
Bauhaus-Universität Weimar
Faculty of Media
Degree Programme Computer Science and Media

Authorship Obfuscation Using
Heuristic Search

Master’s Thesis

Janek Bevendorff

1. Referee: Prof. Dr. Benno Stein
2. Referee: PD Dr. Andreas Jakoby

Submission date: June 15, 2018

Declaration

Unless otherwise indicated in the text or references, this thesis is
entirely the product of my own scholarly work.

Weimar, June 15, 2018

. .
Janek Bevendorff

Abstract

In this thesis, we discuss the Jensen-Shannon divergence as a model for author-
ship and based on it, we present an approach to obfuscating a text’s authorship
in order to impede automated authorship detection. The incentive behind obfus-
cating a text is that automated detection of its authorship can potentially pose
a privacy issue or even life-threatening security risk to the author. We define
methods and thresholds that allow this kind of authorship obfuscation with
minimal effort and develop an obfuscation framework, which uses heuristic
search to cautiously and inconspicuously paraphrase a text with the goal to
remove stylistic properties which would allow conclusions to be drawn about
the text’s original author.

Contents

1 Introduction 1

2 Related Work 3

3 Authorship Verification 6
3.1 Relative Entropy for Measuring Authorship 6

3.1.1 Kullback-Leibler Divergence as Authorship Model 7
3.1.2 Jensen-Shannon Distance as Authorship Metric 7

3.2 Distributional Authorship Verification 9
3.3 Verification by Unmasking . 9

3.3.1 Unmasking for Short Texts by Chunk Expansion 10
3.3.2 Precision Over Accuracy 11
3.3.3 Unmasking Verifier Evaluation 12

4 Authorship Obfuscation 16
4.1 Obfuscation Quality Assessment 17
4.2 Distributional Authorship Obfuscation 19

4.2.1 Effect on Unmasking . 19
4.2.2 Effect on Compression Models 21
4.2.3 Safety of n-Gram Selection Strategies 23
4.2.4 Estimating Text Operation Side Effects 28
4.2.5 Empirical Side Effect Analysis 31

5 Adaptive Obfuscation 33
5.1 Decidability and Obfuscation 33
5.2 Defining Adaptive Targets . 34
5.3 Obfuscation Levels by Percentiles 35

6 Overview Heuristic Search 39
6.1 Systematic Search . 39
6.2 State Space Representation . 40
6.3 Best-first Search and A* . 41

i

CONTENTS

6.3.1 Admissible Heuristics . 42
6.3.2 Consistent and Monotone Heuristics 42

7 Heuristic Search for Obfuscation 44
7.1 Developing an Obfuscation Heuristic 45

7.1.1 Naive Approach: Relative JS Distance 45
7.1.2 Heuristic Based on Normalized Path Costs 45
7.1.3 Consistency and Admissibility Properties 46

7.2 Developing Operators . 49
7.2.1 Asyntactic Operators . 50
7.2.2 Syntactic Operators . 51
7.2.3 Context-based Operators 52
7.2.4 Grammatical Operators 53

7.3 Design and Algorithmic Considerations 54
7.3.1 Search Space Challenges 55
7.3.2 Partial Node Expansion 56
7.3.3 Hybrid Search . 57

7.4 Results Analysis . 58

8 Conclusion 64
8.1 Future Work . 65

Bibliography 66

ii

Chapter 1

Introduction

Authorship analysis, and more specifically authorship verification and its related
discipline authorship attribution, is a class of forensic techniques for determining
whether two texts were written by the same author or for attributing an
unknown text to a known author. An common scenario in which authorship
analysis is an indisputably valuable tool is attribution of historical publications
to a suspected known author, but also contemporary forensic applications in
the domain of crime solving, fraud detection, or detection of fake online reviews
and comments benefit from authorship analysis. But what is a decent tool in
these scenarios may also be abused by governments and regimes for malicious
prosecution. In a less critical context, the ability to deduce authorship of a
piece of text may also raise general privacy concerns in our information age, in
which a large part of our lives evolves around social media. These circumstances
hereby create a legitimate demand for anonymization of a person’s writing. On
the other hand, understanding how an adversary could circumvent detection
by their writing style is crucial for building more reliable verification schemes.

The modification of a text in order to disguise the original author is called
author masking. Instead of only masking an author, we might also try to
imitate another one, which would be authorship imitation. Either technique is
a form of what we call authorship obfuscation, which is the general term we will
use. During our previous research [4], we sketched an approach to obfuscating
a text by attacking the Kullback-Leibler divergence between the character
trigram distributions of the text in question and a pool of one or multiple
other known texts by the same author. With the Kullback-Leibler divergence
(and other measures based on it), we found a simple and effective authorship
model. This model can be systematically attacked by removal or insertion of
specific n-grams and therefore allows for target-oriented obfuscation, rather
than random text modifications which we can only hope to be effective.

1

CHAPTER 1. INTRODUCTION

While this basic approach worked well against all tested state-of-the-art au-
thorship verification schemes, it still remains a proof of concept and obfuscated
parts of a text are rather easily noticeable and—up to a certain extent—even
reversible by a human reader or an automatic spell checker. The next step in
successfully obfuscating a text’s authorship is not only fooling an automated
standard verification scheme, but also fooling more advanced or specialized
verification methods and possibly human readers. It is clear that we need
better text transformations than simple deletion or insertion of individual
n-grams, which obviously lacks even the most basic syntactic or grammatical
considerations. The way we can achieve this is automatic paraphrasing of the
parts of a text which need obfuscation. Paraphrasing has to be done in a way
so that the final result looks like an original text with no or at least as few
obvious gaps or other spelling and grammar mistakes as possible.

For this thesis, we first gather more advanced insights into obfuscation
strategies based on the Jensen-Shannon divergence, a symmetric variant of the
Kullback-Leibler divergence, and develop a generalized version of the unmasking
verification scheme by Koppel and Schler [31] as a robust adversarial baseline
to test our obfuscation against. We can show the effectiveness of our proof-
of-concept approach against this unmasking variant and other state-of-the-art
authorship verification techniques. As a first constructive obfuscation approach,
we then formulate systematic obfuscative paraphrase generation as a search
task solvable using the A* algorithm [20]. A* is an informed search algorithm
which utilizes a heuristic to find an optimal solution in a state space graph
much faster than an uninformed exhaustive search. Since we can generate
almost arbitrarily many paraphrases for a selected word or paragraph and then
again arbitrarily many for the next one, our state space grows exponentially.
If we want to find the best-possible sequence of paraphrases in this space, an
informed search is crucial for success, whereas finding a solution by uninformed
exhaustive search is practically impossible. We implemented this constructive
approach as an efficient C++ search framework and find that, although sensible
heuristic paraphrase generation remains a very difficult task, we can already
generate obfuscations of higher text quality with much fewer operations than
our previous proof-of-concept approach.

2

Chapter 2

Related Work

Forensic authorship analysis is a field of research that dates back to at least
the late 19th century [5]. While early methods relied exclusively on manual
analysis by linguistic experts, modern approaches tend to use computers for
automatic and deeper text analysis.

Various stylometric features have been proposed in the literature so far for
automatic authorship analysis. Abbasi and Chen [1] propose writeprints, a
comprehensive set of over twenty lexical, syntactic, and structural text features,
which has since been used extensively as a basis for further research in the
field of authorship attribution, verification and obfuscation [21, 33, 37, 39, 54].
A similar but smaller and more condensed feature set has been proposed
by Brennan et al. [7] under the name Basic-9.

Instead of relying on classification by a rich set of features, Zhao et al. [53]
suggest a slightly different approach. They only extract POS tags of the texts
in question and interpret style differences as an encoding problem measurable
by the Kullback-Leibler divergence. We used the idea of measuring stylistic
differences between texts by relative entropy as a basis for implementing a
simple yet competitive verification scheme and a successful obfuscation attack
based on character n-gram features [4]. A related approach was published earlier
by Khmelev and Teahan [29], Teahan and Harper [49], who use PPM-based [11]
compression models for exploiting the better compressibility of stylistically
similar and thereby more predictable texts. This method has since been adapted
and improved by Halvani et al. [18, 19].

In order to measure deeper underlying stylistic differences, Koppel and Schler
[31] developed the unmasking approach for which a number of discriminatory
text features are extracted and iteratively removed, effectively reducing the
differentiability between the two source texts. The idea behind this approach is
that texts written by the same author only differ in few superficial features. By

3

CHAPTER 2. RELATED WORK

removing those superficial features, differentiability between texts by the same
author is expected to degrade faster than for texts written by different authors.

Besides individual publications, three shared tasks have been organized at
PAN [23, 45, 46] in the field of authorship verification since 2013. The winning
approach of the most recent competition was submitted by Bagnall [2] and is
based on a deep neural network. Software submitted to PAN is archived on
the TIRA platform [13, 41] for later reevaluation to allow reproducibility.

One of the first to publish about measures for confusing authorship analysis
techniques were Rao and Rohatgi [43], who used round-trip machine translation
as a way of masking the original author of a text. This method was later
reviewed by Brennan et al. [7], who coined the term adversarial stylometry for
obfuscating stylometric features of a text. In their study, they found machine
translation to be ineffective. Instead of relying on automated obfuscation
techniques, they developed the Brennan-Greenstadt corpus of adversarial texts,
for which untrained authors deliberately tried to mask their style or imitate
the style of another author. Brennan et al. could show that manual obfuscation
was more effective against the writeprints technique by Abbasi and Chen [1]
and their own Basic-9 feature set than obfuscation by machine translation.
Further studies by Juola and Vescovi [24, 25] confirm these results. Beyond
these findings, Caliskan and Greenstadt [9] could even attribute translated
texts to the used translation engine, which might pose another attack vector
for de-anonymization.

While standard machine translation appears to be ineffective and due to its
blackbox character also quite uncontrollable, Xu et al. [52] used within-language
machine translation techniques to translate directly between writing styles.
The applicability of this approach remains questionable, since it requires a
rather large mass of parallel training data of texts in different styles.

Another obfuscation technique that directly targets Koppel and Schler’s
unmasking was published by Kacmarcik and Gamon [26]. In what they call deep
obfuscation, they iteratively extract and remove the most discriminatory text
features, successfully degrading classification quality of an unmasking verifier.
They could also show that by attacking the right features, only few obfuscations
have to be performed in order to achieve adequate obfuscation performance.
As a more general tool to assist authors in writing non-attributable texts, the
semi-automatic Anonymouth obfuscation software was published by McDonald
et al. [33, 34]. The software determines the most important stylistic features
and gives suggestions how to rewrite a text in order to remain anonymous.

Although all mentioned obfuscation approaches successfully degrade the
performance of selected verification techniques, a missing piece was a larger-scale
comparison of obfuscation softwares against state-of-the-art verification schemes.
So, following up on the 2013–2015 verification tasks, the PAN 2016 and 2017

4

CHAPTER 2. RELATED WORK

challenges [17, 42] featured an authorship obfuscation task whose submissions
were tested against verifiers submitted during previous years. To evaluate
the quality of a submitted obfuscator, the task employed three evaluation
dimensions:

• safety: obfuscated texts cannot be attributed to their original authors,

• soundness: obfuscated texts are textually entailed by their originals,

• sensibleness: obfuscated texts are well-formed and inconspicuous.

Five participants submitted their obfuscation approaches [3, 10, 28, 32, 35], who
were all rated rather low on at least two of these three scales with soundness
and sensibleness appearing to be the hardest dimensions to score on.

One of the main insights gained from the PAN obfuscation task is that
most state-of-the-art verification approaches are very susceptible to simple
obfuscation techniques. However, Thi et al. [50] could show that many, especially
deterministic, obfuscation schemes are reversible. Independently, Juola [22]
also found that, although an obfuscated text may not necessarily reveal its
original author, the fact that it is obfuscated can quite easily be detected.
As a result, we have to assume that many existing obfuscation schemes are
ultimately unsafe against more sophisticated verifiers or human experts.

In order to score higher in terms of soundness and sensibleness and ulti-
mately also safety against reversal, a text needs to be rephrased more carefully.
To avoid the pitfalls of obfuscation by machine translation or other unguided
paraphrasing approaches, an applicable paraphrasing technique needs to per-
form controlled text transformations on specific parts of the text. To the best
of our knowledge, not much research has been published in this area. Our
main inspiration comes from a publication by Stein et al. [48], who propose
using heuristic search for paraphrasing texts in a controlled manner with the
goal of generating acrostics. Since then, attention-based neural networks have
been shown to be useful for performing targeted edits on a text. In particular,
Grangier and Auli [15] suggest a technique for paraphrasing designated parts of
a sentence for semi-automatic revision of machine translation results and Guu
et al. [16] propose a general editing technique using neural edit vectors. These
paraphrasing approaches have not yet been tested as obfuscation techniques,
but establish interesting new research directions.

5

Chapter 3

Authorship Verification

For measuring differences in author style, we assume statistical differences
between the feature distributions of two or more texts. These differences can be
hidden in a plethora of different feature categories, including the use of function
words and non-function words, morphology, punctuation, capitalization etc.
We explicitly exclude structural features such as line and paragraph breaks.
While they may be significant for lyrics or poems, it is unclear if they can be
attributed to the original author in prose texts. The safe choice is to regard
them as editorial features and to not include them in our authorship analysis.

3.1 Relative Entropy for Measuring Authorship
Capturing all stylistic markers can lead to an extensive feature set of the size
of the writeprints feature set [1], but in our previous studies on verification, we
employed the much simpler approach of only considering character trigrams [4].
The advantage of character-level n-grams compared to word-level n-grams
is that they capture morphological structures and the use of punctuation.
When white space is normalized by collapsing all whitespace characters to a
single space symbol, character trigrams are sufficient to not only capture word
boundaries, but also link the end of a word to the beginning of the next word.
Another interesting property of character-level n-grams is that to a certain
extent, they even capture phonological features as the same n-gram may occur
in different words which may be semantically different, but phonologically, or at
least orthographically,similar. Character n-grams therefore represent a text on
a much more fundamental level than word n-grams or other word-based features.
Since character n-grams make no explicit assumptions about grammatical and
lexical properties of the source document, they are language-independent. Our
analysis is done on English texts only, but can most likely be applied to many
other languages by utilizing a Unicode alphabet or even just byte-level n-grams.

6

CHAPTER 3. AUTHORSHIP VERIFICATION

A disadvantage of character n-grams (and of any other lower-order n-gram
model) is that they perform poorly in modelling long-range dependencies like
semantic relationships between the beginning and the end of a sentence and
between sentences or paragraphs. This may be addressed by using higher-
order dependency n-grams as additional features, but for simplicity, the use of
character n-grams in our analysis shall suffice.

3.1.1 Kullback-Leibler Divergence as Authorship Model

With character trigrams as features, we need a measure to determine the
stylistic similarity between two texts. For our approach, we interpret the
authorship problem as an encoding problem. Given an author A, we imagine a
code CA that optimally encodes documents dAj ∈ {dA0 ,dA1 , . . . ,dAk } written in
the style of author A. To measure how much a document dBj written by another
author B with code CB differs in style, we measure how much encoding overhead
representing dBj in CA would incur. This additional encoding overhead is called
relative entropy and can be measured by the Kullback-Leibler divergence (KLD),
which is defined as

KLD(P‖Q) =
∑
i

P [i] log
P [i]

Q[i]
, (3.1)

where P and Q are discrete probability distributions corresponding to the
codes CB and CA. If the base-2 logarithm is used, the unit of the KLD is
bits. For true probability distributions, the KLD is always non-negative. An
important property of the KLD is its asymmetry, i.e.

KLD(P‖Q) 6= KLD(Q‖P) . (3.2)

The KLD is therefore not a metric and the direction, in which probability
distributions are compared, matters. KLD is directly related to cross entropy,
which is defined as the total number of bits required to encode a sample
of P in Q:

H(P‖Q) = H(P) + KLD(P‖Q) , (3.3)

with H(P) being the Shannon entropy of P .

3.1.2 Jensen-Shannon Distance as Authorship Metric

Considering its asymmetry, the pure KLD has a few disadvantages. When
comparing two texts, it is not clear, which character distribution should be P
and which should be Q. The answer to the authorship question should stay

7

CHAPTER 3. AUTHORSHIP VERIFICATION

the same, no matter the direction in which they are compared. Two texts were
either written by the same author or not. Different values depending on the
direction of comparison are hard to interpret and to justify under this problem
definition.

The KLD is also only defined for distributions P and Q where Q[i] = 0
implies P [i] = 0. Conversely, P [i] = 0 implies a zero summand, eliminating
it from the KLD sum completely. As a result, we have a problem with
unseen n-grams. To solve this problem, we would either have to renormalize
the distributions to only include the subset of shared n-grams or estimate
probabilities for unseen n-grams using discounting or smoothing (common
smoothing methods being Good-Turing [14] or Kneser-Ney [30] smoothing). The
problem with either approach is that we are reducing or artificially modifying
our feature set substantially, which gets worse the sparser the data is. Taking
into account that we often only have essay-length texts to work with, the
shared n-gram subset will most likely only contain half of the total n-grams or
perhaps even significantly less. Applying smoothing to the rest of the n-grams,
would skew the distribution massively and only considering the shared subset
of n-grams would result in an incomplete assessment of the examined texts. To
avoid these kinds of problems, we actually use a different KLD-based difference
measure, the Jensen-Shannon divergence (JSD), which is defined as:

JSD(P‖Q) =
KLD(P‖M) + KLD(Q‖M)

2
, (3.4)

with

M =
P +Q

2
. (3.5)

By constructing an artificial distribution M as the midpoint between P and
Q, we circumvent the problem of samples of one distribution being unknown
in the other. Since M [i] is never 0 for any i with P [i] + Q[i] > 0, one of the
terms KLD(P‖M) or KLD(Q‖M) will always be non-zero. Thereby if we are
missing a sample in one of the distributions (be it because it genuinely does
not exist or because the sample size is too small), the sample from the other
distribution will still contribute to the final sum. Using the base-2 logarithm,
the JSD is bounded by the [0, 1] interval.

A nice side effect of these properties and the commutativity of addition is
that the JSD is in fact symmetric. The square root of twice the JSD—called
the Jensen-Shannon distance JS∆—also fulfils the triangle inequality, making
it an actual metric [12]:

JS∆(P,Q) =
√

2 · JSD(P‖Q) . (3.6)

8

CHAPTER 3. AUTHORSHIP VERIFICATION

As discussed before, a symmetric measure fits our authorship problem much
better and is particularly useful in anticipation of our goal of using it as the
basis for a heuristic to measure paraphrasing obfuscation progress.

3.2 Distributional Authorship Verification
The simple authorship verification approach we developed earlier [4] served as
a proof-of-concept baseline to show that competitive authorship verification
based on the JS∆ is possible with only little effort and our KLD model does
indeed capture an author’s style. We could also show that while effective, this
model is trivial to fool by attacking the n-grams which are most significant for
the KLD. Due to its triviality, we only mention it here for completeness and
will not consider it further for this thesis.

3.3 Verification by Unmasking
One of the most accurate and robust verification techniques as of today is
the previously mentioned unmasking technique by Koppel and Schler [31].
We use unmasking as a representative and robust state-of-the-art adversarial
baseline to evaluate our obfuscation approach against. If we manage to confuse
unmasking, we obtain evidence that our JSD-based obfuscation technique works
on a deeper level than just changing a few superficial text features. We also
gain at least anecdotal evidence that distributional differences are fundamental
to authorship analysis—even for verification approaches which do not use the
KLD or JSD explicitly as a feature. Another advantage of unmasking as a
baseline is that it produces descriptive and human-interpretable curve plots.
These plots make obfuscation effects and their strength immediately visible
without having to rely on blackbox machine learning techniques to make sense
of otherwise hard-to-understand numerical features and thresholds.

Given two texts for which we want to decide if they share the same author-
ship, unmasking works as follows:

1. split the two texts into chunks of at least 500 words each,

2. from each chunk extract a set of features,

3. using a linear model, determine classification accuracy between feature
vectors using cross validation,

4. eliminate the m features with highest absolute weights,

5. go to Step 3 if there are still features left.

9

CHAPTER 3. AUTHORSHIP VERIFICATION

Figure 3.1: Unmasking curves generated on our training corpus by 10-fold cross
validation on 30 chunks per text of 700 words each. The left plot shows the results of
a single run, the right plot shows the final aggregation of 10 successive runs.

Following this algorithm, every text pair yields a curve of declining accuracy
values with the curves for similar texts declining faster than those for inherently
different texts. The quickly declining curves are the same-author candidates.
With enough curves generated on a corpus of labelled text pairs, a meta model
can be trained to distinguish between curves for same-author and different-
authors pairs.

3.3.1 Unmasking for Short Texts by Chunk Expansion

The main weakness of unmasking is that it requires ‘sufficiently large’ text
samples to produce reliable results. ‘Sufficient’ in this context means about
‘book-sized’. Unmasking relies on splitting texts into enough chunks so that
they can serve as training samples. Since these chunks should have a size of at
least 500 words for reliable results, short texts do not provide enough material
to produce an adequate number of chunks.

To alleviate this shortcoming, we propose a new variant of unmasking which
also works reasonably well on texts much shorter than book length. We tested
this new method successfully on the corpus we developed to avoid the pitfalls
of the PAN corpora [4], which consists of a class-balanced set of 182 training
and 80 test pairs and individual text lengths of about 4,000 words on average.

To create more training samples from these shorter texts, one could generate
overlapping chunks, but this would result in many almost identical training
samples. Instead, we use the original text as a random word pool and over-
sample by drawing without replacement. Once all words have been drawn, the
pool is replenished. This way, we can generate an arbitrary number of chunks
of sufficiently many words even from short texts. As feature set, we use the

10

CHAPTER 3. AUTHORSHIP VERIFICATION

frequencies inside each chunk of the k most frequent words in the word pool. In
accordance with Koppel and Schler and our own experiments, we use k = 250
and set cross validation to be 10-fold. As chunk size, we recommend 500–700
words. To counteract the high variance introduced by random oversampling,
we can smooth the curves by creating very many chunks or averaging multiple
successive experiments. The chosen strategy determines the curves’ character-
istics. More chunks produce shallower curves, less chunks steeper curves. In
either case, the curves become smoother the more experiments are averaged.
Averaging multiple experiments also allows for variation of the parameters for
chunk size, number of features and cross validation folds. For our experiments,
we always use 30 chunks of 700 words each.

3.3.2 Precision Over Accuracy

Although working rather reliably on very long texts, authorship verification
is far from a solved problem and state-of-the-art approaches keep struggling
especially with shorter texts. So it becomes all the more important to find a
good measure for assessing the quality of a verifier. Due to high uncertainty of
many results, a standard accuracy measure is perhaps not an optimal choice.
The winner of the 2015 PAN challenge [46] reached an accuracy of about 75%,
which means that one in four decisions is still wrong. If applied in a real-word
forensic scenario, such a verification scheme could give hints to whether two
texts share authorship at best. But instead of trying to develop verifiers with
perfect accuracy, we could already build more useful tools today by optimizing
for precision and sacrificing recall. Unfortunately, this approach—although
more useful in general—does not perform well in a setting where we measure
accuracy. So in order to provide a more suitable evaluation quantity, PAN
adopted the c@1 measure by Peñas and Rodrigo [40]:

1

n

(
nac +

nac

n
· nu
)

, (3.7)

where n denotes the number of problems, nac the number of correct answers and
nu the number of non-answers. The c@1 measure solves the quality measure
problem by rewarding non-answers in that it assigns them the same accuracy as
the rest of the problems. All-correct answers still yield a score of 1, all-wrong
or completely unanswered problem sets a score of 0. So with this measure, a
verifier can choose not to answer a given problem if it is too uncertain to give
a definitive answer and still receive a reasonably good score. This way, we can
build systems with high precision and have that fact reflected in the quality
measure, even if the overall sensitivity (or recall) of the system is lower.

11

CHAPTER 3. AUTHORSHIP VERIFICATION

None of the PAN participants explicitly or successfully exploited the c@1
measure, so c@1 scores of all submitted approaches are roughly the same as
their accuracy.

A problem with c@1 is that it remains a measure for binary classification
quality. If we are only interested in whether two texts were written by the same
author, but do not care about the other case, c@1 does not fit our approach
well. However, measuring only precision without taking into account recall,
is not helpful either. For that reason, we propose as an alternative the F0.5

measure with the only alteration that we treat non-answers as false negatives:

1.25 · ntp

1.25 · ntp + 0.25 · (nfn + nu) + nfp

, (3.8)

with ntp denoting the number of true positives, nfn the number of false negatives,
and nfp the number of false positives. As before, nu is the number of unanswered
problems. We call this modified F0.5 measure F0.5u .

In order to make use of either measure, a verifier needs to inhibit a tendency
to have higher confidence in correct answers than in incorrect answers (which is
measured by the area under the ROC curve). Our experiments show that our
new unmasking variant has this property and can classify same-author cases
with very high or even perfect precision, depending on the chosen confidence
threshold for deciding whether to answer a case.

3.3.3 Unmasking Verifier Evaluation

As features we used the chunk frequencies of the 250 most common words,
determined chunk classification accuracy using 10-fold cross validation, and
removed ten features per iteration. In total, we sampled 30 chunks per text
with 700 words each. The final curves were generated as an aggregate of ten
individual experiments and then used to train a linear SVM model on the curve
points and their gradients.

When applying the model to the test set, we set the classifier to only
give answers for cases which it can decide with a pre-determined confidence
threshold. Thanks to the linear SVM kernel, we can obtain the confidence
values directly from a curve’s distance to the hyperplane. Table 3.1 lists the
results of this unmasking approach on our authorship test corpus at various
confidence thresholds in detail. A confidence threshold of 0 means that all
cases are classified, resulting in c@1 being equal to the standard accuracy score
and F0.5u being equal to F0.5. We can see that, although very similar at low
confidence thresholds, F0.5u yields much higher scores at high thresholds than
c@1 does. The reason for this discrepancy is an imbalance in how well the
classifier can assign classes. While the precision for same-author cases is very

12

CHAPTER 3. AUTHORSHIP VERIFICATION

Figure 3.2: Classifiable unmasking curves in our test corpus at high confidence
thresholds from 0.9 (upper left) to 0.4 (lower right). Colours represent the true class
of a case. The middle of the gap approximately corresponds to the classification
hyperplane. Precision for same-author cases stays very high for a long time, while
different-authors are indistinguishable from individual same-author cases very early.

13

CHAPTER 3. AUTHORSHIP VERIFICATION

Figure 3.3: Classifiable unmasking curves at low confidence thresholds from 0.3
(upper left) to 0.0 (lower right). With a zero threshold, about 70% of the cases can
still be classified correctly.

high, the opposite is not true. Most different-authors cases are indistinguishable
from same-author cases already at high thresholds (as can be seen in Figure 3.2),
making this unmasking variant not a reliable method for determining if texts
were written by different authors. Confidence levels have been assigned as
a rough estimate of how sure a user can be that two classified texts were
actually written by the same author. According to our experiments, thresholds
of 0.7 and above reliably give a precision of 1.0, while thresholds of 0.5 and
higher still provide a reasonably high level of confidence. Lower thresholds
become increasingly less reliable. The actual precision of decisions at the same
confidence value may vary slightly due to random noise, but the proportion of
precision to the number of classified cases is very stable.

14

CHAPTER 3. AUTHORSHIP VERIFICATION

Table 3.1: Unmasking classification results of text pairs on our authorship test
corpus at various confidence thresholds.

Confidence Level Threshold Precision c@1 F0.5u % Classified

Very High
0.9 1.000 0.121 0.211 6.2
0.8 1.000 0.211 0.360 12.5
0.7 1.000 0.233 0.364 13.8

High 0.6 1.000 0.317 0.405 18.8
0.5 1.000 0.468 0.508 30.0

Moderate
0.4 0.933 0.566 0.565 43.8
0.3 0.833 0.616 0.577 55.0
0.2 0.826 0.683 0.655 70.0

Low 0.1 0.821 0.717 0.723 87.5
0.0 0.758 0.700 0.723 100.0

15

Chapter 4

Authorship Obfuscation

The goal of authorship obfuscation is to modify a text so that its contents
remain intact, but all stylistic traces that point back to its original author are
removed. The definition is deliberately specific to style in order to single out
the much harder discipline which we call authorship anonymization, for which
also the contents are redacted, which may as well change the semantics of a
text or produce deliberate gaps in the form of blacked words or paragraphs.

Definition 4.0.1. (Authorship Obfuscation) The transformation of an
author’s writing in order to impede automated or manual stylistic authorship
analysis is called authorship obfuscation.

In practice, this means fooling an automated authorship verification or attribu-
tion system as well as manual linguistic analysis. We can specify authorship
obfuscation further:

Definition 4.0.2. (Authorship Masking) Authorship obfuscation with the
goal to prevent authorship detection is called authorship masking.

Both definitions may sound similar, but the important difference is that the
definition of authorship masking describes a more specific goal. This is to
distinguish it from other forms of obfuscation like authorship imitation. For
imitation, the original style is not necessarily masked, but modified in a specific
way so as to resemble the style of another author. In this thesis, we describe
our techniques for authorship masking, but most of the presented approaches
are quite general and able to perform other kinds of obfuscation with some
modification to the procedure. For that reason, we will continue to use the
more general term authorship obfuscation.

16

CHAPTER 4. AUTHORSHIP OBFUSCATION

4.1 Obfuscation Quality Assessment
Obfuscation itself is not an operation. It is a possible outcome of modifications
of a text. Since these modifications can be of arbitrary kind and effectiveness
towards an obfuscation goal, there are also various ways in which we can
measuring obfuscation quality.

The most trivial obfuscation approach is deletion of the whole text. It will
be impossible for any verification scheme to determine authorship of an empty
text, but on the other hand, full deletion is not a desirable text transformation
considering that the point of obfuscation is to keep the contents of a text
intact. We therefore need a universally applicable framework for evaluating
obfuscation schemes with regard to how well they achieve the obfuscation goal.
Potthast et al. [42] propose the three evaluation dimensions safety, soundness
and sensibleness (see: Chapter 2). Let us recall what these dimensions were
about: Safety determines robustness against verification and de-obfuscation,
soundness measures textual entailment between original and obfuscation and
sensibleness quantifies grammaticality and inconspicuousness of the obfuscated
text. The three dimensions were designed to be orthogonal, but we (the author)
doubt that it is possible to generally distinguish between safety and sensibleness.
Instead, we argue that safety against de-obfuscation and inconspicuousness can
be directly related to each other.

While it is true and a well-known principle from cryptography that the
security of a system must never rely on the secrecy of an algorithm, this is
not the only factor to consider. Statistical dependence within a cipher text or
between a cipher text and the plain text directly influences the security of the
whole scheme even if the algorithm itself is otherwise secure. A good example
to demonstrate this fact is one-time pad (OTP) encryption. For encrypting a
message with a one-time pad, the secret plain text is modularly added onto a
random stream of equal length. This encryption scheme is provably secure as
long as the random stream is truly random, kept secret, and never reused—not
even in parts. If created properly, the resulting cipher text gives no information
about the plain text and any other string of the same length is equally likely
to be the source plain text. On the other hand, if one can find statistical
anomalies in the cipher text (e.g. because another natural-language text was
used as the key instead of a random stream), it is quite easy to break the
encryption by making simple assumptions about character distributions in the
plain text or key. More generally, a cryptographic algorithm whose resulting
cipher text leaks information about the original plain text must be considered
weak. This also holds for one-way hash and trapdoor functions instead of only
bidirectional ciphers (which imply that we can uniquely decrypt a cipher text
back into its original plain text again).

17

CHAPTER 4. AUTHORSHIP OBFUSCATION

To translate the example back to the obfuscation problem, there may exist
an obfuscation scheme that is perfectly secure (safe) if and only if an attacker
cannot determine which parts of the text were modified and how, i.e. if any
other obfuscation (which includes no obfuscation at all) is equally likely. We
even argue that showing no statistical abnormality (implying inconspicuousness)
is a predominant safety requirement for minimally invasive obfuscation. A
paraphrase that bears obvious (not further specified) properties of obfuscation,
but does not allow attribution to any specific author can be imagined, but we
are generally far from being able to create such paraphrases automatically. We
therefore try to obfuscate with minimal invasiveness, but what works against
us here is that texts in a natural language are very predictable and any kind
of statistical anomaly is relatively easy to detect and revert as shown to some
extent by Thi et al. [50]. A de-obfuscation attack gets even easier if anomalies
in the text are not just purely statistical (which may very well elude a human
reader, but not a thorough statistical analysis), but also detectable by simple
spell or grammar checks. Following this rationale, we want to reduce the
three dimensions to only two, namely safety and soundness, and make a slight
distinction between first-order safety (safe against a-priori authorship detection)
and second-order safety (safe against heuristic de-obfuscation attacks). A totally
safe obfuscation must fulfil both requirements, but first-order safety may already
be enough in certain scenarios to evade more thorough authorship analysis in
the first place. The two remaining dimensions are truly orthogonal as can be
shown by trivial example: a totally safe but unsound obfuscation be replacement
of the text with an unrelated text by another author or a random string—an
unsafe yet totally sound obfuscation be no obfuscation at all.

This adjusted definition of safety comprises most of what sensibleness
was meant for, but one aspect which has not been covered and remains to
be addressed is grammaticality of an obfuscated text (which was probably
one of the main reasons for proposing sensibleness). We argue that poor
grammaticality is not an inherent issue of obfuscation. It tangents soundness at
the point where a text becomes incomprehensible and safety at the point where
grammar and spelling mistakes allow to pinpoint obfuscative modifications.
Besides these cases, grammaticality has no direct relation to our obfuscation
goal and since we cannot establish orthogonality here, it does not qualify as
a separate dimension. Instead, it is a general problem of natural language
generation and must be assessed separately. In this sense, we do acknowledge
sensibleness as an intuitive concept to quickly judge text quality, but do not
see it as a fully qualified evaluation dimension. It is also worth noting that
an original text may already be ungrammatical, in which case it would not
make sense to judge an automated obfuscation by it, unless is makes the issue
considerably worse so that it points to obvious machine-assisted tampering.

18

CHAPTER 4. AUTHORSHIP OBFUSCATION

4.2 Distributional Authorship Obfuscation
We sketched the basic obfuscation workflow against KLD-based authorship
models in our preceding work [4]. The procedure aims to increase the relative
entropy between pairs of texts by increasing the KLD sum contribution of the
most influential n-grams.

To find the n-gram with the highest influence, we rank all n-grams by
their partial KLD derivative with respect to their probabilities in the to-be-
obfuscated text. For every n-gram i with probabilities pi = P [i] and qi = Q[i]
(lowercase notation chosen for better readability), its partial derivative with
respect to qi is:

∂

∂ qi

(
pi log2

pi
qi

)
= − pi

qi ln 2
. (4.1)

After dropping the constant ln 2 from the denominator and the negative sign
in front of the fraction, we end up with the very simple ranking function

RKL(i) =
P [i]

Q[i]
. (4.2)

Given that we can only change probabilities in Q (the to-be-obfuscated text),
the rank of i approaches its maximum with Q[i] going to 0. As the most
simple, effective, and scalable method for achieving this effect, we established
the obfuscation by reduction strategy, for which we iteratively reduce the
frequency freq i of the highest-ranked n-gram i with freq i > 1 to freq i − 1. As
a proof of concept, this was done by simply choosing one occurrence in the
text and deleting it. After each deletion, ranks were recalculated and a new
n-gram was chosen based on the updated ranks. By applying this obfuscation
strategy, we were able to increase the KLD of same-author cases significantly.
The effect carries over to JSD measures, since its derivative, although a little
more involved, shows the same characteristics. Deleting the highest-ranked
n-grams up to a mass of 2–4% of a text was enough to fool our own JSD-based
authorship verifier and cause a substantial drop in accuracy of PAN 2015’s
winning submission by Bagnall [2].

4.2.1 Effect on Unmasking

Until now, we have only observed the effect of the above-illustrated obfuscation
strategy on our own model and Bagnall’s PAN submission. To gather further
evidence of its effectiveness, we now also test it against our new unmasking
scheme. We have seen before that same-author cases can be detected with

19

CHAPTER 4. AUTHORSHIP OBFUSCATION

Table 4.1: Unmasking meta classification results after obfuscation by +0.06 JSD.
Not a single case was predicted as same-author down to a confidence threshold of 0.4.

Confidence Level Threshold Precision c@1 F0.5u % Classified

Very High
0.9 0.000 0.025 0.000 2.5
0.8 0.000 0.024 0.000 5.0
0.7 0.000 0.096 0.000 8.7

High 0.6 0.000 0.160 0.000 17.5
0.5 0.000 0.216 0.000 27.5

Medium
0.4 0.000 0.315 0.000 42.5
0.3 0.667 0.410 0.143 66.7
0.2 0.500 0.455 0.197 70.0

Low 0.1 0.417 0.460 0.266 85.0
0.0 0.526 0.500 0.427 100.0

very high precision as their curves drop faster than the curves of different-
authors cases. If our obfuscation approach works, same-author curves should
decline as slowly as different-authors curves, making them indistinguishable.
We obfuscated the same-author cases by deleting high-impact n-grams in one
text until we reached a JSD increase of +0.06 compared to the original JSD
between the two texts (which is enough to obfuscate even the most similar
cases sufficiently). The number of n-gram deletions required to achieve this is
on average 550–600. With text lengths of 23,000 characters on average, this
corresponds to deleting about 6–8% of a text. Our previous empirical rule of
thumb of 2–4% text deletion was sufficient to make texts indistinguishable by
their KLD. For unmasking, however, we realised that we need to do a little
more to make the most similar cases undecidable as well, although cases which
are already farther apart from each other, could be obfuscated with less effort
(more on this in Section 4.2.3 and Chapter 5).

Table 4.1 shows the classification results of the pre-trained meta model
after obfuscation. Not a single case was predicted as same-author down to a
confidence threshold of 0.4 as indicated by a precision and F0.5u score of 0.0.
Compared to before (cf. Table 3.1), the total number of classifiable cases remains
roughly the same at low thresholds, but has become worse at high thresholds as
the formerly most similar cases were shifted into the uncertainty range. If we
set the obfuscation target to +0.03 JSD (which requires about half the number
of n-gram deletions, corresponding to about 3–4% of a text), we can correctly
classify a few remaining same-author cases at a confidence threshold of 0.6 or
lower. In Figure 4.1, we see the unmasking curves of all cases in our test corpus

20

CHAPTER 4. AUTHORSHIP OBFUSCATION

Figure 4.1: Unmasking curves of our test corpus before obfuscation and after same-
author pairs were obfuscated by increasing their JSD by +0.06. Differences between
different-authors curves are due to randomness in our unmasking implementation.

before and after obfuscation. The differences are striking. It is easy to see that
distinguishing between curves of the two classes has become impossible as a
result of how much they intersect.

4.2.2 Effect on Compression Models

Beyond unmasking, compression-based models appear to be a popular choice for
text categorization and authorship verification, especially if the texts are small.
Khmelev and Teahan [29] were one of the first to suggest this approach, but we
will focus on the more recent implementations by Halvani et al. [19] to demon-
strate obfuscation effects on another state-of-the-art authorship verification
technique. Halvani et al. use off-the-shelf compressors based on prediction by
partial matching (PPM) and various similarity measures to detect authorship.
Based on their research, they name compression-based cosine (CBC or CosS as
it is abbreviated in the original paper) and the Chen-Li metric (CLM) as the
most successful measures. Both measures were originally proposed by Sculley
and Brodley [44]. For two texts x, y, their concatenation xy , and a function C
returning the compressed length of its input, the compression-based cosine is
defined as:

CBC(x, y) = 1− C(x) + C(y)− C(xy)√
C(x)C(y)

(4.3)

and the Chen-Li metric is defined as:

CLM(x, y) = 1− C(x)− C(x|y)

C(xy)
. (4.4)

The conditional compression length C(x|y) is estimated as C(xy)− C(y).

21

CHAPTER 4. AUTHORSHIP OBFUSCATION

Figure 4.2: Obfuscation effect on compression models. The top row shows the
compression-based cosine (CBC), the bottom row the Chen-Li metric. To the left are
original same-author cases (yellow) and their obfuscation (green). To the right are
real different-authors cases for comparison. A JSD increase of +0.06 increases both
measures for same-author cases beyond those of different-authors cases.

Using these measures and PPMd as compression algorithm (a variant of PPM
which accounts for unseen symbols), Halvani et al. yield competitive results on
the 2013–2015 PAN corpora (with the exception of the 2014 essays corpus) and
similar numbers on other self-created corpora. We show obfuscation results
against a reimplementation of this technique on the subset of the first 20 same-
author pairs from our training corpus and the first 20 different-authors pairs for
comparison in Figure 4.2. The same n-grams were removed as in the previous
section to achieve a JSD increase of +0.06 for each pair. While the original text
pairs can be correctly distinguished from different-authors pairs in many cases
by a learned threshold, CBC and CLM values for obfuscated texts grow beyond
any classifiable threshold. This strong obfuscation effect is not unexpected.
Sculley and Brodley describe their metrics in terms of Kolmogorov complexity,
but Kaltchenko [27] showed that the normalized Kolmogorov complexity of a
Markov information source ‘almost surely’ converges towards its entropy and
that distance measures based on the Kolmogorov complexity may be estimated
by relative entropy rate, i.e. the Kullback-Leibler divergence. The reason why
natural language generally allows for very good compression ratios is that it is
predictable (printed English has an entropy of at most 1.75 bits per character [8])

22

CHAPTER 4. AUTHORSHIP OBFUSCATION

and simple finite-order Markov language models are quite effective in predicting
the next characters in a sentence. Since PPMd uses a character-based Markov
model for compression, an increase of relative entropy is expected to have an
effect on the compression ratios.

4.2.3 Safety of n-Gram Selection Strategies

We have seen before that unmasking does respond as expected to our obfuscation
approach, though we must not forget that we are using a deterministic n-gram
selection strategy in ranking them by their KLD gradient. This may result in
predictable obfuscation patterns and therefore may have severe obfuscation
safety implications. Also when we obfuscate a text with the goal to increase
its overall JSD, our strategy may achieve this by only modifying parts of the
text and leaving other areas untouched. Verification schemes may choose to
ignore the changed parts and only focus on the unchanged ‘niche’ subset of a
text pair. Unmasking does not consider the whole text but only the top k most
frequent words (we use k = 250); thus, it makes sense to examine the impact of
a global obfuscation strategy on only the subset of the k most frequent words.

To assess the obfuscative effect on the top k most frequent words of a
text pair, we obfuscated the same-author pairs in our training corpus utilizing
multiple alternative n-gram rankings functions:

• Normal ranking: This is our previously established ranking function
RKL, which ranks n-grams according to their KLD gradient. It is the most
efficient ranking for increasing the JSD in terms of needed operations.

• Inverse ranking: Inverse gradient ranking, i.e. −RKL. This should be
the least efficient ranking and we need to compensate by performing more
text operations.

• Positive inverse ranking: This strategy is the same as inverse ranking,
but only considers n-grams with RKL > 1. This is to avoid making texts
more similar at first by reducing the frequencies of n-grams that are
common in the to-be-obfuscated text, but rare in the other text.

• Random ranking: This is our baseline ranking. Since it is totally
unpredictable, we consider it safe yet not necessarily efficient.

Figure 4.3 shows the JS∆ distribution of the most frequent word tokens within
same-author cases in our training corpus before and after obfuscation with
the aforementioned ranking approaches. All cases were obfuscated until they
showed a global JSD increase of +0.06. Most selection strategies perform

23

CHAPTER 4. AUTHORSHIP OBFUSCATION

Figure 4.3: Jensen-Shannon distances of the k most frequent words within same-
author pairs before and after obfuscation with different n-gram selection strategies. We
can see that positive inverse and random ranking perform reasonably well (measured
by how normal ranking performs), but inverse ranking obfuscates significantly worse
(or not at all) for low k. The red line denotes the distribution mean.

24

CHAPTER 4. AUTHORSHIP OBFUSCATION

Table 4.2: Results of one-sided paired t tests between JS∆ values of the k most
frequent words for unobfuscated vs. obfuscated cases and for obfuscation with inverse
vs. normal ranking. Differences in the data are highly significant (p� 0.001) with
very large effect sizes (d > 1.2), except for unobfuscated vs. inverse at k = 50. The
p values are generally much higher and effect sizes lower for inverse ranking. Normal
ranking performs best for all listed k.

Unobfuscated vs. Inverse vs.

k Statistic Normal Inverse Pos. Inverse Random Normal

50
p = 4× 10−30 0.202 1× 10−20 7× 10−19 3× 10−19

t = 17.139 0.838 12.052 11.170 11.382
d = 1.817 0.089 1.277 1.184 1.206

150
p = 2× 10−46 1× 10−9 6× 10−24 8× 10−29 6× 10−19

t = 28.415 6.648 13.759 16.421 11.212
d = 3.012 0.705 1.458 1.741 1.188

250
p = 5× 10−52 2× 10−12 6× 10−25 5× 10−30 3× 10−19

t = 33.397 8.089 14.304 17.095 11.382
d = 3.540 0.857 1.516 1.812 1.206

500
p = 1× 10−58 4× 10−14 5× 10−26 5× 10−32 1× 10−16

t = 40.069 8.886 14.877 18.317 9.824
d = 4.247 0.942 1.577 1.942 1.041

similarly on the top k subset, except inverse ranking, which does considerably
worse. One-sided paired t tests (Table 4.2) support our observations. All
strategies show a highly significant JS∆ increase (p� 0.001) with huge effect
sizes (d� 0.8). The exception is inverse ranking, which shows no significant
effect at k = 50 and performs generally much worse than any other ranking
approach. Inverse ranking has higher p values by several magnitudes and
much lower effect sizes. As shown in the last column, normal ranking performs
significantly better than inverse ranking with strong effect sizes at all k, but
also seems to be the most effective ranking overall. With larger k, all rankings
obviously converge. As a more intuitive visualization of the pairwise effects,
Figure 4.4 shows the relative JS∆ increase within same-author cases for the k
most frequent words. Here we can see quite clearly that all strategies produce
similar results at higher k, but differ at low k. For individual pairs, inverse
ranking even shows a JS∆ decrease, which is most extreme at k = 50.

The results make sense when we think about the way we affect a text’s
n-gram distribution. The majority of the k most frequent words are words
which tend to appear with similarly high (relative) frequencies in both texts. A

25

CHAPTER 4. AUTHORSHIP OBFUSCATION

Figure 4.4: Relative differences of the Jensen-Shannon distances between the obfus-
cated and unobfuscated same-author pairs using various n-gram selection strategies.
Most strategies perform similarly with the exception of plain inverse ranking, which
shows by far the worst performance and even causes a JS∆ decrease for some cases
(which are negative on the x axis, most notably at small k). Normal ranking shows
the largest positive mean difference.

26

CHAPTER 4. AUTHORSHIP OBFUSCATION

Figure 4.5: Unmasking curves on our training corpus before obfuscation and after
obfuscation up to a JSD increase of +0.03 with normal, inverse, and positive inverse
ranking. Differences between different-authors curves are again due to randomness in
our unmasking implementation.

few words may also be extremely frequent in one text and less so in the other,
but more often, low frequencies in one text will amortize high frequencies in
the other one. It makes sense to assume that word frequencies are correlated
with n-gram frequencies (to a certain extent), so n-grams occurring in the
top k words will probably also have similar frequencies in both texts. If we
sort all n-grams of the distribution by RKL, we call RKL = 1 the midpoint
(where all n-grams are located whose frequencies in both texts are identical),
RKL � 1 the negative, and RKL � 1 the positive end. Since many of the top k
words will be around the midpoint, a ranking which prefers n-grams around it
(which positive inverse ranking does) will perform quite well. But since all these
n-grams will have very little effect, we can expect it not to perform best. The
best-performing ranking—normal ranking—will directly influence only very
few common n-grams, but with much higher effect, resulting in overall better
performance. The n-grams selected by normal ranking are rare, so we cannot

27

CHAPTER 4. AUTHORSHIP OBFUSCATION

reuse the same n-grams very often and have to move towards the midpoint
more quickly, which increases the chances to affect another top word slightly.
The least effective and at low k even counterproductive ranking is clearly plain
inverse ranking. The reason why this performs worse is that it starts at the
negative end and reducing frequencies of these n-grams will make texts more
similar at first, which overall reduces the JSD. Only then will the selection
strategy cross the midpoint and slowly move towards the positive end. But
as with positive inverse ranking, selected n-grams from the positive half will
initially have only very little impact. After a while, a lot of n-grams will have
been modified, many of them occurring in the top k words, but most of them
with negative effect. Even if we are not concerned about the top k words, it
is obvious that inverse ranking is less than ideal under all circumstances and
can be seen as an unlikely worst case for random ranking. Random ranking
will select n-grams from all different parts of the distribution equally. At low k,
we may also see negative effects, but with higher k, we will almost certainly
see a positive effect as a result of the JSD’s gradient properties: an n-gram at
the far positive end of the distribution will always outweigh an n-gram at the
far negative end, so uniformly sampled n-grams will on average affect the JSD
positively.

In Figure 4.5, we show unmasking curves for normal, inverse, and positive
inverse ranking. The amount to which same-author curves are mixed with
different-authors curves corresponds to what we see in the word token JSD
plots. Random ranking, although not shown here, performs similarly to normal
and positive inverse ranking in terms of obfuscation. In terms of operations
needed, normal ranking is clearly the most efficient method with 590 removals
on average, followed closely by positive inverse ranking with 770 removals. All
other selection strategies require significantly more operations to achieve these
results. Inverse ranking requires by far the most of all strategies with 1,900
removals, but fails to achieve any obfuscation at all and must therefore be
considered unsafe. In order to increase safety, it is also entirely possible to
combine approaches. The efficiency gap between normal and positive inverse
ranking is small enough that one might consider drawing (semi-)randomly
from the positive half of the n-gram distribution to harden an obfuscation
against reversal.

4.2.4 Estimating Text Operation Side Effects

Text operations always produce side effects. As a side effect we define the
newly introduced n-grams at the boundaries of an intended operation. Our
simple proof-of-concept obfuscation approach for which we simply delete n-
grams, suffers particularly from such side effects. For every n-gram that we

28

CHAPTER 4. AUTHORSHIP OBFUSCATION

a b c |����XXXXd e f | g h i

Figure 4.6: Schematic visualization of removing the character trigram def. bcg
and cgh are the two new side-effect trigrams.

delete, we introduce two new side-effect n-grams. For example, if we delete
the trigram def from the string abcdefghi, we introduce the new side-effect
trigrams bcg and cgh. Besides the obvious lack of second-order safety for
such simple deletions (see: Section 4.1), it is important to assess the influence
of side effects on our obfuscation to validate the usefulness of our technique.
During our previous research [4], we compared actual text obfuscation to ideal
side effect–free obfuscation on hypothetical n-gram vectors and could show
empirically that side effects only marginally affect obfuscation performance.
Yet we have not really quantified the influence of side effects on obfuscation.
As deletions of n-grams tend to produce syntactically unusual n-grams which
are unlikely to appear anywhere else, we first want to examine the contribution
of a ‘maximally rare’ n-gram, i.e. an n-gram which we introduced for the first
time and which did not exist before in either text.

First, let us recall the definition of the Jensen-Shannon divergence:

JSD(P‖Q) =
1

2
·KLD(P‖P+Q

2
) +

1

2
·KLD(Q‖P+Q

2
) ,

and the Kullback-Leibler divergence:

KLD(P‖Q) =
∑
i

P [i] log2

P [i]

Q[i]
.

As mentioned, the side-effect n-gram is maximally rare, therefore its probability
in P is 0 and we denote its probability in Q by ζQ = 1

NQ
with NQ being the

normalizing constant of Q. For texts of identical lengths, it is probably safe to
assume that ζQ ≈ ζP , so we will only write ζ from now on. Because P [is] = 0,
the first half of the JSD formula vanishes for is and the rest reads as:

1

2
ζ log2

2ζ

ζ
=

1

2
ζ log2 2 =

ζ

2
. (4.5)

For very small sample sizes, this term will always dominate the sum, but we
presume a sufficiently large number of samples (n-grams) here. To compare
this (absolute) JSD contribution to the impact of a selected n-gram, we can

29

CHAPTER 4. AUTHORSHIP OBFUSCATION

establish estimates for the needed proportion between the n-gram’s probabilities
pi = P [i] and qi = Q[i] using the JSD’s partial derivative with respect to qi:

∂

∂ qi

(
pi
2

log2

2pi
pi + qi

+
qi
2

log2

2qi
pi + qi

)
=

1

2
log2

2qi
pi + qi

. (4.6)

It is easy to see that for any n-gram i with P [i] = 0, this term will always
be 0.5, which is what we obtain for a totally new side-effect n-gram is. As 0.5
is the highest positive slope an n-gram can have with pi, qi ∈ [0, 1], we cannot
find an n-gram whose addition would have a higher impact. Fortunately, we
are pursuing a reduction strategy, so we need a negative slope. To outweigh
side effects, an n-gram selected for reduction needs to have a JSD slope < −0.5.
If we rearrange the gradient inequality for pi and qi

− 0.5 >
1 + log2 qi − log2 (pi + qi)

2
, (4.7)

we obtain 0 < Q[i] < P [i]
3

as relative frequency bounds for high-impact n-grams.
By ranking n-grams according to the KLD slope ranking function RKL, we
will pick n-grams where P [i]� Q[i] > ζ first and so we can conclude that a
newly introduced side-effect n-gram will most likely not outweigh a selected
high-impact n-gram.

In practice, however, we will probably see a lot of side-effects which already
exist in the texts, especially if we employ more advanced paraphrasing mecha-
nisms that produce syntactically correct obfuscations. If a side-effect n-gram
already exists in both texts, we may see an effect that works in the opposite
direction to what we aim for with the reduction strategy (i.e. it makes the texts
more similar). Depending on the proportion of P [is] and Q[is], the contribution
to the JSD may be either positive or negative. We expect side-effect n-grams to
be almost random, so their JSD contributions will on average be lower than for
a selected n-gram and cancel each other out. Hence, we can expect these kinds
of side effects to also not outweigh a selected n-gram. If anything, they will
work against our efforts due to the largely negative JSD slope. A special case is
a side-effect n-gram which is only new in the to-be-obfuscated text, but already
exists often in the other one. Here we may once see a very large contribution if
P [is] is very large. This is equivalent to the obfuscation by extension strategy,
which we described as an alternative (but less scalable) obfuscation strategy
in our previous studies [4]. This obfuscation strategy increases the JSD by
changing a maximally rare n-gram with a sum contribution of ζ

2
into a ‘normal’

high-impact n-gram.

30

CHAPTER 4. AUTHORSHIP OBFUSCATION

4.2.5 Empirical Side Effect Analysis

To verify the theoretical estimates of side effect contribution in practice, we
also perform a quick empirical analysis here. We have already shown that
inverse n-gram ranking requires far more text operations than normal ranking.
This empirically proves that side effects cannot outweigh selected high-impact
n-grams, otherwise we would not see this massive increase in text operations.
We can assume side effects to be mostly random, so the selection strategy
should not influence their impact on the JSD.

Recall that we needed about 300 n-gram deletions for a JSD increase
of +0.03 and 600 for a JSD increase of +0.06 on our corpus, which amounts
to approximately 4% and 8% of a text. Running the obfuscation algorithm
with inverted n-gram ranking has shown a massive increase of required n-gram
removals. To reach a global obfuscation target of +0.03 JSD, we had to perform
on average 1,650 n-gram deletions for same-author pairs in our training corpus
and for +0.06 JSD, we needed roughly 1,900 deletions (for some pairs even
as many as 3,600). To visualize the amount of work required, we show a very
short excerpt of Winter Adventures of Three Boys in the Great Lone Land by
Egerton Ryerson Young. The original text is:

With this question of the old Indian ringing in their
ears the party in the kitchen broke up, and as the day
had been a long one they all soon retired to rest.
The boys were more than delighted with the day’s
experience, and were full of joyful anticipation for
the morrow, for then it was that they were to select
the dogs that were to constitute their own trains and
at once to begin the work of breaking them in. So
long and soundly did they sleep the next morning that
the second breakfast bell was ringing when they awoke,
and so they had but little time in which to dress ere
breakfast was served. However, to their joy they found
that others had also overslept themselves. [...]

After obfuscation up to a JSD target of +0.06 using normal n-gram ranking,
we get the following (shorter) text:

With this question of the old iainging in their
eathe parin the kitchen broke up, and as the day had
been a long one they all soon retired to rest. The s
were more than delighted with the day’s experience, and
were full of joyful anticipation for the morrow, for

31

CHAPTER 4. AUTHORSHIP OBFUSCATION

then it was that they were to select the dogs that were
to constitute their own trad at once to begin the work
of breaking them in. Song and soly did they sleep the
next morning that the second breakfast bell was ringing
when they awoke, and so they had butt time in which to
ss erreakfast was served. However, to their joy they
fo that othehad also ovlept themselv [...]

Differences between original and obfuscation are highlighted. While the modi-
fied parts are clearly identifiable and obscure the meaning at times, the text
remains largely readable. Approximately half these changes are required for
an obfuscation target of +0.03 JSD. Reversing the n-gram ranking gives very
different results. With (in this case) 3,340 required text operations, the final
text is almost entirely unreadable:

Withitiof the old Indian rinn their ears the partn the
kitchen ke and the day had been they all n ret. boys
werore thigd withe da and were full of joyfpation for
w, for then ias that they were tct the re to constitute
theiins an to begin the w of bg t. So g and soep the
t ming that the sed ak was ging when they awoke, athey
had ttleme ihich to dr ere brt was sed. Ho to their
thnd thers had verslelves. [...]

Due to the many changes, we skipped highlighting the differences between
the original and the obfuscated text. It is quite surprising that while the text
is completely illegible, its global JSD increase is exactly the same and not
in any way higher than the previous obfuscation which used normal ranking.
Even more surprising is that by extracting only a few of the most common
words, authorship verification remains possible on texts like this one. If we look
more closely, we can actually see that remaining words are largely stop words,
whereas almost all topic words have been obscured. This only emphasizes that
the way we select n-grams not only has an immense effect on the efficiency but
also the safety of an obfuscation algorithm.

32

Chapter 5

Adaptive Obfuscation

Until now, we have only used empirically obtained fixed JSD thresholds as
termination criteria for our obfuscation algorithm. The thresholds were chosen
so that either most or all text pairs in the corpus become undecidable. It is
easy to see that these thresholds are only very rough estimates when dealing
with short texts, such as the ones in our corpus. Both the JSD measure and
unmasking show large variance between text pairs, so some pairs are extremely
similar, while others are undecidable already and probably need no obfuscation
at all. It is obvious from previous examples that with a fixed threshold, we
overobfuscate cases which are already far enough apart from each other while
only barely obfuscating the most similar cases. Instead of obfuscating a text
up to a fixed and mostly arbitrary threshold, we want to find a more sensible
adaptive threshold on a case-by-case basis.

5.1 Decidability and Obfuscation
As a prerequisite to finding an adaptive measure, we first need to make a
distinction between effective author distance and necessary obfuscation. With
effective author distance we mean the inherent level to which a text’s writing
style differs from the style of its original author and therefore how (un)decidable
its authorship is. Author distance is independent of whether a text is an
original or a modification and it can be measured by a suitable authorship
metric. Necessary obfuscation is the amount to which we need to obfuscate
a text in order to achieve a desired (higher) effective author distance. Both
effective author distance and necessary obfuscation only take the authorship
metric into consideration and are entirely independent of the actual amount of
work required to achieve a particular target value.

33

CHAPTER 5. ADAPTIVE OBFUSCATION

Definition 5.1.1. (Effective Author Distance) The distance between the
writing style of a particular text and the true style of a particular author is
called effective author distance.

Definition 5.1.2. (Necessary Obfuscation) The positive difference between
a text’s desired effective author distance after obfuscation and its original
distance with regard to a reference style is called necessary obfuscation.

Let effective author distance be denoted by φ and necessary obfuscation by δ.
With a desired effective target author distance φt and given that the original
effective author distance φ0 is not already beyond the target distance, an
authorship masking task can be modelled as:

φt = φ0 + δ, δ ≥ 0 . (5.1)

For an authorship imitation task, the reference style would be the target
author’s style and the task would have the following form:

φt = φ0 − δ, φ0 ≥ δ ≥ 0 . (5.2)

An adaptive obfuscation approach will determine the necessary obfuscation
beforehand based on the texts it is given and then only obfuscate until it has
achieved the necessary effective target author distance. If a text’s style is
already sufficiently different (similar), δ can be zero and no obfuscation has to
be applied at all.

5.2 Defining Adaptive Targets
An obvious adaptive approach would be to classify text pairs by any number of
authorship verification systems and then iteratively obfuscate until none of the
verification systems is able to determine authorship any more with confidence
above a predetermined threshold θ. This approach, however, is very costly
and depends heavily on the used verifiers. We want a much simpler, more
quantifiable and reproducible measure of obfuscation strength.

Since the JSD (or KLD) is our basic authorship model and we use it to
guide the obfuscation n-gram selection strategy, it makes sense to derive an
obfuscation measure from it. A problem with a JSD-based measure that needs
to be solved is that JSD values are not necessarily comparable across different
text pairs. Long texts are generally more similar to each other than short
texts. The shorter a text, the sparser and noisier its n-gram sampling becomes.
For that reason, the JSD of long text pairs is generally lower than the JSD of
short text pairs, even for texts by the same author. It is therefore of no use to

34

CHAPTER 5. ADAPTIVE OBFUSCATION

Figure 5.1: Development of the Jensen-Shannon distance on our training corpus with
regard to text length. Longer text pairs (above 2,048 characters) are logarithmically
more similar than short text pairs, but easier to distinguish due to distance convergence.
The two lines ε0 and ε0.5 indicate the 0th and 50th percentiles of distances within
different-authors pairs.

compare the JSD values of pairs of different text lengths, unless we normalize
them. Because we want a real metric, it also makes sense to use the Jensen-
Shannon distance (JS∆) instead of the plain JSD. Plotting the JS∆ with regard
to the minimum text length in a pair reveals an approximately logarithmic
relationship in our corpus (Figure 5.1). Very short texts (less than 2,048
characters) are extremely noisy, but longer text pairs show a clear logarithmic
decrease of their JS∆. The most interesting aspect of this relationship is the
almost length-invariant spread of cases. Nonetheless, the cases tend to converge
towards the upper or lower bounds of this spread depending on their class and
thus separate clearly with growing length. We reproduced this plot on the PAN
2014 novels corpus [45] and found the same basic relationship with comparable
case variance but stronger case clustering (by class) on the y axis due to the
much lower number of unique authors in that corpus.

5.3 Obfuscation Levels by Percentiles
Assuming that the JS∆-to-text-length relationship is a general feature of natural
texts, we can measure author distance in JS∆@L (Jensen-Shannon distance at
length) and fit threshold lines to define obfuscation levels. On the y axis, we

35

CHAPTER 5. ADAPTIVE OBFUSCATION

Table 5.1: Overview of obfuscation levels by effective author distance thresholds
and their log-scale polynomial fit coefficients on our training corpus.

Percentile Threshold Obfuscation Level Slope Intercept

< ε0 No Obfuscation - -
≥ ε0 Moderate Obfuscation -0.099 1.936
≥ ε0.5 Strong Obfuscation -0.103 2.056
> ε0.99 Overobfuscation -0.107 2.168

eliminated outliers beyond the [30, 70] percentile range using Tukey’s [51] inter-
quartile method (IQR factor: 1.5) and then calculated a linear least-squares fit
through the 0th percentile of different-authors JS∆ values on the logarithmic
scale. We call this line the ε0 threshold and it will serve as our obfuscation
baseline. We use the first text of a pair as an approximation of its author’s style
and define text pairs with the other text having an effective author distance
below ε0 as unobfuscated. Conversely, we define those pairs with an effective
author distance of at least ε0 as moderately obfuscated. The line we fit through
the 50th percentile of different-authors distances is called the ε0.5 threshold.
We define text pairs with an effective author distance of at least ε0.5 as strongly
obfuscated. Pairs beyond the 99th percentile threshold, i.e. beyond ε0.99, are
overobfuscated.

Table 5.1 shows an overview of all obfuscation levels, their corresponding
ε thresholds and the line fit coefficients on our training corpus. The gradients
of higher ε thresholds are slightly steeper, so we can clearly see the convergence
rate of different-authors cases in the numbers. We believe these coefficients are
approximately applicable to other corpora of similar nature, but recommend
relearning them on an appropriate training corpus for application to texts of
very different nature. Generally, if applied to another corpus, increasing the
threshold a little for improved safety may be advisable.

When we adjust our obfuscation strategy to use an adaptive threshold, only
few cases need the full number of n-gram removals from before to be fully
obfuscated and some cases need no or hardly any obfuscation. The JS∆ spread
of same-authors cases approximately resembles a normal distribution centred
a little below ε0.5, so we can reduce the amortized number of obfuscation
operations by about half. Figure 5.2 shows this improvement quite clearly.
Instead of shifting JS distances of all cases uniformly into undecidability, same-
author pairs now gather around the ε0.5 threshold. When we apply adaptive
obfuscation to our test corpus and generate unmasking curves for the obfuscated
cases, we obtain the results shown in Figure 5.3. The overall effect is slightly
stronger than uniform obfuscation by +0.03 JSD, but weaker than obfuscation

36

CHAPTER 5. ADAPTIVE OBFUSCATION

Figure 5.2: Jensen-Shannon distances in our training corpus after obfuscation with
a fixed threshold of +0.06 JSD and with an adaptive threshold of ε0.5. With the fixed
threshold, we get the strongest result, but overobfuscate many cases. An adaptive
threshold helps us obfuscate with only minimal effort.

37

CHAPTER 5. ADAPTIVE OBFUSCATION

Figure 5.3: Unmasking curves of our training corpus before and after obfuscation
with a fixed JSD threshold of +0.03, +0.06, and an adaptive threshold of ε0.5. The
overall effect of the adaptive approach on unmasking is lower than a fixed threshold
of +0.06, but we can still successfully obfuscate most cases without overobfuscating
already undecidable cases. Stronger obfuscation can be achieved by using a higher
adaptive threshold.

by +0.06 JSD. This is expected, since +0.03 JSD is not enough to obfuscate
all cases, but +0.06 JSD overobfuscates many cases. In sum, almost no same-
authors cases remain which can be distinguished from different-authors cases
with high confidence and acceptable precision. Stronger obfuscation can be
achieved by using a higher ε threshold.

The ε0 and ε0.5 threshold lines we fit through our training data will cross the
x axis at text lengths of x ≈ 219.5 and x ≈ 220 characters. Obviously, negative
distances do not make any sense and JS∆@L curves will display shallower slopes
for much longer text pairs. Adaptive ε thresholds are only accurate for short
and medium-sized texts. Book-sized texts need different thresholds, which we
will not examine here. We can, however, expect those thresholds to be largely
constant, making fixed-threshold obfuscation viable for book-sized texts.

38

Chapter 6

Overview Heuristic Search

The following chapter gives a summary of the most important theoretical
basics of heuristic search. The summary is based on the 1984 book Heuristics:
Intelligent Search Strategies for Computer Problem Solving by Pearl [38].

6.1 Systematic Search
Many solutions to problems cannot (or are extremely hard to) be computed
directly. To solve these problems, we can use search algorithms as strategies to
navigate through the space S of possible solution candidates with the goal of
finding the desired solution. Computer-based strategic problem solving can be
modelled by formulating three basic requirements:

1. a code or database which can represent each candidate object in S,

2. a set of operators or production rules for transforming the encoding
of an object into that of another to transition between objects in S,

3. a control strategy to apply operators so as to reach a desired object as
quickly and efficiently as possible.

A simple baseline control strategy is random search, which randomly looks
at all objects and decides whether they fulfil certain solution criteria. This
approach is obviously inefficient and—without a good amount of luck—we
might not find a solution at all in the time given to us. In order to do better,
we want a control strategy to be systematic. A systematic control strategy

1. considers every object in S and

2. does not consider any object more than once.

The first requirement is the completeness requirement, which ensures that we
‘leave no stone unturned’ and therefore miss no opportunities to find the goal.

39

CHAPTER 6. OVERVIEW HEURISTIC SEARCH

The second requirement avoids redundant computations. Hill-climbing, for
example, is not a systematic method if the considered problem cannot be solved
by local optimisation. If hill-climbing finds a local optimum or a large plateau,
it will get stuck in it until it is restarted, which violates both requirements of
systematic search. Similarly, random search is only systematic if we make sure
never to look at the same object twice.

We can represent the space S as a graph in which every object of S is a
node. Applying an operator SCS(n) on a node n transitions to a successor node
n′ and thereby describes an edge in the graph1. The new successor node n′ is
then said to be generated and its parent n is said to be explored. When all
successors of a parent node are generated, this node is called expanded. The
process of generating all successors of a node is called node expansion.

Examples of systematic search algorithms for finite search spaces are depth-
first and breadth-first search. Depth-first search recurses the full (finite) search
space and expands nodes in LIFO order, whereas breadth-first expands them
in FIFO order. Both algorithms mean to search S exhaustively, which makes
them unsuitable for very large spaces and entirely inapplicable to infinite spaces
(although breadth-first search will find finite solutions if every node has a finite
number of successors).

Basic depth-first and breadth-first search make decisions about which node
to expand next only based on previously seen objects, which is why we call
them blind or uninformed. Algorithms, on the other hand, which consider
information about the nature of the goal which helps steer the search in a
more favourable direction, are called informed. An informed search uses a
heuristic to expand the most promising nodes first, which is nothing but a
rule of thumb for how to reach a goal efficiently.

6.2 State Space Representation
To allow informed search and hopefully avoid exhaustive exploration, we extend
the format of the code or database to also include information about the
remaining subproblem at any node. We call this additional information state
and the space of all subproblems spanned by operators from a given position a
state space. A graph encoding of this space with states as nodes and operators
as edges is called a state space graph.

As an example of a state, we use the famous travelling salesman problem
(TSP). The salesman has travelled through cities A, B, C, and D and has to

1We have been using n to denote the order of n-grams, whereas in search theory it
describes a node in the search graph. We will continue using n for both in accordance with
the literature.

40

CHAPTER 6. OVERVIEW HEURISTIC SEARCH

decide how to proceed through cities E and F and then return to A:

A→ B → C →︸ ︷︷ ︸
Solution Base

D → {E,F} → A︸ ︷︷ ︸
State

The first part, the solution base, is necessary and sufficient to describe the
whole tour as well as the remaining subproblem. The state describes only the
latter and contains no information about the previous tour. It is therefore
redundant and incomplete. However, storing an explicit state representation
has the benefit of simplifying the computation of a heuristic and if we find a
different tour with the same state, we can immediately discard the costlier one.
This principle is called pruning by dominance.

6.3 Best-first Search and A*
With additional knowledge about the problem domain, we can build an informed
or best-first search. What sets best-first search apart from other search
algorithms is that it does not only expand the most promising node at the
current position, but the most promising node of all nodes that have been
generated so far. At any time, we have four disjoint node subsets, which are:

• nodes that have been expanded,

• nodes that have only been explored,

• nodes that have only been generated,

• nodes that have not yet been generated.

Expanded nodes are said to be closed and we place them on a list called
Closed. Explored and generated (yet not expanded) nodes are said to be
open and we place them on another list called Open. Whenever best-first
selects a node for expansion, it chooses the most promising node from Open
and then places it on Closed. To determine which node is the most promising
one, best-first uses an evaluation function f(n). A very simple evaluation
function could estimate the closest distance to a goal node. Best-first search
performed in this way is called greedy, since it is purely goal-oriented and does
not make decisions based on previously incurred costs. Greedy best-first search
can therefore choose deceiving and ultimately expensive paths or even end up
in loops leading to the same states over and over again. A non-greedy variant
of best-first search is the A* algorithm. The evaluation function f(n) used by
A* is composed not only of the goal heuristic h(n), but also of a path cost
function g(n), which calculates the actual path costs incurred for reaching n

41

CHAPTER 6. OVERVIEW HEURISTIC SEARCH

from the starting point s on the chosen path. The most promising node on
Open is the one which minimizes

f(n) = g(n) + h(n) . (6.1)

6.3.1 Admissible Heuristics

The A* algorithm can be proved to be complete, admissible, and optimal
if we put some constraints on its heuristic function h(n). As an explanation,
an algorithm A1 is called complete if it always finds a solution when one exists
and it is admissible if this solution is guaranteed to be optimal. An algorithm
itself is optimal over a class of algorithms if it dominates all other algorithms
in this class. Dominance of A1 over A2 is given if all nodes expanded by A1 are
also expanded by A2. A1 strictly dominates A2 if the reverse is not true. In
order to guarantee that A* will never miss an optimal solution, we need h(n)
to be an admissible heuristic.

Let Γ denote the set of all goal nodes in S and let h∗(n) denote the minimum
of the cheapest path costs k(n, γ) from n to any node γ ∈ Γ. A heuristic h(n)
is said to be admissible if it is an optimistic estimate of the true remaining
costs h∗(n), or mathematically speaking if

h(n) ≤ h∗(n) ∀ n . (6.2)

If h(n) fulfils the admissibility condition, A* will always find an optimal solution,
since it will not expand a goal node γ before having expanded all other more
promising nodes first. An admissible heuristic can prune many nodes and speed
up the search significantly without risking missing an optimal solution. The
pruning power of a heuristic is determined by its informedness. A heuristic h2(n)
is said to be more informed than a heuristic h1(n) if both are admissible
and

h2(n) > h1(n) ∀ n /∈ Γ . (6.3)

6.3.2 Consistent and Monotone Heuristics

Admissibility guarantees an optimal solution, but it does not guarantee that we
never have to reopen a node on Closed. Because multiple paths can lead to
the same node in the state space graph, the algorithm may find a cheaper path
to a node which has already been placed on Closed. In this case, the node
needs to be reopened and its path has to be updated. This can be avoided if
the heuristic is consistent. A heuristic function h(n) is called consistent if for
every node n and any of its descendants n′, the following condition is true:

h(n) ≤ k(n, n′) + h(n′) ∀ n, n′ . (6.4)

42

CHAPTER 6. OVERVIEW HEURISTIC SEARCH

Furthermore, a heuristic function h(n) is said to be monotone if for a node n
and any of its direct successors n′, the following is true:

h(n) ≤ c(n, n′) + h(n′) ∀ n, n′ |n′ ∈ SCS(n) , (6.5)

with c(n, n′) denoting the operator costs for generating n′ from n. It can be
proved that consistency and monotonicity are equivalent properties. Mono-
tonicity corresponds to the fulfilment of the triangle inequality by a heuristic
and restricts the changes in h(n) to be at most the size of c(n, n′). This implies
non-decreasing f values:

f(n′) ≥ f(n) ∀ n, n′ . (6.6)

Consistency and monotonicity guarantee that once a node has been expanded,
the costs g(n) for reaching it are optimal. As a result, no node on Closed
must ever be reopened. Since h(γ) = 0 and k(n, γ) = h∗(n), it can be shown
that a consistent heuristic is also always admissible:

h(n) ≤ k(n, γ) + h(γ)⇔ h(n) ≤ h∗(n) ∀ n, ∀ γ ∈ Γ . (6.7)

43

Chapter 7

Heuristic Search for Obfuscation

Deleting selected n-grams from a text is an easy and efficient method for
obfuscating it, but it produces syntactically incorrect outputs and offers only
first-order safety at best. In order to produce better and more inconspicuous
obfuscations which follow at least syntactic rules, we want to rewrite parts of
the text using automatic paraphrasing. The main difficulty lies in the fact that
not only do we need to change a text, we also want to achieve a specific effect
(i.e. obfuscation), which requires us to guide the paraphrasing mechanism in
a certain direction. As we have seen before in Section 4.2.3, it is possible to
change large portions of a text without having much of an effect on authorship
verifiers, and we want to avoid these kinds of modifications. Moreover, we
accept that we will not be able to fully rewrite a text without producing at
least semantically incorrect paraphrases, and therefore want to perform as few
text operations as possible.

With these three constraints: (1) achieving obfuscation, (2) producing
syntactically correct outputs, and (3) changing as little of a text as possible,
we cannot employ an uninformed text transformation process any more that
simply terminates when a certain condition is satisfied. Instead, we have a
very complex optimization problem. It is complex, because the problem’s value
range spans all possible paraphrases (or in general: modifications) of the source
text, which is an exponentially large or, in fact, infinite amount of possible
values, which we can never examine exhaustively. For that reason, it makes
sense to formulate the obfuscation task as a search problem, which we can
solve heuristically with the A* algorithm. As operators to span the search
space, we define various kinds of text transformations or paraphrases. At any
point during the search, a specific text is a state in the search space and a
goal state is a text that is obfuscated according to our metric. The task of the
search strategy is to find a path from the initial state to such a goal state with
minimal costs. The cost calculation is derived from the problem description. A

44

CHAPTER 7. HEURISTIC SEARCH FOR OBFUSCATION

minimal-cost path is therefore a path that has as little a negative impact on
a text’s syntax (and semantics) as possible. In practice, this usually implies
performing as few operations as possible.

7.1 Developing an Obfuscation Heuristic
Before we start discussing actual operator implementations, we need to develop
a useful heuristic function to guide the A* search algorithm. It does not matter
which operation we perform on a text if we cannot estimate how valuable it
is for reaching the obfuscation goal. For optimal results, we need a strong
and robust heuristic function even if we continued using only n-gram deletion
operations. We have been using JSD measures for our previous (non-search-
based) obfuscation approach and established JS∆ as a useful authorship metric,
so we want to use it as a basis for the heuristic as well. Designing a goal check
for terminating the search upon reaching a goal state is the easiest task. For
this, we will use the adaptive JS∆@L metric at a predetermined ε threshold.

7.1.1 Naive Approach: Relative JS Distance

A naive approach to building a heuristic is to use the relative distance between
a text pair’s original JS∆ and the adaptive target value, so h(n) is the JS∆

we still need to gain and g(n) is the sum of the costs of all applied operators.
This heuristic can definitely be admissible, but the obvious shortcoming of it
is that there is no relation between path costs g(n) and heuristic costs h(n).
The stepwise operator costs c(n, n′) = g(n′) − g(n) of an operation are on a
different scale than the heuristic and may not even be correlated with it at all.
This relative JS∆ heuristic is also bounded by

√
2, whereas path costs are not,

so they will eventually dominate the heuristic, diminishing its influence on the
total evaluation function f(n). But even if step costs are carefully adjusted (we
leave it open how that may be done), h(n′) will not necessarily reflect a step’s
path cost increase by c(n, n′) sufficiently in accordance with its contribution to
reaching the goal. A unit of text operations is not the same as and not even
immediately related to a unit of JS∆, so we may easily misguide the search.

7.1.2 Heuristic Based on Normalized Path Costs

A more useful approach is to estimate the remaining costs based on the JS∆ gain
we have achieved by previous text operations, which means to develop a heuristic
that extrapolates path costs in proportion to JS∆ change:

45

CHAPTER 7. HEURISTIC SEARCH FOR OBFUSCATION

Figure 7.1: Schematic of the heuristic function h(n) with constant step costs c(n, n′)
and linear, sublinear, and superlinear cumulative JS∆ gain functions.

h(n) = (ε− JS∆n) · g(n)

JS∆n − JS∆0

. (7.1)

ε denotes the adaptive JS∆@L target and JS∆0, JS∆n the JS∆ values of the
initial and the current state. We define

hprior(n) = ε− JS∆n (7.2)

as the prior heuristic and the cost to gain ratio

gnorm(n) =
g(n)

JS∆n − JS∆0

(7.3)

as the normalized path costs. In the product hprior (n) ·gnorm(n), normalized
path costs determine the initial slope of the heuristic and the prior heuristic
guarantees convergence towards zero as we approach a goal node γ ∈ Γ. We
will use this product as the actual heuristic function h(n) for the A* algorithm.

7.1.3 Consistency and Admissibility Properties

Because the proposed heuristic function h(n) uses the proportion of path costs
g(n) to cumulative JS∆ gain, it is naturally sensitive to variation in either
quantity. As long as both are linear functions, the proportion will also be linear
(schematically shown in Figure 7.1), resulting in an admissible, consistent and
maximally informed heuristic function h(n) = h∗(n). Of course, this is a rather
unrealistic scenario. In reality, the proportion of path costs to cumulative
JS∆ gain will not be constant. If we only set fixed step costs c(n, n′) and
thus have a linear cost function g(n), then with a sublinear cumulative JS∆

gain function, the heuristic will still be admissible, because it will initially

46

CHAPTER 7. HEURISTIC SEARCH FOR OBFUSCATION

underestimate and then monotonically decrease from there on. On the other
hand, a superlinear cumulative gain function will produce neither a consistent
nor admissible heuristic. This heuristic still converges, but we will always
overestimate at first as is clearly visible in Figure 7.1.

More generally, we can show (in)consistency for arbitrary differentiable
cumulative cost and gain functions. If we recall the monotonicity condition
h(n) ≤ c(n, n′) + h(n′) (which is equivalent to the consistency condition),
rewrite it as

− h(n′) + h(n) ≤ g(n′)− g(n) , (7.4)

and insert the actual heuristic function, we come to the following inequality:

− ε− JS∆n′

JS∆n′ − JS∆0

· g(n′) +
ε− JS∆n

JS∆n − JS∆0

· g(n) ≤ g(n′)− g(n) . (7.5)

We define ḡ(n) = JS∆n − JS∆0 as the gain function of a node and can write

−hprior(n′)
ḡ(n′)

· g(n′)− −hprior(n)

ḡ(n)
· g(n) ≤ g(n′)− g(n) . (7.6)

We know hprior(n) to be monotonically decreasing, inverse to ḡ(n), and con-
verging towards zero as we approach the goal. If cost and gain functions are
equivalent up to scale, g(n) and ḡ(n) cancel each other out (up to scale), the
slope of their quotient becomes zero and the inequality turns into an exact
equality. If they are not equivalent, but g(n) dominates ḡ(n), the inequality
will still be true. With ‘dominate’ we mean that g(n) grows faster than ḡ(n)
and the gradient of their quotient is always positive. This obviously only holds
given that both functions are differentiable at n. If ḡ(n) grows faster, the sign
of the quotient’s gradient flips (as can be proved by the quotient rule), which
breaks the inequality and violates the consistency condition.

Unfortunately, we will not see differentiable gain (or cost) functions in reality
very often. Because texts are naturally noisy, the n-gram ranking function RKL

is only a loose guideline, and side effects are naturally unpredictable, actual
stepwise JS∆ gain will be very noisy as well. If we accidentally introduce a very
bad side-effect n-gram, the cumulative gain function is not even guaranteed to
be monotonic. Step costs c(n, n′) will never be negative, but also not constant
when using multiple operators (and perhaps context-dependent cost calculation).
That makes g(n) monotonic, but not differentiable, so the heuristic function
will not be fully consistent and may even overestimate. Figure 7.2 shows the
influence of random noise on the heuristic function h(n) with either the gain or
cost function being subject to it. The heuristic is obviously sensitive to noise

47

CHAPTER 7. HEURISTIC SEARCH FOR OBFUSCATION

Figure 7.2: Schematic of the heuristic function h(n) with random stepwise JS∆ gain
and random step costs c(n, n′).

in both functions. The strength largely depends on the index of dispersion of
the noise and the random gain case is arguably worse, because the gain curve
does not behave monotonically. It is easy to see that here neither heuristic is
consistent or admissible, although, in another case, admissibility alone may be
given. If (by accident), we start with a high gain, we will not overestimate, but
still see large jump discontinuities, which break at least the consistency and
monotonicity condition.

In a practical scenario, we can directly control the cost but probably not
the already more problematic gain function, so we will have to deal with
problems regarding overestimation and local optima. Generally, the first few
steps of a search path are the most problematic, because with hardly any
prior information, the heuristic has to extrapolate based on only a few data
points, but is still expected to give an accurate estimate of the remaining costs.
Hence, an early heuristic is particularly susceptible to noise and can only give
a very coarse cost estimate. With more cumulative cost and gain information
available, the heuristic will stabilize towards the mean cost-gain proportion
and eventually converge towards zero.

In Figure 7.3, we show the heuristic in action. Step costs are constant,
because we have only been using a single operator so far (which is n-gram
removal) and do not consider context information such as the current state for
step cost calculation. The noise function in grey shows the relative JS∆ gain
per step. As we suspected correctly, stepwise gain is noisy with high variance,
causing h(n) to produce a rather unstable cost estimate curve at first and
then stabilize and converge towards the real remaining path costs. With only
a single successor state being produced at each search state, inadmissibility
or inconsistency is not problematic—with only one successor node to choose
from, we effectively ignore the heuristic—, but one can imagine this noisy

48

CHAPTER 7. HEURISTIC SEARCH FOR OBFUSCATION

Figure 7.3: JS∆ gain per step (grey) and h(n), g(n) curves when applying n-gram
removal as the only operator to Tales of Unrest by Joseph Conrad. Cost estimation is
very unreliable at first and converges towards the real remaining costs with increasing
search depth. Cumulative JS∆ gain has been amplified by a constant factor of 170, 000
for better visual representation on the heuristic and cost scale.

curve to pose a challenge later when we produce multiple successor states.
In this example, we get a considerably smoother curve only after a depth of
50–100. With just two successors per operation, the fully expanded search space
would be of the size of 250–2100 nodes already, so exploration for compensating
for an inaccurate heuristic is not an option. Fortunately, JS∆ is bounded
by
√

2, so globally, cumulative gain cannot be superlinear and indeed, the
cumulative JS∆ gain function appears to be approximately linear (if we smooth
out noise sufficiently). This suggests that the heuristic is at least asymptotically
admissible and our main concern will be inconsistencies.

7.2 Developing Operators
With a heuristic in place, we can start developing more and better operators.
In the following section we present a comprehensive but not exhaustive list of
possible text operations that can be used to change an n-gram’s occurrences or
the word(s) containing it in specific places. A few operators are inspired by
Bräutigam’s [6, 48] thesis on generating acrostics via heuristic search.

The list is loosely ordered by increasing complexity of the operator and the
sensibleness and soundness of its result. There is no formal method to measure
how good an operator is, but to some extent, all operators can be assessed by

49

CHAPTER 7. HEURISTIC SEARCH FOR OBFUSCATION

the two dimensions strength and quality. Strong operators are operators that
are very effective and universally applicable throughout the search. Not all
operators can always be applied (e.g. an operator that changes punctuation
can only be applied on n-grams containing punctuation). With quality, we
determine how well-formed or semantically similar the resulting text is. An
operator will rarely be both strong and of high quality, so we must usually
weigh strength and quality as a trade-off. There are operators which score well
in both dimensions, but they tend to be very complex and costly in terms of
runtime.

7.2.1 Asyntactic Operators

These operators are very strong and easy to implement, but tend to produce
syntactic errors and generally very low-quality text results.

n-gram removal This is the operator we have been using so far. It is the
strongest operator we can build if we neglect side effects, but also one of
the lowest-quality operators overall. It will almost always produce syntactic
errors, inhibit readability and can easily be spotted by automatic spell cor-
rection. The operator can be expanded to delete whole words, but without
context, that procedure does not provide much more quality and rather worse
comprehensibility.

Character flips Flipping positions of two neighbouring characters can also
be applied universally, but suffers from the same problems as n-gram removal.
We can trade strength for quality by only flipping characters which are rather
inconspicuous or are close together on the keyboard. That would make this
operator effectively a typo operator.

Character maps We can map specific characters to other replacement char-
acters, so this is basically a synonym operator for characters. For example, we
can replace exclamation marks by periods, commas by semicolons etc. If we
restrict it to punctuation, this operator will be quite hard to notice, but its
applicability is rather low. Extending it to also replace look-alike characters
(e.g. lowercase L with uppercase I), makes the operator stronger, but also
extremely easy to spot and revert by spell correction.

Common misspellings If not applied too often, application of a substitution
map of correct words to common misspellings can be mildly effective and
inconspicuous.

50

CHAPTER 7. HEURISTIC SEARCH FOR OBFUSCATION

7.2.2 Syntactic Operators

These operators are still rather easy to implement, but either more restricted or
they require a little more linguistic knowledge to produce at least syntactically
correct results. No semantic or advanced grammatical knowledge is required
for these operators.

Contractions and expansions In the English language, personal pronouns
can often be contracted with a directly following auxiliary verb. ‘I will’ becomes
‘I’ll’ and ‘you are’ becomes ‘you’re’. An operator can quite safely replace
occurrences of these with their contraction. This operator is rather weak in
terms of applicability, but the result will be syntactically correct and will not
even change the meaning of a sentence. To make it a bit stronger, we can also
replace already existing contractions with their expansions, but this way we
cannot always guarantee correct results without further grammatical analysis.
A contraction ‘he’s’ is ambiguous and may have been either ‘he is’ or ‘he has’.

Number words to digits Replacing number words with digits is quite an
easy and inconspicuous operator, but it may be advisable to refrain from
replacing too many single-digit numbers as it is usually considered bad style
and can appear suspicious. The operator could also be applied vice versa, but
with doubtable effectiveness. Especially larger numbers will rarely be indicative
of writing style and therefore hardly ever be selected for replacement.

Abbreviations and acronyms Especially in technical writing, many words
have common (and not so common) abbreviations and acronyms and quite a
few of them can automatically be substituted without semantic knowledge. For
instance, ‘doctor’ can be replaced by ‘Dr.’ and ‘with regard to’ by ‘w.r.t.’. This
mapping is not always perfect. A correct abbreviation for ‘doctor’ could also
be ‘Ph.D.’ in some cases, but many replacements can be expected to be quite
safe. Existing abbreviations could also be expanded, but then we need to be a
lot more careful, because abbreviations are often extremely ambiguous.

Function word and adverb synonyms Many function words and adverbs
are easy candidates for replacement. Their meaning is not influenced by
context and they have no grammatical flexion. ‘However’, ‘but’, and ‘yesterday’
can probably be replaced by ‘Nonetheless’, ‘yet’, and ‘the day before’ without
breaking anything. Some words are more problematic, such as ‘since’, which can
either be a synonym for ‘because’ or describe time, yet many more unambiguous
words remain.

Context-less synonyms This operator may also be called ‘false synonyms’
and it uses a thesaurus to select word replacements. As long as we do not

51

CHAPTER 7. HEURISTIC SEARCH FOR OBFUSCATION

mix different parts of speech, the result should be grammatically sound in
many cases with no guarantee for semantic correctness, however. The sentence
‘She arrived late at work’ could become something like ‘She arrived late at
endeavour’, which is grammatically correct, but does not make a lot of sense.
But applied in small pieces, this operator can be quite strong at reasonable
quality.

Context-less hypernyms and hyponyms This is another, more specific
‘false synonym’ variant. Hypernyms are more general categories of other more
specific words. For example, ‘bird’ is a hypernym for ‘parrot’. Hyponyms on the
other hand, are more specific words for a more general category. Conservatively
applied, replacement by a hypernym tends to be rather safe if we do not mix
parts of speech. On the other hand, replacement by hyponyms frequently
leads to very confusing synonyms and may not necessarily be recommended,
but is still an option. The operator can be implemented easily by extracting
hypernyms from WordNet [36] synsets.

Context-less homonyms Commonly confused homonyms can be used as
another false synonym operator. Homonyms are words that sound alike or are
used in a similar context, but have different meaning, such as ‘bear’ and ‘bare’,
‘their’ and ‘they’re’, or ‘if’ and ‘whether’.

7.2.3 Context-based Operators

These operators live on a middle ground between purely syntactic and gram-
matical operators. They can be applied without grammatical or semantic
knowledge, but are based on language models or other contextual information.

Run-on and split sentences This operator is similar to character maps.
We can replace periods with commas to produce run-on sentences. Similarly,
we can replace commas with periods to create split sentences. The difference
between this and the character map operator is that we can only replace
punctuation at the end of sentences or the beginning of clauses and must also
change capitalization of the following sentence or clause.

Context-dependent replacements Word replacements and deletions based
on context can be performed using word-level n-gram language models. The
strength of this operator depends on the size of the used n-gram collection
and the quality depends much on context size. Word five-grams are decent
at determining if a word in question can be removed or replaced in the given
context, but are rarely applicable. A bi-gram operator is stronger at the cost
of quality. We implemented this operator using Netspeak [47], which utilizes
the Google n-gram corpus, a web-scale word n-gram corpus with n ∈ [1, 5].

52

CHAPTER 7. HEURISTIC SEARCH FOR OBFUSCATION

Tautologies A tautology is produced by saying the same thing twice or by
adding other ‘useless’ information. For disrupting word transition n-grams, we
can insert new words between two existing words. This can either be done in a
general fashion using Netspeak or by inserting related adjectives before nouns,
such as ‘frozen ice’ or ‘hot fire’.

Tautological phrases A tautological phrase with no meaning in itself and
no influence on its context may be added between clauses. Such phrases are
‘This is true’, or ‘As we all know. . . ’, etc. Their occurrence may be annoying
or distracting, but does rarely change the meaning of a sentence.

7.2.4 Grammatical Operators

Operators in this category require more advanced grammatical knowledge of a
sentence, up to some basic semantic understanding. The first two of them do
not strictly require full grammatical parsing of a sentence, but benefit hugely
from it.

Transition signals Many sentences or subclauses can be started with tran-
sition signals or introductory words without altering their meaning too much.
These are ‘Furthermore’, ‘whereas’, ‘however’, ‘indeed’, ‘anyway’, ‘notably’,
‘likewise’, and many more. Care has to be taken only as to whether these are
signalling continuation, contrast, or a new idea; otherwise we could completely
negate the meaning of a clause. A correct choice needs at least grammatical
parsing, but as a very rough approximation, contrasting signals could simply
be omitted.

Tag questions The tag question operator is similar to introductory words and
tautological phrases. Many sentences can be ended with semantically redundant
tag questions, such as ‘isn’t it?’, ‘don’t they?’, or ‘has he?’ without altering
meaning. While these phrases could just be appended without contextual
analysis, appending the correct tag requires grammatical inference of the acting
pronoun, used verb, and negation.

Pronoun substitution If the grammatical structure of a sentence is known,
nouns and proper nouns can be substituted with referencing pronouns or vice
versa. For example, ‘The waiter gave us the bill’ could be rewritten as ‘He gave
us the bill’.

Neural edits Specialized deep neural networks can be used for paraphras-
ing whole sentences [15] as mentioned shortly in Chapter 2. Full sentence
paraphrasing is quite uncontrollable and may be too general of an operator,

53

CHAPTER 7. HEURISTIC SEARCH FOR OBFUSCATION

but the supervised neural editor developed by Guu et al. [16] appears to be
very promising for performing targeted edits of individual words. It allows
a supervising system to mark specific words which the editor then tries to
rephrase appropriately.

7.3 Design and Algorithmic Considerations
For running search-based obfuscation on texts, we developed an efficient C++
framework, which implements the A* algorithm for authorship obfuscation
and allows to apply arbitrary text operators for transforming a text towards
an adaptive obfuscation goal. When designing such a framework, special care
must be taken to optimize execution time and memory consumption in order
to make search on longer texts feasible and also enable application of more
expensive operators. With an ASCII input text of 23,000 characters (or bytes),
memory consumption will be at 23MB after generating 1,000 successors in a
naive way, i.e. by copying the string. Imagining that overall, we will generate
tens of thousands if not hundreds of thousands of states (nodes), we will end
up with hundreds of megabytes of memory consumed for representing them.
This is not so problematic if the text were the only information we need to
store, but reparsing a text into n-grams or words every time an operator is
applied, demands an infeasible amount of computation time. If n-gram parsing
takes 6ms on an average CPU, we can generate a maximum of 167 nodes per
second. This is only the bare successor state generation, but in practice we
also need to run the actual operator, re-calculate a state’s JS∆ (for which we
have to iterate all n-grams), and maintain the Open and Closed list. Overall,
an actual state generation of 20 nodes/s or less seems more realistic. A simple
way to increase performance is to pre-calculate n-grams and to store them in
a lookup table together with the text. This reduces computation time, but
causes memory consumption to increase immensely (we can easily fill gigabytes
in no time) and copying the lookup table for every state is still overly costly.

To overcome these limitations, we represent n-grams as limited-precision
integers (32 bit for ASCII trigrams to preserve alignment) and store a single
pre-calculated profile of relative n-gram frequencies as an ordered tree map
with access complexity O(log n) together with the original text. Every state
maintains a second ordered n-gram map containing only the updated n-grams
and a differential string storing a series of incremental updates to the original.
When accessing a state, the edit history is reiterated and both the current
n-gram profile and the text are produced on-the-fly. The state’s JS∆ can be
recalculated by iterating both the original n-gram map and the one having
the updates simultaneously, hence the ordered tree data structure. We achieve

54

CHAPTER 7. HEURISTIC SEARCH FOR OBFUSCATION

Table 7.1: Implemented search operators and their assigned fixed step costs in
our heuristic obfuscation framework prototype. The context-dependent replacement
operator has been split into actual word replacement and deletion.

Operator Name Cost Value

n-gram removal 40
Character flips 30
Context-less synonyms 10
Context-less hypernyms 6
Context-dependent replacement 4
Character maps 3
Context-dependent deletion 2

both a performance gain and a decrease in memory consumption compared to
reparsing the whole text and storing it with the state every time. If the update
history of a state becomes too long, we can apply it and restart from a new
base. As a further performance optimization, we can recalculate the JS∆ only
on the changed n-grams, but this calculation is highly inaccurate and needs to
be corrected every five iterations. The Open list is maintained as a priority
queue in the form of a min heap of pointers to nodes with access complexity
O(1) for the lowest-cost node. We also maintain an O(1) hash map of the same
pointers for random access to any node. The Closed list only needs constant
access time and no ordering, so a hash map is the suitable data structure.

With the described architecture, our framework can generate up to 20,000
nodes/s on an average medium- to low-end desktop PC (Intel Core i5-6400,
2.7GHz) with a single ‘cheap’ operator. In practice with multiple complex
operators, we generate between 400 and 2,000 new nodes/s and move up to
100 nodes/s to Closed. Average memory consumption per state is around
10–15KiB, including intermittently cached values and other overhead. For the
first working prototype, we implemented the following seven operators: n-gram
removal, character flips, character maps, context-less synonyms, context-less
hypernyms, context-dependent replacement and context-dependent removal
(both using Netspeak). Each operator was assigned a fixed cost value according
to how we judge its overall impact on text quality.

7.3.1 Search Space Challenges

A major challenge we faced was generation and intelligent selection of successor
nodes. We have seen before (Figure 7.3) the amount of noise that influences
the gain function and the actual gain magnitude we are working with. With

55

CHAPTER 7. HEURISTIC SEARCH FOR OBFUSCATION

stepwise JS∆ gain varying heavily between (slightly less than) 0 and 0.0003,
the search front becomes quite homogeneous and it is difficult to find the next
best candidate for expansion with certainty. The gain magnitude itself is less
important as the heuristic function will scale it up accordingly to match the
magnitude of the path costs, but the variance imposes a serious challenge by
not guaranteeing consistency or even admissibility as we established in previous
sections.

The main challenge that we need to overcome is finding a sensible middle
ground between finding a non-optimal solution too quickly (which can happen
with inadmissible heuristics) or not finding a solution at all. We can easily turn
the A* search into a depth-first search by generating only a single successor
node at each step or by ensuring that expanding the next node is always
cheaper than exploring neighbours. We can do the latter by setting operator
costs to extremely low values or even zero. An obvious disadvantage of this
method is that depth-first search will always find a solution when sufficiently
many operations have been performed, but it will almost never be the optimal
solution we are looking for, i.e. a solution which requires only very few and
high-quality edits. On the other hand, by making expansion of new nodes too
expensive, the search will deteriorate into breadth-first search and probably
never finish before running out of time or memory. This pathological case will
occur when the search runs into a local minimum of the heuristic cost estimate
at which all successors are seemingly worse and farther away from the goal
than all neighbours.

7.3.2 Partial Node Expansion

The most direct way to expand a node is to generate a successor with each
applicable operator for each occurrence of the selected top-ranked n-gram. This
approach is not ideal, since it generates a lot of successors very quickly and only
leads to faster exponential search space explosion. The actual n-gram context
may vary slightly, so side effects and context-dependent operator applicability
may vary slightly as well, but in the worst case, this strategy will only produce
a large number of similar states with identical costs, almost identical gain, and
the same applicable operators to generate further successors. Expanding all
these similar states will not get us quicker to our goal. A first countermeasure
to make sure that the search does not plateau too early is to ensure that we
do not generate too many of these similar successors. Fortunately, we are not
reliant on a perfectly optimal solution, so only selecting one or two occurrences
of an n-gram for expansion becomes justifiable.

A problem that remains to be solved is operator applicability itself. High-
quality operators can be weak, but we want to apply them whenever possible.

56

CHAPTER 7. HEURISTIC SEARCH FOR OBFUSCATION

We have seen that even by not selecting the single highest-impact n-gram, we
can obfuscate with passable effort. Due to this observation, we can increase an
operator’s strength by not only selecting the top-ranked n-gram but a small
number of different top n-grams. This way, we have multiple high-impact
n-grams with different contexts to work with and increase the chances of
applying a weak but high-quality operator. Additionally, we have opened
alternative paths for the search itself. We have seen that JS∆ gain is not a
monotonic function and always selecting the single highest-impact n-gram does
not guarantee an overall lowest-cost path. By selecting alternative n-grams, we
allow the search to find a better path than the path of locally steepest ascent.
Clearly, we have counteracted our previous search space reduction measure with
this. To find a balance, we need to reduce the selection again before adding
successors to the Open list. This can be done by random or cost-based subset
selection.

We applied each operator on two occurrences of the top ten n-grams and
then randomly reduced these (up to) 20 successors to six, which gives a total
maximum of 42 successors per node. On average, this number will be much
less, since not all seven operators can generate six successors every time.

7.3.3 Hybrid Search

Despite using only partial node expansion, we will still generate hundreds of
thousands if not millions of nodes very quickly, fill up the Open list, and
eventually run out of memory without finding a solution. Inconsistencies in
the heuristic and the inherent gain similarity of most nodes make it hard to
find a narrow low-cost path through the search space. Luckily, the inherent
node similarity also enables us to regard a found intermediate solution as ‘good
enough’. It is plausible that, after a while, exploring more neighbouring nodes
will not produce much better results, so we are allowed to clear Open and
restart from a small subset of only the most promising nodes. This hybrid
approach resembles a global depth-first search with best-first as extended
node expansion. We chose to restart the search after 40,000 nodes on Open
(approximately 600MB, not counting nodes on Closed) and keep only the
10 most promising ones. We found this to be a good compromise between
execution time and result quality. The average time to find a solution for a text
of 23,000 characters with this approach is about 8.5 minutes on an Intel Core
i5-6400 CPU with 2.7GHz clock speed. The exact time varies with different
cost configurations for the strongest operators.

57

CHAPTER 7. HEURISTIC SEARCH FOR OBFUSCATION

Table 7.2: Performance values of adaptive local obfuscation in comparison with
adaptive A*-based obfuscation on our test corpus. Mean and median values were
calculated on cases which needed at least zero, one, and ten operations. We can
reduce the median number of operations by up to 22% and the median path costs
by up to 70%. Path costs for local obfuscation are the n-gram removal operator
cost times the number of operations. Contrary to local n-gram removal, heuristic
obfuscation does not reduce the text lengths any more.

Mean Median

Min. Ops Local A* Gain Local A* Gain

Operations
0 202 176 −13 % 185 176 −5 %
1 259 225 −13 % 262 212 −19 %
10 267 232 −13 % 275 215 −22 %

Length Ratio
0 0.97 1.01 +3.4 % 0.97 1.01 +3.4 %
1 0.96 1.01 +4.4 % 0.96 1.01 +4.4 %
10 0.96 1.01 +4.5 % 0.96 1.01 +4.5 %

Path Costs
0 8,113 2,380 −71 % 7,440 2,380 −68 %
1 10,384 3,049 −71 % 10,500 3,278 −69 %
10 10,711 3,146 −71 % 11,040 3,365 −70 %

7.4 Results Analysis
To distinguish between obfuscation by heuristic search and our previous unin-
formed proof-of-concept approach, we will call the latter local obfuscation from
here on. The term local refers to this approach performing obfuscation based
on local optimization along the KLD gradient.

By using heuristic search for obfuscation, we can successfully reduce the
number of operations needed for achieving a desired obfuscation effect compared
to local obfuscation. Despite the lower number of necessary operations, the
effect on unmasking (as shown in Figure 7.4) remains unchanged and most same-
author cases become undecidable after obfuscating them up to the adaptive
ε0.5 threshold. Some cases can still be distinguished from different-authors
cases as a result of the target threshold being calculated on the training corpus.
This can be corrected by choosing a higher threshold (e.g. ε0.75) and is not an
inherent effect of search-based obfuscation.

Table 7.2 lists performance measures on our test corpus for text operations
required for reaching a goal node (which corresponds to the length of the
solution path minus one), total path costs, and the text length ratio between
the original and the obfuscated text. Path costs of local obfuscation are simply

58

CHAPTER 7. HEURISTIC SEARCH FOR OBFUSCATION

Figure 7.4: Unmasking curves of our test corpus before and after heuristic obfus-
cation up to the adaptive ε0.5 threshold. The effect is comparable to adaptive local
obfuscation. Stronger obfuscation can be achieved by choosing a higher threshold.

the product of the n-gram removal operator’s costs and the number of applied
operations. Since both obfuscators use adaptive goals, it makes sense to filter
out cases which need no or only very few operations before calculating these
performance measures. Therefore, Table 7.2 lists means and medians for all
cases and only for cases requiring at least one and ten operations. We could
reduce the median number of operations per text pair by up to 22% and the
mean by 13%. Median path costs could be reduced by 70,%, but this is not
at all surprising, considering that local obfuscation can only apply the most
expensive n-gram removal operator. We can also see that heuristic obfuscation
does not reduce the text lengths any more.

The actual text quality is harder to quantify. A cost decrease by 70%
suggests better results, but we must consider that we assigned operator costs
mostly arbitrarily and none of the implemented operators is a very sophisticated
grammatical one. To give a rough idea what a heuristically obfuscated text
looks like, we show an excerpt from A Filbert Is a Nut by Rick Raphael. For
comparison, this is the original text:

With a furtive glance around him, he clapped the other
half of the clay sphere over the filled hemisphere
and then stood up. The patients lined up at the door,
waiting for the walk back across the green hills to the
main hospital. The attendants made a quick count and
then unlocked the door. The group shuffled out into
the warm, afternoon sunlight and the door closed behind
them. Miss Abercrombie gazed around the cluttered
room and picked up her chart book of patient progress.

59

CHAPTER 7. HEURISTIC SEARCH FOR OBFUSCATION

Moving slowly down the line of benches, she made short,
precise notes on the day’s work accomplished by each
patient. [...]

and this is its obfuscated version (differences are highlighted):

With a furtive glance around him, he clapped the other
half of the clay sphere over the filled hemisphere
and then stood up. The patients lined up at the
door, waiting for the walk back across the site hills
to the main hospital. The attendants made a quick
investigation and then unlocked the door. The group
shuffled out into the warm, daylight sunlight and the
door closed behind them. Miss Abercrombie gazed around
the cluttered room and picked up her chart forward
of patient progress. Moving slowly down the line of
bens, she made parcel, precise notes on the day’s work
accomplishedb y aehc patient. [...]

Overall, the text looks much better than a text with missing n-grams, but we can
clearly see that the context-less synonym operator is lacking basic grammatical
and semantic knowledge. However, as a prototypical implementation of heuristic
obfuscation, the results are still satisfying. Synonym dictionaries can be
improved and smarter operators can be implemented. What we also see is
where the search failed to find suitable operators and resorted back to the more
expensive and disruptive character flip and n-gram removal operators. We
expect to see this whenever there are too few applicable high-quality operators.
The obvious solution for counteracting this fall-back behaviour is to implement
more and better operators. But we can also improve by allowing more successor
states or choosing more different n-grams at the cost of execution time and
memory. However, it is worth noting that only spending more time on finding
a solution with low- and medium-quality operators, instead of adding more
high-quality operators, imposes a risk.

We can demonstrate this with another experiment for which we adjusted the
selection strategy to not only pick the top ten n-grams with highest rank, but
to choose ten random n-grams from the positive half of the n-gram distribution.
We left the number of occurrences for each of the ten n-grams at a value of
two and the maximum allowed number of successors per operator at six. By
randomly selecting also less effective n-grams, we limited the impact of the
selection locally, but created more opportunities for the search to apply one
of the weaker operators. As a result, nodes will be expanded more often up

60

CHAPTER 7. HEURISTIC SEARCH FOR OBFUSCATION

Figure 7.5: Heuristic cost estimate, actual path costs and JS∆ gain for A*-based
obfuscation of A Filbert Is a Nut using different n-gram selection strategies. The
chart to the left shows costs and gain when selecting only the top ten n-grams and
the one to the right when selecting ten random (positive) n-grams. The JS∆ curves
have been amplified by a factor of 7,500 for better visual representation.

to their actual maximum expansion cap of 42 successors, which leads to more
successors overall and therefore opens more possible paths.

The experiment showed no notable increase in average required text opera-
tions, but average execution time per text pair rose from 8.5 minutes to over
35 minutes due to many of the selected n-grams having lower impact and the
overall number of successful operator applications being higher. Despite the
almost identical number of needed operations to obfuscate a text, we saw an
average cost decrease from 2,380 to 740, which means that weaker low-cost
operators were indeed applied more often. Shown at the same example text as
above, the result is rather surprising:

With a furtive glance around him, he clapped the other
half of the clay sphere over the filled hemisphere
and then stood up! The patients lined up at the door,
waiting for the walk back across the green hills
to the main hospital! The attendants made a quick
investigating and then unlocked the door. The group
shuffled out into the warm, afternoon sunlight and
the door closed behind them, Miss Abercrombie gazed
around the cluttered room and picked up her chart book
of patient progress! Moving slowly down the line of
benches, she made short, precise notes on the day’s
work accomplished by each patient. [...]

61

CHAPTER 7. HEURISTIC SEARCH FOR OBFUSCATION

The A* search managed to obfuscate the text almost entirely by only applying
the cheap but situational character map operator, which swaps out punctuation
characters for other punctuation characters. We can show a more extreme
example with Tales of Unrest by Joseph Conrad. This is the original text:

They thronged the narrow length of our schooner’s
decks with their ornamented and barbarous crowd,
with the variegated colours of checkered sarongs,
red turbans, white jackets, embroideries; with the
gleam of scabbards, gold rings, charms, armlets, lance
blades, and jewelled handles of their weapons. They
had an independent bearing, resolute eyes, a restrained
manner; and we seem yet to hear their soft voices
speaking of battles, travels, and escapes; boasting
with composure, joking quietly; sometimes in well-bred
murmurs extolling their own valour, our generosity; or
celebrating with loyal enthusiasm the virtues of their
ruler. [...]

The obfuscated text reads like this:

They thronged the narrow length of our schooner’s decks
with their ornamented and barbarous crowd; with the
variegated colours of checkered sarongs, red turbans;
individual jackets, embroideries; with the gleam of
scabbards. gold rings; charms, armlets, lance blades,
and jewelled handles of their weapons. They had an
independent bearing; resolute eyes, a restrained
variety; and we seem yet to hear their soft voices
speaking of battles, travels, and escapes; boasting
with composure; joking quietly; sometimes in well-bred
murmurs extolling their own valour; our generosity; or
celebrating with loyal enthusiasm the virtues of their
ruler! [...]

Except for some minor flow issues and two creative synonym replacements, the
obfuscation looks close to ideal at first, but its problems are obvious: excessive
repetition of a single operator becomes suspicious very quickly and obfuscation
solely based on punctuation has no effect on purely word-based authorship
verifiers like our unmasking implementation. Both problems can be tackled
by increasing the costs of these cheap operators after repeated application,

62

CHAPTER 7. HEURISTIC SEARCH FOR OBFUSCATION

but then we need more and stronger alternative operators again to find a
better solution.

In summary, we can say that obfuscation by heuristic search can signifi-
cantly reduce the number of text operations required for preventing authorship
detection. Moreover, it can also produce better texts, but relies heavily on
good choices for search parameters and both strong and high-quality operators.

63

Chapter 8

Conclusion

We developed an authorship verification scheme based on Koppel’s unmasking,
which allows us to decide the authorship of texts with only a few thousand
characters in length with very high precision and we used this verification
scheme as an adversarial baseline for our research into authorship obfuscation.
By attacking the Kullback-Leibler divergence or Jensen-Shannon distance of
a pair of texts written by the same author, we could show that only few text
operations are necessary for rendering unmasking unable to determine the pair’s
shared authorship. The success of these obfuscative modifications supports
our previous findings in the field of authorship obfuscation and endorses the
usefulness of the Kullback-Leibler divergence as a basic model for authorship.
However, we also identified potential pitfalls of this model and demonstrated
that if operations are applied non-uniformly on a text, sufficient obfuscation is
not guaranteed, despite the global KLD (or JSD) being increased.

To further lower the amount of operations needed for obfuscating a text,
we proposed a text length–dependent method for determining an adaptive
obfuscation target, which is the minimal Jensen-Shannon distance two texts
must have for a certain level of obfuscation safety. To reach such an obfuscation
target with as few text operations as possible and to improve the resulting text
quality, we designed an obfuscation framework which uses heuristic search to
control the applied obfuscative modifications. Using this framework, we could
reduce the number of operations even more and also apply less disruptive and
quality-deteriorating modifications.

As an overall result, we conclude that unmasking and—based on the tests
on compression models and on other verifiers from PAN challenges during our
previous work—possibly many other state-of-the-art verification systems can
be defeated by very few targeted edits, which can, if performed cautiously, be
subtle and not trivial to detect. Further, we could demonstrate prototypically
how heuristic search can aid us in executing these edits automatically.

64

CHAPTER 8. CONCLUSION

8.1 Future Work
We have shown that we can improve the quality of an obfuscated text compared
to our previous proof-of-concept approach by using heuristic search. However,
without better operators, we could not improve the quality of an obfuscation
sufficiently to make it completely unrecognisable. Therefore, the most obvious
improvement would be the implementation of grammatical operators, which
can edit a text in a much less disruptive way. Also incrementally increasing
costs of repeatedly applied operators can help preventing recognizable patterns
in the text.

Once an obfuscated text looks inconspicuous enough to not be identified
immediately by spell and grammar checkers or cursory human readers, heuristic
obfuscation needs to be evaluated against statistical de-obfuscation attacks.
Based on this evaluation, both the search strategy and operators may need to
be adjusted in order to prevent such attacks. Using a more random n-gram
selection (similar to the one we demonstrated towards the end of Section 7.4),
may help avert de-obfuscation.

In addition, gathering additional data about the nature and variance of
adaptive obfuscation thresholds on a larger number of text pairs and with more
variety within the texts, would be useful to reduce the chances of accidental
under- or overobfuscation. We have seen that adaptive thresholds learned on
our training corpus were approximately but not totally accurate on the test
corpus. Making these learned thresholds more robust and descriptive for a wider
range of texts would overall increase obfuscation safety without having to resort
to repeatedly testing against a (large) set of different classifiers to determine if
an applied obfuscation is sufficient. We can also refine the definition of adaptive
thresholds itself. For example, instead of defining a threshold geometrically, we
could define it in terms of the type II error probability when deciding authorship
based on the Jensen-Shannon distance.

65

Bibliography

[1] Ahmed Abbasi and Hsinchun Chen. Writeprints: A stylometric approach
to identity-level identification and similarity detection in cyberspace. ACM
Trans. Inf. Syst., 26(2):7:1–7:29, 2008.

[2] Douglas Bagnall. Author identification using multi-headed recurrent neural
networks. In Working Notes of CLEF 2015 - Conference and Labs of the
Evaluation forum, Toulouse, France, September 8–11, 2015. CEUR-WS.org,
2015.

[3] Oleg Bakhteev and Andrey Khazov. Author masking using sequence-
to-sequence models. In Working Notes of CLEF 2017 - Conference and
Labs of the Evaluation Forum, Dublin, Ireland, September 11–14, 2017.
CEUR-WS.org, 2017.

[4] Janek Bevendorff. Authorship verification and obfuscation using distribu-
tional features. Bachelor’s thesis, Bauhaus-Universität Weimar, Fakultät
Medien, Medieninformatik, September 2016.

[5] Edward Gaylord Bourne. The authorship of the federalist. The American
Historical Review, 2(3):443–460, 1897.

[6] Christof Bräutigam. Einsatz heuristischer Suchverfahren zur Erzeugung
eines Akrostichons. Master’s thesis, Bauhaus-Universität Weimar, Fakultät
Medien, Medieninformatik, September 2012.

[7] Michael Brennan, Sadia Afroz, and Rachel Greenstadt. Adversarial sty-
lometry: Circumventing authorship recognition to preserve privacy and
anonymity. ACM Trans. Inf. Syst. Secur., 15(3):12:1–12:22, 2012.

[8] Peter F. Brown, Stephen Della Pietra, Vincent J. Della Pietra, Jennifer C.
Lai, and Robert L. Mercer. An estimate of an upper bound for the entropy
of English. Computational Linguistics, 18(1):31–40, 1992.

[9] Aylin Caliskan and Rachel Greenstadt. Translate once, translate twice,
translate thrice and attribute: Identifying authors and machine translation

66

BIBLIOGRAPHY

tools in translated text. In Proceedings of Sixth IEEE International
Conference on Semantic Computing, ICSC 2012, Palermo, Italy, September
19–21, 2012, pages 121–125. IEEE Computer Society, 2012.

[10] Daniel Castro-Castro, Reynier Ortega Bueno, and Rafael Muñoz. Author
masking by sentence transformation. In Working Notes of CLEF 2017 -
Conference and Labs of the Evaluation Forum, Dublin, Ireland, September
11–14, 2017. CEUR-WS.org, 2017.

[11] John G. Cleary and Ian H. Witten. Data compression using adaptive
coding and partial string matching. IEEE Trans. Communications, 32(4):
396–402, 1984.

[12] Dominik Maria Endres and Johannes E. Schindelin. A new metric for
probability distributions. IEEE Trans. Information Theory, 49(7):1858–
1860, 2003.

[13] Tim Gollub, Benno Stein, and Steven Burrows. Ousting ivory tower
research: towards a web framework for providing experiments as a service.
In Proceedings of the 35th International ACM SIGIR conference on research
and development in Information Retrieval, SIGIR 2012, Portland, OR,
USA, August 12–16, 2012, pages 1125–1126. ACM, 2012.

[14] Irving John Good. The population frequencies of species and the estimation
of population parameters. Biometrika, 40(3 and 4):237–264, 1953.

[15] David Grangier and Michael Auli. Quickedit: Editing text & translations
via simple delete actions. ArXiv.org, 2017.

[16] Kelvin Guu, Tatsunori B. Hashimoto, Yonatan Oren, and Percy Liang.
Generating sentences by editing prototypes. ArXiv.org, 2017.

[17] Matthias Hagen, Martin Potthast, and Benno Stein. Overview of the
author obfuscation task at PAN 2017: Safety evaluation revisited. In
Working Notes of CLEF 2017 - Conference and Labs of the Evaluation
Forum, Dublin, Ireland, September 11–14, 2017. CEUR-WS.org, 2017.

[18] Oren Halvani, Christian Winter, and Lukas Graner. On the usefulness of
compression models for authorship verification. In Proceedings of the 12th
International Conference on Availability, Reliability and Security, Reggio
Calabria, Italy, August 29 - September 01, 2017, pages 54:1–54:10. ACM,
2017.

[19] Oren Halvani, Christian Winter, and Lukas Graner. Authorship verification
based on compression-models. ArXiv.org, 2017.

67

BIBLIOGRAPHY

[20] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis for
the heuristic determination of minimum cost paths. IEEE Trans. Systems
Science and Cybernetics, 4(2):100–107, 1968.

[21] Farkhund Iqbal, Rachid Hadjidj, Benjamin C.M. Fung, and Mourad Deb-
babi. A novel approach of mining write-prints for authorship attribution
in e-mail forensics. Digital Investigation, 5:S42–S51, 2008.

[22] Patrick Juola. Detecting stylistic deception. In Proceedings of the Workshop
on Computational Approaches to Deception Detection, EACL 2012, pages
91–96. Association for Computational Linguistics, 2012.

[23] Patrick Juola and Efstathios Stamatatos. Overview of the author identifi-
cation task at PAN 2013. In Working Notes for CLEF 2013 Conference,
Valencia, Spain, September 23–26, 2013. CEUR-WS.org, 2013.

[24] Patrick Juola and Darren Vescovi. Empirical evaluation of authorship
obfuscation using JGAAP. In Proceedings of the 3rd ACM Workshop on
Security and Artificial Intelligence, AISec 2010, Chicago, Illinois, USA,
October 8, 2010, pages 14–18. ACM, 2010.

[25] Patrick Juola and Darren Vescovi. Analyzing stylometric approaches to
author obfuscation. In IFIP Advances in Information and Communication
Technology, pages 115–125. Springer, 2011.

[26] Gary Kacmarcik and Michael Gamon. Obfuscating document stylometry to
preserve author anonymity. In Proceedings of ACL 2006, 21st International
Conference on Computational Linguistics and 44th Annual Meeting of the
Association for Computational Linguistics, Sydney, Australia, 17–21 July
2006. The Association for Computer Linguistics, 2006.

[27] Alexei Kaltchenko. Algorithms for estimating information distance with
application to bioinformatics and linguistics. In Canadian Conference on
Electrical and Computer Engineering 2004, pages 2255–2258. IEEE, 2004.

[28] Yashwant Keswani, Harsh Trivedi, Parth Mehta, and Prasenjit Majumder.
Author masking through translation. In Working Notes of CLEF 2016
- Conference and Labs of the Evaluation forum, Évora, Portugal, 5–8
September, 2016, pages 890–894. CEUR-WS.org, 2016.

[29] Dmitry V. Khmelev and William John Teahan. A repetition based mea-
sure for verification of text collections and for text categorization. In
SIGIR 2003: Proceedings of the 26th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, July
28 – August 1, 2003, Toronto, Canada, pages 104–110. ACM, 2003.

68

BIBLIOGRAPHY

[30] Reinhard Kneser and Hermann Ney. Improved backing-off for m-gram
language modeling. In Proceedings of 1995 International Conference on
Acoustics, Speech, and Signal Processing, ICASSP 1995, Detroit, Michigan,
USA, May 08–12, 1995, pages 181–184. IEEE Computer Society, 1995.

[31] Moshe Koppel and Jonathan Schler. Authorship verification as a one-class
classification problem. In Machine Learning, Proceedings of the Twenty-
first International Conference (ICML 2004), Banff, Alberta, Canada, July
4–8, 2004., page 62, ACM, 2004.

[32] Muharram Mansoorizadeh, Taher Rahgooy, Mohammad Aminian, and
Mehdy Eskandari. Author obfuscation using wordnet and language models.
In Working Notes of CLEF 2016 - Conference and Labs of the Evaluation
forum, Évora, Portugal, 5–8 September, 2016, pages 939–946. CEUR-
WS.org, 2016.

[33] Andrew W. E. McDonald, Sadia Afroz, Aylin Caliskan, Ariel Stolerman,
and Rachel Greenstadt. Use fewer instances of the letter "i": Toward
writing style anonymization. In Proceedings of Privacy Enhancing Tech-
nologies - 12th International Symposium, PETS 2012, Vigo, Spain, July
11–13, 2012, pages 299–318. Springer, 2012.

[34] Andrew W. E. McDonald, Jeffrey Ulman, Marc Barrowclift, and Rachel
Greenstadt. Anonymouth revamped: Getting closer to stylometric
anonymity. In PETools: Workshop on Privacy Enhancing Tools, 2013.

[35] Tsvetomila Mihaylova, Georgi Karadjov, Yasen Kiprov, Georgi Georgiev,
Ivan Koychev, and Preslav Nakov. SU@PAN’2016: Author obfuscation.
In Working Notes of CLEF 2016 - Conference and Labs of the Evaluation
forum, Évora, Portugal, 5–8 September, 2016, pages 956–969. CEUR-
WS.org, 2016.

[36] George A. Miller, Richard Beckwith, Christiane Fellbaum, Derek Gross,
and Katherine Miller. Wordnet: An on-line lexical database. International
Journal of Lexicography, 3:235–244, 1990.

[37] Arvind Narayanan, Hristo S. Paskov, Neil Zhenqiang Gong, John Bethen-
court, Emil Stefanov, Eui Chul Richard Shin, and Dawn Song. On the
feasibility of internet-scale author identification. In IEEE Symposium on
Security and Privacy, SP 2012, 21–23 May 2012, San Francisco, California,
USA, pages 300–314. IEEE Computer Society, 2012.

69

BIBLIOGRAPHY

[38] Judea Pearl. Heuristics: Intelligent search strategies for computer problem
solving. Addison-Wesley series in artificial intelligence. Addison-Wesley,
1984.

[39] Lisa Pearl and Mark Steyvers. Detecting authorship deception: A super-
vised machine learning approach using author writeprints. Literary and
linguistic computing, 27(2):183–196, 2012.

[40] Anselmo Peñas and Álvaro Rodrigo. A simple measure to assess non-
response. In Proceedings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language Technologies, 19–24
June, 2011, Portland, Oregon, USA, pages 1415–1424. The Association
for Computer Linguistics, 2011.

[41] Martin Potthast, Tim Gollub, Francisco M. Rangel Pardo, Paolo Rosso,
Efstathios Stamatatos, and Benno Stein. Improving the reproducibility of
PAN’s shared tasks: Plagiarism detection, author identification, and author
profiling. In Proceedings of Information Access Evaluation. Multilinguality,
Multimodality, and Interaction - 5th International Conference of the CLEF
Initiative, CLEF 2014, Sheffield, UK, September 15–18, 2014. Springer,
2014.

[42] Martin Potthast, Matthias Hagen, and Benno Stein. Author obfuscation:
Attacking the state of the art in authorship verification. In Working Notes
of CLEF 2016 - Conference and Labs of the Evaluation forum, Évora,
Portugal, 5–8 September, 2016, pages 716–749. CEUR-WS.org, 2016.

[43] Josyula R. Rao and Pankaj Rohatgi. Can pseudonymity really guarantee
privacy? In 9th USENIX Security Symposium, Denver, Colorado, USA,
August 14–17, 2000. USENIX Association, 2000.

[44] D. Sculley and Carla E. Brodley. Compression and machine learning: A
new perspective on feature space vectors. In Proceedings of 2006 Data
Compression Conference (DCC 2006), 28–30 March 2006, Snowbird, UT,
USA, pages 332–332. IEEE Computer Society, 2006.

[45] Efstathios Stamatatos, Walter Daelemans, Ben Verhoeven, Benno Stein,
Martin Potthast, Patrick Juola, Miguel A. Sánchez-Pérez, and Alberto
Barrón-Cedeño. Overview of the author identification task at PAN 2014.
In Working Notes for CLEF 2014 Conference, Sheffield, UK, September
15–18, 2014, pages 877–897. CEUR-WS.org, 2014.

[46] Efstathios Stamatatos, Walter Daelemans, Ben Verhoeven, Patrick Juola,
Aurelio López-López, Martin Potthast, and Benno Stein. Overview of

70

BIBLIOGRAPHY

the author identification task at PAN 2015. In Working Notes of CLEF
2015 - Conference and Labs of the Evaluation forum, Toulouse, France,
September 8–11, 2015. CEUR-WS.org, 2015.

[47] Benno Stein, Martin Potthast, and Martin Trenkmann. Retrieving custom-
ary web language to assist writers. In Advances in Information Retrieval,
32nd European Conference on IR Research, ECIR 2010, Milton Keynes,
UK, March 28–31, 2010. Proceedings, pages 631–635. Springer, 2010.

[48] Benno Stein, Matthias Hagen, and Christof Bräutigam. Generating acros-
tics via paraphrasing and heuristic search. In Proceedings of COLING 2014,
25th International Conference on Computational Linguistics, Technical
Papers, August 23–29, 2014, Dublin, Ireland, pages 2018–2029. ACL, 2014.

[49] William J. Teahan and David J. Harper. Using compression-based language
models for text categorization. In Language modeling for information
retrieval, pages 141–165. Springer, 2003.

[50] Hoi Le Thi, Reihaneh Safavi-Naini, and Asadullah Al Galib. Secure
obfuscation of authoring style. In Information Security Theory and Practice
- 9th IFIP WG 11.2 International Conference, WISTP 2015 Heraklion,
Crete, Greece, August 24–25, 2015 Proceedings, pages 88–103. Springer,
2015.

[51] John W. Tukey. Exploratory data analysis. Addison-Wesley series in
behavioral science : Quantitative methods. Addison-Wesley, 1977.

[52] Wei Xu, Alan Ritter, Bill Dolan, Ralph Grishman, and Colin Cherry. Para-
phrasing for style. In Proceedings of COLING 2012, 24th International
Conference on Computational Linguistics, Technical Papers, 8–15 Decem-
ber 2012, Mumbai, India, pages 2899–2914. Indian Institute of Technology
Bombay, 2012.

[53] Ying Zhao, Justin Zobel, and Phil Vines. Using relative entropy for
authorship attribution. In Information Retrieval Technology, Third Asia
Information Retrieval Symposium, AIRS 2006, Singapore, October 16–18,
2006, Proceedings, pages 92–105. Springer, 2006.

[54] Rong Zheng, Jiexun Li, Hsinchun Chen, and Zan Huang. A framework for
authorship identification of online messages: Writing-style features and
classification techniques. JASIST, 57(3):378–393, 2006.

71

	Introduction
	Related Work
	Authorship Verification
	Relative Entropy for Measuring Authorship
	Kullback-Leibler Divergence as Authorship Model
	Jensen-Shannon Distance as Authorship Metric

	Distributional Authorship Verification
	Verification by Unmasking
	Unmasking for Short Texts by Chunk Expansion
	Precision Over Accuracy
	Unmasking Verifier Evaluation

	Authorship Obfuscation
	Obfuscation Quality Assessment
	Distributional Authorship Obfuscation
	Effect on Unmasking
	Effect on Compression Models
	Safety of n-Gram Selection Strategies
	Estimating Text Operation Side Effects
	Empirical Side Effect Analysis

	Adaptive Obfuscation
	Decidability and Obfuscation
	Defining Adaptive Targets
	Obfuscation Levels by Percentiles

	Overview Heuristic Search
	Systematic Search
	State Space Representation
	Best-first Search and A*
	Admissible Heuristics
	Consistent and Monotone Heuristics

	Heuristic Search for Obfuscation
	Developing an Obfuscation Heuristic
	Naive Approach: Relative JS Distance
	Heuristic Based on Normalized Path Costs
	Consistency and Admissibility Properties

	Developing Operators
	Asyntactic Operators
	Syntactic Operators
	Context-based Operators
	Grammatical Operators

	Design and Algorithmic Considerations
	Search Space Challenges
	Partial Node Expansion
	Hybrid Search

	Results Analysis

	Conclusion
	Future Work

	Bibliography

