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Abstract

Researchers conduct systematic reviews to gain and build a comprehensive un-
derstanding of a studied field. During the screening of documents, researchers
aim for total recall to ensure that all relevant documents are covered in their
systematic review. Creating a systematic review is time-consuming and can
take several years. Systems for technology-assisted systematic reviews incorpo-
rate user feedback, whether a document was relevant or not, to learn presenting
more yet unknown potential relevant documents. We propose a system that
automatically creates so-called keyqueries which rank the known relevant doc-
uments in the top results of a reference search engine. This keyquery approach
is motivated by research on related work search, where keyqueries retrieve ad-
ditional related work for a given set of documents. Therefore, we construct
keyqueries for the documents labeled as relevant in the systematic review to
identify new, potentially relevant documents. We compare our keyquery-based
approach with four classical machine-learning approaches and the state-of-the-
art approach on three simulated systematic reviews with biological research
topics. The Evaluation shows that our keyquery-based approach outperforms
our implementation of logistic regression and decision table, and is compara-
ble to a random forest approach. The state-of-the-art and our naive Bayes
approach both outperform our keyquery-based approach.
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Chapter 1

Introduction

In a systematic review researchers try to gather all knowledge about a specific
scientific topic. Systematic reviews can be used used for biomedical purposes.
For example, researchers studying a disease must gain all the knowledge about
the disease to work productively on improving approaches and also make sure
they hold certain standards. A systematic review helps researchers to avoid
redundant work and can support the efficacy of an approach [17].

Creating such a systematic review can take a few months up to several years
since it is elaborate to find all relevant documents for a researcher’s topic in a
large corpus of documents. Relevant documents include for example small, new
study cases which have not been cited much. Hence, finding and evaluating
relevant documents is not an easy task, because researchers must examine
every single potential relevant document. While creating a systematic review,
researchers aim for total recall since they want to find all relevant documents.

The corpus of potential relevant documents is created by researchers us-
ing a complex query. We assume that all potential relevant documents for
the researched field are in that corpus. Researchers must identify all relevant
documents of the corpus so that they can be incorporated in the systematic
review. Technology-assisted systems for systematic reviews can simplify the
screening of potential relevant documents for systematic reviews. Ideally, the
process of screening documents can be as follows: Based on feedback provided
by researchers, a technology-assisted system extracts more potential relevant
documents from the corpus. The researchers screen these extracted documents
and the technology-assisted system again can extract potential relevant docu-
ments based on the available feedback. This process is repeated until enough
or all relevant documents have been screened.

To do this, technology-assisted systems must deliver total recall to ensure
that no relevant document is missing. In the past machine learning approaches
were successfully used for technology-assisted reviews which usually applied
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continuous active learning frameworks.

In continuous active learning users have a corpus of documents, from which
they screen documents and give feedback on them. A machine-learning algo-
rithm uses this feedback to rank the corpus from relevant to non-relevant.
Then users screen and evaluate the top results of the ranked documents, and
the newly labeled documents are used to update the machine learning algo-
rithm. The relevant documents of the corpus tend to be in the top results
of the ranked documents due to the predictions of the machine-learning ap-
proach. Such a continuous active learning framework was already presented in
the year 1994 [15].

Suppose technology-assisted systems could correctly predict that there are
no more relevant documents, researchers could create systematic reviews much
faster because they must mostly read and evaluate the relevant documents.
Many systems are trying to achieve total recall as soon as possible, so re-
searchers screen most of the relevant documents prior to the irrelevant doc-
uments. The best of those technology-assisted systems use machine-learning
based approaches with an continuous active learning framework, using identi-
fied relevant documents to predict if an unknown document is relevant.

We regard the problem of finding relevant work from a different angle and
are using so-called keyqueries that have been proven useful in related work
search [12]. A keyquery is a query generated from a document with the prop-
erty to retrieve that document in the top results of a reference search engine.
So instead of predicting unknown documents as relevant, we use keyqueries
that retrieve the known relevant documents at the top positions of a search
engine to get related work. The underlying hypothesis is, that the newly re-
trieved related work to the known relevant documents is also relevant. With
more feedback on documents provided by the user more keyqueries can be
created and more relevant documents can be found.

An overview over the related work is provided in Chapter 2. We will present
the development of our keyquery-based system in Chapter 3, while we first dis-
cuss machine-learning approaches and then the keyquery-based approach. The
performance of our keyquery-based approach against four machine-learning
based approaches and the state-of-the-art approach is presented in Chapter 4.
An outlook on future work directions regarding technology-assisted reviews via
keyqueries and the conclusion is given in Chapter 5.



Chapter 2

Related Work

A wide range of systems is trying to help scientists create systematic reviews
or achieve total recall in finding relevant literature. Such systems are mostly
either search-based or machine-learning-based [26]. In this chapter we first in-
troduce search-based approaches and then machine-learning-based approaches.
After that we present the keyquery approach for finding related work, which
we will use later for tackling the total recall task for systematic reviews.

The total recall task is to identify the smaller subset of all relevant doc-
uments in the set of all documents. In the total recall TREC conferences of
2015 and 2016 many participants tried to tackle the total recall task. Machine-
learning based approaches tried to use logistic regression or random forest
models with different features [11|. Search-based approaches used for example
query expansion techniques where the original query is modified in order to find
relevant documents [10]. Creating good search queries is difficult, therefore it
is examined by researchers.

However humans are not very effective at creating queries because often
they can not extract the essential terms in documents to create effective queries
[26]. A simple approach to automatically create search queries was developed
by Alharbi et al. for the CLEF eHealth task. The authors extract essential
terms, like MeSH terms, from the title and abstract of documents. MeSH is
medical terminology structured in a tree data structure, where more abstract
terms are parent nodes of concrete terms regarding a search topic [16]. The
extracted terms are the clauses of a query for a document. For each extracted
query of a document they build tf-idf based feature vectors for this document.
Then they ranked the documents by how close the vectors were to the vector
of the tf-idf vector of the topic description. The closer they were, the higher
the document was ranked. This approach is better than a random ordering of
the documents [1]. The queries themselves are not modified and do not ensure
that they are well build queries.
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Scells et al. created an approach to automatically modify boolean queries
to improve the search results. Their system optimizes an initial query in a way
that it should return mostly relevant papers and few irrelevant ones. To do
that, they presented a Query Transformation Chain. The clauses of a given
query are modified until a stopping criterion is met. The authors present
several transformation paradigms to change a query. With those new queries
the retrieval of relevant documents shall be improved [19].

The first transformation is to switch AND and OR operators in the query.
The second restricts clauses for specific paragraphs in documents. For example,
a term must occur in the abstract of a document. Thirdly, the MeSH explosion.
In MeSH explosion, a retrieval model uses a MeSH term of the query and all
terms that are child nodes of this term in the MeSH tree. Fourth, the MeSH
parents working the other way round using the parent nodes of a given MeSH
term. Fifth, the system removes clauses of the query. Last, abstract concepts
of medical terms are converted into a single keyword which is then added to
the query. The process of transformations is stopped after a maximum of
five transformations. To select the best query, they use a machine-learning
approach with boosted regression trees [19]. This approach can only modify
the initial query, so the modified query is strongly dependent on the initial
query, which was designed by humans.

Surita et al. created a system which automatically creates questions as
queries from documents. These questions indicate what the documents can
answer. The questions are computed from a document by a trained deep
learning model. Then they rank each question by a score. The score shows
how well the question can summarize the entire corpus. They take the so-
called BERTScore, which computes the similarity between the automatically
generated question and the initial research question. The top three questions
are considered as the ones, which can summarize the corpus the best. When
these questions are used as queries, they should retrieve mostly relevant articles
due to the topic’s description represented in the questions [20)].

In a technology-assisted review generation the researcher always gives feed-
back on presented documents. This feedback can be well used by machine-
learning based approaches. Hence in the following paragraphs we will present
some machine-learning-based approaches. One approach that supports re-
searchers on the total recall task is the HiCal algorithm which uses the users’
feedback to predict if an unknown document is relevant. HiCal extracts tf-
idf based feature vectors of relevant labeled documents. After each feedback it
reweighs the used logistic regression model. With more feedback on documents
the algorithm can predict better if a given document is relevant or not. The
predicted relevant documents are given back to the user to evaluate. In general
a machine learning model classifies unlabeled data and ranks them from most
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relevant to non-relevant. The HiCal algorithm is proven to be a solid base-
line for the total recall task [4]. In the following paragraphs, this approach
will be discussed in further detail. It is the state-of-the-art algorithm in the
technology-assisted review generation.

HiCal uses a logistic regression classifier which is trained on the users’
feedback. For the feature extraction they use only specific paragraphs like the
abstract, the anchor texts, or a summary. Also the model is trained to improve
the classifier continuously with every user feedback. A single iteration of the
active learning loop is as follows: First, they take 100 random documents and
label them as not relevant. They take the description of the researched topic
as a relevant document. With these and the labeled documents from the user,
they train a logistic regression classifier. Then they classify the unlabeled
documents, sort them by the classifier’s score and give the top results back to
the user [23]|. Screening whole documents to decide if a document is relevant
takes a lot of time.

Hence the authors later developed a more sophisticated version of HiCal. In
order to decrease the time for the users, only certain excerpts of the document
are presented to them. The users then could label the documents based only on
these excerpts. A user study found that this gives even better performance on
correct labeled documents than if the user is confronted with the document’s
full text. This increases efficiency and the performance of the logistic regression
model is improving when the feedback on the screened documents is done
better [24]. The logistic regression classifier however is still updated after
every single feedback of the user.

To renew the model so often is very costly. Therefore they developed heuris-
tics for dynamic batch sizes, so-called refreshing methods. The first method is
the BMI method, where the first batch is size 1. Using the formula k < k+ kl—f)g
increases the batch size exponentially, while k is the batch size. The second
method uses static batch sizes, the most inefficient method. The third method
is called partial refresh. After m judgments of documents, all judgments are
used to update the classifier and rerank the unlabeled documents. The [ doc-
uments with the highest score are being stored in a partial refresh set. After
each new judgment of the user, this labeled document is used to update the
model. However, the model only evaluates the documents in the partial refresh
set [7]. The fourth method is Precision Based Refreshing. When the logistic
classifier’s output is below a defined threshold, every judgment is taken to
refresh the classifier and re-score the output documents. The last method is
called recency weighting, and the recently judged documents are being used
more frequently for training [7].

Their evaluation shows that all these methods have a comparable recall,
so selecting the refreshing method does not significantly impact the results.
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However, the BMI method is a much more efficient than the other methods
[7]. If the relevance feedback improved, when the users are confronted only
with excerpts, the machine-learning model may work well with excerpts as well.
The logistic regression classifier is then trained with partly whole documents
and partly with only sentences of documents that are considered to hold much
content. The evaluation shows that the performance of the HiCal algorithm
was similar to before but the runtime improved [25]. The results of all those
variants of the HiCal approach perform well, the only drawback left is that it
takes a lot of time for the machine-learning model to identify the last 10 to 15
percent of relevant documents.

To get these 10 to 15 percent of relevant documents, Zou et al. extended the
HiCal system. To improve the HiCal system, the authors presented questions
to the user, which the user answered with yes or no. With these answered ques-
tions, the authors want to find the remaining percentage of relevant documents
in a corpus. The questions for their system are generated from an annotation
of entities in the identified relevant documents. For this, they took documents
the user labeled as relevant, and extracted entities with an entity-recognition
system. Then they build simple questions like Do you look for < entity >7.
Based on these answered questions and with the trained machine-learning
model, the system provides the last relevant articles earlier than before [28].
This extension of the HiCal approach has some drawbacks that were tackled
in the following approach.

Zou et al. tackled the problem of users not being able to give clear answers
to the questions and the problem when to stop asking questions. First, the
system asks a question that the user can answer with yes, no, or unsure. Second
they implemented an automatic stopping criterion like a maximum of answered
questions. Apart from that this new approach is only a slight improvement to
the previous approach [27].

Rens van de Schoot and his team criticized approaches like HiCal for fo-
cusing only on one machine-learning algorithm. They also criticized other ap-
proaches for not being transparent enough. In their approach, they developed
a system that can use several different machine learning algorithms depending
on which one the user specifies [21].

They only use the title and the abstract because that is where researchers
mostly decide whether a document is relevant or not. The corpus of potential
relevant documents has mainly irrelevant documents. They undersample these
irrelevant documents by giving relevant documents a higher weight for the
training of the machine-learning model. Their experiments shows that after
30% of reviewed documents, around 90% of the relevant articles were shown
to the user [21]. This approach might have one problem because users do
not know which machine learning model is best suited for their task. Hence
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it could be better if one takes several machine learning approaches but uses
them as an ensemble of algorithms.

2.1 Related Work Search

Many assisting systems use machine learning algorithms or deep learning mod-
els, as [27], [21] or [14]. Lange et al. focused on the task of updating systematic
reviews. For this, related work to relevant documents must be found. The au-
thors tested a large number of machine learning and deep learning models to
extract relevant related work to a systematic review. This new related work
can then be used to update the systematic review. A model receives the papers
of the systematic review and learns which papers are relevant. Based on this
knowledge, the model can evaluate if a given unknown document is related or
not. In their evaluation, they found that deep learning models do not out-
perform simpler machine-learning algorithms. Although the most noticeable
impact on the outcome is the preprocessing of the data which can change an
approaches performance significantly [14].

Another different approach of finding related work to a given set of doc-
uments comes from Stein et al. Here the authors used so-called keyqueries
to find related work. A keyquery for a document is a query that returns the
document in the top result ranks when given to a search engine [12].

Previous approaches to related work search focused either on citation-
graph-based methods, content-based methods, or combined methods. Citation-
graph-based methods follow links from given papers to cited papers until a con-
dition is met [8]. Content-based methods use keywords from the set of given
papers to retrieve similar ones |[6]. Combined methods use both approaches.
A drawback of these is that they lead to very specific papers [12].

The top-ranked results of a keyquery to a search engine are considered as
related to the input paper because the keyquery is very precise to retrieve the
wanted paper. The authors expand that approach to a set of documents. A
query for a set of documents is a keyquery if and only if every document of the
set is in the top k-results of the retrieved documents. Furthermore, there must
be at least [ results, and there is no other query with fewer keywords that can
satisfy these requirements [12].

The system’s output does not only depend on the used documents but also
on the parameters k£ and [. [ defines how many documents should be in the
retrieval of the keyquery, and k defines the number of results considered top
results [12].

From a set of documents, keywords are extracted that occur frequently in
documents and occur in only few documents. Then the keywords that return
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less than [ results are removed. In the next step, keywords are iteratively added
to a query until the keyquery criteria are fulfilled. If a query is a keyquery
it is added to a set. This happens for all extracted keywords. The shortest
keyqueries are then used to find related work. For this these keyqueries are
given to a search engine which retrieves similar documents to the ones described
in the keyquery [12].

Finding related work is very close to finding relevant documents for a given
set of documents. Therefore we want to use this approach to tackle the total-
recall task for systematic reviews. The techniques of finding related work
have not yet been systematically tested for technology-assisted review creation.
Therefore we introduce a system that uses keyqueries to help users attain total
recall faster during systematic review creation in the following chapter.



Chapter 3

Keyqueries for Systematic Reviews

A systematic review is an evaluation of a researched topic according to a
method or system [9]. A systematic review shows the latest state of science
regarding a topic. Doing such a systematic review takes a lot of time because
scientists must screen and evaluate all relevant documents. In this chapter,
we are going to show how keyqueries can support scientists doing systematic
reviews. Keyqueries are designed to find related work in a corpus. If they
find relevant documents, users must mostly screen relevant documents. First,
we show how the workflow for users trying to create a systematic review with
a technological helping system looks like. After that we present several ap-
proaches that support screening relevant documents.

3.1 Human in the Loop

Technology-assisted systematic reviews usually employ the human-in-the-loop
pattern to screen all relevant documents. In this pattern, users have a corpus
with documents that contains all relevant documents regarding the researched
topic. Users screen the documents of the corpus and label the documents as
relevant or not relevant. A technology-assisting system uses the user’s feedback
and the query to propose a ranking of the remaining corpus in which relevant
documents are on top. The more feedback the users give, the better the system
can probably order unlabeled documents. After the reordering of the corpus,
users label the top documents. The labeling of documents and reordering of
the corpus is done in a loop until the system predicts that it has shown all
relevant documents, the users think they have seen all relevant documents or
the users have seen all documents.

Figure 3.1 shows the workflow of a technology-assisted review using the
human in the loop pattern. To gain a complete overview of a topic users
need a document corpus that contains all relevant documents. Users created
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Figure 3.1: Human in the Loop Framework

that corpus by creating a query and getting its retrieved documents with a
variety of search strategies and search engines. Typically such a corpus is vast
and contains only a small minority of relevant documents. Users only want
to screen those relevant documents. Hence the technology-assisting system
tries to find those in the corpus and provides the reordered corpus in which
documents are on top of which the system thinks they are relevant. This
system, we call it Candidate Retrieval, uses the initial query and feedback on
documents provided by the users for reordering the corpus. Users screen the
top documents of the result of the candidate retrieval. The candidate retrieval
uses the newly screened documents to reorder the corpus again in the next
iteration.

3.2 (Candidate Retrieval

As Figure 3.1 shows, the candidate retrieval is like a black box providing a
modified or reranked version of the corpus. In the following section, we present
systems that can provide such reranking methods. First, we show a system
that reranks the remaining corpus based on machine-learning models. Other
supporting systems mostly use machine-learning approaches for systematic
review tasks. Secondly, we present a keyquery approach based on the keyquery
definition of Stein et al. [12].

10
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Approach TP rate TN rate FP rate FN rate
Naive Bayes 0,80 0,81 0,19 0,20
Decision Table 0,96 0,93 0,07 0,04
Logistic Regression 0,97 0,91 0,09 0,03
Random Tree 0,81 0,58 0,42 0,19
Random Forest 0,99 0,66 0,34 0,01
J48 0,96 0,91 0,09 0,04

Table 3.1: Machine Learning Pilot Study results achieved by different algorithms,
with true positives (TP), true negatives (TN), false positives (FP) and false negatives
(FN).

3.2.1 Machine Learning Approaches

In technology-assisted reviews, machine-learning approaches are prevalent. A
requirement for a machine learning approach is that it classifies documents
as relevant and not relevant based on labeled documents. The labeled docu-
ments are used as training data for a machine-learning algorithm. We did a
pilot study on several machine learning algorithms to find the ones that work
the best for this task. These algorithms should learn based on user feedback
whether unseen documents are relevant or not. Table 3.1 shows the results of
this pilot study conducted on whole data sets. The true-positive rate indicates
how many relevant documents were labeled correctly. The true-negative rate
shows how many irrelevant documents were labeled as not relevant. The false-
positive rate shows how many irrelevant documents were falsely predicted as
relevant, and the false-negative rate shows how many relevant documents were
classified as not relevant. One can see that logistic regression has the overall
best results in our pilot study. The decision table has the second-best overall
results. The random forest approach has the best true-positive and false-
negative rate, which is good because we try to hold the false-negative rate as
low as possible not to miss any relevant articles. Our candidate retrieval uses
one of those three or naive Bayes, due to its simplicity, for different rankings
of the remaining corpus.

When working with machine learning approaches, the most important task
is how to preprocess the data and choosing which features are taken for training
the model. For all documents, we removed all stopwords using an English
dictionary. Then we used the porter stemmer to transform conjugated words
to their base form. After that, the term frequency and the inverse document
frequency for all terms in all documents are computed. The term frequency tf
and the inverse document frequency idf are used as features for feature vectors

11
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Doc 1
1 " log{2/2)% hello
"Hello World" 1 *log{2/1) |world
Doc 1
0~ log(2/M)/space
t-idf
—_——> Doc 2

1= log{2/2)y hello
0 *log(2M) | world
Doc2 |"Hello Space”

1~ log{2/1)/space

Figure 3.2: Data Preprocessing of two Documents

for a document. This transformation of a document to a feature vector is
exemplified in Figure 3.2. The term frequency is the number of occurrences of
that term in a document. The inverse document frequency is log(%), where
Np is the number of documents and f; is the number of documents in which
term t occurs. The term frequency is multiplied by the inverse document
frequency. This product will be computed for every term in every document
and represented by a vector. In Figures 3.2 one can see word hello occurs one
time in Document one. This is multiplied with inverse document frequency of
hello, which is log(%) which equals 0. Therefore the entry in the vector for the
word hello of document one is zero. That indicates that hello is not a specific
term for document one because it occurs in all other documents.

3.2.2 Keyquery Approach

In this section, our keyquery approach for technology-assisted systematic re-
views is elucidated. First we show how a keyquery works, then we present how
we can use it for technology-assisted review creation. Figure 3.3 illustrates how
a keyquery works. Keyphrases are extracted into a vocabulary from relevant
documents. A phrase is a group of words of a sentence that carries a special
meaning. Keyphrases are phrases that contain information about the content
of the document. These phrases are selected based on the tf-idf score, meaning
that if a term or phrase has a high tf-idf score it is more likely to be taken as
keyword or phrase. With this vocabulary, keyqueries are computed. First, the
vocabulary’s smallest phrases are taken and tested if they suffice the conditions
of being a keyquery. A query is a keyquery if the relevant documents are in
the top k retrieved documents of the query and if there are at least [ retrieved
documents. Suppose the vocabulary phrase does not suffice those conditions,
more phrases are added to the initial phrase until it is a keyquery.

12
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DOI: 10.1007/978-3-319-30671-1_37 - Corpus ID: 27161586

Supporting Scholarly Search with Keyqueries

Matthias Hagen, Anna Beyer, +2 authors Benno Stein - Published in ECIR 2016 - Computer Science

We deal with a problem faced by scholars every day: identifying relevant papers on a given topic. In particular, we focus on the
scenario where a scholar can come up with a few papers (e.g., suggested by a colleague) and then wants to find “all” the
other related publications. Our proposed approach to the problem is based on the concept of keyqueries: formulating
keyqueries from the input papers and suggesting the top results as candidates of related work.

Calculation of Keyqueries

Extracted Keyquery:
keyqueries

Result of Keyquery

14 results for “keyqueries”

Fields of Study v Date Range v Has PDF Publication Type v Author v Journals & Confere

Supporting Scholarly Search with Keyqueries
Matthias Hagen, Anna Beyer, Tim Gollub, Kristof Komlossy, Benno Stein - Computer Science - ECIR - 20 March 2016

TLDR We deal with a problem faced by scholars every day: identifying relevant papers on a given topic. Expand
6610 PDF View via Publisher J Save A Alert && Cite & Research Feed

Keyqueries for Clustering and Labeling
Tim Gollub, M. Busse, Benno Stein, Matthias Hagen - Computer Science - AIRS - 30 November 2016

TLDR In this paper we revisit the document clustering problem from an information retrieval perspective. Expand

Figure 3.3: Example for keyquery functionality. At the top is a document, from this
we extract a keyquery. The conditions for this keyquery are e.g.:

k = 3 (wanted document is in top 3 of the retrieval);

[ = 10 (there are at least 10 results in the retrieval).

At the bottom is the result of a retrieval, where one can see that this keyquery
suffices the given conditions.

13
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In the example the document of which the keyquery is extracted from, is
the first result of the retrieval and there are 14 results. So that keyqueries is
a keyquery for the document "Supporting Scholarly Search with Keyqueries"
where k equals 3 and [ equals 10. A keyquery is designed to find similar doc-
uments as the ones the vocabulary is extracted from. We assume that similar
documents to a set of relevant documents are also possibly relevant. There-
fore we can use these keyqueries to retrieve relevant documents for creating
systematic reviews. From relevant labeled documents, we extract keyphrases.
With these, we create keyqueries and use them to retrieve documents from the
corpus for each keyquery. The results of the keyqueries retrieval are combined
so that from each result set the highest-ranked document is put in the final
result. Then users can give feedback on the highest ranked documents and our
approach can again create keyqueries, using the human in the loop pattern.

This approach can be improved by pseudo-relevance feedback. Pseudo-
relevance feedback is the labeling of documents as relevant made by another
technology-assisting approach. With pseudo-relevance feedback, our keyquery
approach can create more and maybe better keyqueries and could retrieve rele-
vant documents better. An ensemble of machine learning algorithms classifies
the documents of the corpus using the users feedback. From this classifica-
tion, the predicted relevant documents are given to the keyquery approach.
This uses the pseudo-relevance feedback and the real feedback from the user
to create keyqueries. However, it might be possible that the pseudo-relevance
feedback is noisy, that some of the documents have the wrong label. With
this feedback, the keyquery approach again creates keyqueries and follows the
same procedure as the keyquery approach without pseudo-relevance feedback.

3.3 Methodology

This section describes the hyper-parameters of each algorithm we use to tune
our approaches. For the machine-learning approaches we focus on parameters
for data preprocessing and feature selection. As features we use the term
frequency, tf-idf and for preprocessing we used undersampling techniques. For
undersampling, we use a tool that removes not relevant documents until a
desired ratio of relevant to not relevant documents is reached. That means
that relevant documents have a greater influence on the training of the machine
learning model compared to unbalanced data sets. The weighting factors are
[0.5, 1.0, 1.5, 2.0]. A weighting factor of 2.0 means that there are twice as
many not relevant documents as relevant ones, 0.5 means that there are twice
as many relevant documents than irrelevant documents.

Our keyquery approach uses a wider range of parameters. First, we use

14
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the hyper-parameter k and [ in range [10, 20, 50, 100]. [ states that there
must be at least [ results in the keyqueries retrieval, k states that all relevant
documents must be under the top-k results. Another parameter is m. This
parameter states the absolute ratio of relevant documents in the top-k result.
For example, k& has the value ten, and m value seven. Then there must be at
least seven relevant documents in the top-k results. m is set to [10%, 30%, 50%,
70%, 100%)] of the different k values. Also, the way of merging or interleaving
the keyquery results is tested, because if many keyqueries are computed each
has its own result retrieval. We test balanced and teamdraft interleaving. In
balanced interleaving the top result of each ranking is taken for the final result
ranking. As Radlinski described, balanced interleaving is not good in merging
almost identical retrieval results [18]. Therefore we may get better results when
using teamdraft interleaving, which randomly picks the ranking of which the
next top result is taken from. Another parameter that could have an impact on
the results is the removal of redundant keyqueries. Here keyqueries that return
the same results as others will not be used. The last parameter we evaluate on
our keyquery-based approach is the use of pseudo-relevance feedback, where
our machine-learning based approaches provide potential relevant documents
of which our keyquery-based approach creates keyqueries.
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Chapter 4

Evaluation

This chapter evaluates and discusses the machine learning approaches and
the keyquery approach that helps screening documents for creating systematic
reviews. First, we describe our experiment setup, then evaluate the machine
learning approaches and discuss the results. After that, we assess the keyquery
approach.

4.1 Experiment Setup

For our evaluation, we used two datasets of the Julius-Kiihn-Institute, short
JKI. Their datasets were created during the generation of a systematic review
for biological research. Those data sets are from 2018 and 2019 and are called
CEEDER-2018 and CEEDER-2019. The documents are about ecological and
environmental topics with the query concerning environmental management.
Besides, we took a dataset from a genome TREC conference also from 2019
where the documents are mainly about genome editing with the query if there
are documents about the traits of genome editing in plants and crops. There
are about 27000 documents in CEEDER-2018, CEEDER-2019 contains about
14000 documents with each about 5% relevant documents, and in the genome
TREC data set are about 5000 documents of which are 27% relevant. There is
relevance judgment on each document in all sets. This judgment can simulate
real users evaluating documents. Also, the initial query for each dataset is
given. We chose CEEDER-2018 as our validation set to tune the parameters,
and CEEDER-2019 and genome TREC are used as test sets.

Due to the number of documents and the real user judgment on the doc-
uments, we created an automatic human-in-the-loop system for testing pur-
poses. This system simulates an actual user by labeling the top-k documents
after the candidate retrieval has reordered the corpus. With this, tests can
run much faster than if users have to screen the documents online. We assume
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these relevance judgments to be correct.

As a performance measure, we take the work saved oversampling (WSS)
measure. It indicates how much work has been saved using the technology-
assisting system instead of screening the corpus without it. We apply the
definition from Cohen et al. [2]. The formula is as follows:

True Negatives + False Negatives

WSSQRecall = Total Number of Docs

— (1 — Recall).

The True Negatives + False Negatives are the documents that have not been
judged yet. For example, we have 100 in a corpus of documents and a recall of
85% after 60 seen documents. Then the WSS@85% equals 25% because with
the assisting system, users have seen 25% more relevant documents with the
same amount of work. Hence the higher the WSS value, the better because a
high WSS value means that more relevant documents were screened to achieve
this recall with less effort. In creating systematic reviews, it is crucial to have
a high recall. Therefore we evaluate our systems with a recall of 85%, 90%,
and 95% on the WSS measure. In addition to the WSS measure we plotted
results with the used effort against recall.

To compare our approaches against others, we took two approaches as
baselines. The first is BM25 retrieval, where every document is sorted by a
score [13]. The second approach is a machine-learning-based algorithm from
Cormack et al. called HiCal [3], which was discussed in the related work
Chapter 2. Here the structure is similar to our machine learning approach,
using the human-in-the-loop pattern and a logistic regression classifier.

4.2 Evaluation of our Approaches

In the following sections we discuss our experiments regarding the machine-
learning approaches and the keyquery-based approach. First we tune parame-
ters for our machine-learning based approaches on CEEDER-2018. As param-
eters we first use different features for training the machine-learning models
and secondly we use undersampling methods to reweigh the dataset. Then
we discuss their performance on the other datasets. After that we tune our
keyquery-based approach on regard to the parameters k, [ and m. Then we
test different interleaving methods and at last we test if pseudo-relevance feed-
back is improving the performance of the keyquery-based approach. In the
end we discuss its performance on CEEDER-2019 and genome TREC dataset.
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4.2.1 Evaluation of Machine Learning Approaches

As Lange et al. stated, that improving feature selection and data preprocess-
ing is more important then selecting and finetuning a sophisticated machine-
learning model.[14]. Therefore, we focused on feature selection and data pre-
processing and not on finetuning the different machine learning models. We
used three different features. The first feature is boolean term occurrence. For
each term it is checked if it occurs in a document. The second is the term fre-
quency (tf), where it is checked how often a term occurs in a document. The
last is the term frequency multiplied by the inverse document frequency (tf-
idf). The inverse document frequency is defined as follows: Zog#@1 where

N is the number of documents and ), ., 1 is the number of documents in
which term ¢ occurs.

We evaluated four machine-learning approaches with these features on
CEEDER-2018: A naive Bayes approach, a logistic regression approach, a
random forest approach and a decision table approach. Table 4.1 shows the
results with regard to the WSS score. The decision table has the worst perfor-
mance of all used approaches and the different features did not have an impact
on the results. The third best of our approaches is the logistic regression ap-
proach. Here the results differ only a little between the different features too.
Interestingly our is significantly worse than HiCal which also uses a logistic
regression model. The second best of our approaches is the random forest ap-
proach with the boolean term occurrence feature. Our naive Bayes approach
significantly outperforms all of our own approaches but performs worse than
HiCal. This is interesting because naive Bayes is a much simpler machine
learning model than logistic regression.

The approaches with the overall best results are visualized. If the results
were equal or it was not obviuous which one the best results were, we used the
approaches with the tf-idf feature. We did this because we assumed that more
complex features may lead to better results in future experiments on other
datasets.

In Figure 4.1 one can see results of the discussed approaches where the recall
is computed as a function against the effort. Contrary to our expectations, the
different features did not significantly impact the results. One can see that
naive Bayes and random forest are nearly identical to HiCal in the beginning
but then their recall curve flattens faster. So they cannot extract relevant
documents as precise as HiCal. Besides our decision table approach is similar
to BM25, which uses no user feedback at all. Interestingly none of the used
features did have a big impact on the results.

After evaluating the used features, we now assess another data processing
method. High inequality in datasets between relevant and irrelevant docu-

18



CHAPTER 4. EVALUATION

Approach WSS WSS WSS
pproac @85% @90% @95% 10
NB 59.03 56.75 47.53
NB TF 58.90 56.10 46.67
NB TF-IDF 58.78 57.00 48.80 08
Log 43.14 41.58 35.14
Log TF 43.22 42.29 33.73
Log TF-IDF 43.73 42.27 34.52 06
RF 52.82 51.34 41.83 3
RF TF 54.30 47.90 38.06 g
RF TF-IDF 53.01 49.83 35.68 04
DT 13.87 09.59 05.36
DT TF 13.87 09.59 05.36 Naive Bayes TE-IDF
DT TF-IDF 13.87 09.59 05.36 02 — Logistic TFDF
P —— Random Forest
BM25 20.24 11.66 09.68 — Decision Table TF-IDF
HiCal 64.75 65.27 59.96 — BM25
TF = term frequency; TF-IDF = term frequency - 00 . . . . . Heal .
inverse document frequency; NB = Naive Bayes; 0 5000 10000 15000 20000 25000
Log = logistic regression; RF = random forest; Effort

DT = decision table

Table 4.1: Machine Learning Approaches Figure 4.1: Recall-Effort Plot of
with different features. To quickly see the Machine-learning based approaches with
best overall result for each approach, we different features.

highlighted that result.

ments can result in bad machine-learning models because the machine-learning
model could just predict the negative class and still achieve high performance
measures due to highly unbalanced classes. Due to the high inequality of rel-
evant and irrelevant documents in the here used datasets, we undersampled
the class of irrelevant documents. Undersampling means that we do not use
every document labeled as irrelevant for training the machine-learning model.
We tested this undersampling with different distributions. A distribution of
undersampling describes the ratio of relevant documents proportionally to the
ratio of irrelevant documents. For example, a distribution of 1.0 means that
the amount of relevant and irrelevant documents is the same. Distribution of
2.0 means there are twice as many irrelevant documents as relevant documents.
We tested the algorithms with the features that had the best performance.
The results with an undersampling distribution range of [0.5, 1.0, 1.5, 2.0]
are shown in Table 4.2. Here our logistic regression approach had the worst
performance. It is worse than the logistic regression approach without under-
sampling. Interestingly for the logistic regression approach is that the under-
sampling distribution of 2.0 has no better performance than the undersampling
distribution of 1.5. Although in the dataset of CEEDER-2018 the ratio of rel-
evant documents is about 5%. The third best approach is the decision table
approach. It improved significantly in contrast to the non-undersampling ap-
proach and apparently works best if there is the same amount of relevant and
irrelevant documents. The second best approach is again the random forest
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WSS WSS WSS
A b - 10
pproach  U-rate g0 @90% @95%
NB TF-IDF 0.5 57.53 55.31 47.49
NB TF-IDF 1.0 58.55 56.49 44.18
NB TF-IDF 1.5 58.64 56.45 47.99 08
NB TF-IDF 2.0 58.58 57.22 48.26
Log TF-IDF 0.5 29.63 24.23 17.84
Log TF-IDF 1.0 28.05 26.81 22.23 06
Log TF-IDF 1.5 34.64 30.28 22.02 :
Log TF-IDF 2.0 29.29 28.77 23.74 %
RF 0.5 54.30 53.70 48.24 04
RF 1.0 55.50 52.74 47.22
RF 1.5 56.79 52.71 40.40
RF 2.0 56.61 54.39 48.36 Nave Bayes TEIDF 20
DT TF-IDF 0.5 36.27 34.62 25.15 02 — Logistc TF-DF 15
DT TF-IDF 1.0 43.99 32.48 25.45 — Random Forest 2.0
DT TF-IDF 1.5 38.78 23.10 15.45 — Decision Table TF-DF 10
DT TF-IDF 2.0 33.79 28.57 11.58 0 — 2“17‘5
A ICa
U-Rate = undersampling distribution rate; . . . . . .
TF-IDF = term frequency - inverse document frequency; 0 5000 10000 15000 20000 25000
NB = Naive Bayes; Log = logistic regression; Effort

RF = random forest; DT = decision table

Table 4.2: Machine Learning Approaches Figure 4.2: Machine Learning Ap-
with Undersampling. To quickly see the proaches with Undersampling

best overall result for each approach, we

highlighted that result.

approach, which slightly improved compared to the random forest approach
without undersampling. The best of our machine-learning approaches is the
naive Bayes approach, which like random forest improved slightly compared
to no undersampling. Again none of our approaches were able to outperform
HiCal but they all performed better than BM25. The overall best results of the
undersampling approaches are visualized in Figure 4.2. Here the biggest differ-
ence between undersampling and no undersampling is seen in the curve of the
decision table and logistic regression approach. On the other two approaches
undersampling seemed to have no significant impact.

These tests on CEEDER-2018 have shown that the logistic regression ap-
proach with tf-idf feature and no undersampling, the naive Bayes approach
with tf-idf feature and undersampling distribution of 2.0, the decision table
approach with tf-idf feature and undersampling distribution of 1.0 and the
random forest approach with boolean term occurrence feature and undersam-
pling distribution of 1.5 had the best performances.

We use these approaches and test them on CEEDER-2019 and the genome
TREC data set. Table 4.3 shows the results on the CEEDER-2019 data set.
The results show that our logistic regression approach is the worst of our
approaches, the third best is the decision table approach, the second best is
the random forest approach and our best approach is the naive Bayes approach.
The WSS measure indicates that the results are very similar to the ones on
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08

0.6

Approach WSS WSS ‘WSS 04
Q85% Q@90% Q@95%
NB TF-IDF 2.0 55.57 52.20 49.29
Log TF-IDF 34.10 32.72 26.84 Naive Bayes TF-IDF 2.0
RF 2.0 52.45 52.91 48.71 02 — Logistic TF-IDF
DT TF-IDF 1.0 40.68 38.30 26.80 — Random Forest 2.0
— Decision Table TF-IDF 1.0
BM25 9.04 -0.38 -0.87 — BM25
HiCal 64.60 66.48 61.57 007 7 Hical
TF-IDF = term frequency - inverse document frequency; 0 2000 4000 5000 5000 10000
NB = Naive Bayes; Log = logistic regression; Effort

RF = random forest; DT = decision table

Table 4.3: Machine Learning Approaches Figure 4.3: Machine Learning Ap-
on CEEDER-2019 proaches on the JKI 2019 data set.

CEEDER-2018. Also HiCal performed similar on both data sets only BM25
performed worse on CEEDER-2019.

Figure 4.3 shows those results in an effort-recall plot. There one can see
that in the beginning, naive Bayes is almost identical to the HiCal approach
indicating that it can predict unknown documents well with only few relevance
judgments. One can see that on the JKI data sets, the naive Bayes approach
is best compared to our approaches, and logistic regression performs worst
compared to our approaches even though it also uses a logistic regression model
just like HiCal.

The last tests of our machine-learning based approaches were run on the
genome TREC data set. The parameters of each approach is the same as on the
previous data set. Table 4.4 shows the results of our approaches against HiCal
and BM25. Interestingly all approaches had a significantly worse performance
than on the previous data sets. This could be because in the genome TREC
data set there are about 25% relevant documents and those documents might
have very different content, hence the machine-learning models can not predict
very well if a document is relevant. Our logistic regression approach performed
worst of all our approaches, the decision table approach performed significantly
better. Our naive Bayes approach performed not significantly better than
the decision table approach as on CEEDER-2018 or CEEDER-2019 and our
random forest approach performed just slightly worse than HiCal.

Figure 4.4 visualizes the discussed results on the genome TREC data set.
Here one can see that the random forest approach is similar to HiCal after
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Approach ‘WSS ‘WSS ‘WSS 04
Q@85% @90% @95%
NB TF-IDF 2.0 36.23 35.73 32.62
ﬁ%‘g QTST_IDF ig(l); ii’gg ?1,?(2; 0.2 Naive Bayes TF-IDF 2.0
N . N - —— Logistic TF-IDF
DT TF-IDF 1.0 35.34 32.57 27.07 —— Random Forest 2.0
— Decision Table TF-IDF 1.0
BM25 1.76 2.15 3.59 — BM25
HiCal 44.95 42.38 38.32 0.0 Hical
TF-IDF = term frequency - inverse document frequency; 0 1000 2000 3000 4000 5000

NB = Naive Bayes; Log = logistic regression; Effort

RF = random forest; DT = decision table

Table 4.4: Machine Learning Runs on Figure 4.4: Machine Learning Ap-
genome TREC data set proaches on the genome TREC data set.

evaluating half the documents. Naive Bayes has a worse performance in the
beginning compared to the results on the previous data sets.

None of our approaches was able to beat the state-of-the-art HiCal algo-
rithm. The feature selection and data preprocessing did not have the impact
we supposed. The naive Bayes and random forest approach came closer to the
HiCal results than BM25 and our other approaches.

4.2.2 Evaluation of the Keyquery Approach

In this section, we discuss the results of the keyquery approach. First we tune
parameters on CEEDER-2018 and then we test them on CEEDER-2019 and
the genome TREC data set. We performed a grid search for our keyquery
system with different values for k, [ and m. k states that a relevant document
must be under the top-£ results, m states how many relevant documents have
to be in the top results. The parameter m can weaken the first condition if
m has a smaller value than k. A small value of m weakens the condition of
parameter k, in a way that a query is considered more likely to be a keyquery.
The parameter [ states that there must be at least [ results. A large value for
[ means that the keyquery must be more general to retrieve many documents.
A small value for k£ means that the keyquery must be more specific regarding
that document. The parameters k and [ were set to a range of [10, 20, 50, 100]
and m was set to a certain percentage of the value of k. This means that for
each k, m was set to [10%, 30%, 50%, 70%, 100%] of k’s value. For example,
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if k equals 10 m is set to [1, 3, 5, 7, 10].

We assume that a combination of a small value for k£ and a larger value for
[ should give good results because the keyqueries have to be so specific that
the relevant document is in the top-k results, but also general enough that it
retrieves many documents that might be related to the relevant document and
hence possibly relevant. A small value for m would indicate that a query is
more easily a keyquery. More keyqueries might result in better overall results
even though they might not be keyqueries as defined. Due to the number
of results evaluating all those different parameter settings, we only display a
subset comprised of the best and worst results from that parameter study.
These results are shown in Table 4.5.

One can see that the parameter m has a significant impact on the per-
formance as can be seen on the first two results with a rising value of m the
performance got worse. Although in most cases when [ is larger than k the
performance improved as seen in the fourth result. The best results for the
value of m were reached when it was set to 0.3 - k. The selection of a smaller
value for k than for [ also gave marginally better results than other tests, but
these differences are not significant. Compared to the machine-learning-based
approaches the best results of the keyquery-based approach are better than
the logistic regression and decision table approach on CEEDER-2018 and not
significantly worse than the random forest approach.

Figure 4.5 visualizes these results. Noticeably the keyquery approaches do
not slope as early upwards as the machine-learning-based approaches. This
might be because the keyquery approach needs many relevant documents to
find keyqueries. Therefore the keyquery approach needs more iterations to
finally compute keyqueries. All keyquery-based approaches need to see more
documents than HiCal to achieve similar recall of relevant documents. There-
fore their performance is not as good as HiCal’s. The higher the value of m,
the later the approach can detect relevant documents. This is due to the fact
that this approach has fewer keyqueries and can therefore not find relevant
documents early. If m has a small value, this approach can detect relevant
documents early, because the condition that a query is a keyquery is low.
Then queries which does not suffice the strong conditions of being a keyquery
become a keyquery. Then it is possible that more irrelevant documents are
detected as relevant and the performance decreases.

From these tests we take the two best results for following the parameter
tests. Each keyquery is given to a search engine which retrieves a ranked list of
the remaining documents. The lists for each keyquery must be merged into a
final list of the remaining documents and we tried two merging or interleaving
strategies. The more trivial interleaving strategy, balanced interleaving, was
used in the tests above. In the following tests we tested teamdraft interleaving.
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Approach k 1 m WSS WSS WSS 3
@85% @90% @95% N
Keyquery 10 10 1 45.19 41.12 34.71
Keyquery 10 10 7 33.85 29.10 23.98
Keyquery 20 20 2 47.70 44.61 38.50
Keyquery 20 50 6 51.06 50.07 37.69
Keyquery 50 50 34 20.24 11.66 9.68
Keyquery 50 100 25 23.15 20.72 11.91
Keyquery100 100 10 50.97 50.01 43.24
BM25 20.24 11.66 .68 B
2 20. . . offor
HiCal 64.75 65.27 59.96

Table 4.5: Keyquery Approach with dif- Figure 4.5: Keyquery Approach with dif-
ferent values for k, [ and m; with the best ferent values for k, [ and m
results highlighted

Table 4.6 shows the result of the keyquery approach with teamdraft inter-
leaving and with balanced interleaving. The choice of the interleaving strategy
did not have a vast impact on the results but it can be observed that the
results with teamdraft interleaving performed slightly better. This makes the
second result more similar to the random forest approach on CEEDER-2018
which is slightly worse than our naive Bayes approach which performed best.
The results can also be seen in Figure 4.6.

Another parameter that we evaluated was the removal of redundant key-
queries. This method deteriorated the results, such that they performed partly
worse than BM25. Therefore we did not evaluate further with this method.

All of the above used approaches have one flaw: they need to see many doc-
uments to function well. In the beginning, there are too few relevant articles
to make keyqueries. Therefore we add pseudo-relevance feedback to the key-
query approach. Pseudo-relevance feedback are relevant labeled documents,
labeled from our machine-learning approaches. When a document is predicted
as relevant with a score of more than 80%, we consider it relevant. We used
the score of 80%, so that the machine-learning approach is almost sure that
a document is relevant. Our keyquery approach can use this document to
create keyqueries. We used all four machine learning approaches to create
pseudo-relevance feedback. Each machine learning approach can provide up
to 5 pseudo-relevant documents if its predicted score is over 80%. We hypoth-
esize that this amount of feedback suffices for the keyquery approach to create
keyqueries earlier than on the previous approaches.

Table 4.7 shows the results of our keyquery approach with pseudo-relevance
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WSS WSS WSS 3

A h I g

pproac @85% @90% @95% E
Keyquery (1) Team 51.43 50.10 36.93
Keyquery (2) Team 54.50 52.69 45.26
Keyquery (1) Bal 51.06 50.07 37.69
Keyquery (2) Bal 50.97 50.01 43.24
BM25 20.24 11.66 9.68
HiCal 64.75 65.27 59.96

I = Interleaving method; 3 060 o600 13000 20000 23600

Team = Teamdraft Interleaving; Bal = Balanced Interleaving; effert

(1) k=20 1=50 m=6; (2) k=100 1=100 m=10

Table 4.6: Keyquery Approach with Figure 4.6: Keyquery Approach with
Teamdraft Interleaving and the best re- Teamdraft and Balanced Interleaving
sults highlighted

feedback from our machine-learning approaches against the results of our
keyquery-based approach with teamdraft interleaving. One can see that the
results with pseudo-relevance feedback have very similar results to the results
with teamdraft interleaving. The approaches with pseudo-relevance feedback
did not perform better with this feedback. Figure 4.7 shows the results of the
keyquery approach with pseudo-relevance feedback against the keyquery ap-
proach without it. One can see that the curve of the runs with pseudo-relevance
feedback starts earlier to differentiate from the initial BM25 ranking, which is
taken when no keyqueries could be extracted. But this strong upwards slope
does not last and it flattens so that they are both similar in the end. This may
be because too many irrelevant documents were considered as relevant by the
machine learning approaches.

After we evaluated the parameters for our keyquery-based approach on
CEEDER-2018 we test them on CEEDER-2019 and genome TREC. Since
pseudo-relevance feedback does not improve our keyquery approach’s perfor-
mance, we do not test it on CEEDER-2019 and genome TREC. On those data
sets, we test our keyquery approach with the parameters as above for k, [ and
m and teamdraft interleaving against our four machine-learning approaches,
BM25 and HiCal.

Table 4.8 shows the results of all tested approaches on CEEDER-2019.
One can see that based on WSS score, our keyquery approach was better than
BM25, the logistic regression approach and the decision table approach. The
naive Bayes and random forest approach performed slightly better, and Hi-
Cal outperformed every approach. Figure 4.8 shows that in the beginning all
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Approach P WSS WSS WSS
@85% Q@90% Q@95%
Keyquery (1) Pseudo 52.41 48.53 36.59
Keyquery (2) Pseudo 54.29 52.02 45.48
Keyquery (1) 51.43 50.10 36.93
Keyquery (2) 54.50 52.69 45.26
BM25 20.24 11.66 9.68
HiCal 64.75 65.27 59.96

P = Pseudo-Relevance Feedback; 3 S0 10600 15000 20000
(1) k=20 1=50 m=6 Teamdraft Interleaving;
(2) k=100 1=100 m=10 Teamdraft Interleaving;

Table 4.7: Keyquery Approach with Figure 4.7: Keyquery Approach with and
Pseudo-Relevance Feedback and the best without Pseudo-Relevance Feedback
results highlighted

machine-learning based approaches had a better recall than our keyquery ap-
proach, but with more screened documents the recall of our keyquery approach
improved significantly.

Our final test was on genome TREC. Here, our keyquery approach per-
formed the worst on all three sets. Table 4.9 shows that both keyquery runs
are very similar and that the keyquery run with the parameters £ = 100,
[ = 100, and m = 10 that performed better in previous runs is now worse.
On this set, our keyquery approach is only better than BM25. An interesting
observation is different performance between the datasets. All approaches, not
just ours, performed worse on the genome TREC data set even though the pro-
portion of relevant documents is significantly higher than on CEEDER-2018
and CEEDER-2019. The relevant documents may have only a small intersec-
tion of similar information, so approaches working with the content to find
relevant documents can not easily retrieve them. Figure 4.9 shows the results
of all tested approaches on genome TREC in an effort-recall plot.

4.2.3 Discussion

The evaluation has shown that that the current state-of-the-art algorithm for
technology-assisted reviews performs better than our machine-learning-based
approaches and our keyquery-based approach. We tested our machine-learning
algorithms on three different kinds of features: (1) boolean word occurrence,
(2) tf and (3) tf-idf. Although we re-implemented HiCals logistic regres-
sion with weka, a java toolkit for machine-learning. Our re-implementation
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10
WSS WSS WsSs
A h -
pproac U-Rate  ggro @90% @95% os
Keyquery (1) 51.06 50.71 41.32
Keyquery (2) 53.33 50.27 43.71
06
NB TF-IDF 2.0 55.57 52.20 49.29 _
Log TF-IDF 34.10 32.72 26.84 g
RF 2.0 52.45 52.91 48.71 os
DT TF-IDF 1.0 40.68 38.30 26.80
BM25 9.04 -0.38 -0.87 F—
HiCal 64.60 66.48 61.57 02 — equetrinr
— Random Forest 2.0
TF-IDF = term frequency-inverse document frequency; T evauery 20 150 ma Team
U-Rate = undersampling distribution rate; — Keyauery k=100 1100 m=10 Team
(1) k=20 1=50 m=6 Teamdraft Interleaving; oo T hica
(2) k=100 1=100 m=10 Teamdraft Interleaving; 3 2000 4000 5000 5000 10600

NB = Naive Bayes; Log = logistic regression; e

RF = random forest; DT = decision table

Table 4.8: Machine-Learning and Key- Figure 4.8: Machine-Learning and Key-
query Runs on CEEDER-2019 query Runs on CEEDER-2019

WSS WSS Wss e
Approach U-Rate  gg59 @90% @95%
Keyquery (1) 19.20 15.55 6.72 s
Keyquery (2) 17.40 13.61 6.02
NB TF-IDF 2.0 36.23 35.73 32.62 06
Log TF-IDF 24.17 23.46 19.51 _
RF 2.0 43.03 41.02 37.23 i
DT TF-IDF 1.0 35.34 32.57 27.07 04
BM25 1.76 2.15 3.59
HiCal 44.95 42.38 38.32 .
TF-IDF = term frequency-inverse document frequency;
U-Rate = undersampling distribution rate;
(1) k=20 1=50 m=6 Teamdraft Interleaving; 0o
(2) k=100 1=100 m=10 Teamdraft Interleaving; p == = = — —e
NB = Naive Bayes; Log = logistic regression; Effort

RF = random forest; DT = decision table

Table 4.9: Machine-Learning and Key- Figure 4.9: Machine-Learning and Key-
query Runs on genome TREC query Runs on genome TREC

achieved a significantly worse performance than HiCals algorithm. We expect
that this difference is due to different implementation details and possibly
more fine-tuned parameters on HiCal. Our naive Bayes approach and random
forest approach have a similar slope in the beginning as HiCal but their per-
formance decreases faster. The worse performance may be to the simplicity of
naive Bayes and lack of parameter fine-tuning for random forest. Also, differ-
ent features can have a significant impact on the results as normalization or
stemming. Our decision table’s performance improves a lot by undersampling
especially when the amount of relevant and irrelevant documents are balanced.
With other features and different parameter settings, the performance might
improve.
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A comparison between our kequery-based approach and our machine-learn-
ing based approaches has shown that the slope of the machine-learning based
approaches are better in the beginning. This is because the keyquery-based
approach can create keyqueries only with many relevant documents. Pseudo-
relevance feedback are documents that were predicted relevant by our machine-
learning approaches. We assumed that pseudo-relevance feedback provided by
our machine-learning approaches could help to improve our keyquery-based
approach. In fact, the slope was higher than before in the beginning but
decreased faster. If we were able to improve our machine-learning-based ap-
proaches, they would be able to give better predictions on documents. Then
fewer non-relevant documents would be considered as relevant and taken into
consideration for building keyqueries.

The most difficult dataset was genome TREC. All approaches performed
worse on this data set than on CEEDER-2018 and CEEDER-2019. This may
be because relevant documents on genome TREC do not share much content.

Furthermore our keyquery approach does not use the initial query as rel-
evant document, which the machine-learning approaches do. A test on the
machine-learning approaches show that the use of this query improves the
performance slightly. If the keyquery approach would use this query, it might
improve as well.
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Chapter 5

Future Work and Conclusion

In this section we outline possible improvements to our machine-learning based
approaches and our keyquery-based approach. After that we summarize the
main aspects of this work and draw a conclusion.

5.1 Future Work

First we look into methods how to improve the performance of the machine
learning approaches. One might create an ensemble of existing approaches like
using an ensemble of support vector machines [22] or other ensembles which
performed best among the tested approaches [14].

For our machine-learning-based approaches we tested undersampling and
several kinds of feature selection like (1) boolean word occurrence, (2) tf and
(3) tf-idf to improve them. There is still a vast range of parameters to be tested
for our machine-learning based approaches. One could use normalization or
a lemmatization. In addition we left all parameters for the machine-learning
models at default, the performance can be improved by doing a grid search
on all possible parameters for the different models. Due to the fact, that our
logistic regression approach is worse than the current state-of-the-art approach,
called HiCal, which also uses a logistic regression model, one could also study
the source code of the state-of-the-art approach to find the features they are
using. Then our logistic regression approach should be as good as HiCal.

After looking into ways of improving our machine-learning-based approach-
es we will now look into ways of improving our keyquery-based approach. In
the evaluation we shortly discussed if the removal of redundant keyqueries
improves the performance. Redundant keyqueries are keyqueries that do not
provide more information than another keyquery. Evaluation showed that
the removal of the redundant keyqueries as implemented now deteriorated the
results. If we do further research on the removal of redundant keyqueries it
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could improve the performance of the keyquery approach. Furthermore one
could use the non redundant keyqueries for a single boolean query. With
this boolean query the retrieval system could possibly give a better result
than merging the results of each keyquery because the scores on documents of
keyqueries can be deficient.

A second idea of improving the keyquery-based approach is to use more
and possibly better pseudo-relevance feedback. Pseudo-relevance feedback are
documents predicted as relevant by our machine-learning approaches and used
by our keyquery approach to generate keyqueries. If our machine-learning-
based approaches improved, then our keyquery-based approach could create
keyqueries only for relevant documents and hence improve its performance.

Another interesting approach for future work is the usage of context-depen-
dent term weights, which in experiments had better rankings in ad-hoc web
search than tf and BM25 [5]. The score of a context-dependent term weight
states the importance of a term in its context. One advantage is that these
scores can be directly used in a inverted index of a search engine and hence
can be used out-of-the-box for our keyquery-based approach and also for our
machine-learning-based approach as another kind of feature. We can see that
there is more to achieve in later work on technology-assisted review creation
with the help of keyqueries.

5.2 Conclusion

In this thesis, we tackled the task of technology-assisted review creating via
keyqueries. Due to the importance of systematic reviews and the manual
effort involved in creating a systematic review, it is necessary to provide mod-
ern technological systems that can reduce the time of screening documents
for systematic reviews. There is no modern system that can provide all rel-
evant documents for a research topic at once. Therefore, scientists created a
framework that learns from user feedback that documents are relevant and can
provide more relevant documents.

Given a corpus of potential relevant documents, users evaluate the top
documents from this corpus and provide feedback on the seen documents. A
technology-assisting system uses this feedback to rank the corpus and tries to
put relevant documents in the top-results. Then the users evaluate these top
results again and the technology-assisting system can maybe provide a better
ranking with the additional feedback.

We first developed machine-learning approaches as technology-assisting
system that ranks the corpus. These machine-learning-based approaches use
machine-learning models to predict if a document is relevant. However, our
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primary focus lay on so-called keyqueries. Keyqueries are queries that, when
given to a search engine, retrieve the identified relevant documents in the top
results. The hypothesis is that the additional top results that are not the
identified relevant documents are likely to be relevant.

In our experimental evaluation we used three simulated systematic reviews,
to compare our machine-learning based and keyquery-based approaches against
themselves, against the current state-of-the-art system for technology-assisted
reviews, called HiCal and against BM25.

All of our approaches were able to outperform the BM25 ranking. Our
naive Bayes approach and random forest approach are coming close to the
performance of HiCal. Our logistic regression approach performed significantly
worse than HiCal, which is interesting because both use a logistic regression
model for predictions. Our decision table performed slightly better than our
logistic regression approach. Interestingly, feature selection on our machine-
learning approaches did not have a significant impact on their performance.

Our keyquery approach performed worse than HiCal and our naive Bayes
approach and performed similar to our random forest approach on the data
sets of the Julius-Kiihn-Institut, namely CEEDER-2018 and CEEDER-2019.
On the last data set, namely genome TREC, the performance of our keyquery-
based approach decreased significantly, such that they performed worse than
all other approaches except BM25.

Hence we conclude that further research regarding technology-assisted re-
views with keyqueries needs to be done. They can be easily interpreted due to
the keyquery criteria and the results are easier replicable than machine-learning
models. Therefore they are useful for technology-assisted reviews.
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