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Abstract

This thesis investigates the applicability of the concept of keyqueries proposed by Gol-
lub et al. [GHMS13] to the recommendation of related work.
We focus on the use case in which the user has already found a small set of documents
in an initial research. Thus, we address the following problem: Given a set of input
documents, the task is to find a set of related research papers. This problem can be
divided into two steps, i. e., the retrieval of candidate documents and the ranking of
the obtained candidate documents. In the work at hand, we focus on the first crucial
step and the suitability of keyqueries for it. A keyquery for a document is a query that
returns the document in the top-ranked results when it is submitted to a reference search
engine.
We introduce a novel method that uses the vocabulary extracted from a set of input
documents to formulate keyqueries, which are then used to retrieve candidate documents.
In order to rank the obtained candidate documents, a simple procedure based on the
text similarity of the candidate paper to the set of input papers is applied.
For the purpose of evaluation, three state-of-the-art algorithms, which represent the
ways of how humans would search for candidate documents, were implemented: (1) a
citation graph-based approach by Golshan et al. [GLT12], (2) a simple query-based
method by Nascimento et al. [NLSG11], and (3) an approach based on the scholarly
search engine Google Scholar.
We measure the effectiveness of our novel approach and the baseline algorithms in a
Cranfield-style experiment. Therefore, we utilize an index comprising about 187,000 re-
search papers from the domain of Computer Science, and we conduct a user study
involving 10 experts in order to obtain topics and relevance judgments. The results of
the experiments indicate that our novel keyquery-based approach outperforms the base-
line algorithms. Consequently, the concept of keyqueries appears to be valuable for the
recommendation of related work.
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1 Introduction

In this thesis, we study the problem of automatic recommendation of related work. Given
a research task, the term “related work” refers to research papers that investigate topics
similar to the research task. In the work at hand, we specifically explore the applicability
of the concept of keyqueries proposed by Gollub et al. [GHMS13] for finding related work
for a given set of documents.

Scientists collect and analyze related work in order to get a better understanding of
their research problem and already existing approaches. A critical survey studying the
strengths and weaknesses of related work forms the basis for leveraging previous findings.
Nowadays, almost all research papers are accessible on the web, for example on the
authors’ websites or via electronic libraries, so-called digital libraries. Such collections
are continuously becoming more comprehensive; for instance, the ACM Digital Library is
increasing on average by 22,000 publications per year [Del11]. Despite the sophisticated
search techniques on the web, it is challenging to find related work.

Conventional scholarly search engines like Google Scholar, Microsoft Academic Search,
or CiteSeerX provide a keyword-based access to research paper collections. Since re-
searchers usually have limited knowledge when they start a new research topic, it is
difficult to formulate queries for finding all related papers. Nevertheless, scholarly search
engines are often used for an initial research in order to find a few first articles. After a
small set of relevant documents has been found, researchers can use information provided
by these papers for finding more relevant literature.

Generally, a paper provides two types of information: content and metadata. The
content comprises title, section headings and the continuous text. By using these infor-
mation, new keywords for querying can be derived. All other information, i. e., biblio-
graphic records and citation information, are metadata. This type of information can
also be leveraged for finding further documents, for example by looking for more papers
published by the authors or by analyzing papers from the list of references. Relevant
documents found in this manner can in turn be used for finding more related papers.
This iterative procedure continues until the researcher’s knowledge gap is closed. It is
due to the iterative structure of the search process and the expensive reading phases that
finding related work is time-consuming and arduous. Support is provided by methods
which automatically suggest relevant research papers in only one step.
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1 Introduction

A variety of approaches is known for the problem of finding related work. Basically,
we can distinguish between two approaches. First, graph-based methods exploit the
citation network spanned by a set of publications. Second, content-based methods use
subjects and topics covered in a given text. One interesting content-based approach is to
generate queries from a text and obtain related documents by examining the result list
returned by the query. None of the existing methods for finding related work involves
query-based approaches in a convincing way. Recently, Gollub et al. proposed the con-
cept of keyqueries [GHMS13]. A keyquery for a document is a query that returns the
document in the top result ranks when issued against a reference search engine. Accord-
ingly, keyqueries are strongly dependent on a search engine’s index and retrieval model.
They describe a document not only by its own content but also by the content of all
other documents contained in the index. We assume that the other results returned by
a document’s keyquery cover topics similar to the document itself. Thus, the concept of
keyqueries seems to be useful for finding related research papers. Moreover, we believe
that keyquery-based methods can find relevant documents, which graph-based methods
might miss since the citation graph tends to be noisy and sparse [CSMG13]. We further
assume that the combination of a keyquery-based approach and an approach that lever-
ages citation information leads to a method which outperforms its components. Based
on these assumptions, we address the following two research questions:

(1) Does an approach that is based on the concept of keyqueries outperform
current state-of-the-art methods for finding related research papers?

(2) Does a method that combines keyquery-based and citation graph-based
approaches outperform its components?

Our contributions are threefold: (1) We develop a keyquery-based approach for finding
related work, and we propose a strategy to combine different methods. (2) For the pur-
pose of evaluation, we implement three state-of-the-art algorithms as baselines: a graph-
based approach by Golshan et al. [GLT12], a simple query-based method by Nasci-
mento et al. [NLSG11], and an approach based on the scholarly search engine Google
Scholar. (3) We conduct a user study involving ten experts in order to obtain topics and
relevance judgments for a Cranfield-style experiment, and we evaluate our methods in
comparison to the aforementioned baseline algorithms.

The remainder of this thesis is organized as follows: In Chapter 2, we discuss previous
investigations of automatic search for related work. Additionally, we examine query
formulation strategies as they are related to the concept of keyqueries. Chapter 3 de-
scribes three state-of-the-art baseline algorithms, our novel keyquery-based approaches
and our strategy for combining several methods for finding related research papers. In
Chapter 4, we first describe the design of our experiment. In the second part, we eval-
uate our approaches in comparison with the three baseline algorithms stated above.
Finally, Chapter 5 summarizes the results of this thesis and suggests research questions
for future work.
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2 Related Work

In this chapter, we present and analyze methods that are related to our approach for
searching related research papers. First, Section 2.1 examines existing methods for
finding related work. Generally speaking, they can be divided into content-based and
citation graph-based approaches. A subcategory of content-based methods are query-
based methods. Since the existing approaches only apply simple querying techniques,
we investigate more sophisticated query formulation techniques for finding related work
in this thesis. Therefore, in Section 2.2 we also review query formulation strategies.

2.1 Recommendation of Research Papers

In the literature, many different denominations for the problem of finding related work
exist; for example, the terms literature search, citation recommendation, research pa-
per recommendation and academic recommendation are all synonyms for related work
search. The task of related work search is to find topically similar papers according to a
given research task. Basically, there are two types of research tasks. Many approaches
assume that the research task is given as a set of initial research papers, whereas others
try to find references for a given text. In this thesis, we will focus on the first type of
research task. Thus, we define the problem of Related Work Search as follows:

Related Work Search

Given: A list of r research papers I = 〈di1 , di2 , . . . , dir〉.
Task: Find a list of t topically similar research papers O = 〈do1 , do2 , . . . , dot〉.

As in many previous methods, we tackle the problem of Related Work Search
stepwise. Figure 2.1 illustrates the basic processing pipeline. First, researchers specify
their initial knowledge in form of a list of documents, which we call input documents I =
〈di1 , di2 , . . . , dir〉. Based on the input papers, candidate documents C = {dc1 , dc2 , . . . , dcs}
are collected in the retrieval step. Then, the candidate documents are ranked according
to diverse features. Finally, a list of ranked documents is returned, which we call output
papers O = 〈do1 , do2 , . . . , dot〉.
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2 Related Work

Candidate DocumentsInput Documents

RankingRetrieval

Output Documents

Figure 2.1: Processing pipeline for solving the problem of Related Work Search.

In the literature, more than 80 approaches are known for the problem of finding academic
articles [BLG+13]. Since we cannot review all of them, we concentrate on the approaches
published in the last five years. For the classification of related work, we focus on the
candidate retrieval as the first crucial step in the processing pipeline (see Figure 2.1).
Starting with a set of papers, there are two different types of information which can
be used for finding candidate papers, namely content and metadata. We define content
to be title, abstract, section headings and the continuous text of a paper. Metadata
comprises bibliographic data like authors, publication venue and publication year as
well as citation information, i. e., information about references and citations of a paper.

As most previous methods use either metadata, i. e., citation information, or content
for finding candidate papers, we classify them into citation graph-based methods (Sec-
tion 2.1.1) and content-based (Section 2.1.2). Additionally, we describe a few mixed
approaches, which use both content-based and graph-based features for candidate re-
trieval (Section 2.1.3).

2.1.1 Citation Graph-Based Methods

In order to find candidate papers, many citation recommendation methods exploit meta-
data of given documents. As stated above, we define metadata to be not only biblio-
graphic data but also citation information of a paper. A collection of research papers
spans a network of citations, which is called citation graph and often used for candidate
retrieval. In the following paragraphs, we focus on the citation graph-based methods.
Therefore, we introduce some basic terms: The citation graph G = (V,E) is a directed
graph in which vertices refer to papers and directed links represent citations from one
paper to another [AJM04]. Let d1, d2 be research papers. If d1 cites d2, we call d1 a
citing paper of d2 and d2 a cited paper of d1; cited papers are specified in the reference
list of a research paper. A citation context, which refers to text around a citation in a
citing paper [RRT08], usually restates the idea of the cited paper and is used in many
methods.
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2 Related Work

The following paragraphs explain three ideas of leveraging the citation graph for finding
candidate papers.

Simple Approaches

A simple metadata-based approach for candidate retrieval is following the citation graph
as applied by Golshan et al. in their system called Sofia Search [GLT12]. Starting with an
initial set of papers, they build the candidate set by retrieving cited and citing papers for
a given recursion depth. Then, they rank the candidate papers by computing a relevance
score depending on the initial documents using features like content similarity, frequency
and placement of citations or coauthorship similarity. However, Golshan et al. do not
evaluate the performance of their approach.

Collaborative Filtering

Several approaches apply collaborative filtering (CF) in order to find related scholarly
articles. Generally, CF is often used for recommending items like movies or products.
The basic assumption of CF is that users who rate similar sets of items share similar
preferences [LYZ13]. The major limitation of this recommendation approach is that it
can only recommend items which have been rated before. As a result, very new items
without any ratings cannot be found. This problem is a well-known issue for recom-
mender systems; it is called the “cold-start-problem” [WB11].
Recently, Sugiyama and Kan applied CF for recommending scientific articles [SK13].
According to traditional CF, citing papers refer to users and cited papers refer to items;
therefore, Sugiyama and Kan use the adjacency matrix associated with the citation graph
as a rating matrix. In their experiments, Sugiyama and Kan recommend papers accord-
ing to a researcher’s publication list. They evaluate the results using human relevance
judgments and found that their approach outperforms two state-of-the-art methods: the
algorithm by Nascimento et al. [NLSG11] and the approach by Wang and Blei [WB11].
Another CF-based approach was recently proposed by Caragea et al. [CSMG13]. They
apply singular value decomposition (SVD), which is a form of collaborative filtering based
on matrix factorization, to the adjacency matrix of the citation graph. Caragea et al.
evaluate their approach using a dataset compiled from CiteSeer and show that their
SVD-based method outperforms standard CF methods. However, their evaluation set-
ting is unrealistic: given a research paper, they only try to find one hidden reference
from the reference list.

Link Ranking Algorithm-Based Approaches

Link ranking algorithms like PageRank [PBMW99], HITS [Kle99], or SALSA [LM00]
have been successfully applied to rank websites based on their link structure. Since
the link structure of the citation graph is similar, those algorithms are also suitable
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2 Related Work

for research paper recommendation. For example, the academic recommender service
TheAdvisor by Küçüktunç et al. is based on PageRank [KSKC13]. Given a set of initial
papers, it applies a random-walk-based PageRank variant on the citation graph associ-
ated with a large document collection. In their experiments, Küçüktunç et al., randomly
hide 10% of a paper’s reference list and try to find the hidden references. Note that this
evaluation setting is not convincing. Since a research paper cites on average 30 docu-
ments [ZTLV13], Küçüktunç et al. on average try to find 3 hidden references for 27 given
references.
Ekstrand et al. explore the application of PageRank, HITS, and SALSA for obtaining
weights used in the rating matrix for collaborative filtering [EKS+10]. They found that
collaborative filtering performs best in combination with PageRank.

Discussion

The major limitation of graph-based approaches is that their recommendations are re-
stricted to the citation graph. Because of space limitations in research papers, missing
citations, or errors in citing, the citation graph tends to be noisy and sparse [CSMG13].
Therefore, we assume that methods which only uses the citation graph for finding can-
didate documents might miss related papers. Furthermore, in graph-based candidate
retrieval, often cited papers are more likely to be found and thus recommended [WB11];
as a result, they become more popular. This phenomenon is known as the Matthew
effect, and it is often described with the phrase ”the rich get richer and the poor get
poorer” [Mer68].

Within the scope of our investigations, we want to compare our methods with one
graph-based approach. Among the presented methods, the simple approach used in
Sofia Search by Golshan et al. [GLT12] reproduces the way how humans would search
for related work best. Therefore, we choose the approach by Golshan et al. [GLT12] as
baseline; we will explain the method and our implementation of it in Section 3.1.2 in
detail.

2.1.2 Content-Based Techniques

In contrast to the aforementioned methods, content-based approaches start with a piece
of given text instead of a given set of documents. Generally speaking, three different
content-based concepts have been applied in order to find related work.

Query-Based Methods

By submitting queries to a retrieval system, documents which cover the same topic can
be obtained. Several researchers apply query-based approaches for finding related re-
search papers.
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2 Related Work

Bethard and Jurasky propose a retrieval model for citation recommendation which rec-
ommends papers for a given query text, e. g., an abstract of a paper [BJ10]. The model
uses precomputed metadata-based features on the document collection like citation count
or popularity of authors, and combines them with content-based features obtained from
the input text. The authors train the retrieval model on paper abstracts along with the
corresponding reference lists. For the purpose of evaluation, Bethard and Jurasky utilize
the ACL Anthology Reference Corpus [BDD+08]. They found that their retrieval model
outperforms a baseline model which only uses text similarity.
Another query-based approach is developed by He et al. [HPK+10]. Starting with a
manuscript including citation placeholders, they extract citation contexts as queries and
obtain an initial set of papers by querying a reference search engine. Based on these
papers, more candidate papers are retrieved by following the citation graph. He et al.
explore several candidate ranking strategies and found that their non-parametric prob-
abilistic model for ranking outperforms graph- and text-based baselines. In subsequently
work, He et al. refine their method by automatic detection of citation contexts and place-
holders [HKP+11]. However, the authors tackle a different problem: instead of a given
manuscript including citation placeholders, we focus on a given set of documents.
Nascimento et al. propose to obtain candidate papers using a commercial search engine
interface [NLSG11]. Given an input document, they first generate queries; then, they
obtain candidate documents by submitting the queries individually to a search engine.
Finally, they rank the candidates using text-based features. Nascimento et al. investi-
gate different alternatives for query generation. They examine which part of a document
should be used to extract queries and which kind of queries, i. e., nouns or bi-grams, are
useful. In the experiments, the authors asked ten experts to first choose one input doc-
ument and then to judge the relevance of the recommended papers. According to their
experimental results, they suggest to use ten bi-grams extracted from title and abstract
as queries. Note that queries containing only two words are very general and return a
large number of results. According to the User-over-Ranking hypothesis, a users’ in-
formation need is more likely to be satisfied for queries which return about as many
results as the user can consider [HS11]. Therefore, the query generation method chosen
by Nascimento et al. leaves some room for improvement.

Translation Models

Various approaches utilize translation models in order to find references for a given text.
Translation models are based on a probability distribution which describes how likely a
string in the source language is translated to a string in the target language [LYZ13]. In
the context of citation recommendation, the source language could be a piece of text,
and the target language could be citations.
Recently, Huang et al. propose to build a translation model using citations along with
the citation contexts from a collection of research papers [HKC+12]. Given a query text,
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Huang et al. compute the probability of citing a paper for each word in the text. How-
ever, translating only single words is a naive approach. A more advanced approach might
be to first identify phrases in the text by using query segmentation techniques [HPBS12]
and then translate these phrases into references. Huang et al. evaluate their approach
on a dataset compiled from CiteSeerX and CiteULike; given a paper’s text, they try to
reproduce its reference list.
A similiar approach is proposed by Lu et al. [LHSY11]. While Huang et al. use refer-
ences directly as target language, Lu et al. use the content of potential references as
target language. Lu et al. evaluate their algorithm in comparison to two state-of-the-art
methods by also taking papers’ reference lists as ground truth. Note that the problem
handled by Huang et al. and Lu et al. differs from our problem setting. While they
try to find references for a given text, we want to find related papers for a given set of
documents for further reading.
Tang et al. investigate the use of translation-based models for cross-language citation
recommendation for given citation context [TWZ14]. They propose an embedding model
trained on contexts and citations.

Topic Models

Topic modelling is a statistical approach which maps documents in a large collection
to a low-dimensional representation in form of a set of topics [NAXC08]. Topic models
have been applied for recommending references to given texts.
Nallapati et al. combine latent dirichlet allocation (LDA) with probabilistic latent se-
mantic analysis (PLSA) in order to build a topic model from the texts and citations in
a document collection [NAXC08]. This approach has been improved by Kataria et al.
by using citation contexts in the document collection instead of full texts [KMB10].
Kataria et al. show that their model outperforms the model which Nallapati et al. pro-
pose.
Tang and Zhang use a two-layer Restricted Boltzmann Machine (RBM) in order to model
the relationship between research papers and citation contexts [TZ09]. The model is then
used to rank citations for a given text. Additionally, Tang and Zhang try to match rec-
ommended papers with sentences in the input text by calculating KL-divergence. They
conduct experiments on a small dataset and found that their method performs better
than a baseline algorithm using a language model and another baseline built on RBM.
Another method based on topic models is by El-Arini and Guestrin [EG11]. Given a
large document collection, they extract a set of topics by selecting the most frequent
non-stop words in the whole collection. Note that in the literature there are a lot of
more sophisticated approaches known for topic modeling (e. g., [BNJ03]). For each
topic, El-Arini and Guestrin build a graph containing papers dealing with this topic
as nodes. Two nodes are connected if there is a citation or co-authorship relation; the
edges are weighted by the topics frequency in the connected documents. According to
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the topic’s given in the input documents, El-Arini and Guestrin’s method recommends
papers.

Discussion

The drawback of citation recommendation approaches based on topic modeling or trans-
lation models is that they require a long training phase and they have to be retrained if
new documents are added to the collection. Moreover, querying is a more natural strat-
egy that humans would also follow in order to find related work. Therefore, we prefer a
query-based method as representative of content-based citation recommendation meth-
ods. The method by Nascimento et al. [NLSG11] faces exactly the task of Related
Work Search, is well documented and thus easy to implement. For these reasons, we
choose this approach for our experiments and describe it in more detail in Section 3.1.1.

2.1.3 Combined Approaches

There are also methods which cannot be strictly categorized as metadata- or content-
based since they use both approaches for candidate retrieval.
Wang and Blei address the problem of citation recommendation in the context of on-
line reference management communities like CiteULike or Mendeley [WB11]. These
communities enable researchers to manage papers they are interested in. Based on user
ratings, Wang and Blei apply traditional collaborative filtering in which users correspond
to users and papers correspond to items. In order to overcome the cold-start-problem,
the authors use probabilistic topic models for articles which do not have user ratings.
Wang and Blei show that the combination of collaborative filtering and probabilistic
topic models outperforms its components.
In a very recent paper, Livne et al. present a system called CiteSight. It is supposed to
support researchers by recommending references as they edit a manuscript [LGT+14].
Livne et al. use both graph- and content-based features proceeding from the current
paper manuscript for retrieving candidates. For instance, they recommend papers which
the author cited in the past or cited papers from references the author already added. For
candidate ranking, Livne et al. use a prediction model based on decision trees including
also both metadata- and content-based features.
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2.2 Query Formulation

A common strategy for finding documents in a large collection is the submission of
queries to a search engine. In order to find similar documents for a given document,
a vocabulary is extracted and used for the generation of queries, which is known as
query formulation. We can distinguish three different purposes of query formulation:
(1) detection of near duplicates, (2) detection of text reuse, and (3) detection of topically
similar documents [BC09]. First, in near duplicate detection the task is to find documents
that have only marginally changes in the text. Second, text reuse detection aims to find
documents restating the same topic with several reformulations and additions. Third,
finding documents that reference the same topic is the most similar to the scenario of
searching related work.

Near Duplicate Detection

Dasdan et al. investigate two approaches for finding near duplicates of a given document
using only a search engine interface [DDKD09]. In their first method, they propose to
generate queries by concatenating the terms from a document which are least frequent
on the Web. The second query formulation approach by Dasdan et al. is characterized
by random selection of consecutive terms in the input document. Their experiments
prove that near duplicates can be found using their methods.

Text Reuse Detection

Bendersky and Croft suggest a query formulation technique in order to find candidate
documents for text reuse detection [BC09]. Based on an input sentence, they extract
unique noun phrases and named entities, called chunks. Then, each chunk is submitted as
a quoted query to a search engine; the total number of results is recorded as the chunks’
weight. Next, Bendersky and Croft generate queries by sorting the chunks according to
their weight. Starting with all chunks as one long query, they iteratively drop the last
chunk and get a shorter query. After each iteration step, the retrieved documents are
added to the candidate documents which potentially contain text reuse. For in-depth
text reuse analysis, the authors use sentence analysis and retrieval techniques on the
obtained candidate documents.
Another query formulation strategy for candidate retrieval in text reuse detection is
proposed by Hagen and Stein [HS11]. Given a set of keywords, they try to find a
set of queries satisfying two constraints. First, each of the given keywords should be
contained in the set of queries; they call this the covering property. Second, the number
of documents returned by all queries together should not exceed a specified number. The
latter constraint is motivated by the User-over-Ranking hypothesis; it states that queries
returning about as many results as the user can consider are more likely to satisfy the
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user’s information need [SH11]. Since query submission to a web search engine is not
for free but costly in terms of time and monetary charges, Hagen and Stein also focus
on minimizing the number of submitted queries. Therefore, Hagen and Stein adapt the
Apriori algorithm [AS94], in which the search space of all possible queries is traversed
level-wise. In order to save queries, they propose to record the number of results of short
queries for estimating the result list length of longer queries. Hagen and Stein show that
their method outperforms the method by Bendersky and Croft [BC09] as well as the
two approaches by Dasdan et al. [DDKD09] with respect to the quality of retrieved
documents.

Search for Topical Similar Documents

Finding topically similar documents is the most difficult task compared to the aforemen-
tioned; it has been approached by several authors.
Yang et al. propose a strategy to generate queries from a document in order to find
related blog posts [YBD+09]. Given an input document, they extract a number of
noun phrases from the document’s text. The noun phrases are ranked according to the
frequencies of included words as well as the frequency of the complete phrase in the
document collection. Additionally, Yang et al. obtain related terms which do not appear
in the document by leveraging the hyperlink structure of Wikipedia articles. Then, they
rank the terms using term frequency with respect to the underlying collection as well
as mutual information. Next, they submit the top ranked terms as queries individually
to a search engine and record the top search results. Yang et al. evaluate their method
against human relevance judgments and found that their method indeed finds similar
blog posts.
Lee and Croft first extract chunks from a short text by using conditional random
fields [LC12]. They measure the importance of a chunk by various features like web
frequency and suggest to generate queries by taking the two most important chunks.
Gollub et al. introduce the novel concept of keyqueries for describing a document’s
content [GHMS13]. A query is a keyquery for a document if it returns the document
in the top-ranked results when submitted to a reference search engine. As a conse-
quence, keyqueries strongly depend on the search engine, i. e., its indexed data col-
lection and retrieval model. Gollub et al. propose an exhaustive search strategy for
finding all keyqueries of a given document which is adapted from the approach by Ha-
gen and Stein [HS11]. They provide pruning strategies for reducing the search space and
thus, simplifying the search task. Moreover, they present two search strategies for find-
ing a small number of diverse keyqueries. In their experimental evaluation, Gollub et al.
focus on the number of submitted queries for finding one keyquery for a document.
Verberne et al. [VSK14] also tackle the problem of query term suggestion. Starting with
a set of given documents, Verberne et al. extract all possible n-grams with at least one
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and at most three words. Then, they use KL-divergence for ranking the extracted terms;
the highest ranked terms are suggested as separate queries.

Discussion

The last task, i. e., search for topically similar documents, is highly related to the task of
Related Work Search; therefore, these query formulation strategies are most suitable
for finding related work. Among the presented methods, the concept of keyqueries by
Gollub et al. [GHMS13] is the most promising. We assume that the other top-ranked
results returned by a document’s keyquery are highly related to the document. In order
to investigate this assumption, we use the concept of keyqueries for candidate retrieval
in our methods, which are described in Section 3.2.

12
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This chapter describes our novel approach for recommending research papers as well
as the algorithms that we use as baselines in our experiments. In Section 3.1 we first
explain three baseline methods in detail. Our method, which utilizes the concept of
keyqueries proposed by Gollub et al. [GHMS13], is presented in Section 3.2. Additionally,
we investigate the combination of our novel approach with the baseline algorithms.
In Section 3.3, we therefore describe our strategy to combine methods in order to find
related work.

3.1 Baselines

We choose the baseline algorithms according to how humans search for related work.
Humans usually apply three strategies in order to find related documents for a set of
documents: (1) they formulate queries from given texts, (2) they follow the citation
graph, and (3) they use the related articles feature of Google Scholar. For each of
these three strategies we choose an algorithm that simulates the respective behavior.
Thus, we utilize three baselines: a query-based technique (Section 3.1.1), a graph-based
approach (Section 3.1.2), and a method that is based on Google Scholar’s feature for
finding related articles for a research paper (Section 3.1.3).

3.1.1 Simple Query Baseline

We choose the method proposed by Nascimento et al. [NLSG11] as query-based baseline.
The following paragraphs explain the algorithm and our setting in detail.

Candidate Retrieval

In the use case addressed by Nascimento et al., only one single input document di1 is
given. The candidate retrieval is based on queries and consists basically of three steps:
query generation, query selection and query submission. First, Nascimento et al. use
the title of the input paper di1 concatenated with its abstract in order to represent
the document. In a preprocessing step, special characters, numbers, and stop words
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are removed, and all terms are transformed to lowercase. In our implementation, we
utilize the stop word list by Buckley et al. [BSAS95] for stop word removal, which is
publicly available.1 Then, all possible bi-grams are extracted as queries. In order to
identify and remove duplicate queries, the queries are stemmed by using the Porter’s
algorithm [Por80].
In the second step, for each query q, or rather each bi-gram, a weight weight(q) is
computed. The calculation is based on term frequency tf(t), which states how often
the term t occurs in a document’s title plus abstract. We define a term t to be a set of
words, i. e., it can be a single word or a phrase. Nascimento et al. define weight(q) as
follows:

weight(q) = γ · tf(q)

tf phrase max
+ (1− γ) · tf words(q)

tf words max
. (3.1)

The first summand of Equation 3.1 deals with the whole query, whereas the second
summand weights the words within the query. The importance of the two summands
is adjusted by the parameter γ, which we set to γ = 0.66 as proposed by the au-
thors [NLSG11]. The variable tf phrase max refers to the highest frequency among all
extracted bi-grams, and tf words max is the maximum of the following function:

tf words(q) =
tf(w1) + tf(w2)

tf word max
, (3.2)

where w1 and w2 refers to the first and the second word respectively in the query and
tf word max is the highest frequency of a single word in the document’s title plus
abstract.
In the third step, the 10 queries with the best weight are used for candidate retrieval.
Each query is submitted individually to a search engine, and the top-50 search results
for each query are added to the candidate set C.

Note that the procedure for candidate retrieval is designed for only one input paper.
We extend it to match our use case with a set of input papers I = 〈di1 , di2 , . . . , dir〉
by applying it to every input paper di ∈ I and by adding the individually obtained
candidate documents to C.

Candidate Ranking

Nascimento et al. rank the candidate documents based on the text similarity to the input
document. They suggest to represent a document’s text, i. e., its title plus abstract, as
a vector t using the vector space model with term frequency weights, in which each

1www.lextek.com/manuals/onix/stopwords2.html, Last accessed: August 31st, 2014
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position describes the frequency of a term in the text. The text similarity of two texts
t1, t2 is measured by the cosine similarity of their term frequency vectors t1, t2:

text similarity(t1, t2) = cosine similarity(t1, t2). (3.3)

As usual, the cosine similarity of two vectors t1, t2 is defined as follows:

cosine similarity(t1, t2) =
t1 · t2
‖t1‖‖t2‖

. (3.4)

In order to adopt the candidate ranking step to our use case, we define the relevance
of a candidate document dc ∈ C to the set of input documents I as maximum of the
pairwise text similarity dc ∈ C to each input document di ∈ I:

relevance(dc, I) = max
di∈I

text similarity(text(dc), text(di)). (3.5)

We utilize the maximum pairwise text similarity instead of the average because we want
to assign a high relevance to candidate documents which are similar to at least one of
the input documents. If the set of input documents have a high diversity, i. e., the input
papers deal with different topics, the average function would decrease the relevance of
a paper that is similar to only one input document. Since researchers might want to
combine completely different approaches in order to solve their research task, it is not
desirable to have a high relevance to all of the input documents.

Finally, the candidate documents are sorted by their relevance, and form the sorted set
of output documents O.

3.1.2 Sofia Search

As graph-based baseline we utilize the algorithm by Golshan et al. used in their system
Sofia Search [GLT12]. We describe it in detail in the following paragraphs.

Candidate Retrieval

Starting with a list of input documents I = 〈di1 , di2 , . . . , dir〉, cited and citing papers for
each input document di are added to the candidate set C. In order to enrich the candidate
set C, this routine can be repeated iteratively using already found candidate documents.
For instance, consider the input document d1, which cites the documents d2, d3 and is
cited by the documents d4, d5. In the first iteration of the candidate retrieval step, cited
and citing papers of the input documents are added to the candidate set C. Thus, the
set of candidate documents comprises four documents, namely C = {d2, d3, d4, d5}. In
the next iteration, the cited and citing papers of the candidate papers in C are added
to the set C, and so on.
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Candidate Ranking

Golshan et al. define the relevance of a candidate document dc with respect to the set
of input documents I as maximum of the pairwise relevance between the candidate
document dc ∈ C and each input document di ∈ I. The relevance of a pair of documents
is defined as linear combination constructed from the following set of features:

• Content similarity of candidate and input document: It is specified as text similarity of
documents; a document’s text is preprocessed by removing stopwords and performing
stemming using the Porter Stemmer [Por80].

• Frequency and placement of citations of the candidate paper in the input paper: It
records how many times and in which section the candidate paper is explicitly cited
in the input paper.

• Coauthorship similarity of candidate and input document: The set of authors of a
paper and their coauthors is compared for two papers using the Jaccard coefficient;
it is defined as the size of the intersection of two sets divided by the size of their
union [TSK05].

• Temporal distance of candidate and input document: It is specified by the difference
of publication years normalized by the difference of the current year and the year of
the oldest publication in the collection.

• Citation neighborhood similarity of candidate and input document: The set of cited
and citing papers of a document is compared for two papers using the Jaccard coef-
ficient.

• Number of citations of the candidate document per year: The average citation count
per year is normalized by the number of citations of the most cited paper per year in
the collection.

Golshan et al. obtain the weights used in the linear combination by training their model
on a data set, which contains input documents along with manually identified related
documents.
Note that Golshan et al. provided us neither with information regarding the weights
nor with their training data. Since we do not have a comparable data set, we cannot
calculate the weights for the linear combination. As a consequence, we cannot combine
the listed features used in the approach of Sofia Search in a meaningful way. There-
fore, we only utilize the content similarity for ranking just like in the algorithms used
in our experiments. Thus, the differences in the results produced by the approaches can
be attributed to the candidate retrieval step on which we focus in this thesis. Just as
with the method by Nascimento et al. [NLSG11], we define the relevance of a candidate
document dc ∈ C to the set of input documents I as maximum pairwise text similar-
ity (see Equation 3.5). In contrast to the ranking method by Nascimento et al., we use
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Figure 3.1: Example of a search result listed on the web page of Google Scholar.

the entire text of a document if it is available, otherwise we also concatenate title and
abstract for text similarity computation.

For the candidate retrieval step of our implementation of Sofia Search, we choose to trace
the citation graph with a recursion depth of 2 because a recursion depth of 1 would result
in too few documents, and a depth of 3 would result in too many candidate documents.

3.1.3 Google Scholar

In a third baseline, we utilize the commercial search engine Google Scholar, i. e., its
feature to find related articles. Note that Google Scholar is only capable of processing
one input document at a time. In order to obtain related research papers for a set of
input documents I, we apply the strategy described in the following paragraphs.

Candidate Retrieval

For each input document di ∈ I we first issue its title to Google Scholar as quoted phrase
and obtain search resulsts as illustrated in Figure 3.1. At the bottom of the search result
entry a hyperlink to “Related articles”, which refers to the website listing related articles,
is included. We follow this hyperlink and record the titles of the top-100 related articles
for the input document. Subsequently, we use the listed titles in order to check whether
the corresponding documents are included in our data collection, and we add the found
documents to the candidate set C.

Candidate Ranking

Since we know neither Google Scholar’s underlying retrieval model nor any implemen-
tation details, we can only use it as black box. However, we are convinced that the
related articles returned by the search engine are ranked by relevance. Therefore, we
do not change the ranking produced by Google Scholar but keep it. In order to obtain
one single result list containing related articles for each input document, we apply an
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Table 3.1: Example search result lists for 3 input documents.

Rank di1 di2 di3

1 do1 do4 do6
2 do2 do2 do1
3 do3 do5 do7

alternating merging procedure. Note that there could be duplicate documents in the
merged list since documents may be related to more than one input paper. We keep the
first occurrence of each document and remove duplicates appearing later in the ranking.
The following example illustrates our merging strategy. Given a set of input documents
I = 〈di1 , di2 , di3〉, the documents do obtained from Google Scholar are listed in Ta-
ble 3.1. For reasons of clarity, we only consider the top-3 related articles returned by
each input document in this example. In order to obtain one final result list, we al-
ternately merge the document lists in a rank-wise manner. We assume that the user
specifies the input documents sorted by their importance. Therefore, we first add the
top related article from di1 , then from di2 and finally from di3 to the set of output
documents O. Then, we continue with the second rank, and finally we process the
third rank. As a result, the list of output documents contains the following documents
O = 〈do1 , do4 , do6 , do2 , do2 , do1 , do3 , do5 , do7〉. In a pruning step, we remove duplicate doc-
uments from the list and keep the first occurrence. This leads to the sorted list of output
documents O = 〈do1 , do4 , do6 , do2 , do3 , do5 , do7〉.

In the following section, we describe our novel keyquery-based approach for finding
related research papers.

3.2 Keyquery-Based Approach

We introduce a novel approach for research paper recommendation, which is based on
the concept of keyqueries by Gollub et al. [GHMS13]. A query q is a keyquery for a
document d with respect to a reference search engine S if it fulfills the following two
conditions: (1) d is among the top-k results returned by S on q, and (2) no subset q′ ⊂ q
returns d in its top-k results when submitted to S [GHMS13]. The generality of a
keyquery is defined by the parameter k, which is typically set to a small number like k =
10.
We assume that the search results returned by a document’s keyqueries in the top ranks
cover similar topics as the document itself. Therefore, we expect the keyqueries of a
document to be useful for finding related research papers.
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Given a document’s vocabulary W , a set Q of keyqueries can be formulated. Note that
the terms w ∈ W can not only be single words but also complete phrases. The more
terms w are included in Q, the better Q describes the document’s topics represented
by the vocabulary W . Therefore, we try to find a set Q of keyqueries that contains as
many terms w as possible.

The more general problem of finding a set of queries instead of a set of keyqueries has
been addressed by Stein and Hagen [SH10]. They denote this problem as Query Cover.
According to Stein and Hagen the task of Query Cover is to find a setQ = {q1, . . . , qm}
of queries qi ⊆ W with the following two characteristics: (1) In order to avoid redun-
dancy, Q should be simple, which means that qi 6⊆ qj for any qi, qj ∈ Q with i 6= j.
(2) A query q ∈ Q has to be valid, that is the length lq of the result list returned by the
search engine S on the query q ∈ Q has to be smaller than an upper bound lmax and
greater than a lower bound lmin. Moreover, Stein and Hagen say a query q covers all the
keywords contained in q, and a set of queries Q covers all keywords which are covered
by all included queries

⋃
q∈Q q. They state that it is not always possible to cover W

with a set of valid queries Q, for example, when a single keyword itself is underflowing.
Stein and Hagen define a keyword w ∈ W to be coverable if and only if there is a valid
query q ⊆W with w ∈ q.

We adapt the problem of Query Cover to keyqueries in order to utilize it for finding
related research papers for a given set of documents. Therefore, three adjustments have
to be made. First, each query q ∈ Q has to be a keyquery. Second, we define a keyquery
for a set of documents: A query q is a keyquery for a set D of documents with respect
to a reference search engine S iff: (1) each document d ∈ D is among the top-k results
returned by S on q, and (2) no subset q′ ⊂ q returns all documents d ∈ D in its
top-k results when submitted to S. Last, because of the additional restrictions made by
the keyquery definition, we will not use an upper bound lmax on the result list length as
defined in the problem of Query Cover.

We formally define the problem of computing a cover of keyqueries for a set of documents
as follows:

Keyquery Cover

Given: (1) A set W of keywords.
(2) A set D of documents.
(3) Level k of keyquery generality.
(4) Lower bound l on the result list length.

Task: Find a simple family Q ⊆ 2W of keyqueries for all d ∈ D with respect
to k and l covering the coverable keywords from W .
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Typically, the parameters k and l are set to a small number like k = 10 and l = 10. That
is, a keyquery for a document has to return at least 10 results and list the document in the
top-10 results. Note that the vocabulary W could be extracted from the documents d ∈
D. Yet, we choose to use the vocabulary W as separate input parameter because we
need an extra input parameter for vocabulary later.

We solve the problem of Keyquery Cover and use the obtained keyqueries in our
novel approach in order to find candidate documents, which we then rate with a basic
ranking procedure. The following paragraphs describe our keyquery-based approach in
detail.

Candidate Retrieval

We first introduce our method for solving Keyquery Cover for a given vocabulary
and a set of documents. Then, we explain how we obtain candidate documents.

Solving Keyquery Cover
Our approach for solving Keyquery Cover is listed as pseudocode in Algorithm 1.
Basically, the algorithm consists of four steps. First, we remove all keywords w ∈ W
from the vocabulary W that return less than l results when submitted to the reference
search engine S (lines 1-2). Queries q containing such keywords w ⊆ q produce less
than l results as well. Consequently, they cannot be a keyquery.
In the second step, the remaining terms w ∈W are traversed and candidate queries qcand
are generated by adding terms w ∈ W (lines 3-4). If a candidate query qcand is a
keyquery for all documents d ∈ D and the reference search engine S, it is added to the
set of keyqueries Q and the candidate keyquery qcand is emptied (line 5). Then the next
candidate query qcand is processed, and so on. This loop continues until the candidate
query containing the last term w ∈W was processed.
Note that after this first iteration not all terms w ∈ W necessarily are covered by the
set of keyqueries Q. If there are terms which are not yet included in a keyquery in Q,
i. e., if qcand is not empty (line 6), we again go through the terms w ∈ W (line 7). We
consecutively add terms wi to qcand as long as a keyquery is found (lines 9-10). Note
that according to the definition of keyqueries there is no subset q′ ⊂ q which is also a
keyquery. Thus, keyqueries which are already in Q cannot be contained in the candidate
query qcand. Therefore, we omit terms w ∈ W which would cause qcand to contain a
whole keyquery qcand ⊆ q (line 8).
After this iteration, we finish searching keyqueries although not all terms w ∈ W may
be covered by the set Q of keyqueries. However, any further iteration would only add
keywords which are already included in qcand.
The following example illustrates the process of the formulation of keyqueries. For
reasons of clarity, we choose only one input paper in this example and a small vocabulary.
Consider a paper d and the vocabulary W = {w1, w2, w3, w4, w5, w6, w7, w8}. Because
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Algorithm 1 Solving Keyquery Cover

Input: Set W of keywords
Set D of documents
Level k of keyquery generality
Lower bound l on the result list length

Output: Set Q of keyqueries
1: for all w ∈W do
2: if w returns less than l search results then W ←W \ w
3: qcand ← ∅
4: for all w ∈W do
5: qcand ← qcand ∪ w
6: if qcand is keyquery for all d ∈ D then Q ← Q∪ qcand, qcand ← ∅
7: if qcand 6= ∅ then
8: for all w ∈W do
9: if 6 ∃ q ∈ Q : q ⊂ {qcand ∪ w} then

10: qcand ← qcand ∪ w
11: if qcand is keyquery then Q ← Q∪ qcand,break

12: return Q

the terms w2 and w5 return less than l results, they are removed from W . We iterate
over W = 〈w1, w3, w4, w6, w7, w8〉 and find that “w1w3w4” and “w6w7” are keyqueries
for the document d and add them to the set Q of keyqueries. Since the term w8 is not
yet covered by Q, we again build a candidate query qcand by adding terms w ∈W from
the beginning. We find that w8w1 is a keyquery for d; therefore, we stop the iteration
and return the set of keyqueries Q = 〈“w1w3w4”, “w6w7”, “w8w1”〉.
Finally, Algorithm 1 returns the set Q of keyqueries, which is then used to get the set C
of candidate documents by taking the top results returned by each keyquery q ∈ Q.
In the next paragraphs, it is explained how we use Algorithm 1 in order to find candidate
documents for a set of input documents.

Computing the Set of Candidate Documents
Our algorithm for computing a set C of candidate documents for a given set I of input
documents is listed in Algorithm 2. Generally speaking, the algorithm first tries to solve
Keyquery Cover for all given input documents di ∈ I and adds the corresponding re-
sults to the set C of candidate documents. If there are not enough candidate documents
after this step, Algorithm 2 tackles Keyquery Cover for all combinations with |I|− 1
input documents, next with |I| − 2 input documents, and so on.
First, the total number n of desired candidate documents is computed by multiplying
the number |I| of input documents with the given number ni of candidate documents
per input document (line 1).
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Algorithm 2 Computing the Set of Candidate Documents

Input: Set I of input documents
Number ni of candidate documents per input document
Level k of keyquery generality
Lower bound l on the result list length

Output: Set C of candidate documents
1: n← |I| · ni
2: for level = |I| down to level = 1 do
3: for all D : D ∈ P(I), |D| = level do
4: Wcomb ← combine vocabularies of documents in D
5: QKQC ← compute Keyquery Cover with Wcomb, D, k, l
6: Qlevel ← Qlevel ∪ {QKQC \ Q}
7: nlevel ← (n− |C|) : |Qlevel|
8: for all q : q ∈ Qlevel do
9: Q ← Q∪ q

10: C ← C ∪ get top-nlevel results of q

11: Qlevel ← ∅
12: if |C| = n then break

13: return C

Then, we process all combinations of the given input set I in a level-wise manner by the
number of elements (line 2). For this purpose, we utilize the power set P(I) of the set I
of input documents (line 3), which comprises all subsets of I, the empty set and I itself.
In the first level, we tackle the combination with level = |I| elements. Note that there
is only one such combination because no distinction is made with respect to the order
of the elements. Then, we process all combinations with |I| − 1 elements, and so on.
In each level, we select all sets D of documents from the power set P(I) that contain
exactly the number of level documents (line 3). For each set D, we combine the vocab-
ularies Wcomb of the contained documents d ∈ D (line 4). Therefore, we first rank the
terms according to their document frequency with respect to D, and second according
to their mean rank in the vocabulary list extracted from each document d ∈ D.

The following example illustrates our strategy for the combination of vocabularies. Given
a list of input documents I = 〈di1 , di2 , di3〉, the vocabulary for each document is listed
in the left part of Table 3.2. For each term wi in the given vocabularies, we compute its
frequency, i. e., in how many of the given lists it occurs, and its mean rank as listed in
the right part of Table 3.2. The combined vocabulary Wcomb is obtained by sorting the
terms wi first by descending frequency and then by ascending mean rank. In the example,
this leads to the list Wcomb = 〈w2, w3, w1, w4, w5, w6〉. We then solve Keyquery Cover
for the combined vocabulary Wcomb and the current set of documents D as described
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Table 3.2: Example for combining lists of vocabulary. The left table shows vocabulary
extracted from a set I of three input documents I = 〈di1 , di2 , di3〉. The
variables w1, . . . , w6 represent the extracted keywords. The right table lists
statistics on the keywords with respect to all vocabulary lists. Note that the
terms are sorted by descending frequency and ascending mean rank.

Rank di1 di2 di3

1 w1 w3 w2

2 w2 w4 w6

3 w3 w2 w5

4 w4 w5 w1

Term Frequency Mean Rank

w2 3 2.0
w3 2 2.0
w1 2 2.5
w4 2 3.0
w5 2 3.5
w6 1 2.0

in Algorithm 1 (line 5). Next, we add all keyqueries QKQC to Qlevel, which are not
yet in the set Q of keyqueries (line 6). The generation of the set Qlevel of keyqueries is
finished when all combinations of the current level, i. e., all document sets with a length
of level, are processed.
In the next step, the number nlevel of candidate documents per keyquery of the current
level is computed. We calculate how many candidate documents can be added to C
and divide this number by the number |Qlevel| of keyqueries obtained in the current
level (line 7). Then, we add all keyqueries q ∈ Qlevel to Q, and we add the corresponding
top nlevel results of each keyquery to the candidate set C (lines 8-10). Note that not each
keyquery q ∈ Qlevel necessarily returns as many results as it could contribute, i. e., nlevel
results, to the candidate set C. Consequently, C may not contain the desired number
n of documents after the first level. Furthermore, it is possible that for none of the
combinations of the current level any keyqueries can be found. As a result, no candidate
documents can be added for that level. At the end of each level, we clear the set Qlevel

of keyqueries (line 11). If the number |C| of candidate documents matches the desired
number n, the algorithm stops (line 12); otherwise, the next level is processed. Finally,
the set C of candidate documents is returned by Algorithm 2 (line 13).
In our experiments we set the level of keyquery generality to k = 10 and the lower
bound on the result list length to lmin = 10. Moreover, we set the number of candidate
documents per input document to ni = 100 to be comparable with the aforementioned
baselines that also retrieve 100 candidate documents per input document.

Note that the result of the algorithm is strongly dependent on the vocabulary extracted
from the input documents. In this thesis, we investigate the effects of two different
strategies for selecting a document’s vocabulary; we refer to them as Strategy A and
Strategy B. In Strategy A, we take the top-20 keyphrases, i. e., terms with at least two
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Figure 3.2: Distribution of Jaccard similarities of the vocabularies WA and WB for doc-
uments of the WCSP that are available as PDF-file.

words, obtained by applying a keyphrase extractor to a document’s text. We choose
KP-Miner by El-Beltagy and Rafea [ER09] since it is the best unsupervised keyphrase
extractor for research papers according to the SemEval Competition 2010 [KMKB10].
We refer to Algorithm 2 using vocabulary selection Strategy A as KQC/A.
Strategy B for the selection of vocabulary is more complex. First, the top-50 keyphrases
out of a document’s text are extracted by using KP-Miner and the paper’s keywords that
have been specified by the author are added to this set. We then keep the 20 keyphrases
that often appear as a paper’s keyword specified by a paper’s author in the underlying
data collection, namely in the Webis Computer Science Paper Corpus (WCSP). Since a
paper’s keywords are specified by its author, we assume that they are very meaningful.
Subsequently, we sort the remaining keyphrases by their frequency in descending order
and take the top-20 phrases as vocabulary of the given document. We refer to Algo-
rithm 2 using this second vocabulary selection method as KQC/B.
Table 3.3 shows the vocabularies WA and WB obtained with strategy A and B for the
research paper “Latent dirichlet allocation” by Blei et al. [BNJ03]. For Strategy B, the
keyword frequencies in the WCSP of the keyphrases are also listed. Note that terms
which describe the same topic can be included in one vocabulary, e. g., both terms “la-
tent dirichlet allocation” and “lda” are contained in vocabulary WB. In future work,
this can be avoided by using a dictionary of abbreviations and synonyms. However, the
table indicates that the two methods extract different vocabularies for this example.
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Table 3.3: Vocabularies WA and WB extracted from the research paper “Latent dirichlet
allocation” by Blei et al. [BNJ03]. The emphasized terms are present in both
vocabularies WA and WB.

Vocabulary WA Vocabulary WB

Rank Term Frequency Term

1 generative probabilistic model 1267 machine learning
2 edu computer science 1042 classification
3 unigrams model 671 collaborative filtering
4 underlying set 318 text classification
5 mixture components 268 dimensionality reduction
6 text modeling 238 algorithm
7 text corpora 121 model
8 collaborative filtering 81 latent dirichlet allocation
9 parameter estimation 77 latent semantic indexing

10 finite mixture 73 distribution
11 latent dirichlet allocation 49 lda
12 discrete data 31 mixture model
13 text classification 28 parameter estimation
14 machine learning 25 corpus
15 empirical bayes 23 topic
16 infinite mixture 23 lsi
17 document modeling 23 generative model
18 latent semantic indexing 19 representations
19 plsi model 17 maximum likelihood
20 dimensionality reduction 13 log

We can measure the similarity of the two vocabularies, i. e., two sets of terms, using the
Jaccard coefficient [TSK05]. For two sets WA and WB the Jaccard coefficient is defined
as the size of the intersection divided by the size of the union of the sets:

J(WA,WB) =
|WA ∩WB|
|WA ∪WB|

. (3.6)

In our example in Table 3.3, the vocabularies WA and WB share 7 phrases which are
emphasized in Table 3.3. Therefore, the intersection of vocabulariesWA andWB contains
7 elements, and the union contains 33 elements. As a result, the Jaccard coefficient for
this example is J(WA,WB) = 7

33 = 0.21.
The distribution of the Jaccard similarities for all documents in the WCSP that are
available in fulltext is shown in Figure 3.2. The figure illustrates that the Jaccard
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coefficient is between 0.0 and 0.3 for most of the documents. Thus, the two strategies
indeed produce different vocabularies.

Candidate Ranking

In the previous paragraphs, we described our technique for obtaining a set C of candidate
documents in detail. We rank the candidate documents in C by applying the same
ranking procedure as in our implementation of Sofia Search: we compute the pairwise
text similarity of a candidate document dc to the set I of input documents and take the
maximum value as a relevance score (see Equation 3.5).

3.3 Combination Technique

Beside the aforementioned methods, we investigate the combination of our keyquery-
based approach with the presented baseline algorithms. Therefore, we combine the
result lists produced by the methods as previously described for the lists of related
articles retrieved from Google Scholar for several input documents (see Section 3.1.3).
The following paragraphs summarize our strategy for combining several Related Work
Search approaches. For reasons of clarity, we explain our combination strategy for two
approaches: Method 1 and Method 2.

Candidate Retrieval

First, we obtain two separate candidate sets C1 and C2 using the respective approach for
candidate retrieval of the two methods.

Candidate Ranking

We rank the two sets C1 and C2 of candidate documents individually according to their
maximum text similarity to the set of input documents I as described before (see Equa-
tion 3.5). As a result, we get two sets of output documents O1 and O2. Finally, we
mix O1 and O2 by alternatingly adding documents to the merged list of output docu-
ments O. First, we add a document from O1 and then from O2 in a rank-wise manner.
Since a document can be found by both methods, it is possible that the merged list O
contains duplicate documents. We address this issue by keeping the document that is
higher ranked and remove all following duplicate documents.

Note that the strategy is also applicable for more than two methods as was illustrated
before with an example of the ranking procedure for the Google Scholar baseline (see Ta-
ble 3.1).
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Summary

In this chapter, we have presented three baselines and two versions of a novel keyquery-
based algorithm for finding related research papers for a given list of input papers.
Furthermore, we have described a technique to combine several approaches. The next
chapter analyzes the performance of the presented methods.
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In this chapter, we describe the experimental evaluation of the Related Work Search
approaches described in Chapter 3. In order measure the effectiveness of these methods,
we conduct a Cranfield-style experiment. We use an index of a large collection of research
papers, which builds the first component of our experiment. Since the other two com-
ponents, namely topics and relevance judgments, are not available for this collection, we
conduct a user study to obtain them. Based on the topics and relevance judgments the
lists of recommended papers produced by several Related Work Search approaches
are evaluated.

In Section 4.1, our experimental design is specified in detail. The results of our experi-
ments are presented and analyzed in Section 4.2.

4.1 Experimental Design

Generally speaking, there are two different approaches to evaluate algorithms for research
paper recommendation. A widely used method is to use the reference lists of papers as
ground truth for the purpose of evaluation. In this approach, usually some references are
hidden from the list and tried to recover with a Related Work Search algorithm. In
contrast, the second evaluation method uses relevance judgments assigned by humans.
These judgments state whether a document is relevant to a specific topic or not.
Note that the first method is based on the citation graph. As stated before, the citation
graph tends to be noisy and sparse because of space limitations and missing or erroneous
citations [CSMG13]. Consequently, reference lists are not a good basis for evaluation.
Thus, we choose the second approach and utilize human relevance judgments.

In the following sections, we first analyze the collection which is used in our experiments,
namely the Webis Computer Science Paper Corpus (Section 4.1.1). Then, we state how
this collection was made accessible, i. e., how it was indexed (Section 4.1.2). Last, our
user study for obtaining test cases and human relevance judgments is described (Sec-
tion 4.1.3).
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Table 4.1: Metadata record of the paper “Finding text reuse on the web” by Bender-
sky and Croft [BC09] in the WCSP.

Field Content

ACM ID 1498835
Type PDF
Title Finding Text Reuse on the Web

Authors Michael Bendersky, W. Bruce Croft
Conference WSDM

Series WSDM ’09
Year 2009

Abstract With the overwhelming number of reports on [. . . ]
Keywords Text reuse, information flow, web search

Index Terms Information Systems, INFORMATION STORAGE AND
RETRIEVAL, Information Search and Retrieval

Reference Count 23
References 1092473, 1341557, 1390432, [. . . ]

Citation Count 18
Citations 2487688, 1840829, 2399184, [. . . ]

4.1.1 The Webis Computer Science Paper Corpus

We conduct our experiments on the Webis Computer Science Paper Corpus (WCSP),
which comprises 186,797 research papers from the domain of Computer Science published
by ACM. Note that the WCSP has been used for the evaluation of the concept of
keyqueries [GHMS13].

Construction of the WCSP

The WCSP was constructed over the course of several years by the Webis group. The
construction was divided into two steps. First, a seed of 34,280 research papers from
20 different conferences have been collected (see Table A.1 for further information on the
seed documents). In the second step, cited and citing papers of these seed documents
were added if they were available in the ACM digital library. As a result the WCSP
contains 186,797 documents.
The Webis group stored not only the PDF-files of the documents but also the metadata
that was available on the web page of the ACM digital library. Since the metadata
available on ACM was specified by humans, the metadata contained in the WCSP is of
good quality. For example, in Table 4.1 the metadata for the paper “Finding text reuse
on the web” by Bendersky and Croft [BC09] is listed. The first line states the ACM ID of
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Figure 4.1: Distribution of publication years of documents in the WCSP.

the paper, which is used as an unique identifier in the WCSP. The field “Type” indicates
that for the document not only metadata but also a PDF-file is available. This also holds
for 56.9 % (106,525 of 186,797) of the documents in the WCSP. The remaining 43.1 %
(80,272 of 186,797) of the documents are only represented as metadata since the PDF-file
was not accessible. In addition to bibliographic data like title, authors, conference, series
and year, the metadata comprises the abstract of the paper, the keywords specified in it
and the index terms according to the ACM Computing Classification System. Moreover,
information regarding cited and citing papers are included. Note that only papers that
can be found in the ACM digital library, i. e., papers with an ACM ID, are included as
citation or reference of a document in the WCSP. Consequently, not all actual references
and citations of a paper are contained in the corpus. For instance, the paper listed
in Table 4.1 actually has 30 references, as can be seen in the respective PDF-file, but
only 23 of them are recorded in the WCSP since the other 7 references do not have an
ACM ID. Furthermore, it is to say that not all of the recorded references and citations
are present in the WCSP. In fact, the WCSP only contains all cited and citing papers
with an ACM ID for the seed documents.

Key Figures

In the following paragraphs, we present some key figures and statistics of the documents
included in the WCSP regarding three criteria: (1) year of publication, (2) publication
venue, and (3) citation information.

Year of Publication
The documents included in the WCSP have been published in the years 1962–2013. The
oldest publication in the corpus is “Dynamic programming treatment of the travelling
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Table 4.2: The five most frequent conferences and journals in the WCSP. The value in
column |D| refers to the number of documents in the WCSP that have been
published in the respective publication venue.

Conferences Journals
|D| Acronym |D| Title

6,756 CHI 1,807 SIGPLAN Notices
4,033 ICSE 1,344 Theoretical Computer Science
3,934 SIGMOD 1,194 Computer Communications
3,778 CIKM 1,173 Computer Netwetworks
3,114 SIGIR 1,088 SIGCOMM Computer Communication Review

salesman problem” by Bellman [Bel62]. Since the Webis group finished the construc-
tion of the corpus in 2013, no more recent papers are included. Figure 4.1 shows the
distribution of publication years of the documents in the WCSP. The majority of the
documents contained in the corpus, or more precisely 71.5 % (133,621 of 186,797), have
been published in the last ten years.

Publication Venue
The WCSP comprises papers which have been published in 3,232 different conferences
and 749 different journals. The five most frequent conferences and journals in the corpus
are listed in Table 4.2. About 3.6 % (6,756 of 186,797) of the documents in the WCSP
have been published in the proceedings of the “International Conference on Human
Factors in Computing Systems” (CHI). The most frequent journal is the monthly letter
“SIGPLAN Notices”, which is the publication venue of 1.0 % (1,807 of 186,797) of the
articles in the WCSP.

●

●

●

●
●
●
●
●
●
●
●●
●●●

●●●●
●●
●●●●●●●●●●●●●●●●●●

●●
●
●●●

●
●
●
●●

●
●●●●●●●●●●●

●●
●●●●●●

●●
●
●●●

●

●
●●●

●

●
●●
●
●

●

●●●
●

●
●●●●●

●

●
●●

●

●
●

●
●
●
●●
●

●
●
●

●
●

●
●
●●

●
●
●
●

●

●●
●●
●●●●

●

●

●
●●●

●

●
●
●

●

●

●●

●

●

●
●●
●

●●

●
●
●

●●

●

●
●
●
●●

●
●

●

●

●

●

●

●

●
●

●●

●
●
●

●

●
●

●

●●
●
●

●

●

●
●●
●●
●
●
●

●●
●

●

●●
●

●

●

●
●
●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●
●

●
●
●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●●●

●

●●●●

●

●

●●

●

●

●●●●

●

●●●●●

●

●●

●

●

●

●●●●●●

●

●●

●

●●●●●●

●

●

●

●●●●

●

●●●●●●●●

●●●●●

●

●

●●

●

●●●●●●●●●

●

●●●●●

Number of Citations
0 50 100 150 200 250 300 350 400

N
um

be
r 

of
 D

oc
um

en
ts

      1

     10

    100

  1,000

 10,000

100,000

Figure 4.2: Distribution of the number of citations of a document that are present in
the WCSP. For the purpose of illustration, we only show the interval [0, 400]
on the x-axis. Note that the y-axis is scaled logarithmically.
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Figure 4.3: Distribution of the number of references of a document that are present in
the WCSP. For the purpose of illustration, we only show the interval [0, 100]
on the x-axis. Note that the y-axis is scaled logarithmically.

Citation Information
The distribution of the number of references is illustrated in Figure 4.3. Note that the
number of documents refers to the documents which are present in the WCSP. For the
purpose of illustration, the x-axis is limited to [0, 100]. There are also documents with
more than 100 references in the WCSP; for example, the journal article “Algorithms and
data structures for external memory” by Vitter [Vit06] has 142 references in the WCSP.
On average a document in the corpus has 6.5 references that are present in the WCSP
and is also cited by 6.5 documents that are included in the WCSP. The distribution of
the cited papers contained in the WCSP can be seen Figure 4.2. It turns out that many
of the documents have no citing papers that are contained in the corpus, i. e., 39.4 %
(73,527 of 186,797). Almost half of the documents, or more precisely 45.5 % (84,916 of
186,797), have between one and ten citing documents that are in the corpus. However,
there are also documents with a lot of citations. For instance, Table 4.3 lists the top five
cited papers in the WCSP. The most cited in the corpus is “Fast algorithms for mining
association rules in large databases” by Agrawal and Srikant [AS94] with 2,043 citing
documents.

Table 4.3: The five most cited papers in the WCSP. Note that the values in column
“Citations” refer to the number of citing papers that are present in the WCSP.

Citations Title

2,043 Fast algorithms for mining association rules in large databases
2,021 Mining association rules between sets of items in large databases
1,775 Chord: a scalable peer-to-peer lookup service for internet applications
1,326 R-trees: a dynamic index structure for spatial searching
1,322 A scalable content-addressable network
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4.1.2 Experiment Setup

In order to run the Related Work Search algorithms described in Chapter 3, we
use a retrieval system that indexes the documents of the WCSP. Specifically, they were
indexed with the open source information retrieval software library Lucene by Apache1.
Since Lucene supports fielded data, all fields of a document available in the WCSP as
described previously (see Table 4.1) can be indexed. The ranking function applied in
the retrieval system is BM25F, which is an extension of BM25 [RZT04]. Note that both
ranking functions are based on the bag-of-words model in which a text is represented
as a set of its words. Therefore, the relevance of a query to a document is computed
according to terms, i. e., words or phrases, of the query appearing in the document.
Whereas BM25 is only applicable to documents in form of one text, BM25F is capable
of documents composed from several fields such as title, abstract and text.

In the used retrieval system, Lucene’s implementation of BM25F is utilized, which defines
the relevance R(q, d) of a query q to a document d as follows [PPFF09]:

R(q, d) =
∑
t∈q

idf(t) · weight(t, d)

k1 + weight(t, d)
, (4.1)

where k1 is a free parameter that is usually set to k1 = 2. The equation includes two
further terms to be defined.

First, the inverse document frequency idf(t) is calculated as:

idf(t) = log
N − df(t) + 0.5

df(t) + 0.5
, (4.2)

where N refers to the number of documents in the collection, and df(t) states in how
many documents the term t appears.

Second, weight(t, d) defines the weight of a term t over the fields f in the document d:

weight(t, d) =
∑
f∈d

tf(q, f) · boostf
(1− bf ) + bf · |f |

|f |ave

, (4.3)

where tf(q, f) specifies the term frequency of term t in field f of document d. The
variable |f | refers to the length of the field f , and |f |ave refers to the average length of
the field f in the collection. Note that using BM25F it is possible to assign different
levels of importance to the fields f ∈ d of a document d, which is accomplished by
the boost factor boostf . The parameter bf is a free parameter, and it is usually set to
bf = 0.75 which we adapt.

1http://lucene.apache.org/, Last accessed: August 18th, 2014
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In the used retrieval system, not all of available fields of a document are used since
not all fields contain information on a document’s topic. For example, the names of a
document’s authors or its citation count do not directly contain information about the
topics handled in the document. Thus, only the following three fields are considered for
the ranking function of BM25F: title, abstract and text. Moreover, the title is set to
be the most important field followed by the abstract and finally by the content of the
document.

4.1.3 User Study

As stated above, we want to analyze our algorithms for research paper recommendation
by means of user evaluation. Therefore, we apply the well-known Cranfield paradigm
for measuring the effectiveness of a retrieval system [Voo01]. Experiments following the
Cranfield paradigm utilize a test collection, which consists of three components: (1) a
set of documents, (2) a set of information needs called topics, and (3) a set of relevance
judgments [Voo01]. The relevance judgments for one topic state which of the documents
are relevant to the topic and which are not. In order to compare different retrieval
approaches, the Cranfield paradigm has been applied in several evaluation conferences,
e. g., in the Text REtrieval Conference (TREC) and in the Conference and Labs of the
Evaluation Forum (CLEF) [Voo01].

As we already stated in previous paragraphs, we use the WCSP as a set of documents for
the purpose of evaluation. Thus, the WCSP forms the first component of our Cranfield-
style experiment. None of the two other components, namely topics and relevance judg-
ments, is available for the WCSP. Therefore, we conduct a user study to obtain these two
components. We first ask users to specify a topic, i. e., a set of input documents. Next,
we obtain related documents for the input papers by applying several Related Work
Search algorithms. The related documents are then judged by the users with respect
to their relevance. In order to ensure a comfortable workflow for the user, we built a
web interface for conducting the user study. The interface summarizes all information
that the user needs on two web pages. Moreover, the web interface of the user study
allows a user to participate in our study without being on site.

Procedure

The user study consists of two steps, which we denote as Step 1 and Step 2. Basically,
we obtain topics in Step 1, and we collect relevance judgments in Step 2. For each step
we provide a separate web interface, which can be seen in Figure 4.4 and Figure 4.5
illustrating Step 1 and Step 2 respectively.

In Step 1, we first ask the participants to enter a research task they are familiar
with (see “Research Task” in Figure 4.4). We request a familiar research task because
expert knowledge is required later in order to judge the relevance of the recommended
documents.
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Figure 4.4: The web interface for obtaining topics in Step 1 of our user study.
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Next, the users have to enter at least two input documents by title, which match their
research task (see “Input Documents” in Figure 4.4). While the user is entering a
title of a research paper, it is automatically checked whether the specified paper exists
in the WCSP or not. If the document cannot be found in the collection, the user is
notified to enter another title. Additionally, the participants have to name at least
two papers that they expect to be found (see “Expected Documents” in Figure 4.4).
Last, the users could optionally describe how they chose input documents and expected
documents (see “Comment” in Figure 4.4).

After a user has completed Step 1, we obtain related papers for the specified set I of
input documents by applying five Related Work Search algorithms, where three are
baseline algorithms (see Section 3.1):

(1) Version of Sofia Search by Golshan et al. [GLT12]
(2) Simple query-based method by Nascimento et al. [NLSG11]
(3) Baseline that uses Google Scholar’s feature to find related articles,

and two are novel keyquery-based methods (see Section 3.2):

(5) KQC/A
(6) KQC/B.

Since the Google Scholar baseline could not be automated due to the restrictions of
the commercial search engine, we cannot fully automate the process of the user study
experiment. Thus, we run the algorithms separately and notify the users via email when
Step 2 is available for their topic.

The purpose of Step 2 is to obtain relevance judgments. Since it would be to much
effort to judge all of the 186,797 documents in the WCSP for each topic, we only collect
judgments for the documents that we need for the evaluation of the five algorithms.
Therefore, we ask the users of our study to judge the top-10 documents returned by
each of the algorithms on the topic they have specified in Step 1. If each algorithm
returns different top-10 results in comparison to the other algorithms, a user has to
judge 50 documents, which is an acceptable number. A larger number of documents
would take to much effort as the judgment would take to much time and the users do
not get any reward for their work. So, we present a list of at most 50 recommended
papers, which contains the top-10 documents computed by the five algorithms, to the
user (see “Related Documents” in Figure 4.5). In order to avoid bias caused by the
documents’ ranking, we display the papers in alphabetical order by title. For each paper
the fields title, authors, publication venue, publication year and abstract are listed.
Additionally, a hyperlink to the respective PDF-file is listed if the paper is available as
PDF in the WCSP. Thus, the users could read the PDF-file if they need more detailed
information that are not stated in the paper’s abstract.
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Figure 4.5: The web interface for obtaining relevance judgments in Step 2 of our user
study.
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Table 4.4: Description of the levels of relatedness and familiarity.

Judgment Description

Highly The document matches my research task perfectly.
Fairly The document matches my research task.
Marginally The document includes only a few aspects of my research task.
Not Related The document does not match my research task in any respect.

Familiar I knew the document before.
Unfamiliar I didn’t know the document before.

The users were asked to rate the papers according to two criteria: relatedness and famil-
iarity. The level of relatedness defines how related, i. e., how topically similar, the listed
document is with respect to the specified input documents and the respective research
task. We decide to rate the relatedness on a 4-point scale because binary judgments
would not be detailed enough and a 3-point scale would allow to choose a neutral judg-
ment from which no trend with respect to the relatedness could be derived. Therefore,
the relatedness is rated on the following 4-point scale: highly, fairly, marginally, and not
related. Moreover, we obtain additional judgments with respect to the level of famil-
iarity; it is rated as familiar if the user did know the paper before or as unfamiliar if
not. By the combination of the two criteria, we want to determine which documents are
relevant but unfamiliar to the user. The verbal description of the levels of relatedness
and familiarity are listed in Table 4.4.

To summarize, this section has explained the user study that we conduct in order to
obtain topics and judgments for our Cranfield-style experiment. In the next section,
we first describe the results of our user study and then analyze the performance of the
Related Work Search algorithms.
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4.2 Results

This section presents the results of our experiments. First, some key figures of the
conducted user study (Section 4.2.1) are summarized. In the second part, we explain
the metrics that we use in order to measure the performance of the Related Work
Search algorithms and present the results (Section 4.2.2).

4.2.1 Characteristics of the User Study

Our study has involved 10 research associates and experienced Master’s students from the
degree program Computer Science and Media at the Bauhaus-Universität Weimar. We
have obtained topics in Step 1 and judgements in Step 2 of the study (see Section 4.1.3).

Topics

Each of the participants has stated one information need in Step 1 in our study; conse-
quently, we have 10 topics each with a set I of at least two input documents. Table A.2
in the appendix provides an overview of the topics, which contain a short description of
the research task and the respective input documents. The set of topics comprises vari-
ous research tasks from different fields of Computer Science. Note that topic 006 and 007
are the only topics that deal with a similar research task. As can be seen in Table A.2
in the appendix, 7 of the 10 topics, i. e., topics 001, 002, 003, 004, 007, 008 and 009,
comprise two input documents. For the remaining topics, i. e., topic 005, 006 and 010,
three input documents have been specified.
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Figure 4.6: Average pairwise text similarity and average pairwise distance in the citation
graph of the set of input documents for a topic.
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In order to classify the difficulty of a topic, we analyze the set I of input documents.
Figure 4.6 illustrates the average pairwise text similarity and the average pairwise dis-
tance in the citation graph for each topic. Note that the citation graph distance refers
to the length of the shortest path connecting two documents in the citation network.
As can be seen in Figure 4.6, the two input documents of topic 008 (see Table A.2)
have the highest citation graph distance with a value of 3. This means that the two
documents are connected over a path of length 3 in the citation network. On the other
hand, the input papers of the topics 001, 006, and 009 have an average citation graph
distance of 1, which means there is a direct citation relation between them. Note that
topic 006 has even three input documents (see Table A.2) that are all directly connected
in the citation graph. So, they are more likely to deal with similar topics than the input
documents specified in topic 008. On average, the input papers di ∈ I of a topic are
connected over a path of length 1.8.
The text similarity is computed as cosine similarity of the term frequency vectors of two
texts as stated in Chapter 3. On average, a set I of input documents has a text simi-
larity of 0.5. The input papers of the topics 001 and 006 are the most similar, whereas
the documents specified in topic 002 are the least similar. We assume that a high text
similarity of two documents indicates a high topical similarity.

The citation graph distance of two documents and their text similarity can be used
to measure the diversity of these documents. A low text similarity of two documents
indicates that they do not share many terms; hence, they handle diverse topics. Docu-
ments that have a large citation graph distance are more likely to handle different topics
than documents which are directly cited. According to these assumptions, we define
the diversity(I) of a set I of input documents as follows:

diversity(I) =
1(|I|
2

) · ∑
i,j∈[1,|I|]:i<j

(
1− text similarity(di, dj)

citation graph distance(di, dj)

)
, (4.4)
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Table 4.5: Overlap of top-10 recommended papers over all topics for all pairs of results
lists produced by the respective algorithms.
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Sofia Search 100 26 27 55 55
Nascimento 26 100 16 25 26

Google Scholar 27 16 100 30 24
KQC/A 55 25 30 100 49
KQC/B 55 26 24 49 100

where di, dj ∈ I is a pair of documents from I. The summand in the equation refers to
the diversity of the pair di, dj ∈ I of input documents. The diversity(I) of a set I of
input documents is the average pairwise diversity of the included input documents. Two
documents presumably deal with similar topics if they have a high text similarity and
a low citation graph distance. In this case, the fraction of text similarity and citation
graph distance in the equation becomes high. We subtract the fraction from 1 in order
to map high similarity to a low value of diversity.
We assume that the diversity of I reveals how difficult a topic is, i. e., topics with low
diversity are easier to solve than topics with high diversity.
Figure 4.7 illustrates the diversity for each set I specified per topic obtained in the user
study. It turns out that the input documents of topic 006 are the least diverse with a
diversity of 0.22. The small diversity value is caused by a high text similarity and a
small citation graph distance (see Figure 4.6) which indicate that the input documents
of topic 006 are very similar. Therefore, we assume that topic 006 is an easy one. In
contrast, topic 002 has a very high diversity of 0.92 and is therefore more difficult than
topic 006. The average diversity of all sets I of input documents is 0.66. In the course
of the performance analysis, we will later refer to the diversity of the set I of input
documents of a topic.

We use the 10 topics collected in our user study to run five Related Work Search
approaches: (1) Sofia Search, (2) Nascimento, (3) Google Scholar, (4) KQC/A, and
(5) KQC/B (see Chapter 3). As a result, we have obtained five sets O of output papers.
As discussed previously, we took the top-10 documents recommended by each of the
five algorithms and constructed a merged list. If each algorithm returns distinct top-10
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Figure 4.8: Number of documents that have been listed in the top-10 results of one of
the keyquery-based methods but not in the top-10 results produced by the
three baseline algorithms.

results in comparison to the results lists of the other algorithms, a user has to judge
50 documents. However, in reality the sets are not distinct. Table 4.5 lists the overlap
of the top-10 recommended papers for each combination of algorithms. Note that the
values in Table 4.5 are summed up over all 10 topics. That is, the value in each cell
can be at most 100 since it describes the overlap of the top-10 results of two algorithms
for 10 different topics. In fact, the main diagonal of the symmetric matrix presented
in Table 4.5 is filled with 100. On average, the top-10 recommended papers of two
different algorithms share 3.5 documents. In total, the highest overlap of 5.5 documents
is found in the result lists of Sofia Search and KQC/A, and the lists of Sofia Search and
KQC/B. Thus, the two keyquery-based methods found on average around half of the
documents that the graph-based approach of Sofia Search has found as well and vice
versa. Consequently, about half of the documents that are listed in the top-10 results of
a keyquery-based method are not listed in the top ranks of the graph-based approach.
Note that KQC/A and KQC/B also have found different documents in the top-10 results
than Google Scholar has found. The smallest overlap of top-10 documents is reported for
Google Scholar and Nascimento; their results lists share on average only 1.6 documents
in the top-10 ranks.

In short, Table 4.5 reveals that the result lists produced by the five different Related
Work Search algorithms indeed overlap. Another interesting question is: How many
documents have been found by a keyquery-based method but not by the other methods?
Figure 4.8 illustrates the number of documents that have been ranked in the top-10 re-
sults of one of the keyquery-based methods, i. e., KQC/A or KQC/B, but not in the
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Figure 4.9: Distribution of relevance judgments for each topic.

top-10 results produced by the three baselines: Sofia Search, Nascimento and Google
Scholar. Figure 4.8 reveals that both keyquery-based methods indeed find documents
which are not listed in the 10 top-ranked results of any of the other three methods. On
average KQC/A found 3.4 and KQC/B found 3.5 documents that the baseline methods
miss in the top-10 results.

Judgments

In Step 2 of our user study, we collected judgments for the recommended documents.
The distribution of judgments of relatedness is illustrated in Figure 4.9. The number
of judgments per topic refers to the number of different documents found by the five
Related Work Search algorithms. The figure shows that the users have judged
different amounts of documents. For example, the participant who treated topic 003
had to judge 43 documents. This means that the all top-10 documents recommended
by the five algorithms only overlap in 7 documents. In contrast, the five algorithms
found very similar papers for topic 010, where the user only had to judge 22 papers.
Overall, 341 documents have been judged by 10 users; therefore, a user has judged on
average 34 documents. Furthermore, Figure 4.9 shows how many documents received
which judgment of relatedness per topic. For instance, many of the documents recom-
mended for topic 006 are judged as highly relevant, whereas many of the documents
retrieved for topic 003 are judged as not related. However, the figure does not reveal
any general trend regarding the distribution of the levels of relatedness within the list
of recommended documents for a topic.
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Figure 4.10: Number of highly or fairly related documents distinguished by their level of
familiarity.

In our user study, we asked the users to additionally specify whether they knew each of
the recommended documents before the study or not. The idea was to find unfamiliar
relevant papers, i. e., documents that are highly or fairly related to the specified research
task and that the user did not know before the study. Figure 4.10 illustrates the level
of familiarity of the documents that were judged as highly or fairly relevant. In total,
86.1 % (68 of 79) of the documents that are judged as fairly related were unfamiliar to
the user. Moreover, the users did not know 57.6 % (57 of 99) of the highly relevant
papers before the study. All in all, 125 unfamiliar relevant papers have been found by
the five algorithms.

Discussion

To sum up, this section has presented and analyzed the topics and judgments obtained in
our user study. These data sets form the two missing components of our Cranfield-style
experiment. Thus, we can now measure the effectiveness of the five Related Work
Search approaches: (1) Sofia Search, (2) Nascimento, (3) Google Scholar, (4) KQC/A,
and (5) KQC/B. Additionally, we are able to evaluate methods that combine any of these
algorithms. In Section 3.3, we described a technique to combine methods by merging
their result lists in an alternating manner. As a result, the merged list does not contain
new documents. Moreover, in the top-10 results of the combined list are only documents
listed that are also in the 10 top-ranked results of the individual methods. Since we have
judgments for the top-10 results of the five individual algorithms and the top-10 results
of combined methods do not contain further documents, we can evaluate the combined
methods as well.
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In the following section, we describe in detail how we use the obtained relevance judg-
ments to measure the effectiveness of the five individual Related Work Search al-
gorithms and a couple of combined methods.

4.2.2 Performance

In Cranfield-style experiments, the effectiveness of a retrieval system is often evaluated
by using the metrics precision and recall [Voo01]. Precision is the ratio of relevant
documents among the retrieved documents, and recall is the ratio of retrieved docu-
ments among all relevant documents in the collection. These two metrics are applied
on the whole result list and do not consider the order of documents returned by the
retrieval system. Since previous research found that users focus on the top-ranked re-
sults [JGP+05, ABDR06], we state that the ranking of documents produced by a Re-
lated Work Search algorithms has to be considered in the course of the evaluation.
Therefore, we apply two other metrics that take the ranking of the result list into ac-
count, namely average precision and normalized discounted cumulative gain. Because of
the restrictions in our user study, we only have relevance judgments for the top-10 doc-
uments returned by each of the algorithms. For this reason, we will only consider the
top-10 results in the course of our ranking-based evaluation. In addition to the ranking-
based metrics, we analyze the recall of the result lists with respect to the expected papers
that the users have specified in Step 1 of our study and with respect to the unfamiliar
relevant papers that we have found by analyzing the judgments obtained in the user
study. In the following paragraphs, we outline the calculation of the used evaluation
metrics.

Average Precision

The average precision (AP) of an ordered result list up to a rank k is computed by the
average of the precision at each rank multiplied with the relevance of the document at
this rank:

AP@k =
1

min(k, |relevant documents|)
·

k∑
i=1

Precision@i · relevance(i) , (4.5)

where k is the number of top results to be considered. Precision@i is the precision up
to rank i, i. e., the ratio of relevant documents among the top-i retrieved documents.
Moreover, relevance(i) refers to the relevance of the document at rank i. The sum of
the precision values is normalized by the minimum of k and the number of relevant doc-
uments that have been found for one topic overall, i. e., the size of the union of relevant
documents found by all five algorithms.
The measure AP is designed for the use of binary judgments; that is, a document is
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either relevant or not. Since we have obtained relevance judgments for the relatedness
of a document on a 4-point scale, we need to transform them into binary judgments.
According to the verbal description of the levels of judgments (see Table 4.4), we define
highly and fairly related papers to be relevant, and we define marginally and not related
documents to be irrelevant. For the purpose of calculation, we assign the numerical
value of 1 to relevant documents and the numerical value of 0 to irrelevant documents.
We formally state:

relevance(judgment) =

{
1, if highly or fairly

0, if marginally or not related,
(4.6)

where judgment is the relevance judgment regarding the relatedness of a recommended
document.

We first apply the measure of AP@10 to the result list produced on every topic by the
five individual algorithms. Additionally, we examine the combination of the best query-
based algorithm, which turns out to be KQC/A, with the graph-based method of Sofia
Search and the method based on Google Scholar. The resulting AP-values are illustrated
in Figure 4.11. The dashed line reports the mean of AP-values per topic; it reveals that
the mean AP-values per topic are not similar among the topics but they are scattered.
For example, the mean AP of topic 003 is only 0.15, whereas in topic 006 a mean value
of 0.93 is reached. Note that we previously attempt to classify a topic’s difficulty by the
diversity of the respective set of input documents (see Section 4.2.1). According to this
classification, topic 006 is an easy topic because its set of input documents has a low
diversity. This statement is confirmed by the high mean AP-value that is achieved in
topic 006. However, for the other topics the statement cannot be approved. For instance,
topic 004 reaches the second best mean AP-value although it was classified as one of the
more difficult topics. As a consequence, the diversity of the set of input papers appears
not to be a meaningful measure for the difficulty of a topic.
Furthermore, the AP-values of the algorithms per topic illustrated in Figure 4.11 do
not show any obvious trend regarding a best performing algorithm. Instead, the al-
gorithms perform different among the topics. For instance, Nascimento reached the
best AP in the topics 001, 005, and 009, while it produced the worst AP for the top-
ics 004, 007, and 010. Another example for the varying performance are the AP-values of
Google Scholar. For topic 003 it returned clearly the most relevant documents, whereas
for the topics 001, 005, 008 and 009 it returned the most irrelevant documents.
As stated previously, we assume that the combination of several methods can out-
perform its individual components. The combination of KQC/A and Google Scholar,
in Figure 4.11 denoted as KQC/A+Google, outperforms its parts in 4 topics, namely
topic 001, 002, 008, and 010.
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Figure 4.11: Average precision of the top-10 documents returned by each algorithm per
topic.
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Table 4.6: Mean performance values achieved by the different algorithms over all topics.

Algorithm AP@10 nDCG@10 RecallED@50 RecallURD@10

1 Sofia Search 0.546 0.598 0.503 0.371
2 Nascimento 0.523 0.563 0.300 0.344
3 Google Scholar 0.535 0.631 0.647 0.261
4 KQC/A 0.568 0.632 0.460 0.378
5 KQC/B 0.499 0.530 0.373 0.354

6 KQC/A+Google 0.605 0.679 0.667 0.353
7 KQC/A+Sofia 0.561 0.621 0.560 0.369
8 KQC/A+Sofia+Google 0.580 0.660 0.647 0.317

Moreover, the combination of KQC/A and Sofia Search, which is denoted as KQC/A+Sofia,
is only once slightly better than its components: KQC/A and Sofia Search both reach
AP@10=0.45 in topic 007 where KQC/A+Sofia performs with AP@10=0.47 slightly
better. The third combination KQC/A+Sofia+Google, which combines KQC/A with
Sofia Search and Google Scholar, outperforms its parts in topics 001 and 010. Since
it is difficult to determine the best performing algorithm from Figure 4.11, we list the
MAP@10 per algorithm over all topics in Table 4.6. Among the five individual algo-
rithms, the approach of KQC/A reaches the highest value with MAP@10=0.568. The
second best method with respect to MAP@10 is Sofia Search, and the third best method
is Google Scholar. Note that KQC/B produced the worst value with MAP@10=0.499,
which indicates that the vocabulary used in KQC/B is less suitable than the vocab-
ulary used in KQC/A. In the bottom rows of Figure 4.11, the combined approaches
are listed. The combination KQC/A+Google performs best among the combined meth-
ods, and it reaches the highest MAP@10=0.605 in general. Note that the combination
KQC/A+Sofia does not outperform its components whereas the last combination of
KQC/A+Sofia+Google does.

In order to check the significance of the mean values listed in Table 4.6, we apply a
significance test. Therefore, we first need to check whether the samples are normally
distributed; a sample comprises the 10 calculated performance values produced by one
algorithm for the 10 topics. For this purpose, we apply the Shapiro-Wilk test [RW11]
and found that not all of the samples are normally distributed. Consequently, we have
to apply a non-parametric test [LFH10]. Since the values are computed on the same
sample and we want to do a pairwise comparison, the Wilcoxon signed rank test is a
suitable significance test for our scenario [LFH10]. More specifically, we perform an
one-sided paired Wilcoxon signed rank test on each pair of performance values in order
to determine if one algorithm has a significantly higher mean performance value than
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another. The p-values of the significance test for the AP@10-values are reported in the
appendix in Table A.3. Moreover, we define a significance level of 0.05, which means
that the difference in the mean values is significant if p < 0.05. It turns out that the
approach of KQC/A and all three of the combined methods perform significantly better
than KQC/B. For none of the other pairs of values a statistical significance can be found.

To sum up, our keyquery-based method KQC/A performs best among the individual
methods with respect to AP@10. The combination of KQC/A and Google Scholar re-
trieved the most relevant documents among all tested algorithms and thus outperforms
its components. Not each of the analyzed combinations performs better than the indi-
vidual algorithms. It appears that the documents contributed by Sofia Search impair
the quality of the ranking since the approaches including Sofia Search perform worse
than the respective algorithms without Sofia Search.

Normalized Discounted Cumulative Gain

A further metric that can be applied in a Cranfield-style experiment is normalized dis-
counted cumulative gain (nDCG). The metric of nDCG is based on two basic assump-
tions [JK02]: (1) documents have different levels of relevance and users prefer documents
with higher relevance, and (2) documents that are listed later in the ranking are less
likely to be examined by the user.

While the aforementioned metric AP is only capable of binary relevance judgments,
nDCG is suitable for non-binary judgments [MRS08]. Therefore, by using nDCG we can
exploit the detailedness of the judgments of relatedness obtained in our user study. The
nDCG of a sorted result list is computed as follows [JK02]:

nDCG@k =
DCG@k

IDCG@k
, (4.7)

where DCG@k is the discounted cumulative gain (DCG). Moreover, IDCG@k refers
to the ideal DCG, i. e., the DCG produced by the optimal ranking where all obtained
judgments are sorted in decreasing order. The DCG@k is defined as:

DCG@k =
k∑

i=1

2relevance(i) − 1

log2(i+ 1)
, (4.8)
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where relevance(i) is the relevance of the document at rank i. In order to use the
obtained judgments in the calculation of nDCG, we assign the following numerical values:

relevance(judgment) =


3, if highly

2, if fairly

1, if marginally

0, if not related.

(4.9)

We compute nDCG@10 on the result lists of the five individual algorithms and three
combined methods. The IDCG@10 for a topic is calculated over all available judgments
for this topic, i. e., the judgments collected for documents in the top-10 results of each
algorithm. Figure 4.12 presents the nDCG@10-values per topic and algorithm. First,
it should be noted that the distribution of the nDCG-values illustrated in Figure 4.12
looks quite similar to the distribution of the AP-values in Figure 4.11. The mean nDCG-
values per topic, which are illustrated by the dashed line, are also scattered, and there
is no obvious best performing algorithm for all topics. Yet, there are slightly differences
in the two figures. For instance, in topic 004 the ranking of the algorithms differs for
the two metrics AP and nDCG. Whereas four of the algorithms, namely Sofia Search,
Google Scholar, KQC/A+Google, and KQC/A+Sofia+Google, reach a perfect score
of AP@10=1.0, Google Scholar clearly outperforms the other algorithms with respect to
nDCG@10. These differences arise partly from the different fineness of the used judg-
ments: for the calculation of AP the judgments were binarized while for the computation
of nDCG the 4-point scale judgments were used.
We provide the mean values of nDCG@10 in Table 4.6. The top-10 documents recom-
mended by KQC/A are most relevant among the individual methods with a nDCG-value
of 0.632. The second best method is Google Scholar with nDCG@10=0.631 followed by
Sofia Search with nDCG@10=0.598. The very best result is reached by the combined
method KQC/A+Google. As with the AP-values, we perform a Wilcoxon signed rank
test with a significance level of 0.05 in order to examine the significance of the differ-
ences in the results. The corresponding p-values are listed in the appendix in Table A.4.
We found that the two combinations KQC/A+Google and KQC/A+Sofia+Google per-
form significantly better than Sofia Search. Moreover, the mean nDCG@10 produced
by KQC/A+Sofia+Google is significantly higher than the mean nDCG@10 produced by
KQC/A. Last, almost all methods perform significantly better than KQC/B.
Note that the algorithm rankings in Table 4.6 produced by the mean values of AP and
nDCG differ. Whereas the ranking produced by AP@10 is 〈6, 8, 4, 7, 1, 3, 2, 5〉 according
to the numbers listed in Table 4.6, the ranking produced by the mean nDCG@10 is
〈6, 8, 4, 3, 7, 1, 2, 5〉. These differences are not only caused by the dissimilar calculation
but also by the different levels of relevance judgments. As stated above, we categorized
the four levels of relatedness into two groups in order to compute the AP-values.
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Figure 4.12: Normalized discounted cumulative gain of the top-10 documents returned
by each algorithm per topic.
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Consequently, some information with respect to the relatedness is lost in the course of
the calculation of AP. Therefore, one could state that nDCG@10 is the more meaningful
metric for a Cranfield-style experiment with four levels of judgments. Yet, it is to say
that the metric of nDCG places focus on the relevance of the documents in the top ranks,
which is accomplished by the use of the logarithm function in Equation 4.7. Therefore,
we could not state which of the two metrics is more meaningful.
To summarize, the best performing individual methods with respect to nDCG@10 are
KQC/A and Google Scholar. The combination of these two methods leads to the highest
nDCG@10-value, which reveals that the mixed result list contains more or higher related
documents than the individual ones. As with the AP-values, the combined approaches
including Sofia Search perform worse than the respective methods without Sofia Search.

Recall with Respect to Expected Papers

The third measure that we use is recall. In contrast to the two aforementioned metrics,
it is independent of the ranking of documents in the result list. We utilize the expected
documents (ED) specified by the users in the study in order to compute the recall:

RecallED@k =
|ED ∩ top-k retrieved documents|

|ED|
. (4.10)

Since the computation of the recall is not dependent on the obtained relevance judg-
ments, we can compute recall for any k. However, we choose k = 50 because we
assume a human would consider the top-50 documents. This means if a participant
in the user study has stated two expected documents, and they are listed among the
top-50 documents the RecallED@k will be 1.0. The users have specified a different
number of expected documents. For the most topics, or more precisely for the top-
ics 001, 004, 005, 007, 008, 009, and 010, the least required number of two expected
documents were entered. The user who stated topic 002 expected three documents to
be found, and for the topics 003 and 006 even five expected documents were entered.

Table 4.6 presents the mean RecallED@50-values for each algorithm over all topics. The
best RecallED@50 among the individual methods is reached by Google Scholar with
a score of 0.647. Moreover, the combination KQC/A+Google reached an even better
result with RecallED@50=0.667. One explanation for this can be that the search engine
Google Scholar was used previously to find related documents for the specified research
task.
We conducted a paired Wilcoxon signed rank test; the respective p-values can be found in
the appendix in Table A.5. We found that all three combined methods as well as Google
Scholar perform significantly better than Nascimento and KQC/B with a significance
level of 0.05. Moreover, the mean RecallED@50 of KQC/A+Sofia+Google is significantly
greater than the mean of KQC/A.
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Recall with Respect to Unfamiliar Relevant Papers

In our user study, we also asked the participants to state whether they did know a
document before the study or not. As stated previously, we use this information to
analyze unfamiliar relevant documents (URD), i. e., papers that are highly or fairly
related and that the user did not know before.

We want to examine which algorithm returns the most unfamiliar relevant papers. There-
fore, we compute the recall with respect to the unfamiliar relevant papers per topic for
each algorithm:

RecallURD@k =
|URD ∩ top−k retrieved documents|

|URD|
. (4.11)

Since we have obtained the unfamiliar relevant papers by examining the judgments for
the top-10 documents of the Related Work Search algorithms, we set k = 10.
The mean RecallURD@10-values are listed in Table 4.6. KQC/A has found with, on
average, 37.8 % the most unfamiliar relevant documents, and Google Scholar returns
the fewest with 26.1 %. This supports the assumption that the users were familiar with
the documents found by Google Scholar. We also performed a significance test for the
RecallURD@10-values. As the p-values in A.6 in the appendix reveal, only the difference
between KQC/A+Sofia+Google and Google Scholar is statistically significant.

4.2.3 Discussion

To summarize, we have analyzed eight Related Work Search algorithms: five in-
dividual and three combined methods. In our experiments, the novel keyquery-based
method KQC/A has produced on average the best top-10 results among the individual
algorithms. The results of the combination of KQC/A and Google Scholar contained
even more or higher related documents. Besides, the values show that the vocabulary
used in KQC/A leads to better results than the vocabulary used in KQC/B.
Moreover, we found that Google Scholar achieves the best recall with respect to the
expected papers specified by the participants in the study. This indicates that users
are more familiar with the documents found by Google Scholar than by any other of
the techniques. The low recall value of Google Scholar with respect to the unfamiliar
relevant papers, i. e., documents that are highly or fairly related and that the user did
not know before the study, supports this assumption. On the other hand, the keyquery-
based method KQC/A has found the most unfamiliar relevant papers that users have
not found in previous researches, where they presumably used commercial search engines
and graph-based approaches
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Note that not all pairwise differences of the listed mean values in Table 4.6 are statisti-
cally significant which might be because of the small sample size of 10 topics. Therefore,
we cannot assume that all results obtained in our experiments are valid in general. The
generally valid statement is that KQC/A and all combined methods outperform KQC/B.
In brief, a user study comprising more topics is needed in order to prove the statistical
significance of the mean values.
Besides, our evaluation depends strongly on the top-10 documents that the algorithms
returned. This restriction is due to the limited number of relevance judgments ob-
tained in our user study. As stated previously, a human might consider more than the
10 top-ranked documents in the course of the search for related work. Therefore, a more
meaningful evaluation involves more documents of the result list. As a consequence,
more relevance judgments have to be obtained by conducting a more costly user study,
which is beyond the scope of this thesis.

In conclusion, our experiments indicate that our novel keyquery-based method KQC/A
is comparable to current state-of-the-art methods for finding related research papers (see
the first research question stated in Chapter 1). Therefore, the application of the con-
cept of keyqueries appears to be valuable for the task of Related Work Search.
Moreover, the results of our experiments indicate that the combination of keyquery-
based and graph-based methods does not outperform its components (see the second
research question stated in Chapter 1). Since we could not prove statistical significance
in the differences of the obtained mean values, our findings have to be confirmed in a
large-scale evaluation using more topics and considering more documents in the list of
recommended papers.
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5 Conclusion

In this thesis, we investigated methods for the recommendation of related work. We
specifically address the use case in which the user has already found a set of interesting
documents in the course of an initial research and wants to find papers that are related
to them. Accordingly, we formally stated the problem of Related Work Search:
Given a set of input documents, the task is to find a set of related papers. Basically,
this problem can be divided into two steps: (1) candidate retrieval, and (2) candidate
ranking. In the first step, candidate documents are retrieved, which are ranked in the
second step with respect to their relevance. We focused on the candidate retrieval as a
first crucial step in the process of finding related work. More specifically, we analyzed
the applicability of the concept of keyqueries proposed by Gollub et al. [GHMS13] for
this step. A keyquery for a document is a query that returns the document in the top-
ranked results when it is submitted to a reference search engine. The other documents
that are also listed on top ranks cover topics similar to the paper itself and thus can be
used as candidate documents for the search of related work.
We proposed a novel keyquery-based method for the recommendation of related work.
In this approach, the vocabulary extracted from a set of input documents is utilized to
formulate keyqueries. Then, the other results returned by the keyqueries are used as
a set of candidate documents. Subsequently, the candidate set is ranked based on the
text similarity of a candidate document to the specified set of input papers. Moreover,
we investigated the suitability of two different vocabularies used for the formulation of
keyqueries. This led to two versions of our keyquery-based approaches, namely KQC/A
and KQC/B. The vocabulary utilized in KQC/A contains keyphrases extracted from the
set of input papers. In KQC/B the vocabulary also comprises extracted keywords but
they are restricted to keywords that often appear in the collection as a paper’s keyword
specified by the paper’s author. That is, the vocabularies used in KQC/A and KQC/B
are not completely distinct but overlap in several keyphrases.
In the course of our evaluation, we implemented three state-of-the-art algorithms as base-
lines: (1) a version of the graph-based approach by Golshan et al. [GLT12], (2) a simple
query-based method by Nascimento et al. [NLSG11], and (3) an approach based on the
scholarly search engine Google Scholar. These methods represent the ways of how hu-
mans would search for candidate documents for a given set input documents: following
the citation graph, formulating queries from given texts, and using the related articles
feature of Google Scholar.
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5 Conclusion

In order to measure the effectiveness of our novel approach in comparison to the base-
line algorithms, we conducted a Cranfield-style experiment. Therefore, we have used an
index of a large collection, namely the WCSP, that contains about 187,000 Computer
Science research papers. This document collection formed the first component of our
experiment. Since the other two components, topics and corresponding relevance judg-
ments, were not available for the WCSP, we conducted a user study in order to obtain
them.
Our user study has involved 10 experts in Computer Science. Each of them stated a
topic containing at least two input documents in the first step of the study; as a result,
we had a set of 10 topics. Then, we have applied our two keyquery-based algorithms
and the baselines on the topics and obtained recommended papers. In the second step
of the study, we asked the users to judge the top-10 documents recommended by the
algorithms according to their relevance to the input papers.
Based on the obtained relevance judgments, we evaluated the ranking of related docu-
ments produced by the algorithms. The results of the experiments show that KQC/A
produced a significantly better ranking than KQC/B; consequently, the vocabulary used
in KQC/A is more valuable for keyquery-based recommendation of related work than
the vocabulary used in KQC/B. Moreover, the results indicate that our novel keyquery-
based method KQC/A outperforms current state-of-the-art methods for finding related
research papers. Furthermore, the combination of our keyquery-based method KQC/A
and the graph-based method of Sofia Search did not outperform its components in our
experiments. Since we could not prove the statistical significance of the last two state-
ments, our findings have to be confirmed in a large-scale evaluation using more topics
and considering more documents in the list of recommended papers.

Moreover, the results of the experiments should be confirmed by using another data
collection. For this purpose, the iSearch collection [LLLI10] might be suitable since it
comprises a large set of research papers from the domain of physics and a set of topics
with corresponding relevance judgments. Yet, the iSearch collection does not contain
information about cited and citing papers of a document. Consequently, citation infor-
mation has to be extracted first in order to apply graph-based methods on the iSearch
collection.
In this thesis, we proposed a keyquery-based method along with two different strategies
for the extraction of a document’s vocabulary. Future research could examine more
algorithms using keyqueries. For example, another approach could be to formulate key-
queries involving not only the vocabulary extracted from the text but also the names of
a paper’s authors.
Furthermore, keyqueries depend strongly on the retrieval model of the reference search
engine. Therefore, one future research question could be: Which is the best retrieval
model of the reference search engine in order to find candidate papers in the result lists
of documents’ keyqueries.
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5 Conclusion

In our investigations, we have focused on the retrieval of candidate documents, and we
have only applied simple ranking strategies. Therefore, in future research more con-
vincing features for ranking should be investigated. For instance, the features used for
candidate ranking of the original version of Sofia Search (see Section 3.1.2) seem to be
valuable. Additionally, the quality and impact of a paper’s publication venue could be
considered for the ranking of candidate papers. A further feature could examine how
often a paper is found as a candidate document by different methods. For instance, a
paper that is found by a graph-based and a keyquery-based approach might be more
valuable than a paper that is found by only one of the algorithms.
Note that the work at hand has only evaluated the effectiveness of keyquery-based ap-
proaches in comparison to state-of-the-art methods in order to analyze the applicability
of keyqueries for the task of Related Work Search. Future research should also
investigate the efficiency of the different algorithms.
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A Appendix

Seed Documents of the WCSP

Table A.1 lists a few characteristics of the 34,280 seed documents of the WCSP, which
built the basis for the retrieval of 152,517 further documents. The seed documents were
in the years 1967 – 2012 in the proceedings of 20 different publications.

Table A.1: Characteristics of WCSP seed documents.

Acronym Years |D|
From To

ACL 1979 2012 2,061
CHI 1981 2012 4,729
CIKM 1993 2012 3,018
FSE 2010 2012 104
ICML 2004 2009 844
ICSE 1976 2011 2,899
KDD 1999 2012 1,603
OSDI 2004 2006 28
PLDI 1988 2012 807
PODS 1982 2012 971
SIGCOMM 1977 2012 1,154
SIGIR 1971 2012 2,830
SIGMETRICS 1976 2012 1,217
SIGMOD 1975 2012 2,562
SODA 1990 2012 2,444
SOSP 1967 2011 536
STOC 1969 2012 2,619
UIST 1988 2012 890
VLDB 1975 2007 706
WWW 2001 2012 2,258

34,280
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A Appendix

User Study Topics

Table A.2 lists the 10 topics obtained in the course of our user study. The column ID
refers to the topic ID that we have assigned. In the second column, the specified research
task is listed in boldface, and the respective input documents are listed by title.

Table A.2: The 10 topics obtained in our user study.

ID Research Task and Input Documents

001 Off-screen pointer techniques
• Halo: a technique for visualizing off-screen objects
• Wedge: clutter-free visualization of off-screen locations

002 Curse of dimensionality
• On the effects of dimensionality reduction on high dimensional similarity search
• The concentration of fractional distances

003 Automatic summarization of perspectives
• Staying informed: supervised and semi-supervised multi-view topical analysis of ide-

ological perspective
• Summarizing contrastive viewpoints in opinionated text

004 Efficient linked open data processing
• Hexastore: sextuple indexing for semantic web data management
• Binary RDF for scalable publishing, exchanging and consumption in the web of data

005 External hashing
• Dynamic external hashing: the limit of buffering
• Linear hashing with separators - a dynamic hashing scheme achieving one-access
• External memory algorithms and data structures: dealing with massive data

006 Search result clustering
• Scatter/Gather: a cluster-based approach to browsing large document collections
• Reexamining the cluster hypothesis: scatter/gather on retrieval results
• Web document clustering: a feasibility demonstration

007 Document clustering and labeling
• Enhancing cluster labeling using wikipedia
• Topical clustering of search results

008 Research paper recommendation
• A source independent framework for research paper recommendation
• SOFIA SEARCH: a tool for automating related-work search

009 Exploratory search
• Model-driven formative evaluation of exploratory search: a study under a sensemaking

framework
• Exploratory search: from finding to understanding

010 Query segmentation
• Towards optimum query segmentation: in doubt without
• Query segmentation based on eigenspace similarity
• Unsupervised query segmentation using click data: preliminary results
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A Appendix

Significance Tests

Table A.3 – Table A.6 list the p-values that we have obtained in the course of the
significance testing of the performance values reported in Table 4.6 in Section 4.2.2.
We have conducted a Wilcoxon signed rank test for each pair of performance values
produced by the algorithms over all topics. More specifically, we tested whether the
mean value produced by the algorithm listed in the row is significantly greater than the
mean value produced by the algorithm listed in the column. Therefore, the matrices
are not symmetric. Moreover, we have utilized a significance level of 0.05; that is, the
difference of a pair of mean values is statistically significant if p < 0.05. In Table A.3 –
Table A.6, the p-values that are smaller than 0.05 are printed in bold.

Table A.3: The p-values obtained in the course of significance testing of the mean
AP@10-values reported in Table 4.6.
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Sofia Search 1.000 0.423 0.172 0.528 0.054 0.883 0.663 0.925
Nascimento 0.615 1.000 0.577 0.754 0.423 0.688 0.688 0.784
Google Scholar 0.857 0.461 1.000 0.880 0.713 0.922 0.903 0.951
KQC/A 0.528 0.278 0.142 1.000 0.026 0.639 0.466 0.882
KQC/B 0.962 0.615 0.323 0.983 1.000 0.991 0.993 0.997
KQC/A+Google 0.147 0.348 0.096 0.406 0.012 1.000 0.318 0.853
KQC/A+Sofia 0.417 0.348 0.116 0.600 0.011 0.723 1.000 0.946
KQC/A+Sofia+Google 0.102 0.246 0.062 0.143 0.005 0.201 0.071 1.000
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A Appendix

Table A.4: The p-values obtained in the course of significance testing of the mean
nDCG@10-values reported in Table 4.6.
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Sofia Search 1.000 0.348 0.500 0.857 0.009 0.986 0.857 0.981
Nascimento 0.688 1.000 0.722 0.884 0.385 0.903 0.812 0.935
Google Scholar 0.539 0.312 1.000 0.722 0.161 0.903 0.722 0.947
KQC/A 0.172 0.138 0.312 1.000 0.006 0.884 0.239 0.968
KQC/B 0.994 0.652 0.862 0.995 1.000 1.000 0.995 0.997
KQC/A+Google 0.019 0.116 0.116 0.138 0.001 1.000 0.161 0.819
KQC/A+Sofia 0.172 0.216 0.312 0.797 0.006 0.862 1.000 0.958
KQC/A+Sofia+Google 0.024 0.080 0.065 0.042 0.005 0.221 0.053 1.000
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A Appendix

Table A.5: The p-values obtained in the course of significance testing of the mean
RecallED@50-values reported in Table 4.6.
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Sofia Search 1.000 0.068 0.873 0.392 0.093 0.978 0.909 0.931
Nascimento 0.952 1.000 0.990 0.920 0.727 0.994 0.972 0.990
Google Scholar 0.167 0.018 1.000 0.080 0.039 0.585 0.259 0.707
KQC/A 0.709 0.118 0.947 1.000 0.179 0.947 0.970 0.957
KQC/B 0.956 0.333 0.972 0.901 1.000 0.994 0.974 0.994
KQC/A+Google 0.050 0.010 0.500 0.080 0.010 1.000 0.231 0.707
KQC/A+Sofia 0.211 0.039 0.806 0.173 0.042 0.865 1.000 0.828
KQC/A+Sofia+Google 0.102 0.018 0.500 0.061 0.010 0.500 0.219 1.000
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A Appendix

Table A.6: The p-values obtained in the course of significance testing of the mean
RecallURD@10-values reported in Table 4.6.
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Sofia Search 1.000 0.722 0.080 0.705 0.209 0.708 0.583 0.664
Nascimento 0.312 1.000 0.089 0.466 0.277 0.277 0.466 0.542
Google Scholar 0.935 0.947 1.000 0.946 0.908 0.929 0.896 0.962
KQC/A 0.394 0.600 0.071 1.000 0.140 0.624 0.292 0.824
KQC/B 0.860 0.761 0.117 0.911 1.000 0.819 0.735 0.883
KQC/A+Google 0.428 0.777 0.092 0.458 0.221 1.000 0.265 0.791
KQC/A+Sofia 0.500 0.600 0.147 0.819 0.337 0.799 1.000 0.819
KQC/A+Sofia+Google 0.400 0.542 0.049 0.223 0.147 0.295 0.221 1.000
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