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Abstract

This work aims to understand the text reuse phenomena in Wikipedia and to
quantify the amount of Wikipedia content reused on the web. In particular our
research questions are; (1) What kinds of text reuse cases are within Wikipedia
articles? and (2) How much of the web content is just a reuse of Wikipedia
text? Following that is the question of how much ad revenue is generated by
this reused content.

To answer these questions, the first contribution of this thesis is building
a framework for extracting text reuse cases from big datasets. The framework
is a form of a pipeline of tasks that use heuristic based algorithms that run
in a distributed manner on a cluster of machines. Using this framework we
extracted 100 million text reuse cases from Wikipedia articles, and 1.6 million
text reuse cases between Wikipedia and a sample of the web. Besides that,
this framework could be further used in future work to extract text reuse cases
from other big datasets.

The second contribution of this work is analyzing the extracted text reuse
cases from Wikipedia. We describe two situations in which a piece of text is
reused and provide simple heuristics to automatically classify text reuse cases.

Third, we present and describe the text reuse cases that were extracted in
between Wikipedia and the web. We quantify the amount of reused content
in a sample of the web and present a basic approach for estimating the ad
revenue generated by reusing the free content of Wikipedia.
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The roots of education are bitter, but the fruit is sweet.
– Aristotle
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Chapter 1

Introduction

Text reuse is a broad concept that refers to any kind of reuse of a text, whether
it’s quoting, paraphrasing, translation or summarization. Text reuse phenom-
ena became ubiquitous particularly with the rapid growth of the Internet and
digital media. Potthast [2012] describes the current state of text reuse as an
arms race between technologies that ease the access to text and information
on the one hand, and technologies that detect text reuse on the other.

Building frameworks for extracting and analyzing text reuse is of high im-
portance. It helps in both uncovering information flow between entities on the
Internet as well as revealing the influence they have on one another. For ex-
ample, Clough and Wilks [2001] analyzed the influence of the Associated Press
in the UK on the state of journalism and how various news pieces could be
rewritten under different conditions like author perspective, time available for
edits and other factors. Citron and Ginsparg [2015] analyzed text reuse cases
in the scientific community and how text is reused between scientific papers.
In the eTRAP 1 Project, studying text reuse is used for better understand-
ing the interaction between ancient societies. Plagiarism detection is another
important application of text reuse detection. Potthast et al. [2013] give an
overview of the plagiarism detection tools and methods that were proposed in
the PAN 2 competition in 2013.

Wikipedia is a multilingual encyclopedia that forms a collaborative environ-
ment where the reader can also be an author and edit/add content. It gained a
lot of success and grew rapidly (see Figure 1.1) to become a giant public source
of information. A recent study by Thompson and Hanley [2017] showed how
Wikipedia has a potential influence on the scientific community. Being free to

1Electronic Text Reuse Acquisition Project https://www.etrap.eu/
2https://pan.webis.de/
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CHAPTER 1. INTRODUCTION

use and easy to access, Wikipedia became a source for text reuse as can be seen
through the existence of many web sites that are merely a replica of Wikipedia
content, though with an addition of ads. These ads generate revenue to these
websites while Wikipedia gains nothing. This phenomenon was studied by
Viégas et al. [2004] where they analyzed the effect between Wikipedia and
other big websites. Driven by our curiosity, we formulate and investigate the
following research questions:

1. What kinds of text reuse occur among the articles within Wikipedia?

2. How much of the web is just a reuse of Wikipedia content? Furthermore,
how much revenue is generated - due to the ads in the reusing websites-
from the free content of Wikipedia?

To answer these questions, the first contribution of this work is creating
a framework for extracting text reuse cases from big datasets through cluster
computing. The framework is in the form of a pipeline that consists of three
main subtasks. The first subtask is text preprocessing, which takes the dataset
as an input and produces a list of paragraphs represented as a feature vector
for each document. The second subtask is candidate elimination. It takes two
datasets of feature vectors (feature vector for each paragraph) as an input and
produces candidate pairs of documents. In the final subtask, we perform a
detailed text alignment between document pairs to produce the exact pieces of
text that have been reused between any candidate pair of documents. Further
details on the pipeline can be found in Section 3.1 and 3.2. We applied the
framework to extract text reuse instances (1) within Wikipedia in Section 3.3
and (2) between Wikipedia and the Common Crawl 3 corpus as representative
sample of the web in Section 3.4.

Using this framework we made the text reuse extraction task feasible on
big datasets. Through a set of heuristics, the framework could be configured
to solve a trade off between time of processing and accuracy of the results. We
were able to make the computation time needed to extract text reuse cases
within Wikipedia equal to 15 days and in between Wikipedia and the web
(Common Crawl) equal to 200 days.

The second contribution of this work is towards analyzing the extracted text
reuse cases in two situations: within Wikipedia itself and between Wikipedia
and a sample of the web. In the case of Wikipedia’s internal texts, we extracted
around 100 million text reuse case generated by 360k documents, which makes
up around 9% of Wikipedia. We provide insights on the possible causes that

3http://commoncrawl.org/
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CHAPTER 1. INTRODUCTION

might lead to a text reuse situation and we identify 2 classes of text reuse;
content reuse and structure reuse. We describe and characterize each class and
provide basic heuristics for automatic classification. In the case of text reuse
between Wikipedia and the web, we randomly sampled 10% of the Common
Crawl and ran the pipeline in between the sample andWikipedia. We extracted
around 1.6 million text reuse cases. Around 16k web pages from this sample
have a text reuse case with a Wikipedia article. We further analyze and explore
these text reuse cases and give an estimation of the amount of revenue that is
generated by reusing the content of Wikipedia.

To make it possible for further exploration and presentation of the text
reuse cases in future work, the final contribution is a web tool that helps in
exploring different dimensions of the text reuse cases that were extracted by
the pipeline framework. More details on this tool can be found in Section 4.3.

The next chapter gives an overview of text reuse detection and the popular
approaches that address this task. The third chapter outlines our approach
and the pipeline architecture along with the experiments performed to con-
struct the pipeline tools and their parameters. In chapter four, we present
the results of applying the pipeline on Wikipedia text internally, as well as
between Wikipedia and the web. The final chapter discusses our findings and
offers insight into opportunities for potential future work.

3



CHAPTER 1. INTRODUCTION

Figure 1.1: The growth of Wikipedia content over time measured in gigabytes.
Commons [2018]
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Chapter 2

Background And Related Work

In this chapter we will give a background and overview of related work. We
start by presenting some of the work that has been done on text reuse detection
and its applications. Second, we review some of the work that was attracted by
the importance and controversy of Wikipedia. We conclude this chapter with a
short survey of nearest neighbor search in big datasets and cluster computing.

2.1 Text reuse detection
Extracting and analyzing text reuse between entities helps in many applica-
tions. In the digital humanities, Büchler et al. [2010] used a text reuse detection
framework to understand the interaction between the authors in ancient Greek
literature. Clough and Wilks [2001] quantified the influence of the Associated
Press in the UK on journalism by analyzing text reuse cases. Their work also
helped in understanding the various ways of reusing texts and paraphrasing
as subject to the perspective of the journalist, time available for edits and the
space provided for the news in a journal. In the scientific community, text
reuse happens very frequently between researchers due to the accumulative
nature of knowledge. Citron and Ginsparg [2015] analyzed text reuse cases
using the arxiv.org as a scientific corpus. They reported an expected negative
correlation between the amount of text reuse in an article and its influence.
Plagiarism is one form of text reuse, where the plagiarizer copies pieces of text
from other sources without referencing them and tends to disguise the plagia-
rized text through different levels of paraphrasing and obfuscation. Potthast
et al. [2013] give an overview on plagiarism detection methods that were pro-
posed in the fifth international competition on plagiarism detection run by the
PAN organization.

According to Potthast [2012], text reuse on the web happens when a user

5



CHAPTER 2. BACKGROUND AND RELATED WORK

searches the web for potential resources, copies the text from these sources
and modifies it with their own words. This behavior defines the strategy on
which any text reuse detection frameworks could operate. Given a suspicious
document ds and a collection D, first the framework searches the collection D
for any potential resources that could be a source of the document ds (source
retrieval). Afterwards, a detailed examination (text alignment) is performed
between the candidate documents and the suspicious document ds to find any
potential reuse of text.

Many researches addressed the source retrieval subtask as a form of an in-
formation retrieval task. Potthast et al. [2014] overviews the proposed meth-
ods for the sixth international competition of plagiarism detection. All meth-
ods followed a similar strategy. First the suspicious document is divided into
chunks. For each chunk, key phrases are extracted using: TF-IDF, BM25 or
head noun clusters. Later queries from the extracted key phrases are formu-
lated and submitted to the search API. Finally some post processing is applied
on the retrieved documents to keep only the candidate documents.
In contrast with the aforementioned retrieval approaches that depend on the
semantics of a document, Stamatatos [2011] used only stopwords to represent
documents. By building stopwords N-grams profiles for each document, the re-
trieval task of candidate documents works by computing the similarity between
the profiles of documents. Bär et al. [2012] also showed that structural and
syntactical similarities between texts could also be candidate features that help
in detecting cases of text reuse. The Fuzzy Fingerprints method was proposed
by Stein et al. [2007] as a direct method to compute binary value indicating
whether two items are similar or not. Instead of computing pairwise similar-
ity checks over every pair of items (which is rather costly), the method with
linear time computes fingerprints for each item. Then collision between the
fingerprints of the items is considered enough to deduce that they are similar.

As for the evaluation of the source retrieval task, the PAN competition sug-
gests precision and recall taken from the field of Information retrieval. What
is considered as a true positive is a retrieved document that has high jaccard
similarity with the suspicious document.

In the text alignment task, Potthast et al. [2014] also reviewed the pro-
posed methods. Mainly in all of them, three subtasks are performed. First
is seed generation where similar substrings are to be located in each of the
documents. Word-grams, stopword-grams or sentence matching were used as
seeds. Second task is seed extension, which, given the matching seeds from the
two documents, merges the close ones to create potential aligned passages be-
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CHAPTER 2. BACKGROUND AND RELATED WORK

tween the source and suspicious document. Methods used in this step are rule
based, clustering or dynamic programming. The final step is filtering in which
further criteria are checked to eliminate for example short aligned passages or
overlapping ones.

2.2 On Wikipedia
Wikipedia gained a lot of success and became a giant public source of infor-
mation. The Wikipedia model and its success attracted a lot of research. In
such an open environment, issues like vandalism and quality flaws are to be
expected. Potthast et al. [2008] proposed a method for automatic detection
of vandalism. Anderka et al. [2011] investigated and analyzed the quality flaw
issue in Wikipedia. Weissman et al. [2015] analyzed duplicate and contradic-
tory information in Wikipedia on the sentence level. They extracted sentences
and clustered them into six types; Templates, Identical sentences, near du-
plicates with contradictory facts, Copyediting, References and others. Viégas
et al. [2004] examined the interaction between Wikipedia and two big online
communities (Stack Overflow and Reddite). They evaluated the amount of
added value that Wikipedia contributes to those online communities by exam-
ining the posts on those communities that contain links to Wikipedia. As a
result of their analysis, they point out that the posts that link to Wikipedia
are exceptionally more valuable than other posts and generate a revenue value
in the order of $100K per year. Another related and interesting work is done
by Thompson and Hanley [2017], which shows through a controlled experi-
ment how Wikipedia is playing a role in driving the research in the scientific
community.

2.3 Finding similar items in big datasets
Searching for similar items in a dataset is the core of many applications in data
mining, like finding near duplicate web pages or plagiarism detection. However
when the size of the dataset gets larger or the cost of similarity computation
is high (due to high dimensionality), the linear search of all possible similar
pairs becomes overly time complex.
Methods of Nearest Neighbor Search (NNS) were proposed to accommodate
the aforementioned problem. These methods could be of two classes.
The first class is the exact nearest neighbor search in which only the neighbor
subspace of a document is searched. Bentley [1975] used a kd-tree data struc-
ture as an exact neighbor search method. This method constructs a binary
tree data structure that partitions the search space leading to a search time of

7
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O(log n). However, in case of high dimensional datasets, searching the exact
neighbor turns on to be infeasible (Wang et al. [2014]).
The second class approximates the exact neighbor with a certain probability.
Locality sensitive hashing (LSH) represents a family of hash functions that is
able to hash similar items into the same hash code within certain probability
bounds. One of the earliest implementations of LSH methods is minHash pro-
posed by Broder [1997] which approximates the jaccard distance between two
items. Andoni and Indyk [2006] proposed a random projection method that
approximates the angular distance between items.
In contrast with LSH methods, learning to hash is a data dependent hash-
ing approach. The goal is to learn from a dataset a hash function that is
able to hash similar items into same hash code. Wang et al. [2018] suggest
that any learning to hash method contains four main elements; (1) the hash
function to be learned, (2) similarity measurement in the original space to
be approximated, (3) loss function designed to minimize the gap between the
approximated and original distance between pairs of items and finally (4) the
optimization method which represents the method of updating the hash func-
tion’s parameters.
An example of a learning to hash method is the work by Chaidaroon and Fang
[2017], where they build a variational autoencoder neural network (Sonderby
et al. [2016]) that learns from the data how to hash TF-IDF vectors into a
binary code by optimizing the reconstruction error. In chapter 3 we present
an experiment to evaluate (in terms of precision and recall of detecting text
reuse cases) the two hashing schemes; random projection as a data independent
hashing method and VDSH as a data dependent hashing method.

2.4 Cluster computing
Apart from working on efficient algorithms and enhancing their time complex-
ity, another path to scale up computation performance is to distribute the work
on multiple machines. However, distribution of the task comes with a cost of
maintaining failures, parallelism and communication between machines.
MapReduce was first proposed by Dean and Ghemawat [2008] as a program-
ming model and implementation that allows performing parallel computations
on a cluster of machines. The framework manages on the low level all the
cluster management issues while offering a high level interface that makes dis-
tribution of a task possible.
The main concept behind this paradigm is that any computational operation
is split into two stages:

1. Map: the initial operation where the same function/code is performed

8
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on each logical chunk of the distributed data to perform the intended
transformation.

2. Reduce: the aggregation step where the data is grouped by a specific key
and then a function is applied on the grouped data.

The Hadoop framework (White [2012]) is an open source project that adapts
the mapReduce methodology and offers a framework for highly scalable dis-
tributed applications. Hadoop comes as two main components; mapReduce,
same as Dean and Ghemawat [2008] and the HDFS (Hadoop distributed file
system) component.
However, Zaharia et al. [2010] highlight some deficiencies of the Haoop frame-
work and show classes of problems where the framework doesn’t serve the
intended purpose. In the same paper they propose a new concept called RDD
(resilient distributed dataset) which is an abstraction of a resilient (fault tol-
erant that can be recomputed in case of failure) object that is partitioned on
multiple machines. The data in an RDD is stored in memory (to reduce the
access to the hard disk) and any operation performed on an RDD could be
either map or reduce and is performed on parallel.

2.5 Data
In this work we use the EnglishWikipedia dataset that was released byWikipedia
foundation on May 2016 1. The dataset is stored as a compressed XML file
that contains all Wikipedia articles. The content of each article is stored as
Wikitext 2 which consists of syntax and keywords for formatting the page con-
tent. We use an open source tool 3 to extract the article content from the
Wikitext. The tool outputs an xml file that contains around 5 million articles.
Each article contains an Id, title and text content. In Figure 2.1, we show
the distribution of article length in tokens and also the distribution of number
of passages (the passages are generated from the tool based on the provided
Wikitext) per article.

As a representative sample of the web we use the Common Crawl repository
which contains 7 years of web content that was crawled by The Common
Crawl Foundation 4. The dataset is hosted on Amazon S3 as part of the
Amazon public datasets program 5 and contains 5 billion web pages of different

1https:www.wikimedia.org
2https://en.wikipedia.org/wiki/Help:Wikitext
3http://attardi.github.io/wikiextractor/
4http://commoncrawl.org
5https://registry.opendata.aws/commoncrawl/
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(a) (b)

Figure 2.1: Figure (a) Distribution of number of passages per article. Figure (b)
Distribution of passages length.

languages. The dataset we work on was pulled on April 2017. To extract the
main content as text from the HTML page we use the Boilerpipe framework
based on the work by Kohlschütter et al. [2010]. In chapter 3 we present in
details the process of extracting the main content and we describe the data we
worked on.

2.6 Summary
In this chapter we gave an overview of related work in the field of text reuse
extraction and applications in which the text reuse extraction can play a role.
We presented interesting research questions that evolves around Wikipedia
indicating it’s importance and controversy. Later in the chapter we showed
method of scaling up the computation of finding similar items either by special
heuristic based algorithms (section 2.3) or by utilizing a cluster of machines to
distributed computation in parallel (section 2.4).

10



Chapter 3

Text Reuse Extraction

In this chapter we describe the text reuse extraction pipeline. In the first
section we present the proposed structure in high abstraction along with re-
quired theory and techniques. The second section contains the experiments
we performed to figure out the best methods and parameters for the pipeline
implementation. In the last two sections we present details on how the pipeline
was used in both scenarios:

1. Within-collection text reuse extraction, in which the pipeline is applied
on one dataset to extract the text reuse cases between it’s documents.
Found in section 3.3

2. Cross-collection text reuse extraction, in which the pipeline is applied
on two datasets to extract the text reuse cases between documents from
two datasets. Found in section 3.4

3.1 Text Reuse Pipeline
The main goal of the text reuse extraction task is to take two collections of
documents as an input and output all possible pairs of text reuse instances
between documents from these two collections. The task could be formulated
as follows:
Given: two collections of documents D1 and D2, the task is to find all pairs
of chunks of text: ti x tj where: ∃d1 ∈ D1,d2 ∈ D2 : ti ⊂ d1 ∧ tj ⊂ d2 and
the two chunks ti and tj overlap with a minimum percentage that make them
candidates to be a text reuse case. Nevertheless, D1 could be equal to D2 and
consequently the task becomes within-collection text reuse extraction from a
dataset.

To carry out this task we divide it into three subtasks (Figure 3.1); First,
content from documents is extracted and cleaned then text is represented as

11
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a feature vector. Second, heuristic based measurements are computed on each
pair of documents to compute the likelihood of having text reuse cases. The
main goal of second task is to filter out those pairs of documents that are not
likely to have text reuse. Finally, detailed text alignment is performed on the
candidate pairs from the previous task to output pairs of text reuse.

Figure 3.1: Pipeline of subtasks for text reuse extraction

The first subtask takes as an input a collection of documents D and outputs
for each document a list of text chunks (passages). Each of them is represented
as a feature vector. Two main steps are performed in this subtask; the main
content extraction and text feature extraction.
In the first step, given a document the main useful content is extracted and
split into chunks/passages of text. This step requires tools and heuristics for
better identification of the main content of a document which becomes more
challenging in case of web content. We explain more in details the heuristics
and tools that were used for Wikipedia in Section 3.3 and the Common Crawl
in section 3.4.
In feature extraction, given the text of a chunk the task is to extract text
features and represent the chunks as feature vectors. In section 3.2 we present
our experiment setup in which we evaluate set of text representation methods
based on TF-IDF weighting scheme, word embedding 1 , and stopword N-
grams. To this end, each document in the dataset is represented as a set of
feature vectors (Figure 3.2).

The second subtask takes two collections of documents, in which each doc-
ument is a set of feature vectors. It outputs a data structure that contains only
those pairs of documents that are likely to be reusing text from each other.

1https://en.wikipedia.org/wiki/Word_embedding

12
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Figure 3.2: The output of the preprocess step is for each document in the collection
a set of feature vectors. Each feature vector is a representation of a chunk/passage
of text

The decision of whether two documents are candidates is based on the
similarity between their chunks. Intuitively two documents are considered
candidates if they have at least one pair of chunks whose similarity exceeds
a specific threshold. Other considerations could be that the similarity of two
documents is an average over the similarity of each pairs of their chunks.
The implementation of this subtask requires three main decisions to be made:
(1) A similarity function between two chunks of text.(2) A formula to compute
the candidacy score (that reflects the likelihood of having text reuse) between
two documents from the similarity of their chunks. (3) A proper threshold of
the candidacy score between two documents to be considered candidates.

However, performing pairwise similarity computation on each pair from the
two collections is an expensive task especially for large datasets. To address
this issue, we use the concept of hashing for near neighbor search. Instead of
assessing the candidacy score for each document against all other documents,
we only assess a subset that with some probability contains the candidate doc-
uments. We apply some similarity preserving hashing function on each chunk
to produce a short binary code. The similar chunks would be hashed to the
same hash code and following that documents who share similar chunks would
intersect with at least one of the hash codes. We aim to design a hash function
that guarantees all candidate pairs would at least intersect in one hash code

13
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Figure 3.3: An example of the output RDD structure of the candidate elimination
subtask.

while eliminating a lot of false positive cases.
We use the hashing step as the first step in the second subtask (optionally).
After applying hashing on each chunk, each document has a set of hash codes.
Hence, we only compute the pairwise candidacy score between document pairs
that intersect in at lease one hash code. In section 3.2.3 we present an exper-
iment in which we assess and compare between two known similarity hashing
techniques; random projection as an implementation of the LSH family and
variational deep semantic hashing (VDSH) by Chaidaroon and Fang [2017]
which is considered as a data dependent learning to hash method.

The third subtask takes the candidate pairs as an input and produces pairs
of text reuse cases. The input data structure as illustrated in Figure 3.3 is
an RDD where each item contains a document id from dataset D1 and a list
of all candidate documents from the second dataset D2. The candidates are
sorted by their candidacy score which allows setting up a threshold or stopping
criteria where the scan starts with the candidates with high score and continues
till reaching that threshold or stopping criterion.
For each candidate pair of documents, a detailed examination of the text is
performed to locate any span of text that could be a text reuse case. To locate
a text reuse case, three main steps are proposed by Potthast [2012] which we
summarize in the following:

• Seed Generation, in which both texts are tokenized into words, sentences
or characters, N-grams of these tokens are extracted from each of the doc-

14
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uments. Later similar N-grams from the two documents are identified.

• Seed Extension, where the identified seeds in both documents are ex-
tended to make up passages of text reuse. The extension could be per-
formed by creating clusters of seeds and considering them as one piece
of text.

• Post filtering of the extracted text reuse cases. Given two passages of
texts (considered a reuse case), filters are applied to decide whether these
two passages represent a text reuse case.

3.2 Experiments on Candidate Elimination
Since we are focused in this research on addressing the challenge of extracting
text reuse cases from big datasets, we fixed the parameters of the third subt-
task as recommended by the PicaPica framework and use it as ground truth
while we experimented with different heuristics and implementations for the
second subtask to generate candidate pairs with high precision and recall while
keeping the computation time feasible.
In this section we will present two experiments. The first experiment was per-
formed to choose a proper candidacy function that reflects the likelihood of two
documents having a text reuse case. The second experiment was performed to
evaluate proposed semantic preserving hashing methods in the context of text
reuse extraction.

To setup the experiment framework we give the following definitions:

• D is a set of documents

• C is a set of document chunks resulted from splitting documents in D
into chunks/passages.

• S is a sample drawn from D , in which the following holds:

∀si ∈ S,∃D
′
i ⊂ D ∧D′

i 6= Φ : D
′
i is a set of documents that have text

reuse with si

In our experiment, D is the Wikipedia dataset and S is constructed by
first filtering in only Wikipeida documents that are longer than 2000 tokens
(long documents are more likely to have been reused by others) and randomly
sampling 10000 documents. Then using PicPica framework we compute pair-
wise text alignments between the sample and all the Wikipedia dataset. Out
of 1000 documents 232 found to have text reuse cases at least with one docu-
ment in Wikipedia dataset. Those 232 documents is our sample S. For each
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document si in this sample there is a set D′
i containing all other documents

from Wikipedia that have text reuse case with si and we refer to them as rele-
vant documents. In Figure 3.4 we show the distribution of number of relevant
documents. It is observable that over 90% of the sample S have only few rel-
evant documents ( < 10) out of the whole dataset D. That said, constructing
heuristics to identify those few relevant documents is a challenging task. Using
only the semantic similarity (bag of words representation) between documents
as a measurement of likelihood of text reuse is not enough. While there are
many documents that are semantically similar, only few have text reuse cases.
Hence, only semantic similarity would lead into a lot of false positive cases.

(a) (b)

Figure 3.4: Figure (a) Distribution of number of relevant documents less than 100.
Figure (b) Distribution of number of relevant documents more than 100.

3.2.1 Ranking Function

The goal of this experiment is to find a proper method to be used for filtering
in only pairs of documents that are likely to have text reuse cases. Following
the definitions presented in previous section we further define:

• cand(di, dj)→ R as a function that takes two documents and generates
a score that indicates the likelihood of finding text reuse cases between
these two documents.

• rank(s,D) a function that returns for each si ∈ S a list Ri of all di ∈ D
ranked by the score returned by applying cand(si, di)→ R : di ∈ D∧si ∈
S

To evaluate the proposed cand functions, We apply the rank function on
our Sample S and Wikipedia D. As a result we get for each document si in
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S a sorted list of all Wikipedia articles based on the likelihood of having text
reuse case. To compare the performance of the proposed cand functions we
can use the following evaluation measurements:

• Average max rank which can be defined in the following equation:

Σsi∈Smax(Ri|r ∈ D‘
i)

|S|
: Ri = rank(si, D)

Which is the average rank (across the sample) of the last relevant docu-
ment in the ranked list. That reflects on average how many documents
in the ranking list we need to perform detailed text alignment on.

• Precision/Recall curve: for each si ∈ S and Ri we compute the Preci-
sion/Recall curve by computing the precision and recall values on a set
of thresholds along the ranked list Ri. At each threshold, precision is
the number of retrieved (have a rank less than the considered threshold)
and relevant documents divided by the threshold rank while recall is the
number of retrieved and relevant documents divided by the number of
relevant documents. The overall Precision/Recall curve is an average the
Precision/Recall curves of all si ∈ S

We evaluate four cand functions; cosine similarity between vectors in the
TFIDF space, Jaccard similarity of stopword N-grams, consine similarity in
paragraph embedding space and finally weighted average of paragraph embed-
ding and stopword N-grams. In all of the three methods, the cand function
is applied on the document chunk level and then the candidacy score of two
documents is computed as following:
cand(di, dj) = max(sim(ci, cj)) : ci ∈ di, cj ∈ dj where sim is one of the afore-
mentioned similarity methods.

To compute the cosine similarity in the TF-IDF space, We first represent
each document chunk c ∈ C as a TF-IDF vector. To do so, we tokenize the text
into words, remove stopwords and then compute the IDF (inverse document
frequency where the document here is a document chunk) for each of the tokens
(t) (Equation 3.1). Later each document chunk is represented as a vector of
all tokens where the weight for each token is presented in Equation 3.2. Then
the cosine similarity between the two vectors V1 and V2 is given in Equation 3.3.

IDF (t, C) = log
|C|+ 1

DF (t, C) + 1
(3.1)

TFIDF (t, c, C) = TF (t, C) ∗ IDF (t, C) (3.2)

17



CHAPTER 3. TEXT REUSE EXTRACTION

similarity(V1, V2) =
Σn

i=1V1i ∗ V2i√
Σn

i=1V
2
1i ∗

√
Σn

i=1V
2
2i

(3.3)

In Jaccard similarity of stopword N-grams, we use the implementation
proposed by Stamatatos [2011]. We compute the top frequent stopwords
in Wikipedia shown in Figure 3.5. Then for each document chunk we ap-
ply the following; (1) We tokenize the text, (2) keep only the top frequent
stopwords, and (3) generate N-grams of stopwords which represent the chunk
(called SWNG profile). Later, the similarity between two chunks is measured
using Jaccard similarity (Equation 3.4) between the two N-gram profiles.

J(SWNG1, SWNG2) =
|SWNG1 ∩ SWNG2|

min(|SWNG1|, |SWNG2|)
(3.4)

We experimented with (N) values of (5, 8, 10) of the N-gram. We observed
that some document chunks are short and increasing the value of N causes
some chunks to have an empty profile (no N-grams). To address this issue,
we also computed Jaccard similarity over two N-grams schemes and created
a weighted sum of the two values. We experimented with different weighting
schemes and the best mixed scheme is given as: w1 ∗ J8−grams +w2 ∗ J10−grams

where w1=0.8 and w2=0.2.
In Figure 3.6 (b), we show the Precision/Recall curves for all the proposed
stopword N-grams methods. The best performance is for the mixed stopword
N-grams of 8 and 10 grams.

Figure 3.5: List of top frequent stopwords in Wikipedia.

The concept behind paragraph embedding is to represent each document
chunk as a vector in a word embedding space. The space is generated by using
a skip-gram word embedding implementation 2 where each word is mapped into
a continuous vector space. We trained the model over the articles of Wikipedia.

2 https://spark.apache.org/docs/2.2.0/mllib-feature-extraction.html#
word2vec
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Then, each document chunk is mapped into a vector in the embedded space as
following:(1) The document chunk is tokenized.(2) Stopwords are removed. (3)
An averaged vector is computed from the vector representation of each of the
tokens in the chunk. This final vector is the representation of the document
chunk in the embedded space. In our experiment we choose 100 as the number
of dimensions of the embedded space.

In paragraph embedding with stopwords N-grams, the similarity score of
two document chunks is a weighted average of two similarity scores; Cosine
similarity of the paragraph embedded vectors and Jaccard similarity over stop-
words 8-grams.

(a) (b)

Figure 3.6: Figure (a) precision/recall curve for the 4 proposed methods. Figure
(b) precision/recall curve to compare various n values for stopwords ngrams. The
precision/recall points are computed at thresholds of [1, 101, 201...,100k]

In Figure 3.6 (a) We show the Precision/Recall curves for the proposed
methods. The poor performance of paragraph embedding method comes from
the fact that it represents the similarity on a higher semantic level which gener-
ates many false positives (cases where two chunks are semantically similar but
don’t represent a text reuse case). By mixing the paragraph embedding score
(semantic features) and the stopwords N-grams score (structural features) as
a weighted sum we achieved higher precision than all other methods for recall
around 0.4. However, the cosine similarity as a similarity function performs
the best in terms of precision for recall higher than 0.6.

In Table 3.1 we present some statistics for each of the evaluated methods
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that give insights on how they perform. The first column in the table is
the average maximum rank which was defined previously as an evaluation
measurement. The second column represents the minimum similarity value in
the ranked list (the similarity value of the last relevant document in the ranked
list) averaged across the sample. This value could be used as a threshold for
similarity between two documents to consider them candidate pairs. The last
column is the minimum similarity value for each sample instead of averaging.
Even though the Precision/Recall curve for the cosine similarity is better than
the mixed N-grams method (Figure 3.4 (a)), we observe from Table 3.1 that
the average max rank for the mixed N-grams performs slightly better than the
cosine similarity. That said, on recall equal to 1 (all relevant documents are
detected) the two methods perform almost the same. However, for lower recall
thresholds less than 1 the cosine similarity over TF-IDF space performs better.

avg(max(rank())) avg(min(similarity())) min(min(similarity()))
cosine similarity 12250 0.49 0.025
mixed ngrams 11554 0.12 0.0
paragraph embedding 39873 0.89 0.63
paragraph embedding with 8-grams 33552 0.38 0.25

Table 3.1: Comparing the proposed candidate elimination methods in terms of;
average maximum rank, average minimum similarity, minimum minimum similarity.

3.2.2 Hashing Methods

Given the two datasets D1 and D2 as an input for the second stage in the
pipeline, the task is to apply the cand function on every pair d1 x d2 : d1 ∈
D1∧ d2 ∈ D2. The time complexity of running this task is |D1| ∗ |D2| and for
big dataset the time needed for running the task becomes infeasible. To address
this challenge, we use H a semantic preserving hashing method. Applying H
on a document d produces a set of binary hashes (binary hash for each chunk
in the document). The best hashing method H satisfies the following:

• Any pair of documents from the two datasets which have text a reuse
case would have at least one binary hash in common:
∀d1 ∈ D1 ∧ d2 ∈ D2 : d1 ∧ d2 have text reuse ≡ H(d1) ∩H(d2) 6= φ

• The number of pairs of documents that have at least one binary hash in
common is smaller than the number of all pairs from the two datasets:
|X| << |D1|∗ |D2| : X = {(d1, d2) : d1 ∈ D1∧d2 ∈ D2∧H(d1)∩H(d2) 6=
φ}
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As a result of using a hash method that satisfy the previously mentioned
criteria, we only run the cand on smaller number of pairs of documents (those
who intersect at least in one binary hash).

To evaluate the proposed hashing functions, we use the same experiment
setup already introduced in section 3.2. Given si ∈ S and D′i applying H(di)
hashing function generates a set of binary hashes {h1, h2..., hk}. A true posi-
tive case is any document d′ij ∈ D′i that has at least one binary hash in common
with si binary hashes. We compute precision and recall for every si ∈ S and
we average the values over all the documents in the sample S.

We experimented with two methods of hashing; (1) Random projection
as one of the implementations of the locality sensitive hashing family (LSH)
which is considered as a data independent hashing method. (2) Variational
deep semantic hashing (VDSH) by Chaidaroon and Fang [2017] as one of the
data dependent hashing technique.

Random projection works by constructing L hash functions, each of the
form: gi = (hi,1, hi,2, ...hi,k) where hi,j : Rm → {0, 1} = sign(Vi ∗X) is a func-
tion that takes a point in the original space X of m dimensions and returns
0 or 1 (By applying the sign function on the result of multiplying the point
X with Vi). In other words, each of the hi,j represents a unit vector in the
original space and to compute gi for a chunk (point in the original space) the
point is projected on the K vectors. It is proven that the close points in the
original space (similar chunks) would be projected into same binary hash with
certain probability. However, to amplify the chance that the similar points
in space have same binary hashes, the process of generating gi is repeated L
times. For the random projection hashing function, two parameters (L and
K) need to be calibrated to find the best configuration. Increasing K (length
of the binary hash) leads to high precision and low recall while increasing L
(number of binary hashes) we increase the recall and reduce the precision. In
Table 3.2 we present the evaluation results of different K and L parameters.
Its observed that choice between different configurations is a trade off between
precision and recall. While we aim for high recall close to 1.0 we still need a
good precision that guarantee fewer false positive cases.

The VDSH method proposed by Chaidaroon and Fang [2017] is a varia-
tional autoencoder neural network that learns to hash vectors from the original
space (TF-IDF) into latent short vectors that follows roughly a normal distri-
bution. The architecture of the neural network (NN) is shown in Figure 3.7. It
consists of two components. The first component is the encoder in which the
first two layers (L1, L2) have ReLu activation functions and the Layers L31
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K L precision recall

8 2 0.000031 0.8741

8 6 0.0000156 0.994

16 4 0.0000989 0.324

Table 3.2: Different configurations of the random projection hashing method and
the performance of each in terms of precision and recall

and L32 are the encoded sigma and mean of the learned latent vectors distri-
bution. The second component is the decoder which takes a sample s from the
learned normal distribution and decodes it back into X ‘ in the original space.

Figure 3.7: VDSH neural network structure

The loss function of the neural network is a sum of two losses. The first is
the reconstruction error which is the difference between the original vector X
and the reconstructed one by the decoding layer X ‘. The second is measured
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as the KL-divergence 3 between the latent vector represented by N(µ, σ) and
the normal distribution N(0, 1). For a vector in the original space of N dimen-
sions, the decoder component of the model outputs a continuous latent vector
of dimension k << N . The last step is to convert the continuous latent vectors
into a binary vector. For this we use the same thresholding method used in
the paper and the final binary vector is the binary hash used to represent a
document chunk.

To prepare the training data for the model, we use the Wikipedia dataset.
We first filter out short articles (less than 2k tokens) and randomly sample 10%
of the articles. That generates 300k document chunks. We preprocessed the
text of each chunk by applying the following: (1) Removing stop words and all
non alphanumeric tokens. (2) Stemming all tokens using an implementation
of snowball lemmatizer 4. (3) take top 10k frequent words in the sample. (4)
Fit a TF-IDF model on the sample and convert all chunks into vectors in the
10k TF-IDF space. However, to reduce the time needed to train the model, we
choose randomly only 100k document chunks from the whole sample to train
the model.
Since the VDSH hashing function is a neural network, many parameters could
be calibrated to enhance the performance in terms of precision and recall. In
our experiment we choose to fix all the parameters as recommend by Chaida-
roon and Fang [2017] and we explore different values for the size of the hidden
layer (L1, L2) and the size of the latent vector.

size of hidden layer size of latent vector hamming distance precision recall

1 500 32 0 0.0007 0.13

2 500 32 1 0.000078 0.51

3 1000 32 0 0.0007 0.13

4 1000 32 1 0.0001 0.48

5 1000 16 0 0.00045 0.73

6 1000 16 1 0.000068 0.87

Table 3.3: Different configuration of the VDSH neural network and the performance
of each in terms of precision/recall

To increase the recall, besides considering document chunks in the same
binary hash to be similar we also consider chunks in similar binary hashes.
Hamming distance is a measurement of how close two binary vectors one to
each other.

3https://en.wikipedia.org/wiki/Kullback-Leibler_divergence
4 http://snowballstem.org/
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By increasing the Hamming distance, we could increase the recall. However,
that could also cause a decrease in the precision since the likelihood of including
false positives increases. In this experiment we explored two different setups;
Hamming distance of 0 (exact match) and Hamming distance of 1. In Table
3.2, we present the performance of few of the trained models with different
configuration.

Choosing between the proposed methods and their configuration is a prob-
lem of trade off between precision and recall. We want to use the hashing
method that gives high recall close to 1. However increasing the recall by re-
ducing the K in the random projection or increasing hamming distance in the
VDSH comes with a cost of harming the precision. For the implementation
of the pipeline we choose to use the VDSH with the configurations mentioned
in row 5 of Table 3.3. By experimenting on the Wikipida sample the cho-
sen model gives considerably high recall of 0.73 and still accepted precision of
0.00045. In section 3.4 we present how much computation we could save by
using the VDSH model.

3.3 Text Reuse Pipeline on Wikipedia
In this section we present in detail the implementations of each of the subtasks
in the pipeline that were used to extract the text reuse cases from within
Wikipedia. We run the pipeline on the version of Wikipedia that was released
in May 2016. All the computations were performed on the Betaweb cluster 5

using Apache Spark framework and all the data files are stored as HDFS files
on the cluster.

Text preprocessing In this subtask, we first extract the main content of
each article from the wikipedia syntax using an open source tool 6. The out-
put of the tool is a set of text chunks (passages) for each article. However,
we perform post processing on this output to further eliminate short chunks
by removing them or merging with other longer chunks. It was observed that
the tool generates list’s bullet points in Wikipedia syntax each as a standalone
chunk. Most of these chunks are shorter than one sentence and represent
names of cities or other entities. So as the second step we filter out all these
chunks of type bullet points. Third, we run Algorithm 1 which is a heuristic
base algorithm that attempts to merge short chunks with their neighboring
longer ones. However, for some chunks the algorithm fails in merging them.

5The cluster owned by the Web information systems in Bauhaus University and consists
of 130 nodes each of has 12 cores and 192GB memory

6http://attardi.github.io/wikiextractor/
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Those represents headers of lists, disambiguous, and redirection pages. Hence,
as a final step we remove all these short chunks that failed to be merged.

Algorithm 1 Document chunks merging
procedure balance_paras_length(paras,min_no_tokens)

output_paras← []
append(output_paras, paras[0])
last_para_idx← 0
curr_para_idx← 1
while curr_para_idx ≤ length(paragraphs)− 1 do

curr_paragraph← paragraphs[curr_para_idx]
last_output_para← output_paras[last_para_idx]
if length(curr_paragraph) ≤ min_no_tokens ∨

length(next_paragraph) ≤ min_no_tokens then
concatenate(output_paras[last_para_idx], curr_paragraph)

else
append(output_paras, curr_paragraph)
last_para_idx← last_para_idx+ 1

end if
curr_para_idx← curr_para_idx+ 1

end while
return output_paras

end procedure

As a result of the above process, we have a collection of articles each of is
split into a set of text chunks. Next step is to represent each chunk as a fea-
ture vector. From section 3.2.1, we found out that TF-IDF weighting scheme
performs relatively better than the other methods. Hence, we use it as an
implementation of the candidacy scoring function in the pipeline.
In the feature extraction step we tokenize the text of each chunk into words and

Number of paragraphs Paragraph average length

Wikipedia dump output 73 million 93

Filter out lists bullet points 34 million 53

Paragraph merging 12 million 137

Filter out short paragraphs 11.4 million 144

Table 3.4: Statistics on the Wikipedia corpus after performing each step of the
content extraction and chunking

25



CHAPTER 3. TEXT REUSE EXTRACTION

remove stopwords. Then, we fit a TF-IDF model over the collection same way
as in the experiment and use it to transform all chunks into the equivalent TF-
IDF vector. The final output of this subtask is an RDD (resilient distributed
dataset) of elements each contains: sequence_id (unique auto increment iden-
tifier), wiki_id (wikipedia documetn id) and a list of tfidf_vector. We persist
the RDD as an HDFS file on the cluster.

Candidate elimination Given as an input one collection of documents as
an RDD, the task is to compute a pairwise score of all documents using the
cand function and only keep the pairs that have candidacy score above cer-
tain threshold. We found by experimenting in section 3.2.1 that the cosine
similarity to be performing relatively better than other methods. Hence, the
implementation of the cand function in this subtask is as following:

cand(di, dj) = max(cosine_similarity(pi, pj)) : pi ∈ di, pj ∈ dj

To estimate the time needed to process all the pairs of Wikipedia dataset,
we took a sample of 1k articles. We computed the pairwise candidacy score
between the sample and all Wikipedia articles which is equivalent to 4.2 ∗ 109

operations. The time needed to finish the task was around 10 minutes. Hence,
the time estimated to compute the pairwise candidacy between all pairs of
Wikipedia (18 ∗ 1012 operations) is around 30 days.
The fact that the cand function is a symmetric (cand(di, dj) = cand(dj, di))
function allows us to skip half of number of operations needed and consequently
the time needed is 15 days. Since that is still feasible, we skip the usage
of hashing method in this implementation and we apply the cand function
on all pairs. For the candidacy score threshold, we choose from table 3.1
the minimum similarity value found experimentally as our threshold which
guarantees to some extent including all pairs that are likely to have text reuse.

Figure 3.8 and Algorithm 2 highlight the main steps performed in the
candidate elimination subtask and how the computations are carried out in
a distributed manner on the cluster. First, the two RDDs (tfidf-rdd1 and
tfidf-rdd2) are loaded from the same HDFS file that contains the TFIDF rep-
resentation of Wikipedia. Second, the two RDDs are partitioned to guarantee
that the data is distributed evenly on all nodes (each partition is hosted on
a node and processed all at once). We choose 4k partitions for the second
RDD (tfidf-rdd2) to increase the parallelism. To be more fault tolerant and to
reduce the memory consumption, we also split the first RDD (tfidf-rdd1) into
100 partitions to be processed separately. Third, we repeat for each of these
partitions the following: (1) Collect the data of the partition into one node
(the driver node) and broadcast it (copy it) into all the nodes, (3) the function
pairwise_candidate_scoring in line 9 of Algorithm 1 is applied in parallel on
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all the N partitions of the tfidf-rdd1 and (4) finally the results are persisted
into an HDFS file.

On each partition, the function pairwise_candidate_scoring computes
the candidacy score only on pairs of documents: d1, d2 : d1 ∈ tfidf_rdd1 ∧
d2 ∈ broadcast if the following holds: d1.sequence_id > d2.sequence_id
Which guarantees only computing half of the pariwise similarity matrix .
As a result, the output of this subtask is an RDD in which each element
contains as a key a wikipedia document id (wiki_id) and as a value a list of
tuples (wiki_id, score) sorted by the candidacy score.

Algorithm 2 Candidate elimination distributed computation
1: procedure candidate_elimination(wiki-tfidf, k, n)
2: tfidf -rdd1← load_hdfs(wiki-tfidf)
3: tfidf -rdd2← load_hdfs(wiki-tfidf)
4: tfidf -rdd1← partition(tfidf -rdd1, n)
5: tfidf -rdd2← partition(tfidf -rdd2, k)
6: for i← 1, k do
7: tfidf -rdd1-part← choose_partition(i)
8: broadcast← broadcast(tfidf -rdd1-part)
9: pairwise_candidate_scoring(broadcast, tfidf -rdd1) .

pairwise candidate socring will be executed on parallel on each partition
of tfidf -rdd1

10: end for
11: end procedure

Text alignment In this subtask we run a detailed text alignment for every
pair of candidate documents. We first load the candidates RDD which is
produced from the previous subtask. Second, we load the Wikipedia dataset
into an RDD object. Third, we convert the RDD into a dictionary where the
key is the document id (wikiid) and the document text as a value. Then
using the Apache spark framework we broadcast the dictionary and make
it accessible to all the executors on the cluster. Finally, we partition the
candidates RDD and execute on parallel on each partition a heuristic based
text alignment extraction algorithm.

Even though many false positive pairs of documents were eliminated in the
previous subtask through the candidacy score threshold, still running detailed
text alignment over all candidate pairs could take long time. To address this
issue, we implement a heuristic based text alignment algorithm to make it
possible to do a trade off between completeness of the task and the computa-
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Figure 3.8: Illustration of the candidate elimination task distributed on the cluster

tional time. The algorithm takes a document and the sorted list of candidate
documents and perform the following heuristics:

• Candidacy score threshold: By scanning further in the sorted can-
didacy list the likelihood of finding text reuse cases gets smaller. Hence,
we could only examine candidate till reaching a specific candidacy score
threshold. The threshold could be adjusted according the time available
for the task.

• Number of miss cases threshold During the scanning of the sorted
candidates list of a document, a miss case occurs when no text alignment
is found. Since the candidates are sorted based on the likelihood of having
text reuse, more miss cases means less likely to find further text reuse
cases. By setting a threshold we could stop scanning after facing specific
number of miss cases.

To extract the text alignment from within Wikipedia, we run the subtask
with number of miss cases heuristic. To choose a proper threshold, we took
the average first rank experimentally found in section 3.2.1 which is 250. That
would on average find at least one document that have an alignment if it exists.

We apply the text alignment on document level and we use as an imple-
mentation the Picapica framework 7 with the following configuration:

7http://www.picapica.org/
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• Seed Generation: For this, we use a simple word tokenizer implemen-
tation and generate the seeds from N-grams of words with length n of 3
words and overlap of 1.

• Seed Extension: We use the framework implementation of DBScan
clustering algorithm proposed by Ester et al. [1996] with epsilon equal
to 150 and minPoints 5 to cluster the seeds into longer pieces of text.

• Seed postprocess: For this we use the heuristics proposed by Sta-
matatos [2011] as a postprocess to filter out non likely text reuse cases
by choosing minimum length of 200 tokens and minimum similarity of
0.5

In Algorithm 3 we show the proposed heuristic based text alignment algo-
rithm that runs on parallel on each partition:

Line 5 in Algorithm 3 is executed on parallel over the N partitions with a
threshold of number of miss cases.

3.4 Text Reuse Pipeline on Wikipedia and the
Web

In the following section we present the specification of the text reuse pipeline in
the case of running it on two datasets. Our two datasets are Wikipedia (same
version used in the previous section) and the Common Crawl representing the
web. We use the Common Crawl pulled on April 2017. Both datasets exist as
HDFS files on the cluster.

Text preprocessing For Wikipedia we apply same steps presented in sec-
tion 3.3 to extract the main content from Wikipedia syntax. To extract the
main content for each web page in the Common Crawl, there exist many ap-
proaches. Indeed the main content extraction from web pages is a standalone
research field. As a tool we used the Boilerpipe framework based on the work
by Kohlschütter et al. [2010] which uses heuristics called shallow features to
extract the main content from a web page. The output of the tool is a list of
text chunks that represent the main content of a web page. We further apply
some heuristics to remove blocks that might not represent the main content.
First we filter out any text chunk of length less than 3 tokens which represents
names and titles of buttons, links, etc. Second, We remove headers and footers
content following simple heuristics explained in Algorithm 4. Third, We merge
short chunks using the same algorithm presented in Section 3.3. Finally, we
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Algorithm 3 Text alignment algorithm
Require: partition . A list of documents with their sorted list of candidates,

wiki_broadcast . A broadcasted dictionary of Wikipedia document ids
and their text compressed , candidacy_score_threshold The last score to
be examined, no_misses_threshold Number of miss cases threshold

1: partition_alignments← []
2: for document ∈ partition do
3: no_misses← 0
4: compressed_text← get_value(wiki_broadcast, document.id)
5: document_text← decompress(compressed_text)
6: for candidate ∈ document.candidates do
7: compressed_candidate_text← get_value(wiki_broadcast, candidate.id)
8: candidate_text← decompress(compressed_candidate_text)
9: alignments← align(document_text, candidate_text)
10: add(doc_alignments, alignments)
11: if size(alignments) = 0 then
12: increment(no_misses, 1)
13: end if
14: if candidate.score ≥ candidacy_score_threshold then
15: break
16: end if
17: if no_misses ≥ no_misses_threshold then
18: break
19: end if
20: end for
21: add(partition_alignments, doc_alignments)
22: end for
23: return partition_alignments

filter out all chunks that are shorter than one sentence and couldn’t be merged
with any other chunk.

The second step in text preprocessing is to extract features from the text.
We use the TF-IDF weighting scheme as justified in Section 3.3. However in
this case we have two datasets; Wikipedia and the web. The question that
emerges is whether to choose the model’s vocabulary and its inverse document
frequency (IDF) representation jointly from the two datasets or from one of
them. The answer differs depending on the use case. Since our task is to
identify all the chunks on the web that are similar to Wikipedia text (chunks
that represent the language model of Wikipedia), it suffices to take only the
vocabulary of Wikipedia.
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Algorithm 4 Remove headers from web page content
*Removing footers, work the same but by starting from the last paragraph and scan the array backwards

1: procedure remove_headers(paras,min_tokens,min_stopwords)
2: idx← 0
3: reached_main_content← False
4: while ¬reached_main_content ∧ idx ≤ lengeth(paras) do
5: para← paras.get(idx)
6: if lengeth(para) > min_tokens ∧ contains_punct(para) ∧
number_of_stopwords(para) > min_stopwords∧ then . If the criteria
holds then we reached main content

7: reached_main_content← True
8: end if
9: idx← idx+ 1
10: end while

return paras[idx:] . Return the part of the paragraphs array
starting from the idx which contains the main content

11: end procedure

As illustrated in Figure 3.9, the text representation step is done in two stages.
The first stage is the training stage were the IDF is extracted only from
Wikipedia chunks. We take the top N frequent words (N=260k) after tokeniz-
ing the text and removing the stopwords. The second stage is a transformation
in which the IDF is used to compute the TFIDF weights for both Wikipedia
and the web.

Since in this implementation of the pipeline we are dealing with the Com-
mon Crawl which is much bigger than Wikipedia, performing pairwise can-
didacy score computation on every pair of documents gets more challenging
and demands long time computations. To address this, we deal with the task
as a problem of near neighbor search. In section 3.2.2 we experimented and
compared two hashing methods for near neighbor search; random projection
and VDSH method. Following the evaluation results, we decide to use the
VDSH method. Since the task is to model the language of Wikipedia, we
argue that training the VDSH model only on Wikipedia content suffices. Do-
ing so would create binary hashes (buckets) that represent the semantics of
Wikipedia. Consequently any piece of text in the Common Crawl that con-
tains Wikipedia text would theoretically be hashed into one of those binary
hashes.

To prepare the training data for the VDSH model, we perform the fol-
lowing on the Wikipedia dataset: (1) we tokenize the text. (2) remove: stop
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Figure 3.9: Illustration of the text representation

words, any non alphanumeric tokens, and 2-character tokens. (3) compute
the inverse document frequency (IDF) for all tokens and choose the top 10k
frequent ones to represent the TF-IDF space.(4) we take a sample from the
articles of Wikipedia that are longer than 2k tokens and use them as train-
ing data for the VDSH model. Also, the same training data is used to learn
threshold values to convert the continuous learned latent vectors into binary.
After training a VDSH model, we use it to hash both Wikipedia articles and
the web pages by performing the following steps: (1) Computing the TFIDF
representation using exactly the same (IDF) computed in the training stage.
(2) Using the encoder component of the VDSH model to encode the TFIDF
vector into a continuous latent code. (3) We binarize the contentious code
using the threshold learned in the training stage.

The output of this subtask is for each of the two datasets (Wikipedia,
Common Crawl) two RDDs: one contains the TFIDF representation of each
document and one contains the binary hashes.

Candidate elimination The task is to compute pairwise candidacy scores
of each pair of documents in Wikipedia and the web. As per section 3.2.1, the
chosen implementation of the cand is:

cand(di, dj) = max(cosine_similarity(pi, pj))

Where:
pi ∈ di, pj ∈ dj, di ∈ Wikipedia, dj ∈ web
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Figure 3.10: Illustration of candidate elimination task on web vs wikipedia

However, the cand function is applied only on documents from the web and
Wikipedia that share at least one binary hash. To estimate the gain of using
the VDSH hashing method in terms of performance, we randomly sampled
10% of the Common Crawl (590 ∗ 106) and computed the number of pairs of
documents from the sample and Wikipedia that intersect at least in one binary
hash (hashing bucket). The number of pairs that satisfy the condition is equal
to 6 ∗ 1011 while the total number of pairs is 2.5 ∗ 1014. That said we reduced
the number of pairs to be examined by 3 orders of magnitude and at the same
time we retained 73% recall according to the experiment in section 3.2.2.

In Figure 3.10 we illustrate the distributed computation performed in this
subtask. After loading each dataset’s TF-IDF vectors and binary hashes
RDDs, we first create an inverted index for each of the two datasets (wiki
index and web index). The inverted index keys are binary hash and the values
are lists of document IDs. Second, an inner join between the two inverted in-
dices is performed to keep only shared hashes (keys) that exist in both indices.
In the third step, we keep only documents that contain at least one binary hash
in the inverted shared index. For the fourth step, we broadcast the shared in-
dex (that has for each binary hash a list of Wikipedia document IDs) and the
wiki tfidf (represents a lookup table that gives for each Wikipedia document
ID a list of TF-IDF vectors). In the fifth step the web rdd is partitioned into N
partitions. Finally in the last step, the pairwise candidacy scoring is performed
on parallel on all the partitions of the web rdd. In Algorithm 4 we show the
pseudo code which demonstrate the candidacy scoring algorithm.
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Algorithm 5 Hash based candidacy scoring
1: procedure candidacy_scoring(web_partition, hash_index, wiki_index, threshold)
2: results← []
3: for page ∈ web_partition do
4: wiki_ids← retrieve_wiki_ids(page.hashes, hash_index)
5: for wikiid ∈ wiki_ids do
6: wiki_tfidfs← retrieve_wiki_tfidfs(wikiid, wiki_index)
7: candidacy_score← cand(page.tfidfs, wiki_tfidfs)
8: if candidacy_score ≥ threshold then
9: results.add(page.id, wikiid)
10: end if
11: end for
12: end for
13: return results
14: end procedure

Text Alignment In this subtask, we first load the candidates RDD from the
previous subtask. Each item in this RDD contains page_id and candidate_documents
which is a sorted list (based on the candidacy score of each item) of tuples.
Each tuple consists of a Wikipedia document id and a candidacy score. Second
we load both Wikipedia and the web prepossessed documents into two RDDs.
Third, we join the web RDD with the candidates RDD. The resulting RDD
has for each item web_id, web_text, list of wiki_id. Third, we convert the
wikipedia RDD into a dictionary where the keys are document ids and the
values are documents’ text. We further compress the values of the dictionary
(so it fits in the memory) and then broadcast the dictionary. In the final step,
we partition the candidates RDD and in parallel for each partition we perform
the heuristic based text alignment extraction mentioned in Algorithm 3.

3.5 Summary
In this chapter we presented our approach towards building a framework for
extracting text reuse cases from big datasets. In the beginning of the chapter
a formal overview on the main subtasks has been given. Then an experiment
setup for evaluating methods of candidate elimination tasks was presented and
used to evaluate our proposed methods. Later in the chapter, two situation
of text reuse extraction were presented and the detailed implementation of
the pipeline in each of them was shown. The first situation is to extract text
reuse cases in between Wikipedia articles, and the second is to extract the text
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reuse cases between Common Crawl and Wikipedia. In the following chapter
we proceed to analyze the extracted text reuse cases in both situations.
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Chapter 4

Text Reuse Analysis

In this chapter we present the results of running the text reuse extraction
pipeline in the addressed two usecases; text reuse in between Wikipedia doc-
uments and the text reuse between the Common Crawl (web) and Wikipedia.
We try using the extracted data to answer our research questions about the
kinds of text reuse in Wikipedia, and how much web content is a reuse of
Wikipedia content.
In the first section we look at text reuse phenomena in Wikipedia. We describe
the text reuse cases we extracted and we give an explanation on possible situa-
tions that might lead to these phenomena. We categorize text reuse cases into
two classes and we present basic heuristics for automatic classification. The
second section reviews text reuse cases that have been extracted from a sample
of the web. It quantifies the amount of text reuse and give a basic approach
to estimating the value of the reused Wikipedia content on the web.

4.1 Text Reuse In Wikipedia
From Wikipedia we extracted around 100 million text reuse cases. These
occur in 360k Wikipedia articles which makes up around 9% of Wikipedia. To
understand how the articles in Wikipedia interact with each other in terms of
text reuse, one way is to look at the text reuse as a graph problem. The nodes of
the graph are the documents and the presence of a text reuse case generates an
edge between the two documents. In our case, we don’t distinguish the source
and the destination of a text reuse case. Hence, our graph is an undirected
graph.

One of the graph properties that we looked at is the Degree of a node
(number of edges that are connected to the node) which reflects the number
of interactions (text reuse cases) that a document has with other documents.
In Figure 4.1, we show the distribution of the degree value in the graph. Only
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33% of the documents have a degree value bigger than 10. However those
documents generate 97% of the text reuse cases extracted from Wikipedia.

(a) (b)

Figure 4.1: Graph Degree distribution. Figure (a) Degree < 10. Figure (b) Degree
>= 10

A connected component in a graph is a subgraph where any two nodes are
connected with each other by a path. Looking at connected components in the
text reuse graph reveals the existence of clusters of documents that represent
different topics and flows of text. We show in the following table few examples
of connected components of size 3:

Component Articles topic
Gibibyte, Tebibyte, Exbibyte Measurement units of storage

Te Solte La Rienda, El Reloj Cucu, Clavado En Un Bar Songs by same singer
Mark West (basketball), Jim Eakins, Earle Higgins Basketball players

Table 4.1: Example of Wikipedia articles connected as a component in the text
reuse graph of Wikipedia.

A more detailed analysis of the text reuse graph of Wikipedia could help
in understanding the information flow in such collaborative environment like
Wikipedia. Due to the restrictions in time, we leave this further analysis for
future work.

Figure 4.2 shows the distribution of the length (as number of words) of the
reused text in Wikipedia. The average number of tokens in the reused texts
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Figure 4.2: Distribution of the length (number of words) of the reused text. Log
scale is used on y-axis.

(both source and target) is around 78 words which is shorter than a paragraph.
Most of text reuse cases (87%) are short reused texts with length shorter than
100 words.

To understand what kinds of text reuse cases exist in Wikipedia, we first
need to identify the reasons behind this phenomena. After observing few
examples of text reuse, we hypothesize that two texts overlap (text reuse case)
because of mainly two reasons: (1) The two texts are describing two different
topics/entities that share some level of similarity, which in turn, leads to having
same text spans reused for describing both entities. (2) The two texts are
covering the same underlying topic.

Situations that apply to the first reason lead to text reuse cases that we
call structure reuse in which the same structure of the text is reused but the
main overall topic/theme remains different. The level of similarity in between
the two underlying topics of the two texts varies from low to high similarity.
Consequently, the two texts overlap to a different degree. Another reoccur-
ring example of structure text reuse from the extracted data happens between
geographical locations. In Figure 4.3 (lower box) the two underlying topics
share the characteristics of being villages in a Voivodeship in Poland but sill
in different administrative districts which resulted in text reuse of low over-
lap. However, in same Figure 4.3 (upper box) we show another example of
two villages that share almost all the geographical characteristics but one is
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located to the east and the other is located to the north-east of some land
mark (two different villages but they share many geographical characteristics).
The resulted text reuse is of high overlap (almost looks identical) but still the
two underlying described entities are different. That poses big challenge on
developing good heuristics to identify the structure reuse.

Figure 4.3: Examples of structure text reuse. The upper box represent two villages
with high similarity while the bottom box two villages that share less characteristics

The second reason of text reuse in which the two underlying topics are iden-
tical, leads to text reuse cases where the text is copied from one source to an-
other. However the two versions of texts that describe the same event/fact/entity
get updated and modified differently which causes divergence between the two
texts. This could end up having two versions of text that contain contradic-
tions, or one contains more information than the other. An example of this
case is shown in Figure A.1 in the Appendix, Two articles talking about the
same topic (tooth eruption). However, the two texts has changed and different
terminology were introduced like dentition in the first article while its called
tooth eruption in the other. We notice also the different facts introduced in the
two articles about the start of dentition stage. While one article states that
it starts around age of six months the other says at age of eight months. The
already mentioned example besides many other examples create undesirable
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situation of inconsistency in Wikipedia that could be thought of as a quality
flaw. The two texts in such cases should be unified.

Given a text reuse case X between two topics (documents) DocTopic1
and DocTopic2, we further hypothesize that by identifying the location of
the two topics in the ontology tree 1, we could tell into which class the text
reuse case belongs. Structure reuse usually happens between topics that are
located on the same level of the ontology tree.

Figure 4.4: Examples of ontological relation between topics in Wikipedia and what
text reuse case that might occur because of the ontological relation

Examples of this relation shown in Figure 4.4 where both topics (Berlin and
Leipzig) have the relation "is a" with the concept city and have the character-
istics of their parent in the ontology tree. In Figure 4.3 both cases of structure
reuse show a situation where the source and the destination topics are on the
same level in the ontology tree. However, when DocTopic1 and DocTopic2
are located vertically in the ontology tree (the relation between the two topics
is either "is a" or "part of" as in Figure 4.4) then the text reuse case is of
class content reuse. As an example in Figure A.1 in the Appendix, we can
identify the relation between the two topics as one (Tooth eruption) is part of
the other (Human tooth development) and consequently the text reuse case is
of class content reuse. Another example of content text reuse in Figure A.2,
where the relation between the two topics is "is a" (Spiritual opportunism is
Opportunism).

To be able to build heuristics that automatically classify text reuse cases,
we extracted the following features from each text reuse case; The first feature

1https://en.wikipedia.org/wiki/Ontology_(information_science)
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is the Jaccard similarity of N-grams (text overlap) between the two texts. We
chose for N values of 2 as a minimum value that captures a degree of text reuse,
5 as an estimated length of one clause, and 10 and 15 to cover the length of
a sentence. The variant values of N help in distinguishing different levels of
text overlap. Also using combinations of N-gram Jaccard similarity of different
N values indicates different situations of text reuse cases. For example high
similarity of 2-grams and low similarity of 5-grams indicates a structure reuse
situation.
The second feature is Jaccard similarity of named entities between the two
texts. Low values of named entities similarity could be an indicator of a struc-
ture text reuse case (two texts talking about different named entities). The last
feature we extracted was the percentage of reused text from both the source
article and the destination article. Having a high percentage of an article as
reused text is a strong indicator of a structure reuse case.

From the aforementioned extracted features, we constructed the following
set of heuristics that automatically classify a text reuse case:

H1 :ne_sim ∈ (0.5, 1.0] ∧
10grams_sim > 0.5 ∧
(s_percent_reused < 0.5 ∨ t_percent_reused < 0.5)

⇒ content reuse
H2 :2grams_sim > 0.5 ∧

5grams_sim < 0.5 ∧
(s_percent_reused > 0.5 ∨ t_percent_reused > 0.5)

⇒ structure reuse
Where :

ne_sim is named entities similarity
Ngrams_sim is similarity over N grams
s_percent_reused is percentage of text reused from the source article
t_percent_reused is percentage of text reused from the target article

(4.1)

To validate the performance of each of the heuristics, we applied each on
the text reuse cases dataset, then randomly sampled 100 cases from the data
that is labeled (by the examined heuristic) as structure reuse cases and another
100 cases from the data that is labeled as content reuse cases. We repeated
the validation again but this time we only sampled from text reuse cases with
a minimum of 200 tokens to account to the skew in the length distribution of
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text reuse cases towards short texts. For each of the eight samples (4 samples
for each heuristic) we manually computed the precision which is the number
of correctly classified cases out of the whole 100 instances. We didn’t compute
the recall because we don’t have information of the total number of cases in
each of the classes. In Table 4.2 we show the precision of each of the two
constructed heuristics.

Both heuristics had 100% precision in detecting structure text reuse. That
is because most of the text reuse cases are structure text reuse cases. However,
in detecting the content text reuse cases H1 has higher precision than H2 and
the precision is higher for both heuristics in sample4. We think that is related
to the fact that most of the structure text reuse cases are short ones.

structure reuse content reuse
sample1 sample2* sample3 sample4*

H1 100% 100% 58% 73%
H2 100% 100% 21% 50%

Table 4.2: Evaluation table for H1 and H2 heuristics in term of precision. sample2
and sample4 are randomly sampled from text reuse cases longer than 200.

Later we examined the validity of our hypothesis on the ontological rela-
tion between topics of a text reuse case and how it correlates with text reuse
class (structure/content). From the 100 randomly sampled (sample4 in Table
4.2) text reuse cases of content reuse class (collected using H1 heuristic), we
manually examined 20 content text reuse cases. We found 10 text reuse cases
where the two topics aligned vertically in the ontology tree. We used the text
reuse cases in sample1 of heuristic H1 to look at all structure text reuse cases.
All the 20 structure text reuse cases had the two topics on the same level in
the ontology tree.
However, during the examination of text reuse cases, we encountered cases that
need to be further examined. For example in Figure A.3 in the Appendix, the
two articles (Culture of Dominica and Antillean Creole French ) have no re-
lation in the ontology tree but they still have content text reuse case where
both tell in their history section the story of the french colonization in the
Caribbean.

Another frequent case we encountered is two articles who have a horizontal
relation in the ontology tree but have a content text reuse case. An example of
this is two school districts (Susquehanna Township School District and Warrior
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Run School District) both are in Pennsylvania and have content text reuse
where they both define the same policy that deals with nutritious meals served
at school. An example of dealing with such case in Wikipedia is to suggest
opening a new article that gives a unified explanation of this definition (the
nutritious meals policy in Pennsylvania schools).
Those cases and many others worth further investigation to understand the
interaction between concepts in Wikipedia and how it affects the possibility of
having text reuse cases.

4.2 Text Reuse between Wikipedia and the Web
To examine the text reuse phenomena between the web and Wikipedia, we
randomly sampled 10% of the Common Crawl and we ran the pipeline in
between the sample and Wikipedia. The sample contained 1.4 million domains.
In Figure 4.5(a) we show the distribution of the number of web pages per
domain (website) in the sample. It worth noting that around 990 thousand
domains contain less than 10 pages in the sample. So the text reuse extraction
we perform per website is not on all its web pages (some websites has only few
web pages examined).

(a) Distribution of number of pages
per website in the web sample

(b) Distribution of reused text
length for both Wikipedia and the
web. For readability of the graph
we omitted text reuse cases longer
than 1k tokens which only around
150 cases

Figure 4.5

As a result of running the pipeline on this sample, we extracted around 1.6
million text reuse cases. However, only 15k web pages of the sample have at
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least one text reuse case with a Wikipedia article. In Figure 4.8(b), we show
the distribution of the reused text length (number of words) of both the source
text (from Wikipedia) and the destination text (from a web page). We observe
that most text reuse cases (75%) are less than 300 words in length.

Due to time limitation, in our analysis of text reuse cases between the
web and Wikipedia we concentrated on quantifying the amount of text reuse
without looking in detail on what characteristics these cases have and whether
there is recognizable patterns in the data. However, we only looked at the
similarity between the two texts in terms of the percentage of overlap between
10-grams (Jaccard similarity). In Figure 4.6(a), we show the distribution of
10-grams similarity. Most text reuse cases has similarity less than 0.1. Taking
that value as a threshold we divide text reuse cases into two groups.

(a) Distribution of 10-grams similar-
ity values of web text reuse cases

(b) Distribution of reused Wikipedia
text for text reuse cases with 10-
grams similarity =< 0.1 (blue) and
cases with 10-grams similarity > 0.1
(orange)

Figure 4.6

The observation of the first group of text reuse cases with similarity of
10-grams greater than 0.1 shows that most of these are cases with short reused
Wikipedia texts with an average of only 98 tokens (Figure 4.6(b)). These text
reuse cases represent situations in which the two texts talk about the same
subtopic (content text reuse). An example of these cases is shown in Figure
A.4 (upper box) in the Appendix.

The second group of text reuse cases with similarity less than or equal
to 0.1, are cases with relatively longer texts with an average of 239 tokens
(Figure 4.6(b)). Those text reuse cases are similar to the structure reuse cases
between Wikipedia articles. These cases occur when a web page copies text
from a Wikipedia article (information about a city for example) that shares
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similar structure with other Wikipedia articles resulting a structure text reuse
cases in between the web page and those structurally similar articles. An
example of this case is shown in Figure A.4 (lower box) in the Appendix.

The 15k web pages that we found to be reusing text from Wikipedia were
generated by 4898 out of the 1.4 million websites. On average each website
has 3 pages reusing text from Wikipedia. To put this into perspective, we
computed for each website the percentage of web pages that reuse text from
Wikipedia. In Figure 4.7 we show the distribution of this percentage. On
average around 0.02 of the website content is just a reuse of Wikipedia content.
However, There exist 87 websites who have the situation where 50% of their
examined web pages are reuse of Wikipedia articles.

Figure 4.7: Distribution of the percentage of webpages that are reusing text from
Wikipedia per website

Estimating the revenue of a website is not a straight forward task. Website
revenue is usually generated in many ways like; Selling services or products,
Affiliate marketing (promoting other entity’s products) and more importantly
advertising.

In this research we concentrate on computing the ads revenue generated
by reusing Wikipedia content. Usually the reusing websites copy content from
Wikipedia and add it to their own web pages along with ads. The traffic
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that this content attracts in turn generates money for the reusing website.
For example the Cost-Per-Mille (CPM) ads 2 is a method of advertisement in
which a specific amount of money is paid (from the owner of the ad to the
advertising website) for every 1000 page views on a web page that contains the
Ad.

However it is hard to give an accurate estimation on how much traffic each
web page gets or how much is the CPM rate for a website. Due to the time
limitation we took a very basic approach to estimate the potential ads revenue
made by the evaluated web sample. First, we draw a sample of 100 reusing
web pages and manually check the presence of ads on these pages. All the
100 pages contained at least one Advertisement. Building upon this observa-
tion we assume all reusing web pages contain ads. Second, to estimate the
ads revenue generated by Wikipedia content, we compute the following for
each website: (1) Using the service Worth of web 3 we estimate how much the
website worth. The tool computes the value of a website based on statistics
about public traffic, visitors and page views a website gets to estimate the
potential advertising revenue. (2) We compute the proportion of web pages in
the website that contains Wikipedia content. (3) The ads revenue generated
by Wikipedia content is computed by multiplying the website value by the
proportion of web pages that contains Wikipedia content. Finally we sum up
the proportional revenue of all the websites and that would be the ads revenue
generated from Wikipedia content. In table 4.2 we show the estimated revenue
of few web sites. The total value computed was 1.2$ million monthly revenue.
This estimated revenue is what is expected to be generated by the reused free
content of Wikipedia in a 10% sample of the web.

The revenue of 1.2 million per month generated by Wikipedia content
seemed to be high estimation. To investigate more the websites behind this big
number we observed the existence of big websites like; google.com, bbc.com,
tumblr.com, etc. We understand that these websites are big enough and gen-
erate revenue without the reuse of Wikipedia pages. To address this fact we
give another number that represents a lower estimation of the revenue, we only
take those websites with a percentage of reused Wikipedia pages equal to or
more than 50%. The number of websites that satisfy this condition equals
to 87 and computing the monthly revenue on only those websites results in
around $15k.

The final method we propose to estimate the monthly revenue (generated
by the reusing websites) is based on the Wikipedia page views and the average

2https://en.wikipedia.org/wiki/Cost_per_impression
3https://www.worthofweb.com/calculator
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CPM. According to a report by MonetizePros 4, the average estimated CPM
value is equal to $2.8 (we call it avg_cpm). This average is computed again
based on assumption and aggregation of publicly available information about
the CPM rate averages. We extracted for each reused Wikipedia page the
average of the monthly pageviews from Wikipedia (avg_page_views). We
assume that the computed average reflects also the number of page views that
the reusing web page would receive. Having the estimated average of CPM
and information about number of page views that each web page gets, we
could compute the total monthly revenue (monthly_revenue) of the reused
Wikipedia content according to equation 4.2. The estimated monthly revenue
according to this approach equals to $900k.

monthly_revenue =
n∑
i

(avg_page_views/1000) ∗ avg_cpm (4.2)

Interpolating this value into the whole web needs more information about
the distribution of number of reused web pages per website, the distribution of
websites monthly revenue, etc. We leave this task for future work. However,
this approach we have proposed is built on a lot of assumptions which might
not hold. We don’t claim its an accurate estimation but it forms a start that
further research could extend on.

website website value proportion of Wikipedia content Wikipedia content value
pdxretro.com 195$ 0.012 2.5$

searchquarry.com 8,850$ 0.096 850$
asiatees.com 3,810$ 0.017 66.19$

onefivenine.com 36,000$ 0.017 613.22$
wikia.com 25,615,320$ 0.0008 23,037$

... .... ... ...
Total 1.2 million

Table 4.3: The manually examined websites and their estimated value

The last statement to be highlighted is the fact that most of these reusing
websites don’t give any reference of Wikipedia as a source. We created a
script to crawl the 15k web pages. For each web page the script extracts all
the URLs in the page and searches for any URL that links to "wikipedia.org".
Out of the 16k web pages the script found 760 web pages that contain at least
one reference to Wikipedia. However, Wikipedia content is published under
the terms of the Creative Commons Attribution Share-Alike license (CC-BY-
SA)5. The license states that the content/text can be reused but the entity

4https://monetizepros.com/cpm-rate-guide/display/?cn-reloaded=1
5https://en.wikipedia.org/wiki/Wikipedia:Reusing_Wikipedia_content
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that reuses the content must attribute the reused work to the source where it
was copied from. Clearly, these websites that reuse Wikipedia content without
any reference are violating the terms of use.

4.3 Text Reuse exploratory web tool
Data exploratory analysis is a challenging task and needs tools that support
the exploration of different dimensions of the data to uncover patterns, answer
questions and test hypotheses. Because we are convinced that there are yet
many questions to be answered on the text reuse phenomena both in Wikipedia
and between the Wikipedia and the web, we developed a web tool that en-
ables the user to query the text reuse dataset with certain criteria and extract
samples to be examined in detail (Figure 4.8(b)).

The web tool connects to the cluster and loads the text reuse dataset as an
RDD distributed on the cluster (making it possible to explore big datasets).
The used dataset is the output of the pipeline after performing the feature
extraction step. The extracted features from text reuse cases are; N-gram sim-
ilarity, name entities similarity, percentage of text reused from the total article
and finally length of the reused text.

(a) An example
of filters that can
be chosen to sam-
ple from the text
reuse dataset

(b) A snapshot of the text reuse analysis web tool

Figure 4.8

Using the tool, users can build their own criteria made of filters over the
mentioned features and load a random sample from the data that satisfies the
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requested criteria. For example in Figure 4.8(a), the user has selected to sam-
ple from text reuse cases that have 10-grams similarity between 0.1 and 0.9,
reused target text of length between 100 and 400, and percentage of reused
text of the target article is between 0.5 and 1.0. Then the sample can be
browsed and each of the text reuse cases could be visualized. By choosing a
text reuse case, users can visualize how the two texts in the text reuse case
are overlapping. Besides that, users can also show the whole text of the two
articles to inspect the overall text reuse situation between them.
Moreover, we added to the tool the sampled data we generated using the heuris-
tics from the previous section. Currently through the tool, user can browse
both Wikipedia text reuse cases and the text reuse cases between Wikipedia
and the web. However any dataset contains text reuse cases generated from
the pipeline could be browsed and explored using the tool.

4.4 Summary
The first section in this chapter presented and quantified the text reuse cases
that were extracted from Wikipedia in the previous chapter. It gave insights
on possible reasons of text reuse phenomena in Wikipedia and following that
it categorized text reuse cases into two classes and presented a simple heuristic
for automatic detection of each class.
Next, in the second section, the text reuse cases extracted in betweenWikipedia
and a web sample were presented and the amount of Wikipedia content used
by this sample was quantified. A very basic method to estimate the revenue
generated by this sample through advertisement over the free content was pre-
sented. However, this method doesn’t give the final answer but it forms the
first step toward establishing a framework that more accurately give an es-
timation of the revenue. Besides that in this analysis we assumed that the
source of text reuse is always Wikipedia which might not hold in all cases.
In the end of this chapter, we present a web tool that could be used in exploring
text reuse cases.
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Conclusion and Future work

In this work we constructed a pipeline for text reuse extraction from big
datasets through cluster computing and heuristic based algorithms. Using
the constructed pipeline we extracted text reuse cases in two scenarios; (1) In
between Wikipedia articles and (2) between Wikipedia articles and a sample
from Common Crawl as a representation of the web. We further analyzed
the extracted text reuse cases in both scenarios and gave insights on this phe-
nomena. In this chapter we highlight our main contributions and findings.
We also present the possible areas of improvement on the current work and
applications.

5.1 Contributions
We started our research by asking the following research questions; (1) What
kinds of text reuse cases happen in between the articles of Wikipedia? (2) How
much of the web is just a reuse of Wikipedia content? A follow-up to that is
the question of how much revenue is generated from this reused content?

To answer these questions, in chapter 3 we proceed to build a framework
for extracting text reuse cases from big datasets. We showed in abstraction
how the framework could be in a form of a pipeline of subtasks and what the
required algorithms and techniques are for each subtask. From there we move
to concentrate on evaluating methods of the candidate elimination subtask
where we construct an evaluation framework of these methods and used it to
evaluate set of methods we proposed. Later in the chapter 3, we show two
implementations of the pipeline in which they were used for extraction of text
reuse cases within Wikipedia and in between Wikipedia and the web.

To finally answer our research questions, in chapter 4 we analyze the ex-
tracted text reuse cases in both scenarios and give insights to understand the
text reuse phenomena in Wikipedia. We believe these insights only uncover
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part of the big image and more could be done in this matter. For the text
reuse cases that we extracted from the web sample, we quantify the amount of
Wikipedia content reused in the sample and outline a humble approach to give
a very rough estimation on the revenue that is generated by reusing content
from Wikipedia. This approach doesn’t give a final answer to our research
question but it forms the first step towards the answer. At the end of chap-
ter 4 we present the web tool that was developed for exploring text reuse cases
for further exploration of this phenomenon.

5.2 Future Work
Our contribution towards building a pipeline for text reuse extraction from
big datasets could be used in the future for further analysis of text reuse cases
between different datasets. A possible future task is to look at the text reuse
cases between Wikipedia and the scientific research community to complement
the work done by Thompson and Hanley [2017]. This could add value in
understanding the effect of Wikipedia on the scientific community.

In the experiments we performed in section 3.2 we concentrated on the
evaluation of methods of the candidate elimination task leaving the final text
alignment subtask as recommended by the used framework(PicaPica). How-
ever the results we analyzed and consequently our findings are subject to the
restrictions/parameters of the final subtask. We do not claim to find all var-
ious kinds of text reuse cases because of this limitation. Another extension
of our work is to experiment with different parameters of the text alignment
subtask and examine their effect on the resulted text reuse cases. Besides
that the experiment setup that we used including the sample we generated
from Wikipedia text reuse cases was also restricted by the used text align-
ment framework. The sample doesn’t contain all kinds of text reuse cases that
might occur between two texts. For more accurate evaluation of candidate
elimination methods, a more comprehensive representative sample should be
used.

Using a variational auto-encoder neural network for semantic hashing showed
potential results. Even though we kept our exploration of the NN configuration
to a minimum and only tuned few parameters, the VDSH model outperformed
the random projection hashing technique. A potential extension of this work
is to have a detailed look into using VDSH to build a semantic hash function
for candidate elimination in the text reuse extraction pipeline.
Furthermore, in section 3.2 we showed how constructing a scoring function of
weighted average of two components, semantic scoring (paragraph embedding)
and structure scoring (stopwords N-grams), enhanced the precision/recall curve.
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Another possible candidate elimination method to be evaluated is a process
of two steps. The first step is using VDSH to find those document which
are semantically similar (semantic component), and the second step is to use
stopwords N-grams to keep only those that have similar structure features
(structure component) from the semantically similar candidates.

In this work, the insights and analysis of text reuse cases in Wikipedia is
only the tip of the iceberg. We believe that more patterns and discoveries in
the data can found. As presented in section 4.3, a web tool that we developed
could help in further exploration and analysis of the extracted text reuse cases.
In addition to that, a possible application of our work is to create a tool to
evaluate the current situation of Wikipedia, and as an output, highlight the
kind of quality flaws that results from having repeated versions of same text
that should be unified. This tool could also notify authors (who are applying
updates on pieces of texts) of the existence of duplicate versions of text and
suggest updating all versions to keep Wikipedia in a coherent state.

As stated before, in our work on text reuse extraction between Wikipedia
and Common Crawl we did not take into consideration the identification of the
source of the reused text. The assumption was always that Wikipedia would
be the source from which the text is taken. However that might not be always
the case. To give more accurate results, information about the date of creating
a web page or a Wikipedia page could be utilized to identify the direction of
text flow.

In this work we proved the presence of websites that reuse texts from
Wikipedia and generate revenue from free content. We provided a very basic
and rough estimation of this revenue on a sample of the web. For greater
accuracy of the estimation, further detailed examination could be performed
in future works.
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Appendix A

Text Reuse Cases

This chapter contains list of figures that shows text reuse cases extracted from
Wikipedia and between Wikipedia and Common Crawl. We refer to these
figures and discuss them in chapter 4.

53



APPENDIX A. TEXT REUSE CASES

Figure A.1: Example of content text reuse in Wikipedia
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Figure A.2: Content text reuse. The relation between the two topics in the ontology
tree is "is a"
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Figure A.3: Content text reuse between two articles that don’t have ontological
relation.
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Figure A.4: Example of text reuse case between a web page and an article from
Wikipedia. The top box contains text reuse case of the first group (content text
reuse). Bottom box contains text reuse case of the second group (structure text
reuse)
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