them to go forward or back-
ward. Furthermore, by validating the rates we forced them to rate all of the
fragments and then let them submit the HIT.
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Figure 4.3: A screenshot from the instruction of the task
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Figure 4.4: A screenshot from the main task, wrokers can rate each fragment and
navigate among them

The tutorial page was created in an interactive way. We generated a step-
by-step introduction for a sample HIT. In the first steps, we described all
different elements of the page and then in the rest steps helped them to figure
out how to rate and the reason that a fragment could be good or bad.

More screenshots and information about the user interface are available in
Appendix A.

The quality of annotation

The quality of the data produced by the workers has particularly been impor-
tant for us since we planned to rely on them to judge the ranking methods.
Furthermore, we needed to make sure, that workers understand the task fully,
perform it properly, and also prevent cheating in the task. That is precisely
why, during the experiment, we used MTurk methods to restrict the cheat-
ing and misunderstanding of the task as well as improving the quality. Then
we measured the inter-rater agreement of the data to check their extent of
reliability.
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MTurk offers several qualification features to assure the quality of the re-
sults automatically, such as using experienced workers and assignments rejec-
tion method. To direct our HITs to the most experienced workers, MTurk
offers two procedures; it either recommends to use the master workers who
are qualified by MTurk itself or to specify additional qualification filters which
should be achieved by workers in order for them to be authorized to work. In
addition, we can manually approve or reject the assignments in MTurk. There-
fore, using some strategies, we can find out the results of assignments which we
are sure they come from cheatings or misunderstandings and rejecting them.

Since Mturk charges an additional fee for Master workers, we define two
common and useful filters for the workers. We set the “Number of HITs Ap-
proved” at a level greater than 100 approved assignments. This means that
only workers who have completed 100 assignments with approved status will
have access to our HIT. In addition, we set the “HIT Approval Rate” at greater
than 80%. This filter chooses the workers who have the approval rate from
other requesters(the owners of the task) in the MTurk greater than 80%.

Our strategy to prevent cheating and do not have results which came from
a worker who did not understand the task is to use Known Answers. In this
strategy, workers are given some questions, to which the requesters already
know the answers, therefore requesters can see how workers are performing. In
order to generateKnown Answers in HITs, We injected three random irrelevant
fragments or even meaningless fragments into each HIT. Because they were
irrelevant to the web pages, we expected workers to choose rate Bad for such
fragments. In case, they vote anything than Bad we consider that fragment
as a spam. Our policy was to reject the HITs which had at least two spams
and one error could be ignored due to the difficulty of the task. Finally, we
revealed this strategy to the workers who complained about the rejections.

Statistics

According to the summary of the task from Amazon we found out some inter-
esting statistics. The main phase of experiment, consisting of 197 HITs, was
completed in less than 6 hours and it cost $283, including Amazon fee. In total
about 300 workers worked on the annotations and spent in average 4 minutes
per assignment. 135 annotation sets were rejected which corresponds to 22%
of the all assignments.

Reliability and Validity

Before evaluating the results, we did an inter-rater agreement test to see how
reliable our rated fragments are. Inter-rater agreement measures the degree of
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agreement among workers. There are several approaches to measure inter-rater
agreement ,each of which is appropriate for a different situation.

Depending on type of the data, there are appropriate measures to compute
inter-rater agreement, such as Percentage Agreement, Cohen’s Kappa, Fleiss’s
Kappa, and Krippendorff. Some of these measurements get results just in the
case that there are only two raters and categories while some of the others work
for multi raters and categories. More information is available in Artstein and
Poesio [2008] study, giving an overview of all of these measures. Possible values
for these statistics range from 0 to 1, with 1 indicating perfect agreement, 0
indicating completely random agreement. Landis and G. Koch [1977] provided
Table 4.4 for interpreting k values.

Table 4.3: Equivalent values of the labels

Rate value

Bad 1

Mediocre 2

Good 3

Awesome 4

Table 4.4: Interpretation of Fleiss kappa(from Landis and G. Koch [1977])

k value interpretation

<0 poor

0 - 0.2 slight

0.21 - 0.4 fair

0.41 - 0.6 moderate

0.61 - 0.8 substantial

0.81 - 1.0 almost perfect

According to Artstein and Poesio [2008], we used Fleiss’ kappa to measure
the inter-rater agreement. Fleiss kappa is suitable for situations in which there
are multiple raters with different examples. Therefore, as we have multiple
raters and categories we chose this method. The first step to measure the
data was to change the rates label to numbers as Table 4.3 explicitly pictures.
Then we used DKPro Agreement, a novel Java-based software library [19] for
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computing multiple inter-rater agreement measures using a shared interface
and data model.

After computing the Fleiss’ kappa measures for each ranking method, we
generated Table 4.5 and computed the level of agreement according to Inter-
pretation of Fleiss’ kappa from Landis and G. Koch [1977] as following:

Table 4.5: Inter-rattor agreement results for each ranking method

Direction Fleiss’ Kappa k value Agreement level

Title 0.551 Moderate

Query fragmetns 0.589 Moderate

Paragraph 0.483 Moderate

Meta-data desc 0.495 Moderate

Significant sentences 0.503 Moderate

Headings 0.569 Moderate

Frequency 0.600 Moderate

Total 0,542 Moderate

As seen in Table 4.5, the level of agreement for all seven methods is between
0.48 to 0.60 which is equivalent to “Moderate” referring to interpretation table
from Landis and G. Koch [1977]. Since “Moderate” agreement is good enough
in inter-rater agreements, we proceed the evaluation.

4.3 Evaluation Results and Discussion
In this section, using the data we gathered from the user study, we investigate
the effectiveness of ranking methods, which has been the primary goal of this
study. First, we compared the average evaluation scores from both top three
and top one fragments of all the seven ranking methods. Afterward, we applied
significant statistics into our results to see whether the methods show any
significant differences in comparison with one another.

In order to analyze the effectiveness of each ranking method, we computed
the numbers of votes of all the anchor fragments per ranking method. The
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total number of HITs was 200, each of which has 21 fragments rated by three
workers. In total, we had 12600 rated fragments, as each ranking method has
1800 fragments. Since three of the Hits were from the pilot study, they were
not counted in statistics. We categorized anchor fragments by their ranking
method and counted their rates to generate Table 4.6 and Figure 4.5.

Table 4.6: Number of votes for all rated fragments per ranking method categorized
by rates

Rates
Method Bad Mediocre Good Awesome
Frequency 30% (519) 30% (516) 26% (457) 14% (241)
Heading 35% (608) 33% (579) 21% (368) 10% (178)
Mata-tag description 50% (892) 24% (430) 19% (329) 7% (122)
Significant sentences 52% (921) 29% (509) 14% (254) 5% (89)
Query 30% (532) 29% (511) 31% (551) 10% (179)
Paragraph 53% (940) 23% (413) 18% (314) 6% (106)
Title 48% (852) 24% (421) 20% (346) 9% (154)

Figure 4.5: Percentage of votes for all rated fragments per ranking method, each
color represent a rate as they are described in the legend of the chart

As obvious in Table 4.6 and Figure 4.5, it seems that workers were not
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satisfied with the result. A big portion of votes belongs to label Bad (42% of
all the votes) which means fragments with this label were either meaningless or
not relevant to the web page. This result might be explained by the fact that
the task was not fully understood by the workers as well. They rated better
for the fragments which are ranked based on the frequency of them, 40% of
the fragments in this method are Good or Awesome. Frequency method has
also the least votes for Bad. In the second place, workers liked fragments
which are ranked by Heading and Query which include more than 30% Good
or Awesome. Although about 30% of fragments ranked by the Title method
are also good, a big portion of them is Bad. On the other hand, workers voted
Bad for more than half of the fragments ranked by Paragraph, Meta-data
description, and Significant sentences while less than 30% of them are ranked
as Good or Awesome.

Since the first fragment retrieved from the Ranker is more important than
the second and third one, we count the rates only for the first fragment of each
method and generated Table 4.7 and Figure 4.6. As evident in the Figures,
results are somehow similar to the last results. Frequency method enjoys
the best votes (Good, Awesome) and least Bad votes. More than half of
the fragments ranked by Paragraph, Meta-data description, and Significant
sentences again have the worst votes. We can see the Bad votes for Title
method decreased to 23% and they added to Mediocre label which it has
increased to 37%.

Table 4.7: Number of votes for the first fragments of each ranking method catego-
rized by rates

Rates
Method Bad Mediocre Good Awesome
Frequency 8% (49) 38% (222) 39% (232) 14% (88)
Heading 20% (117) 34% (198) 33% (196) 10% (80)
Mata-tag description 49% (291) 24% (142) 20% (118) 7% (40)
Significant sentences 55% (324) 22% (130) 17% (98) 5% (39)
Query 13% (76) 37% (221) 35% (209) 10% (35)
Paragraph 53% (314) 23% (134) 18% (105) 6% (38)
Title 23% (135) 37% (217) 27% (161) 9% (78)
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Figure 4.6: Percentage of votes for first rated fragment of each ranking method,
each color represent a rate as they are described in the legend of the chart

In order to find out if there exists a significant difference between the
ranking methods, the t-test was applied on our data, since t-test determines
if two sets of data are significantly different from each other. We compared
each ranking method with all the others. Specifically, we mapped the rating
from bad to awesome onto the range from 1 to 4 and gained the average
votes of the fragments. Table 4.8, which is a confusion matrix, depicts the
computed p-value of each pair. As it is clear, there are only five significant
values in this result. Frequency method has more significant values than the
others. According to Table 4.8 Frequency method is significantly different
than Meta-data description method and Paragraph method. On the other
hand, there is not a significant difference between Frequency, Heading, and
Query methods. Moreover, the related table demonstrates that the results
from Paragraph method to Query method are significantly different and the
same applies for Significant sentences method to Title Method.
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Table 4.8: This confusion matrix depicts the computed p-value between ranking
methods

Methods Headings Significant.S Meta.D Paragraph Query Title

Frequency 0.643 0.153 0.003 0.027 0.237 0.136

Headings 0.133 0.0128 0.443 0.459 0.210

Significant sentences 0.292 0.484 0.136 0.028

Meta description 0.089 0.242 0.162

Paragraph 0.017 0.770

Query 0.746

Bold values are the significant results. The result is significant at p < .05.

4.3.1 Discussion

After having investigated more in the data, some interesting results were de-
tected. Firstly, we realized workers liked the combined fragments more than
the others. Secondly, we understood that the algorithm behind the ranking
methods changes the effectiveness of the method a lot.

There is a noticeable difference in the number of good rates for fragments
which had an identical part and were combined into one fragment. As it is
clear in Figure 4.7, workers rated these kinds of fragments mostly Good (44%
Good, 19% Awesome). According to this result, we can prove that the strategy
to combine the very similar fragments will improve the quality of fragments.

55



CHAPTER 4. EVALUATION

Figure 4.7: Percentage of each rate for fragments which were combined

As we explained the two algorithms behind each ranking method in the
last chapter, it might have been noticed, ranking methods based on Term Fre-
quency are significantly different than methods based on ROUGE algorithm.
Paragraph, Meta-data description, and Significant sentences methods rank the
fragments based on ROUGE algorithms while Title, Headings, and Query rank
fragments based on Term Frequency algorithm. To prove this, the p-value of
the votes categorized by these two algorithms was computed. This time we
applied Chi-Square statistic, which is commonly used for testing relationships
between categorical variables [11], to compute the p-value. Table 4.9 describes
the results of this computation and shows that p-value is less than <.05 which
shows the significant difference between them.

Table 4.9: This contingency table provides the Chi-Square statistics between two
ranking algorithms

Method Bad Mediocre Good Awesome Total

ROUGE 2753 (2381) [57] 1352 (1436) [5.02] 897 (1085) [32.60] 317(415) [23] 5319

Term Frequency 1992 (2363.55) [58] 1511 (1426) [5.05] 1265 (1076) [32] 511(412) [23.55] 5279

Total 4745 2863 2162 828 10598

The chi-square statistic is 238.8238. The p-value is < 0.00001. The result is significant at p < .05.
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4.4 Summary
In this chapter, we first presented the common approaches for evaluating the
snippets in the field of information retrieval. We explained that human judges
should be used and the common methods for that were also described. Fur-
thermore, we describe all the steps that we have done in order to do our
evaluation, using human judges. We showed how we implemented the system
and generated some anchor fragments in order to use them during the user
study. Subsequently, different steps to design and run the user study in a
crowdsourcing platform has been described. Finally, the results of the user
study were illustrated and discussed. In this section, we found out fragments
which ranked based on their frequency had a significant difference in compar-
ison with the other methods. Some other reasons that let the workers like the
fragments have been discovered and discussed as well.
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Conclusion and Future work

In this work, we introduced a novel idea to generate some fragments which
might be good candidates for a snippet of a webpage. We proposed a pipeline
which can mind the surrounded text of an anchor text and rank them with
seven different methods. In order to assess the effectiveness of each ranking
method, we conducted a user study and evaluate the results out of them. In
this chapter, we highlight our main contributions and findings. We also present
the possible areas of improvement on the current work and applications.

5.1 Contributions
We started our research by asking the following research questions; (1) What
are the issues in common snippet generation approaches and why do we need
alternative approaches? (2) How does this alternative approach work? (3)
How effective is this approach?

To answer these questions, in chapter 1 and chapter 2, we reviewed com-
mon approaches to generate snippet and described the drawbacks. Then, we
described our hypothesis and some similar studies to this hypothesis along with
their issues. Our hypothesis, proposed in chapter 3, was a pipeline with three
main parts, namely: Extractor, Preprocessor, Ranker. The Extractor pro-
posed for mining surrounded text of an interesting anchor text from HTML
files. Then, the Preprocessor was introduced to show the possible ways of fil-
tering out the meaningless fragments and improving the quality of meaningful
fragments. Finally, the Ranker was proposed to show some different methods
of ranking the extracted fragments.

To answer our last research questions, in chapter 4, we showed all the
steps for implementing the proposed pipeline in order to generate some sample
anchor fragments to assess the effectiveness of each ranking method. As soon
as we generated the anchor fragments, we conducted an online survey via a
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crowdsourcing platform. After clarifying the task for participants, we asked
them to rate our generated fragments. Finally, we analyzed the rated fragments
to see how participants like them and consequently, we evaluated this data.

Future Work
Generating snippet based on anchor fragments could have more scenarios and
it is beyond the scope of this work. Therefore, our findings open the door for
further and more focused research on the topic of web page summarization.

We believe this contribution could be used by the search engines in order
to improve the quality of the snippets. Therefore, future work should concen-
trate on enhancing the quality of ranking methods to retrieve only the best
candidate for anchor fragments. More broadly, further research is also needed
to determine how a search engine can integrate an anchor fragment into its
snippet pipeline. Figure A.2 illustrates one of the possible ways of improv-
ing the quality of snippets by using anchor fragments. As evident, a search
engine in both methods, query dependent and independent, should follow its
methods to generate a snippet, however, they compare the generated snippet
with a threshold to see how good it is; in case it is not good, they use anchor
fragments.

According to the workers’ votes, we found out the ROUGE algorithm be-
hind some of the ranking methods decreased the quality of ranking and may
not be suitable for our pipeline. As a result, it needs to be investigated more
specifically in this field to find new algorithms or improve the existing one.
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Figure 5.1: This diagram shows the integration of anchor fragments into a search
engine
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Appendix A

HIT Interface

This appendix describes the instruction of the HIT in the experiments. In
addition there are some screen shots from tutorial page.

NSTRUCTIONS
You will see the content of a website and some ‘snippets’ relevant to this
website and you should rate them.
‘Snippet’ is a short summary of the content of a website that appears in the
search results and helps users to judge about the content of the target website.

How to rate:

• Imagine you have searched something and you have the result of the search
engine

• You read the snippet and then you will decide to open it or not.

• We will concentrate on one of the result which we call it "Founded webpage"

• First, We show you the content of the founded webpage.

• Then we show you bunch of fragments which are somehow related to this
webpage

• You should rate each of them based on how good they could be considered
as an snippet.

• Before starting, we recomend you to work on this example to underestand
the instruction better.

• Your rate is very important for our system, please rate each of them
carefully otherwise we can not approve your "Hit".
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Figure A.1: Example of bad snippet

Figure A.2: Example of bad snippet
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