
Bauhaus-Universität Weimar
Faculty of Media
Degree Programme Medieninformatik

LSML: Generating Spoken
Lectures From Scripts

Bachelor’s Thesis

Christian Dunkel

1. Referee: Prof. Dr. Benno Stein
2. Referee: Prof. Dr. Jan Ehlers

Submission date: October 19, 2020

Declaration

Unless otherwise indicated in the text or references, this thesis is
entirely the product of my own scholarly work.

Weimar, October 19, 2020

. .
Christian Dunkel

Abstract

In this thesis, I outline my process of planning and developing the tool
lecture.js that allows teachers to generate spoken lectures using only a script
and slides. Current Text-to-Video software focuses mainly on providing mas-
sive databases of video clips and images which are automatically selected and
matched to the text. I concentrate on writing a tool designed explicitly for
Script-to-Lecture generation. For that purpose, I develop the Lecture Synthe-
sis Markup Language (LSML) as an extension of the Speech Synthesis Markup
Language (SSML). LSML enables teachers to write lecture scripts, define the
voice output and video settings, and control their slides in the same docu-
ment. The tool then processes the document and communicates with multiple
advanced Text-to-Speech services to produce natural-sounding speech using
machine learning. In the end, the received audio files will be stitched together
with the slides to generate a video lecture.

Contents

1 Introduction 1

2 Related Work 3

3 Requirements 6

4 LSML Language Definition 9
4.1 Document Structure . 10
4.2 Slide Management . 13
4.3 Text Structure . 15
4.4 Voices and Languages . 16
4.5 Correcting Mispronunciations 18
4.6 Prosodic Features . 21
4.7 Embedding External Resources 23

5 Implementation 26
5.1 Development Environment . 26
5.2 Program Structure . 27
5.3 Modules . 28

5.3.1 Pipeline . 28
5.3.2 Validator . 32
5.3.3 Preprocessor . 33
5.3.4 Parser . 34
5.3.5 Text-to-Speech . 38
5.3.6 Frame Extraction . 41
5.3.7 Video Generation . 44
5.3.8 Uploader . 47

5.4 Parallelization . 49
5.5 Logging . 51
5.6 Style Guide . 52
5.7 Documentation . 55

i

6 Evaluation 56

7 Conclusion and Future Work 59

Bibliography 61

Appendices 63
User Study Questionnaire . I
Simple Example Script . IV
LSML XSD Schema . V
LSML Feature Support Table . XII

List of Figures

3.1 UML Use Case Diagram . 8

4.1 PDF Conversion to a Slide Deck 13
4.2 Contain Scaling Mode . 14
4.3 Cover Scaling Mode . 14
4.4 Fill Scaling Mode . 14

5.1 4-Layer Program Structure . 27
5.2 Direct Output Directory Structure 29
5.3 Wrapped Output Directory Structure 29
5.4 Validator Module UML Component Diagram 33
5.5 Preprocessor Module UML Component Diagram 34
5.6 Parser Module UML Component Diagram 38
5.7 Text-to-Speech Module UML Component Diagram 40
5.8 PDF Worker Module UML Component Diagram 43
5.9 Simplified FFmpeg Worker Module UML Component Diagram . 44
5.10 Complete FFmpeg Worker Module UML Component Diagram . 45
5.11 Video Manager Module UML Component Diagram 46
5.12 YouTube’s Video Player with Chapters 47
5.13 Uploader Module UML Component Diagram 48
5.14 Data-parallel Video Resource Conversion 50
5.15 Potential Task-parallel Frame Extraction and Text-to-Speech . . 51
5.16 Logs displayed in the Windows 10 terminal 52

ii

6.1 Installation time . 56
6.2 Familiarization time . 56
6.3 Perceived time savings . 57
6.4 Difficulty understanding the basics 57
6.5 Difficulty using the software . 57
6.6 Voice sound quality . 57
6.7 Available languages . 57
6.8 API preferences . 58
6.9 Word mispronunciations . 58
6.10 Perceived limitation in the usage 58
6.11 Likelihood to use lecture.js again 58

iii

Acknowledgements

I thank Jun.-Prof. Martin Potthast and Lars Meyer for guiding me through
writing this thesis and dedicating their time and effort in helping me plan and
improve the software project. Without them, this thesis would not have been
possible.

I also want to give Christian Hilpert special gratitude, who sat with me
through lengthy bug-finding sessions.

iv

Glossary

API An Application Programming Interface is an interface that allows access
to the services of another software that implements that API.

HTML Hypertext Markup Language is an XML-based markup language for
documents displayed in web browsers.

IPA The International Phonetic Alphabet is the most widespread phonetic
alphabet used in phonetic transcription. It is used to precisely define the
pronunciation of a word.

JSON JavaScript Object Notation is a standardized, human-readable file for-
mat for saving and transmitting data across a number of different lan-
guages, services, programs, and operating systems.

LSML Lecture Synthesis Markup Language is an extension of Speech Syn-
thesis Markup Language (SSML) developed in this thesis. It is intended
to support aspects of Text-to-Speech and Text-to-Speech.

PDF Portable Document Format is a file format that focuses on making share-
able documents, which include images and formatted text, software- and
hardware-independent.

SSML Speech Synthesis Markup Language is an XML-based markup lan-
guage for speech synthesis applications that generalizes the process of
speech synthesis by providing a language specification suitable for differ-
ent platforms.

UML The Unified Modeling Language is a modeling language intended to
standardize system designs.

URI A Uniform Resource Identifier is a string that identifies a particular
resource unambiguously.

URL A Uniform Resource Locator is a string that references the location of
a web resource on a computer network.

v

UUID A Universally Unique Identifier is a 128-bit number used to uniquely
identify data.

W3C The World Wide Web Consortium is an organization that sets the in-
ternational standards for the World Wide Web.

XML Extensible Markup Language is a markup language that defines rules
for encoding documents in a format that is human- and machine-readable.

XSD XML Schema Definition is a type of schema definition that describes the
elements in a XML document, which is then often used for validation.

vi

Chapter 1

Introduction

In today’s digital world, it is becoming increasingly important to integrate
digitalization into the classroom to reap the advantages of greater interactivity
and distance learning. This importance only grew in light of the recent COVID-
19 pandemic, which necessitated social distancing and quarantine worldwide.
Globally, 1.2 billion learners were affected by 150 countries imposing country-
wide closures in May 2020, which made up 68% of total enrolled learners, as
reported by UNESCO [2020].

The COVID-19 pandemic forced teachers to embrace e-learning technology
to continue conducting classes. Consequently, software for e-learning and web
communications experienced substantial growth. Zoom, which is a software for
video conferencing, recorded daily downloads of 56 thousand on February 23rd,
2020. Two months later, on March 23rd, they had an increase of 3800% to 2.13
million downloads, when the UK’s lockdown was announced, as reported by
The Guardian [2020]. The conference software Big Blue Button also experi-
enced a boom at German schools and universities. For example, in June 2020,
an estimated 500 schools in Baden Württemberg alone employed the software,
as stated by the Ministry for Culture, Youth and Sport of Baden Württemberg
[2020]. If those numbers are any indication, the rise of popularity for e-learning
software in the first two quarters of 2020 may only be the beginning. It is es-
sential to introduce tools that enable learners and teachers worldwide to create
and consume lectures efficiently.

Live streaming the classroom is steadily gaining popularity, but another
type of e-learning has also been a staple of education for over a decade. Pre-
recorded lectures present unique benefits for learners. First and foremost, stu-
dents appreciate them, found by Couperthwaite et al. [2012], Nordmann and
McGeorge [2018]. Students perform better at memory exam questions when
using them, but the comprehension of the material may suffer if they do not
access the lectures on time before an exam, found Hadgu et al. [2016].

1

CHAPTER 1. INTRODUCTION

Students can adjust the playback speed on the pre-recorded lectures, re-
play sections, pause and look up additional information on the side to better
understand a difficult subject. Recorded lectures also present the advantage of
closed captioning for students with hearing disabilities or students who listen
to the lecture in a language that is not their native tongue.

However, the adoption of pre-recorded lectures also comes with a new set
of problems. The teacher has to invest a lot more time into additional tasks
unrelated to the lecture’s content. Teachers have to film their slides, record
their script, replace sub-par voice segments, and edit the video until they can
render and upload it to the internet. Audio and video editing require costly
software, hardware, and know-how to produce quality content. But why go
through all that trouble when a computer could automate most of the menial
tasks of video production? Teachers would have more time to focus on writing
the script and creating appealing slides if a machine could produce the video.

The need to easily generate lectures comes at a time when personal voice
assistants are becoming more sophisticated, and voices generated using artifi-
cial intelligence sound more and more life-like. Since 2016, Amazon is working
on its cloud service Amazon Polly that converts text into life-like speech.1
Google also offers its services for generating speech from text using its Google
Cloud platform with hundreds of voices in dozens of different languages.2

Each of these speech synthesis services offers an Application Programming
Interface (API) that can be integrated into a new software project and provide
a way to convert text to speech programmatically. Most importantly, these
services support SSML, a markup language for speech synthesis that allows
users to control the pitch, speed, and even pronunciation of words. Since SSML
is a language based on the Extensible Markup Language (XML), it can be
effortlessly extended to handle the visual aspect of the final video lecture, like
changing the slide at a particular section. These features allow for developing
a tool that enables teachers to generate complete video lectures from just a
script and slides.

In this thesis, I will discuss my process of extending the SSML language by
creating the Lecture Synthesis Markup Language (LSML) for lecture-generation
and implementing the Script-to-Lecture software lecture.js. In the end, I will
conduct a user study to evaluate the software and analyze the results.

1 Amazon Polly: aws.amazon.com/polly/
2 Google Cloud Text-to-Speech: cloud.google.com/text-to-speech

2

https://aws.amazon.com/polly/
https://cloud.google.com/text-to-speech

Chapter 2

Related Work

Students generally hold positive attitudes towards pre-recorded lectures and
tend to use them in a targetted manner, as found by Couperthwaite et al.
[2012]. In the study, 50-75% of the student body accessed the pre-recorded
lectures, often selecting lectures with the most complex topics and taking notes.
Dyslexic students particularly utilized the material.

However, Danielson et al. [2014] discovered a negative relationship between
the interactivity of a lecture and the likelihood that students would watch the
pre-recorded lectures. Students tend to watch a higher number of lectures for
courses that rely more heavily on the lecture and less on interactivity. The
study attributes this to the fact that pre-recorded lectures primarily capture
the teacher’s and not the student’s actions like student questions, which give
interactive lectures add a lot of their value. These findings suggest that pre-
recorded lectures for interactivity-heavy courses can not replace live lectures.

In the same study, over 90% of the students self-assessed that they were
likely to learn better using pre-recorded lectures. Hadgu et al. [2016] also found
that student performance, when learning with pre-recorded lectures compared
to live lectures, improved for answering memory questions, which require the
memorization of basic factual details. However, students seemed to fare better
with comprehension questions when they attended live lectures, which required
understanding the taught information.

This research suggests that pre-recorded lectures are not a substitute for
live lectures. However, they can be a useful supplement for the teaching process.
The effectiveness of hybrid course models consisting of both live lectures and
pre-recorded lectures, is also supported by Prunuske et al. [2012]. They carried
out a study that tested student performance when providing pre-recorded lec-
tures in addition to homework assignments. These pre-recorded lectures helped
students self-reportedly to complete their assignments without increasing the
time expenditure for the course.

3

CHAPTER 2. RELATED WORK

The study ran for five years, in which 70-85% of the participating students
watched the pre-recorded lectures before attending the live lectures in class,
and 97-99% of students planned to do so before the examination.

The volume of learning material, especially in university lectures, can often
not be wholly comprehended in the live lectures alone. Taking complete notes
may also be difficult if one tries to understand advanced concepts at the same
time. The research suggests that this is where pre-recorded lectures can help
students comprehend learning material and noticeably improve learning re-
sults. Still, creating video lectures besides live lectures can be time-consuming.
Although teachers may significantly reduce the time cost if there exists soft-
ware to automate parts of the process.

A multitude of commercial and open-source Text-to-Video software is avail-
able on the market. However, these focus mainly on providing massive databases
of video clips and images, which are automatically selected and matched to the
user’s text. For example, RawShorts1 and Lumen52 are services that take raw
text and convert it to speech, then automatically match it to video clips and
images from a database to generate animated videos. Besides not being com-
mercially free, both services also do not allow for the precise control required
for generating a lecture. These services are more suited to prototype a video
idea.

There also exist solutions for converting articles to videos. The services
Article Video Robot3 and Viomatic4 convert online articles to videos with
speech. A user can enter the Uniform Resource Locator (URL) of an article,
and the tool will grab the text and images from the web page. However, both
services are not commercially free, and the resulting videos are not very user-
customizable. Besides, creating a video lecture this way is very roundabout and
inefficient. It could be challenging to match the article’s images, which would
be the corresponding lecture slides, precisely to the right text sections. GliaS-
tudio5 works similarly but automatically creates video summaries of online
articles. After entering the URL to a web page or uploading a text document,
a natural language algorithm will try to find important topics and keywords
in the text. The algorithm will then generate video scripts with sections and
highlights. Based on these, an AI will search for images and video clips and edit
them together. Needless to say, GliaStudio is not suited for generating lectures
since leaving out any part of the lecture would hide information necessary for
understanding the lecture’s contents.

1 RawShorts: rawshorts.com
2 Lumen5: lumen5.com
3 Article Video Robot: articlevideorobot.com
4 Viomatic: viomatic.com
5 GliaStudio: gliacloud.com

4

https://www.rawshorts.com/
https://lumen5.com/
https://www.articlevideorobot.com/
https://www.viomatic.com/
https://www.gliacloud.com/

CHAPTER 2. RELATED WORK

Among the surveyed solutions, the one most suitable for generating lectures
seems to be the commercial service Narakeet6, formerly known as Videopup-
pet. Narakeet is an online service that automatically transforms scripts into
speech and synchronizes them with images provided by the user. Narakeet also
supports SSML, but only as a secondary part of its custom simplified non-XML
markup language. Narakeet also only supports slides from presentation pro-
grams like Microsoft PowerPoint, Google Slides, or Apple Keynote. It either
reads out the contents of a slide or the contents of the speaker notes attached
to the slide as speech. It provides no support for Portable Document Format
(PDF) documents, which are often utilized in university lectures as slides.

In contrast to the aforementioned available Text-to-Video implementations,
existing Text-to-Speech software can be integrated into lecture.js and lend a
solid foundation to the aspect of speech generation of Script-to-Lecture soft-
ware. There are commercial Text-to-Speech solutions provided by Amazon
Web Services and Google, called Amazon Polly and Google Cloud Text-to-
Speech. Together they provide over 300 narrating voices in almost 40 different
languages. Each of them also offers extensive APIs for many programming
languages and environments, making them easy to integrate into the new soft-
ware. There also exists the open-source framework OpenMARY7, a multilin-
gual speech synthesis system, originally developed by the German Research
Centre for Artificial Intelligence in collaboration with the Institute of Phonet-
ics at Saarland University. The framework supports the languages German,
English, French, and Italian, amongst others. However, the voices provided by
OpenMARY are not nearly as natural-sounding as the commercial alternatives
mentioned above, which is why the OpenMARY project was not yet integrated
into lecture.js.

6 Narakeet: narakeet.com
7 OpenMARY: mary.dfki.de

5

https://www.narakeet.com/
http://mary.dfki.de/

Chapter 3

Requirements

The Script-to-Lecture software’s primary set of requirements includes features
that make the software useful in day-to-day work for the most common user
groups. The leading target user group for the software are teachers, lecturers,
and other presenters. In this thesis, this user group is referred to as teachers.
The primary requirements listed below were all met in the implementation of
the software.

1. Time-saving: Teachers with little video editing experience need time to
learn video and audio technology to record and edit videos. If a teacher
can reduce or eliminate those tasks, which are not directly related to the
lecture’s content, they can spend more time working on the lecture itself.

2. Cost-saving: Teachers can use the software without acquiring expensive
equipment, which includes hardware like a microphone and video editing
software.

3. Integration for external resources: Teachers can embed external me-
dia resources besides slides into the lecture, like image, audio, and video
files. External resources help the lecture remain dynamic, for example,
by featuring screen recordings. A teacher must have control over which
page of which slide or which other resource is visible at any time.

4. Voice and language control: Suppose teachers want to tell stories with
different viewpoints in their lectures, they can switch the voice narrating
the lecture at any point to recreate dialogue realistically or to highlight
quotes. They can also control the language the narrating voice is using at
any point in the script. Teachers can include words, segments, or whole
sentences in another language, which is especially helpful since, in most
languages, English words are adopted more frequently with increasing
globalization.

6

CHAPTER 3. REQUIREMENTS

5. Manipulable pronunciation: The language processor should automat-
ically make good choices when generating speech. If it fails, however,
teachers can correct the pronunciation of words. For example, the lan-
guage processor may automatically detect the wrong language for a word
like "information", which exists in both German and English. Teachers
can then manually customize how the narrating voice pronounces "infor-
mation" for specific sections or the whole of the script.

6. Efficient editing: Teachers may regularly rewrite their scripts. They
can quickly change parts of the script or the slides and generate a new
video without much effort and without amassing huge costs from the
Text-to-Speech services.

7. Self-containedness: The software is stable and as self-contained as pos-
sible so that teachers can use it for years with as little maintenance and
dependence on external tools as possible.

8. Extendability: Developers working on the software can rewrite signifi-
cant portions of the source code to add new features or change behaviors.
For this purpose, extensive documentation of the features and a modular
program structure are required.

There is also a set of supplemental features listed below that are not es-
sential for the software’s core functionality but improve the user experience.
However, only the first of the following features could be realized in time when
writing this thesis. The other features should be noted down for future work
on the software.

1. Video Upload: YouTube is an excellent platform for video hosting,
as it is widely utilized, being the world’s second most visited website, as
measured by Alexa Siterank Competitive Analysis [2020], and the world’s
most popular video platform.1 YouTube’s Data API allows teachers to
automatically upload generated video lectures to YouTube and assign
them to playlists.

2. Highlighting: Sections of the slides can be highlighted to improve inter-
activity without teachers having to do it manually in the PDF document.

3. GUI: Teachers with no programming experience can use the software
with a graphical interface without having to learn LSML.

4. Question-Answering: Students have access to an interface that aug-
ments the generated lectures with question-answering capabilities related
to the lecture’s contents.

1 YouTube is also extensively utilized by the Webis group for publishing recorded lectures
and talks on their channel: youtube.com/channel/UCGOTkqgnKS5a3bzzp1zU2Uw

7

https://www.youtube.com/channel/UCGOTkqgnKS5a3bzzp1zU2Uw

CHAPTER 3. REQUIREMENTS

5. Subtitles: For deaf or hard-of-hearing students, the software automati-
cally adds subtitles to the generated video lecture. It offers the choice of
burnt-in subtitles or closed captions.

In consideration of all primary requirements and supplemental features, fig-
ure 3.1 shows a use case diagram created using the Unified Modeling Language
(UML). The diagram models the two main actors, teachers and students, and
their primary use cases for the software. An extending use case («extends»)
depends on the base use case to which it points, while base use cases incorpo-
rate the behavior of the included use cases to which they point («include»).

Figure 3.1: UML Use Case Diagram

8

Chapter 4

LSML Language Definition

Lecture.js can not use a simple text document as the input script because
the user needs to have sufficient control over various aspects of the lecture-
generation process. For that purpose, this chapter proposes a custom markup
language specification called Lecture Synthesis Markup Language (LSML).

LSML will use the syntax of XML as a fundament. XML is a hierarchically
structured markup language that is both human- and machine-readable, which
makes it perfect for an environment where both machines and possibly non-
tech-savvy people work on the same document. XML offers many advantages;
for example, there are multiple libraries available that support the parsing and
transformation of XML markup. There also exist several technologies that ex-
tend XML, for example, XML Schema Definition (XSD) for validating XML
documents. XSD will be very useful in specifying the structure of input docu-
ments and validating them in the software implementation. However, the most
significant advantage of XML, in terms of speech synthesis, is that an XML-
based language used for speech synthesis already exists. This language is the
Speech Synthesis Markup Language (SSML) specified by the World Wide Web
Consortium [2010], which can serve as a fundament of the custom language
LSML to be extended with additional features.

SSML generalizes the process of speech synthesis by providing a language
specification suitable for different environments. The language is based on in-
dications rather than absolutes, meaning that the interpretation of markup
values depends on the speech synthesizer that renders the content. This focus
on generality makes SSML great for a software that requires the integration
of multiple Text-to-Speech APIs. It is supported by many speech synthesis
applications, which include Amazon Polly and Google Cloud Text-to-Speech,
both of which will be integrated into lecture.js. However, there exist several
differences between the SSML specification and the SSML implementations of
those two APIs.

9

CHAPTER 4. LSML LANGUAGE DEFINITION

Additionally, SSML can only control the speech aspect of lecture gener-
ation, which is insufficient for lecture.js. LSML will accommodate for those
limitations, and extend SSML by additional elements for controlling the visual
aspect of Script-to-Lecture generation. In most aspects however, LSML will
stay close to the specification of SSML v1.1. This has the advantage of making
LSML more consistent in usage across different Text-to-Speech implementa-
tions since the SSML standard rarely changes.

In the following sections, I will summarize the core features of SSML as
specified in the SSML Specification v1.1 by the World Wide Web Consortium
[2010]. I will detail how Amazon Polly and Google Cloud Text-to-Speech, as
well as the custom language LSML in relation to them, implement those fea-
tures. I will also explain how LSML extends the language with additional Text-
to-Video controls. Additionally, a detailed list of all elements and attributes
with the level of support in different APIs can be found in the appendix start-
ing on page XII. A simple LSML example script is also attached on page IV.

4.1 Document Structure

SSML Root Element

Every XML-based document is structured like a tree, with one root element
containing all other elements. SSML being XML-based begins with an XML
Prolog defining the XML version, followed by the speak element, which is
the root element. The speak element defines specific information about the
document. For example, the attribute version sets the SSML version that
was used to write the document, and the attribute xml:lang sets the default
language of the document. Additionally, there are also options to define a
schema and namespace.
<?xml version ="1.0"?>
<speak version="1.1" xml:lang="en -US">

<!-- content -->
</speak >

The speak element can also determine where to start and stop rendering
the SSML content by designating markers within the content as a start or end
mark. Markers can be set using the mark element, and speech synthesizers can
also use them to give users the option to retrieve timestamps at specific points
in the document. Any content that comes before the marker designated as the
startmark or after the marker set as the endmark will not be rendered.

10

CHAPTER 4. LSML LANGUAGE DEFINITION

<speak version="1.1" startmark="mark1" endmark="mark2">
This sentence will be ignored.
<mark name="mark1"/>
This sentence will be spoken.
<mark name="mark2"/>
This sentence will be ignored.

</speak >

LSML Root Element

In LSML, however, the root element is different from the speak element in
SSML. The lecture.js pipeline will need to request the APIs with SSML data as
a string. Because of this and the XML validation using a custom XSD schema
in the lecture.js pipeline, the speak element will not have a use for attributes
defining schemas and namespaces. Additionally, the two Text-to-Speech APIs
both implement a speak element; however, they only use it as a marker to
identify SSML content and do not implement any of its attributes.

To compensate for these limitations, LSML does not support the speak
element, but specifies an equivalent element with the different name lecture
to differentiate the LSML markup from SSML. Because lecture.js will prepro-
cess the markup content before sending it to the APIs, LSML also specifies the
attributes startmark and endmark , which are not supported by the APIs.

LSML consequently fully supports the mark element for setting markers.
Additionally, it specifies a chapter attribute, which creates a new chapter
with the provided value as the name at the given marker. The pipeline can
later use this information for defining a table of contents with timestamps.
<lecture startmark="intro">

This sentence will be ignored.
<mark name="intro" chapter="Introduction" />
This is the introduction.
<mark name="rel -work" chapter="Related Work" />
This chapter is about the related work.

<lecture >

Meta Data

SSML specifies the elements meta and metadata for defining meta-information
about the document. However, both elements are not supported by the APIs,
and consequently, LSML does not support them either. To compensate for
these missing elements, LSML specifies a custom element for holding meta in-
formation, which is the info element.

11

CHAPTER 4. LSML LANGUAGE DEFINITION

It is an empty element that may only appear as a direct child of the
lecture element and may at most appear once. However, it and all of its
attributes are optional. The element may define the title of the lecture, a
description , a semicolon-separated list of authors , and additional copyright
information.
<info

title="An example lecture name"
description="A short description of the lecture"
authors="Max Mustermann; Erika Musterfrau"
copyright="2020 Max Mustermann , Example University"

/>

Settings

LSML implements the element settings to manage all settings for an indi-
vidual lecture. Like the info element, settings may only appear as a direct
child of the lecture element and may at most appear once. All settings are
optional and defined using an attribute-value pair.
<settings

voice="amazon -de -de -vicki"
resolution="1280 x720"
fps="30"

/>

If a setting is not defined, a default value from the configuration file is used
instead. The following settings are supported:

• voice specifies the ID of the default voice for the document. The voice
is used in sections where no other voice is specified.

• resolution defines the resolution of the video lecture in the format
"{width}x{height}", for example, "1280x720" for High Definition.

• fps defines the number of frames per second for the resulting video as
an integer.

• breakAfterSlide defines a break in milliseconds that should be applied
by default when the slide changes.

• breakAfterParagraph defines a break in milliseconds that should be ap-
plied by default between all paragraphs.

12

CHAPTER 4. LSML LANGUAGE DEFINITION

• googleEffectProfile defines an effect profile1 for all Google Cloud Text-
to-Speech voices that are used in the document. Effect profiles are a
feature of Google Cloud to optimize the generated speech for the playback
on different types of hardware.

• youtubePrivacyStatus defines the privacy status of the video lecture,
should the user upload it to YouTube using the tool. It supports the
modes public , unlisted and private .

• youtubePlaylistId defines the ID of a playlist owned by the authenti-
cated user in which to insert the video lecture, should the user upload it
to YouTube using the tool.

4.2 Slide Management
SSML does not support the inclusion of slides of any type because it only
focuses on Text-to-Speech generation. However, to render the lecture slides,
LSML extends the language with features for referencing PDF documents as
slide decks. A slide deck in the context of LSML refers to a set of individual
slides combined within a single file.

PDF documents were selected as the file format for slide decks because
they are software- and hardware-independent. They can be created in most
operating systems without the need to buy a license for specialized software.
Additionally, PDF documents are heavily utilized in most universities, includ-
ing the Bauhaus Universität Weimar.

LSML specifies the empty element deck to load a slide deck into the script
and assign it a unique identifier. Each page of the PDF document is treated
as a slide that can be referenced and loaded in the script, as shown in figure
4.1. The loaded slide will then be rendered as a persistent frame in the video
lecture until another frame is loaded.

Figure 4.1: PDF Conversion to a Slide Deck

1 Google Cloud effect profiles:
cloud.google.com/text-to-speech/docs/audio-profiles#available_audio_profiles

13

https://cloud.google.com/text-to-speech/docs/audio-profiles#available_audio_profiles

CHAPTER 4. LSML LANGUAGE DEFINITION

The deck element may appear anywhere in the script, but it must be a
direct child of the lecture element and must appear at least once. A user may
load multiple slide decks, but there must be a deck element with a different
unique identifier for each one.

The deck element specifies a src attribute that accepts the path to a
local PDF file. A unique identifier is assigned to the slide deck using the id
attribute. Additionally, exactly one deck element must have the attribute
active set to true , which will set the slides deck as the default deck to be
used as long as no other slide deck is loaded within a section of or the whole
script.
<deck id="deck1" src="deck1.pdf" active="true" />
<deck id="deck2" src="deck2.pdf" />

By default, a slide loaded from a deck is fitted to the video’s output resolu-
tion using the contain mode shown in figure 4.2. The contain mode resizes
the slide, so it is fully visible while keeping its aspect ratio. However, the
deck element implements the attribute fit that can change the default scal-
ing mode for all slides loaded from a slide deck. The following three scaling
modes exist:

• contain resizes the slide, so it fits fully visible inside the frame while
keeping its aspect ratio. Areas of the frame not covered by the slide are
padded with black pixels. The mode is shown in figure 4.2.

• cover resizes the slide to cover the entire frame, while keeping its aspect
ratio. If the slide’s aspect ratio is different from the output aspect ratio,
parts of the slide will not be visible. The mode is shown in figure 4.3.

• fill ignores the aspect ratio of the slide to stretch or compress it to fit
the output resolution. The mode is shown in figure 4.4.

The following figures demonstrate the scaling modes for a slide with the di-
mensions of 500x500 pixel that is resized to fit an output resolution of 1280x720
pixel using the three different modes.

Figure 4.2: Contain
Scaling Mode

Figure 4.3: Cover
Scaling Mode

Figure 4.4: Fill
Scaling Mode

14

CHAPTER 4. LSML LANGUAGE DEFINITION

The usage of the fit attribute is simple. It only accepts the names of the
three scaling modes as its value: contain , cover and fill .
<deck id="deck2" src="deck2.pdf" fit="cover" />

A slide from a slide deck can then be referenced in the script using the
slide element. This element loads the slide into view as a frame that will
stay visible until some other slide is loaded. The element has the attribute
deck that references a slide deck using its ID. If the element does not define
this attribute and therefore does not reference any slide deck, the currently
active slide deck is used.

The attribute page exists to determine which slide to use from the slide
deck. It references the slide’s page number in the PDF file. The page number
can be an absolute value like a non-negative, non-zero integer. The value can
also be relative to the currently opened slide by using a signed non-zero integer
like +3 or -1 . If a defined page number exceeds the available pages in a slide
deck, the last page is selected. If it is instead set to below 1 , page 1 is selected.
In addition, the attribute also accepts the following keywords:

• current corresponds to the current page number.

• next loads the next slide in the slide deck.

• previous loads the previous slide in the slide deck.

• first loads the first slide in the slide deck.

• last loads the last slide in the slide deck.

In addition, the slide element also specifies a fit attribute to set the
scaling mode individually for this specific slide. This option will overwrite the
default scaling mode set on the deck element.
<!-- show slide from page 2 -->
<slide page="2" />
<!-- show slide from page 5 -->
<slide page="+3" fit="fill" />
<!-- show slide from last page of a second slide deck -->
<slide deck="deck2" page="last" />

4.3 Text Structure
When processing the script, a speech synthesizer’s language processor should
attempt to determine the paragraph and sentence structure using language-
specific knowledge. However, SSML also provides optional elements for explic-
itly defining the structure of texts should the language processor fail.

15

CHAPTER 4. LSML LANGUAGE DEFINITION

These include the elements p and s , which make the language processor
interpret their contents as paragraphs and sentences, respectively.
<p>

<s>This is a sentence in a paragraph.</s>
<s>This sentence consists of tokens.</s>

</p>

The SSML specification also defines tokens, which can be set using the
token and w elements. Both of these elements act the same way and indicate
that their content is a token, eliminating word segmentation ambiguities. These
elements are necessary for languages that "do not use whitespace for indicating
boundaries, for example, Chinese, use whitespace for syllable segmentation,
for example, Vietnamese, or use white space for other purposes, for example,
Urdu," as stated by the World Wide Web Consortium [2010].
Each word is a <w>token </w>.

The elements p and s are supported by both APIs and therefore by LSML
as well. Neither API supports the token element, and the element w is only
specified by Amazon Polly. Amazon Polly also accepts the attribute role on
the element w for defining the role of a word, for example, as a verb or a noun.
However, this is not supported by LSML, which does not specify any attributes
on these elements. Although neither API supports the token element, LSML
still implements it, and, internally, lecture.js converts it to the to the element
w . However, because Google Cloud Text-to-Speech does not implement the
elements token or w , they will not have any effect when used in combination
with their voices.

4.4 Voices and Languages
Most speech synthesizers support multiple voices and languages, which is why
SSML and LSML tailor to that and provide controls for switching voices and
languages.

Voices

The voice element defines a different narrating voice for its contents. It spec-
ifies this voice by a combination of factors. The user can define a desired
gender , age , and one or more languages . It is also possible to define a
preferred variant of speaking characteristics or select a voice by a name spe-
cific to the language processor. The language processor should consider all
the desired characteristics and select the most suitable voice for rendering the
element’s contents.

16

CHAPTER 4. LSML LANGUAGE DEFINITION

This sentence is spoken with the default voice.
<voice gender="female" languages="en -GB">

This sentence is spoken with a different voice.
</voice >

Google Cloud Text-to-Speech does not support the voice element, and
Amazon Polly only implements it with the name attribute. In both APIs,
selecting a voice is primarily done by explicitly specifying a voice name in the
request to the API. LSML therefore also only implements the voice element
with the name attribute, the value of which is then later used in the request
to the API. The voice names that lecture.js defines are composed of a prefix
corresponding to a Text-to-Speech API, a language code, and the name by
which the voice is referred to internally by the corresponding API.
<voice name="amazon -en-gb-amy">

Amy is talking.
</voice >

Languages

SSML allows for language changes without changing the active narrating voice
using the lang element. If words of a different language are used, the lan-
guage processor should automatically guess their language by their context.
However, the lang element allows for explicitly defining another language
should the language processor fail to detect the language change. The element
has a xml:lang attribute that accepts ISO language codes with two-letter
country codes where applicable. For example, the code en-US would set the
language to US American English. The element also defines a onlangfailure
attribute that specifies the language processor’s desired behavior upon lan-
guage speaking failure.
German for cat is <lang xml:lang="de">Katze </lang>.
Englisch für Katze ist <lang xml:lang="en">cat</lang>.

LSML supports the lang element with only the attribute xml:lang . Be-
sides, to save the user a little time, LSML defines some similar but shorter
language-changing elements. For each language available in the APIs, an el-
ement exists with its name being the language code. For example, if British
English is available with the language code en-GB , the elements <en-GB> and
<lang xml:lang="en-GB"> would be synonyms and serve the same purpose.
This means, that a user could write the code example from above in a shorter
form like this:
German for cat is <de>Katze</de>.
Englisch für Katze ist <en>cat</en>.

17

CHAPTER 4. LSML LANGUAGE DEFINITION

In the SSML specification, the attributes xml:lang and onlangfailure
are permitted on the elements speak , desc , p , s , token and w as well.
However, neither of the APIs implements these attributes on those elements,
which is the reason why LSML also does not implement them there.

4.5 Correcting Mispronunciations
Speech synthesizers are not always able to produce the correct pronunciation
of words, which is why SSML and LSML specify powerful controls for defining
pronunciations, one of which is the support for phonetic alphabets. Phonetic
alphabets are part of phonetic transcription and are used for precisely tran-
scribing human speech into writing. SSML specifies support for the Interna-
tional Phonetic Alphabet (IPA) and any vendor-specific phonetic alphabet. In
practice, however, Text-to-Speech implementations will limit themselves to a
small number of alphabets, and some may only implement the IPA.

Lexicons

An important tool to leverage the abilities of phonetic alphabets is the lexicon
element. It is an empty element that may occur any number of times as an
immediate child of the speak element in SSML and of the lecture element
in LSML. Lexicons can define aliases or phonetic pronunciations for specific
words.

The lexicon element links to a lexicon document using the uri attribute.
It then gets a unique identifier assigned using the xml:id attribute, which can
be referenced in specific sections of the document using the lookup element.
The lookup element uses the attribute ref to reference the Uniform Resource
Identifier (URI) of a lexicon, and the lexicon will then be applied to the contents
of the lookup element. After a tree of XML nodes is generated from the XML
input text, the lexicon that is closest to a text node in the XML tree is the
primary lexicon and applied first, while lexicons further away act as a fallback.
<lexicon uri="lexicon1.pls" xml: id="lex1"/>
<lexicon uri="lexicon2.pls" xml: id="lex2" />
It does not look up these tokens in any lexicon.
<lookup ref="lex1">

It looks up these tokens in lexicon 1.
<lookup ref="lex2">

It looks up these tokens in lexicon 2.
If they are not found , it looks them up in lexicon 1.

</lookup >
</lookup >

18

CHAPTER 4. LSML LANGUAGE DEFINITION

The lexicon and lookup elements are not supported by Google Cloud
Text-to-Speech, but partly by Amazon Polly. Amazon Polly supports the up-
load of lexicon files to their cloud console. The lexicon can then be applied to
the SSML content by referencing it in the request to the API. However, Ama-
zon Polly does not support dynamically referencing local lexicon files using the
lookup element.

Because of this, LSML specifies its own variants of the lexicon and lookup
elements, which are preprocessed before the resulting SSML content is sent to
the corresponding API. That will enable users to use lexicons for voices of
Google Cloud Text-to-Speech, even though they do not support lexicons.

In LSML, the element lexicon must only appear as a direct child of the
lecture element. However, the lexicon element no longer references a lexi-
con file using the uri attribute but instead contains the lexicon content itself.
Inside, one or more lexeme elements can be defined, which are basic lexical
units. The lexeme element must have exactly two children, one of which must
be the grapheme element, which defines the word in the SSML content to be
replaced. The second element has to be the alias element, which defines a
replacement word to be pronounced in the grapheme’s stead, or the phoneme
element, which defines a phonetic pronunciation to be used by the narrat-
ing voice when pronouncing the grapheme. In contrast, the lookup element
remains the same as defined in the SSML specification.
<lexicon xml: id="lexicon1" alphabet="ipa">

<lexeme >
<grapheme >Bob</grapheme >
<alias >Bobby</alias>

</lexeme >
<lexeme >

<grapheme >tomato </grapheme >
<phoneme >t@"mei:t@U</phoneme >

</lexeme >
</lexicon >
<lookup ref="lexicon1">

Bob <!-- pronounced as Bobby -->
tomato <!-- phonetically pronounced as "t@"mei:t@U" -->

</lookup >

Aliases

Lexicons are powerful tools for correcting pronunciation. However, they might
be undesirable for smaller tasks, like changing the pronunciation of a single
word. For this purpose, SSML and LSML implement elements for accomplish-
ing the tasks of lexicons for individual tokens without using a lexicon.

19

CHAPTER 4. LSML LANGUAGE DEFINITION

An example of this is the sub element, which allows for the spoken and
written form of text in the same document by defining aliases similar to the
aliases of lexicons. The element is supported by both APIs, and therefore also
by LSML.

The sub element defines an alias for the contained text using the alias
attribute. The alias is the text rendered as speech by the speech synthesizer
in place of the text contained within the element. But the element’s content
remains in the document and can be used for non-audible output like closed
captioning.
_{W3C}

Explicit context

Sometimes, the mispronunciation is not a case of wrongly pronouncing a simple
word, but a matter of the language processor guessing the context of a text
section incorrectly. In most cases, the pronunciation could be corrected using
the sub element, but there is also a more elegant solution.

The say-as element can be used to provide additional context to a text
section as it describes how the text should be interpreted by the language
processor. The interpret-as attribute indicates the content type of the con-
tained text. It can make the language processor treat the text as a cardinal
or ordinal number, characters that need to be spelled out, a fraction , an
expletive , a unit of measurement, a date , a time , a telephone number,
an address or as an interjection . It is also possible to provide a specific
format, for example, dmy for dates, using the format attribute.
<say -as interpret -as="cardinal">123</say -as>
<!-- One hundred twenty -three -->
<say -as interpret -as="characters">123</say -as>
<!-- One Two Three -->
<say -as interpret -as="ordinal">1.</say -as>
<!-- First -->

<say -as interpret -as="date" format="ymd">2020, May 30</say -as>
<say -as interpret -as="time" format="hms">13 :59:59 </say -as>

The say-as element is supported almost in its entirety by both APIs, ex-
cept for a few interpretation modes. LSML only supports the intersection of
interpretation modes available for both APIs, which are: cardinal , ordinal ,
characters , spell-out , fraction , expletive , unit , date , time , and
telephone .

20

CHAPTER 4. LSML LANGUAGE DEFINITION

Phonemes

The phoneme element precisely describes the pronunciation of a small section
of text using a phonetic alphabet. In contrast to a lexicon, this element can
be comfortably used on smaller, individual text sections. The phonetic string
is specified using the ph attribute, and the phonetic alphabet can optionally
be specified using the alphabet attribute.

Though the element is specified in LSML, the phoneme element is only
supported by Amazon Polly. If it is used together with the voices of Google
Cloud Text-to-Speech, it will not have any effect. Amazon Polly also only
supports a limited set of characters2, but provides the implementation of two
phonetic alphabets, the IPA and the Extended Speech Assessment Methods
Phonetic Alphabet (X-SAMPA).
<phoneme alphabet="ipa" ph="pI"kA:n">pecan</phoneme >
<phoneme alphabet="x-sampa" ph=’pI"kA:n’>pecan </phoneme >

4.6 Prosodic Features
Speech synthesizers automatically determine the prosody to use for the texts
they interpret. However, the resulting speech often sounds neutral, which might
not fit the speaking style that the user wants to emulate. That is why SSML and
LSML implement elements to allow for explicit changes in prosody. Prosody
influences the fluency of the speech and how specific sections of text are em-
phasized.

Emphasis

A simple example is the emphasis element, which can instruct the narrat-
ing voice to emphasize words or bigger text segments explicitly. The element
requests the contained text to be spoken with a specific level of emphasis us-
ing the attribute level . However, the effect may differ between languages,
dialects, voices, and APIs. For example, less emphasis may alter the pronunci-
ation of a phrase like "going to" to "gonna". Both the APIs and LSML support
the element in its entirety.
It is <emphasis level="strong">strongly </emphasis > emphasized!

2 Supported characters: developer.amazon.com/en-US/docs/alexa/custom-skills/speech-
synthesis-markup-language-ssml-reference.html#supported-symbols

21

https://developer.amazon.com/en-US/docs/alexa/custom-skills/speech-synthesis-markup-language-ssml-reference.html#supported-symbols
https://developer.amazon.com/en-US/docs/alexa/custom-skills/speech-synthesis-markup-language-ssml-reference.html#supported-symbols

CHAPTER 4. LSML LANGUAGE DEFINITION

Pauses

It is also possible to define a speaking pause in the rendered speech in both
SSML and LSML using the break element. This pause lasts for a specific du-
ration specified using the time attribute. The attribute accepts time units in
the time value format from the Cascading Style Sheets Level 2 Recommenda-
tion by the World Wide Web Consortium [1998]. These time values consist of
a positive number followed by the time unit identifiers ms for milliseconds or
s for seconds.

The pause may also be very abrupt, which can be corrected by setting a
lower prosodic strength set using the strength attribute.

Wait for half a second ...
<break time="500ms" strength="medium">
The wait is over.

Prosody

The prosody element could be described as the Swiss Army knife of prosodic
controls. Not only does it control the pitch, but also the speaking rate and
volume. It specifies the following attributes:

• pitch defines the baseline pitch using an absolute Hertz value or a key-
word. The pitch may also be set relatively using percentages, semitones,
and, once again, Hertz values.

• range defines the pitch range, or variability, for the contained text.
The meaning of pitch range will vary across language processors, but
increasing or decreasing the value will typically increase or decrease the
dynamic range of the output pitch, respectively.

• rate defines a change in the speaking rate by either speeding up or
slowing down the speech.

• volume defines the volume for the contained text.
• duration defines the desired time it should take for the narrator to read

the text. The attribute takes precedence over the rate attribute.
• contour defines an interpolation of different pitch values as a set of

whitespace-separated targets at specified time positions in the speech
output.

<prosody rate="200%" volume=" -20dB">Fast , quiet.</prosody >
<prosody rate="x-slow" volume="x-loud">Slow , loud.</prosody >
<prosody duration="2s">This is spoken in 2 seconds.</prosody >
<prosody contour="(0% ,+20%) (50% ,+10Hz)">This sentence is

pronounced in a peculiar way.</prosody >

22

CHAPTER 4. LSML LANGUAGE DEFINITION

Although LSML supports the prosody element, there are some limitations
because the APIs have a few peculiarities in how they handle the different
attributes. In general, LSML does not restrict the user input for the attributes,
and lecture.js sends the values straight to the corresponding API. However, the
APIs have different ranges and accepted units for these attributes, all listed in
the LSML Feature Support Table in the appendix. The user will have to check
if their units are supported for the voice which they are using together with the
prosody element. In addition, the attributes range , duration and contour
are not supported by LSML, because of lacking support by the APIs.

4.7 Embedding External Resources
Providing support for external resources makes the markup language and re-
sulting software more versatile. It gives users additional tools to prepare their
video lectures besides only relying on slides and markup.

Audio

SSML makes it possible to insert external audio files into the speech output
using the audio element. The audio element implements the following at-
tributes:

• src specifies the path or the URL for the media file.

• clipBegin defines an offset from the start of the media to begin render-
ing as a time designation.

• clipEnd defines an offset from the start of the media to end rendering
as a time designation.

• soundLevel defines the relative volume using a positive or negative deci-
bel value.

• speed defines the playback speed in percentage using a positive percent-
age value.

• repeatCount defines how often to loop the audio.

• repeatDur defines the total duration of repeatedly rendering the media.

The audio element can remain empty or contain SSML content. Should
the audio file fail to play or the user is generating non-audible output for
accessibility reasons, the contents of the audio element should be rendered
instead.

23

CHAPTER 4. LSML LANGUAGE DEFINITION

<!-- plays clip twice -->
<audio src="sound.mp3" repeatCount="2" />
<!-- start clip 30 seconds in , ends it at 1 minute -->
<audio src="speech.mp3" clipBegin="30s" clipEnd="60s">

If the audio file fails to play , this will be read.
</audio >

The desc element may also only appear inside an audio element. Its
purpose is to add a description to the audio file if it does not contain audi-
ble speech. For example, the element may describe sound effects like a door
slamming or a buzzer going off.
<audio src="buzzer.wav">

<desc>Buzzer sound effect </desc>
</audio >

However, LSML’s implementation of the audio element differs in a few
ways from the SSML implementation. LSML does not currently support the
desc element because the subtitles feature is not yet implemented. Therefore,
the audio element must also remain empty and not contain any other SSML
content. While the audio plays, the current frame stays.

The audio element is also only partly implemented by Amazon Polly, mak-
ing it necessary to create a custom implementation of audio insertion into the
lecture to avoid sending audio files to the APIs. This custom implementation
comes with the following changes to the attributes of the audio element:

• src only accepts local audio file paths, not URLs.

• Both clipBegin and clipEnd only support a simplified form of SSML
timestamps without floating point numbers, but additionally implement
timestamps in the formats hh:mm:ss and hh:mm:ss.SSS .

• soundLevel is limited to integer decibel values between +50dB and
-50dB .

• speed is limited to integer percentage values between 50% and 200% .

• repeatDur is not implemented.

Videos

Because SSML is focused on speech generation, it does not support the inser-
tion of videos. However, video clips can add a lot of interactivity and variety
to a video lecture, for example, screen recordings. LSML, therefore, supports
the insertion of video clips into the lecture using the empty element video .
The video loaded by the element will be played in its entirety unless otherwise
specified by the user.

24

CHAPTER 4. LSML LANGUAGE DEFINITION

The video element specifies the attributes src , clipBegin , clipEnd ,
soundLevel , speed and repeatCount in a similar manner to the LSML audio
element. In addition, LSML also implements the following attributes for the
video element:

• keepFrame defines if after the video was played, the last frame should
remain as the current video lecture frame, or if the lecture should display
the previous slide again.

• fit defines the scaling mode for fitting the video to the output video
resolution as shown in the figures 4.2, 4.3 and 4.4.

<!-- plays a video -->
<video src="recording.mp4" />
<!-- plays a video at 2 seconds into the clip -->
<video src="footage.mp4" clipBegin="00 :00:02" />

Images

Users may want to include a set of images, like screenshots, that are not part of
their slides. Instead of forcing them to edit their slides, LSML provides a simple
way of embedding an image and setting it as the video presentation’s current
frame. The empty element image supports the direct integration of an image
as a frame into the video. The image stays visible until the next slide , video
or image element is used. The element implements the following attributes:

• src defines the path to a local image file.

• fit defines the scaling mode for fitting the image to the output video
resolution as shown in the figures 4.2, 4.3 and 4.4.

<image src="image.png" fit="cover" />

25

Chapter 5

Implementation

5.1 Development Environment
This section describes the development environment, which includes the pro-
gramming languages used and the required software. JavaScript of the standard
ECMAScript 6 is the programming language that was primarily used to im-
plement lecture.js. JavaScript is particularly useful because it sees widespread
usage even outside of web browsers and provides access to many free libraries.
Additionally, the usage of JavaScript will make it easier to port the application
to a server-side environment to run it as a website in the future, if needed.

Node.js v12.18.2 was used as the JavaScript runtime environment to re-
alize lecture.js outside the web browser. Node.js is written in C and C++,
which makes the environment run smoothly on Windows, Linux, and macOS
environments. In the course of development, lecture.js was successfully tested
and deployed on Windows 10 and Ubuntu Linux versions 16.04,18.04 and
20.04. The software may also work on macOS systems, although this was not
specifically tested.

Several libraries and modules were used in the creation of the software.
"Modules" refer to JavaScript libraries included from npm, which is the largest
distributor of open-source JavaScript code. In addition, an XSD library was
imported for XML validation and the library suite FFmpeg was included to al-
low for audio and video manipulation. The former requires Java, for which the
Java Runtime Environment build 1.8.0_211-b12 was used throughout devel-
opment. Other technologies were also utilized, including XML markup, XSD
schemas for validation, documentation using markdown, and batch and shell
scripts for faster execution of basic lecture.js functionality on Windows and
Linux operating systems.

A user that wants to use lecture.js will need to install a build of Node.js.
However, installing Java is optional as long as the LSML validator is disabled.

26

CHAPTER 5. IMPLEMENTATION

5.2 Program Structure
Lecture.js is programmed using a modular structure. Each module consists of
a directory with an internal structure and one or more JavaScript files. Each
is responsible for one large but specific task. For example, the module text-
to-speech manages all communication with the Text-to-Speech APIs and the
caching of generated audio files. If a script wants to communicate with these
APIs, it would need to import the text-to-speech module.

Additionally, lecture.js is also organized in a 4-layer structure, as shown in
figure 5.1. Each layer may only import and use components from the layers
below. The pipeline is the highest layer and the one with which users of the
software interact. Although a module in itself, the pipeline conceptually makes
up a separate layer, while the other modules make up the second-highest layer.
The third-highest layer is the global scripts that may be imported and used by
any module. The global scripts are intended to be utility scripts with general
functions that one or more modules may need. This makes the whole layer
a dependency of any module. The lowest layer comprises the so-called node
modules, which are JavaScript libraries included in the software. These libraries
may be used by any global script or module, making all of them a dependency
of the three higher layers.

Figure 5.1: 4-Layer Program Structure

The modules were designed with independence in mind, meaning that there
should be no dependencies between individual modules. The modules may then
be individually extracted from lecture.js and re-used elsewhere like building
blocks, except for the dependencies to the lower layers.

27

CHAPTER 5. IMPLEMENTATION

Although most of the modules are independent of other modules, that is
not possible for some. The parser and preprocessor modules each import the
text-to-speech module because they need some of its functionality for processing
the input script’s contents.

Most of the global scripts also import the global scripts basic-utilities, log-
ger and type-tests, making them not completely independent from each other.
However, suppose one wants to extract a global script for usage outside the
software. In that case, the dependencies are easy to figure out because they
are listed on the top of the script, as described in section 5.6. Additionally, im-
ported scripts often only encompass the three above mentioned scripts, making
the extraction and re-use rather trivial.

5.3 Modules

5.3.1 Pipeline

The pipeline module is the only part of lecture.js with which the user directly
interacts. It is responsible for managing the whole task of video lecture gen-
eration from start to end. The pipeline imports all other available modules to
use their specific capabilities to generate a video lecture.

Structure

The pipeline module only defines a single public function, which starts the
pipeline and generates a video lecture. The pipeline runs until the video lecture
is successfully generated or a fatal error is thrown. The program exits the
process either using the error code 0 to indicate a successful execution or the
error code 1 if a fatal error occurred. Only the pipeline module may throw
fatal errors and exit the program. Other modules are only allowed to trigger
basic errors and warnings and then return a status code, undefined or false .
The invoking module should then act similarly. Eventually, the error should be
passed back to the main executing module, the pipeline. The pipeline should
then handle the error and possibly exit the program with a fatal error message.
Additionally, modules besides the pipeline should print no unnecessary status
logs to the terminal.

After the pipeline is started, it parses the user’s command-line arguments1
to determine which mode to use. A configuration file is parsed to determine
critical run-time options.2

1 Available command-line arguments are explained in section "Terminal Access."
2 Available configuration options are explained in section "Configuration."

28

CHAPTER 5. IMPLEMENTATION

The pipeline has three different modes it may use upon execution:

• Information Mode: If the user requests some information, for exam-
ple, the help menu or a list of available voices, the pipeline prints the
requested information and exits.

• Sample Mode: If the user requests to generate a Text-to-Speech audio
sample, the pipeline uses the provided text content and arguments to
generate an MP3 audio file and exits.

• Lecture Mode: If the user requests to generate a video lecture, the
pipeline uses the provided input script to generate a video lecture in the
defined output directory and exits.

If the Lecture Mode is run, the pipeline uses the validator module to validate
the input script. If the input script is valid LSML markup, the pipeline will
attempt to parse the meta-information from the input script using the parser
module. Once that is completed, the preprocessor module is called, and the
input script is preprocessed to optimize it for the later sections of the pipeline.
The preprocessed script is then parsed using the parser module and converted
to a JavaScript Object Notation (JSON) representation, where the script is
split into smaller sections. Each section corresponds to a section of SSML that
is later sent to a Text-to-Speech API to be converted into speech. The parser
then combines the resulting JSON data with the parsed meta-information and
transforms it into the pipeline’s internal data format. The subsequent parts of
the pipeline all work on this internal data object and extend it if needed.

Once the internal data object is created, the pipeline creates the output
directory structure. Depending on the command-line arguments, the files and
folders may be directly created inside the defined output directory, as shown
in figure 5.2 or a subdirectory will be created in which all of them are placed,
shown in figure 5.3. A directory is generated for each type of video component
so that they may be looked at individually or re-used later.

output/
audio/
clips/
frames/

Figure 5.2: Direct Output
Directory Structure

output/
20201014064516448-example/

audio/
clips/
frames/

Figure 5.3: Wrapped Output
Directory Structure

29

CHAPTER 5. IMPLEMENTATION

The direct output directory structure is preferable if lecture.js is called from
another program because it removes the aspect of the unpredictable name for
the output directory. However, the wrapped output directory structure is more
useful for human usage because multiple lectures can be generated in the same
output directory and are neatly sorted by date and name.

After the output directory is created, any video and audio clips embedded
into the script using the video and audio markup elements are converted
to the right codec and then placed in the output directory. Additionally, they
may be trimmed and have their volume or speed changed, depending on the
user’s settings. The pipeline then creates the frames for the video lectures
and converts the SSML sections into Text-to-Speech audio files. Both are then
combined to create an individual video clip for each section. These clips are
later concatenated to the final video lecture. The user then has the option to
upload the video lecture to YouTube if a credentials file for the YouTube Data
API is defined in the configuration file.

Configuration

The pipeline module includes a configuration file of the .ini file format.
Several options related to the execution of the pipeline are defined within the
file. All settings that can also be changed using a settings element for an
individual input script have a corresponding default value in the configuration
file, which is used if the setting is not defined in the script. The path to the
credentials files needed for the Amazon Polly, Google Cloud Text-to-Speech,
and YouTube APIs are also defined here either as relative or absolute paths.
Because the credentials files are optional as long as at least one valid credentials
file for a Text-to-Speech API is provided, not all of the APIs have to be used.
This makes the installation more time-efficient if the user only needs the voices
of one API. If the credentials for YouTube’s Data API are not provided, only
the direct upload to YouTube will be affected and not work. Additionally,
the configuration offers options for quite a few other aspects of the software,
especially for caching3:

• generic.enableValidator defines if the input script should be validated.

• generic.outputData defines if the internal data structure that was gen-
erated from the input script should be outputted as a JSON file.

• generic.outputLogFile defines if a log file should be created.

• generic.outputFFmpegLogs defines if an FFmpeg log file should be cre-
ated for every significant FFmpeg operation used at run-time.

3 Caching is explained in section 5.3.5.

30

CHAPTER 5. IMPLEMENTATION

• log.colored defines if logs should be printed in color to the terminal.

• log.maxCount defines the maximum number of log entries per log file.

• cache.directory defines the absolute or relative path to the directory
where cached files should be placed.

• cache.defaultMode defines the default cache mode:

– off : No caching is used.

– on : Audio files can be loaded from the cache, and newly generated
audio files can be saved in the cache.

– readonly : Audio files can be loaded from the cache, but newly
generated audio files will not be saved in the cache.

– saveonly : Audio files can not be loaded from the cache, but newly
generated audio files will be saved in the cache.

• cache.expiresInDays defines how many days after an audio file is cached,
it is removed from the cache.

• upload.generateYoutubeDescription defines if a YouTube description
should be generated as a text file for every output.

Terminal Access

When the main lecture.js JavaScript file is executed from the terminal, it calls
only the pipeline module, which means that the pipeline module is responsible
for processing any command-line arguments supplied to the lecture.js script.
Consequently, the pipeline can be run using the computer terminal and be
integrated into other programs. For this human and programmatic usage, the
pipeline defines an interface consisting of different flags and parameters. First
of all, there are some flags for obtaining meta-information about the program:

• -h and --help print the help menu.

• -v and --version print the version of the program.

• --voices prints a list of available voices and their parameters.

• --languages prints a list of available language codes.

The user can generate any video lecture with additional options, but a
basic command only needs an input script and an output directory defined.
However, all these parameters and flags are available:

• -i or --input defines the relative or absolute path to the input script.

31

CHAPTER 5. IMPLEMENTATION

• -o or --output defines the relative or absolute path to the output
directory.

• --nowrap tells the pipeline to output files directly into the output direc-
tory. If this flag is not set, a subdirectory will be created inside the given
output directory, which will contain all the output files instead.

• --cache defines the cache mode to use for any Text-to-Speech requests.

To generate the example lecture script provided in the project, a user would
need to type the following command into their terminal:
node lecture.js -i "input/example.xml" -o "output/"

The cache may also be cleared using the flag --clearcache . If the flag is
used, all cached audio files are removed.

Additionally, the pipeline also supports the generation of audio samples
with a chosen voice without running the whole pipeline. This is intended for
the user to be able to try out certain voices and SSML features. The pipeline
implements the following parameters and flags for the generation of audio
samples:

• -s or --sample tells the pipeline that a sample should be generated.

• --voice defines the name of the voice to render the sample text.

• --text defines the sample text to be rendered as audio.

• --ssml tells the pipeline to render the text as SSML content and not as
plain text.

To generate a small audio sample, the user could use the following command
in their terminal:
node lecture.js -s --voice "amazon -en-gb-amy" --text "Hello!"

5.3.2 Validator

SSML is based on XML, and consequently, LSML, as an extension of SSML,
is also XML-based. XML is easy to validate, because well-proven technologies
to do just that already exist, namely XSD schemas, which are a formal way to
describe all the elements and their attributes in an XML document. The val-
idator module uses the library xjparse4, which is a wrapper of the open-source
XML processor Apache Xerces5, to validate XML files using XSD schemas.
The validator may be called with the path to any XML file to validate it using
a custom LSML XSD schema.

4 xjparse: github.com/ndw/xjparse
5 Apache Xerces: xerces.apache.org

32

https://github.com/ndw/xjparse
https://xerces.apache.org/

CHAPTER 5. IMPLEMENTATION

For SSML, there already exists an XSD schema provided by the World
Wide Web Consortium [2010]. Lecture.js imports this schema in its own custom
schema definition for LSML and re-uses all the SSML elements that are not
different from the LSML specification. The other elements are re-defined in
the LSML schema, and the SSML elements not defined in LSML were omitted.
Additionally, LSML extends the schema with the definitions for its own custom
elements, which do not exist in the SSML specification. A copy of the LSML
XSD schema is attached in the appendix, starting on page V.

Figure 5.4: Validator Module UML Component Diagram

5.3.3 Preprocessor

The preprocessor module takes an LSML document and transforms its con-
tents, and applies specific changes to make it fit for usage in the later stages
of the pipeline. It aims to remove any elements that can not be processed by
the validator module, which is the case if any information requested from the
Text-to-Speech APIs is required to validate an element. This information is dy-
namically requested at run-time from the APIs, making it impossible to define
it statically in an XSD schema. Additionally, the preprocessor converts and
directly applies elements to the script that are not or only partially defined in
the Text-to-Speech APIs. The preprocessor performs the following operations
on the LSML script:

1. It adds pauses of a defined duration between paragraphs by inserting
break markup elements.

2. It adds a pause of a defined duration whenever a slide changes by insert-
ing a break markup element.

3. It transforms any token markup element into a w markup element
because Amazon Polly does not support the former, but the latter.

4. It removes voice markup elements that define a non-existing voice.

5. It removes lang markup elements that define a non-existing language.

33

CHAPTER 5. IMPLEMENTATION

6. It converts lang markup elements defined in a section where a voice
from Google Cloud Text-to-Speech is active to a voice markup element
with the name of a similar voice in a different language. This is only done
for Google Cloud Text-to-Speech because it does not support the lang
markup element.

7. It transforms any specific language tags defined by LSML to an SSML
equivalent. For example, the markup elements de or en-US would be
converted to a corresponding lang markup element if a voice from Ama-
zon Polly is active, or to a voice markup element with a similar voice in
the corresponding language if a voice from Google Cloud Text-to-Speech
is active.

8. It applies any defined lexicon markup element wherever it is refer-
enced using a lookup markup element. The affected text sections will
be scanned for the occurrences of graphemes defined in the corresponding
lexicons. If one is found, it is wrapped with either a sub markup element
if the lexicon defines an alias or with a phoneme markup element if the
lexicon defines a phonetic pronunciation. After all lexicons are applied,
all lexicon and lookup markup elements are removed.

Figure 5.5: Preprocessor Module UML Component Diagram

5.3.4 Parser

The parser module is responsible for parsing the input script using LSML-
specific knowledge and generating an internal data object that will be used
and extended by the pipeline. The module has two primary sub-components,
which may be called upon by external modules.

34

CHAPTER 5. IMPLEMENTATION

The first sub-component of the parser is the meta parser, which is respon-
sible for executing a shallow parse of LSML content and extracting meta-
information. This meta-information includes all info , settings , deck , and
lexicon markup elements, which are all direct children of the lecture root
element. Because LSML is XML-based, an existing XML-parser can be used to
parse LSML content. Lecture.js imports the library xml-js6, and implements
the global script xml-converter as an interface for the library with which other
modules and global scripts may communicate. The meta parser calls the xml-
converter to convert the LSML content to a JSON representation, as shown
below.
{

"elements": [
{

"type": "element",
"name": "lecture",
"attributes": {

"startmark": "intro"
},
"elements": [

...
]

}
]

}

This JSON representation can then be analyzed for meta-information,
which is converted to the internal data format and results in output similar to
what is shown below. Additionally, the pipeline module will generate a Univer-
sally Unique Identifier (UUID) for the data object and add the date of when the
script was parsed. The data generated by the meta parser may include settings
that alter the preprocessor module’s behavior, like the breakAfterSlide set-
ting. The pipeline must therefore call the meta parser before the preprocessor
transforms the input script.
{

"info": {
"title": "Simple Example"

},
"settings": {

"voice": "amazon -en -gb -amy",
"resolution": {

"width": 1280,
"height": 720

},
"fps": 30,
"breakAfterSlide" : 1300

},
"decks": {

"intro -slides": {
"id": "intro -slides",
"file": "intro.pdf",

6 xml-js: npmjs.com/package/xml-js

35

https://www.npmjs.com/package/xml-js

CHAPTER 5. IMPLEMENTATION

"file_path": "path\\to\\intro.pdf",
"pages": 10,
"fit": "contain"

}
},
"active_deck": "intro -slides",
"lexicons": [

{
"id": "lexicon1",
"alphabet": "ipa",
"lexemes": [

{
"grapheme": "Bob",
"type": "alias",
"replacement": "Bobby

},
{

"grapheme": "tomato",
"type": "phoneme",
"replacement": "t@"mei:t@U"

}
]

}
],
"uuid": "2cf70fd4 -61ff -4af8 -abe3 -6 b86b7cf3532",
"date": "2020/10/14 06:45:16.448"

}

The second sub-component is the section creator, which is called after the
preprocessor module is executed. The section creator runs a deep parse of
the whole preprocessed LSML content. One of the module’s tasks is to scan
for any marks, chapters, and embedded media resources to create additional
meta-information entries. This results in data similar to what is shown below.
{

"resources": {
"video": [

{
"id": 0,
"path": "path\\to\\video.mp4",
"variants": {

"START -00:00:03.500": "path\\to\\ trimmed \\video.mp4"
}

}
],
"image": [

{
"id": 0,
"path": "path\\to\\image.png"

}
],
"audio": [

{
"id": 0,
"path": "path\\to\\audio.mp3",
"variants": {

"START -00:00:02.000": "path\\to\\ trimmed \\audio.mp3"
}

}
]

},

36

CHAPTER 5. IMPLEMENTATION

"marks": {
"startmark": "intro",
"content": {

"intro": {
"section": 1

},
"toc": {

"section": 2
}

}
},
"chapters": [

{
"title": "Intro",
"mark": "intro",
"section": 1

},
{

"title": "Table of Contents",
"mark": "toc",
"section": 2

}
]

}

However, the section creator’s primary purpose is to split the input script
into sections at specific positions. Each section is later converted to speech
separately from the others, meaning that each section corresponds to an in-
dividual request sent to a Text-to-Speech API. Consequently, a new section
must be created whenever an element is encountered, which can not be di-
rectly handled in the request body that contains the SSML content, but only
in the request head. This is the case for the voice markup element. Addition-
ally, a new section must be created whenever an element is invoked, for which
the pipeline needs to know the start timestamp. Because the Text-to-Speech
APIs do not return timestamps for words and sentences, the pipeline can only
determine timestamps beforehand by splitting the content into sections which
are later converted to individual video clips and concatenated. The pipeline
needs to know the timestamp whenever a new chapter is created, a media
file is inserted, or a frame is changed. This means that a new section is cre-
ated whenever a mark , video , image , audio , or slide markup element is
encountered.
{

"sections": [
{

"id": 1,
"type": "ssml",
"frame": {

"type": "slide",
"deck": "intro -slides",
"page": 1,
"fit": "contain"

},
"voice": "amazon -en -gb -amy",
"content": "<speak >\r\n\r\nGood day!\r\n\r\n</speak >"

37

CHAPTER 5. IMPLEMENTATION

},

...

]
}

Additionally, a warning is printed once a section becomes too large. Ama-
zon Polly and Google Cloud Text-to-Speech both set limits to the number of
characters that may be sent in a single request to their APIs. Amazon Polly
currently allows for 3000 billed plain text characters and an additional 3000
non-billed SSML characters per request, while Google Cloud Text-to-Speech
limits its requests to 5000 characters in total. The section creator prints a
warning once a section exceeds the limit set for the associated API. However,
it does not automatically split the section because this would require a reli-
able detection for the text’s sentence and paragraph structure, which was too
time-consuming to implement.

Figure 5.6: Parser Module UML Component Diagram

5.3.5 Text-to-Speech

The two Text-to-Speech APIs Amazon Polly and Google Cloud Text-to-Speech
were integrated into lecture.js. The latter has excellent voices that sound very
natural, but it lacks in terms of SSML support. Google has been slow in adopt-
ing new features since the introduction of its Text-to-Speech service, which
might make their voices much less valuable in the future.

38

CHAPTER 5. IMPLEMENTATION

On the opposite end, Amazon Polly supports most of the essential SSML
features, but their voices, except their new neural voices, have an audibly
worse sound and tend to stutter every so often. However, Amazon already
announced the Neural Text-to-Speech system on their AWS Machine Learning
Blog [2019], presenting higher quality neural voices for the languages English,
Portuguese, and Spanish. Amazon Polly’s neural voices still exhibit some of
the same problems as the standard voices but sound audibly better. If they
improve their voices even further and approach Amazon Alexa in terms of
voice quality, it may become the go-to source for voices in lecture.js.

API Integration

The text-to-speech module was created to integrate the two above-mentioned
APIs into lecture.js. The module aims to standardize Text-to-Speech APIs
in lecture.js by acting as a common interface between the modules and the
different APIs. Consequently, this also makes it easier to integrate additional
Text-to-Speech services into lecture.js in the future.

The text-to-speech module provides several standardized functions for get-
ting information about the currently available voices and languages from the
APIs, including the validation of voice names and language codes. Addition-
ally, it provides functions to find similar voices and language codes to a given
key. For example, the module can find a similar voice to a male US-American
English voice in another language. These features are used by other modules,
like the parser and preprocessor, and the pipeline, to validate and process any
user input related to the Text-to-Speech APIs.

Any module outside the text-to-speech module does not need to know to
which API a voice belongs because the module internally determines the cor-
rect API to use depending on the parameters the user provides. The module
can render both SSML and plain text as speech. It defines the following pa-
rameters for a Text-to-Speech request:

• voice_name specifies the name of the voice specific to lecture.js. This
name is different from the voice name set by the corresponding API to
prevent clashes between similar voice names across APIs.

• type specifies the type of content to render, which may be either SSML
or plain text.

• content defines the text to be rendered as speech.

Once the first request is sent to the module, it establishes a connection
to Amazon Polly and Google Cloud Text-to-Speech using the credentials files
referenced in the configuration file.

39

CHAPTER 5. IMPLEMENTATION

Because the credentials files are optional as long as at least one valid cre-
dentials file is provided, there may be cases where only one connection to an
API is established. If the request is a speech synthesis request, the module de-
termines the API corresponding to the voice_name , and then an object with
the pertinent data for the API is created and sent to the API. The API, in
turn, sends an HTTPS request to a web server, where the audio is being gen-
erated. After a while, a binary string of MP3 audio data is returned by the
API and sent back to the module that invoked the text-to-speech module.

Figure 5.7: Text-to-Speech Module UML Component Diagram

Caching

Sending requests to the Text-to-Speech APIs requires both time and money,
which does not scale well for an application that might be used repeatedly by
multiple users. Each request to the APIs is a request to a server that must be
resolved before the program can continue. These services offer free quotas for
how many characters may be requested per month. However, after the limits
are reached, the user must usually pay around $4 for standard voices and $16
for higher quality voices per 1 million characters. Because the standard voices
sound very robotic, the higher quality voices, which are the WaveNet voices
of Google Cloud and neural voices of Amazon Polly, will probably be used
exclusively by the users. These accrued costs may grow exceptionally fast if a
user is repeatedly generating the same lecture with only minimal changes to
the input text to correct individual words or phrases.

40

CHAPTER 5. IMPLEMENTATION

In such a case, the program would repeatedly request the two Text-to-
Speech APIs for the same full script. Caching can remedy this situation by
saving previously generated audio files temporarily to be re-used should the
same text be requested again.

A caching manager was added to the text-to-speech module to control a
simple cache. Whenever the module receives a speech synthesis request for
the APIs, an ID will be generated that uniquely identifies the request. The
ID consists of the voice’s name, a Google Cloud Effect profile if applicable,
the type of content, either SSML or plain text, and the actual content to be
rendered as speech. Because the resulting ID might be very long, a compression
algorithm7 based on Lempel-Ziv is used to compress the ID in the UTF16
character encoding to around 50% of the original string’s length. The ID is
then matched against a simple lookup-table implemented using JSON. If the
ID exists in the table, the binary data for the audio file is returned. Otherwise,
the speech synthesis function is executed, and the resulting audio file will be
cached using the generated ID.

The cache database itself consists of a directory placed in the project’s
root directory that contains all the cached audio files and a JSON file that
indexes the IDs with the corresponding audio file paths and the date of entry.
The index file is read once the cache is accessed for the first time, and a self-
reparation process is run to keep the cache consistent. All audio files that are
cached but not indexed are removed. In addition, all entries in the index file
for which no corresponding audio file exists are removed from the index file.
Self-repair is not essential unless the program is stopped during execution or
the user manipulated the cache. It is also important to remove cached entries
that are very old from the cache to prevent the user from re-using the same
audio files forever. By default, any audio file older than 365 days is removed.
This is necessary because the Text-to-Speech APIs may have changed their
implementation in the meantime, which would make a voice used in the lecture
sound different depending on if the audio comes from the cache or is newly
generated.

Most aspects of how the cache behaves, including the expiry date for cached
audio files, may be set in the configuration file or using command-line argu-
ments, as explained in section 5.3.1.

5.3.6 Frame Extraction

Frame extraction in lecture.js refers to extracting an image from a media re-
source or slide deck and rendering it as a frame in the video lecture.

7 lz-string: github.com/pieroxy/lz-string

41

https://github.com/pieroxy/lz-string

CHAPTER 5. IMPLEMENTATION

There is no singular module for frame extraction in lecture.js. Instead, the
process is realized using multiple global scripts and libraries for different frame
types. There are three frame types defined in lecture.js:

1. Image: An image is inserted using the image markup element.

2. Slide: A page of a PDF document is extracted as an image.

3. Persistent Video Frame: The last frame of a video resource that was
inserted using the video markup element is extracted and stays after
the video stops playing.

Image

The aim of frame extraction is for an image to be generated. Because the image
element already defines the path to an existing image file, there is nothing to
be done by the pipeline besides noting the file path in the internal data object.

Slide

PDF documents are often utilized in university lectures as slides, because they
are shareable documents of images and formatted text. This also makes the
format a suitable choice for the type of slides to use in lecture.js. To work
with PDF documents and extract the pages referenced in the script as a video
frame, lecture.js imports the library PDF.js8. This library is a popular PDF
viewer and processor developed by Mozilla, being utilized in a wide range of
projects, including the browser Mozilla Firefox. The library produced superior
results compared to the popular image manipulation library GraphicsMagick,
which was also tested in development. PDF.js can also extract additional meta-
information from PDF documents required in lecture.js, like counting how
many pages the document contains. However, a disadvantage of the library is
that it was designed for usage in a browser. Although a Node.js build9 of the
library exists, some of its features do not properly work outside the browser
environment. In a web browser, a canvas element is created by PDF.js, and
the image data is written into it when a PDF document gets converted to
an image. This is why it is necessary to simulate the JavaScript Canvas API
implemented in web browsers inside lecture.js. For this purpose, the library
canvas10 was imported to simulate a HTML canvas element inside the Node.js
environment.

8 PDF.js: mozilla.github.io/pdf.js
9 Node.js build of PDF.js: npmjs.com/package/pdfjs-dist

10 canvas: npmjs.com/package/canvas

42

https://mozilla.github.io/pdf.js/
https://www.npmjs.com/package/pdfjs-dist
https://www.npmjs.com/package/canvas

CHAPTER 5. IMPLEMENTATION

The global script pdf-worker was created to provide a common interface
between the libraries mentioned above and other modules. The pdf-worker
script defines a CanvasFactory that utilizes the canvas library. Once a request
for a frame extraction is sent with the file path to a PDF document, a page
number, and the desired image resolution, an instance of the CanvasFactory
is instantiated. This instance can be used to simulate a new canvas element.
A request with the parameters and the canvas instance is then sent to the
PDF.js library. A viewport is calculated to fit the PDF page into the desired
resolution, and an image is rendered depicting the PDF page. Because the
process uses the library PDF.js, which is also utilized in Mozilla Firefox, the
user may check beforehand if their PDF document will be rendered correctly
by opening it in Mozilla Firefox and checking for any artifacts.

Figure 5.8: PDF Worker Module UML Component Diagram

Persistent Video Frame

The open-source software FFmpeg11 was imported into lecture.js to handle the
creation and manipulation of video and audio files. The global script ffmpeg-
worker was created to act as an interface between FFmpeg and the lecture.js
modules. The script implements a function for extracting the last frame of
a video file as an image, which is utilized for generating the persistent video
frame. The pipeline calls the function with the file path to the converted video
resource, places the then generated image file in the output directory, and saves
the file path in the internal data object.

11 FFmpeg: ffmpeg.org

43

https://ffmpeg.org/

CHAPTER 5. IMPLEMENTATION

A simplified UML component diagram of the ffmpeg-worker is shown in
figure 5.9. The usage of FFmpeg in lecture.js and the ffmpeg-worker component
are explained in more detail in the section 5.3.7.

Figure 5.9: Simplified FFmpeg Worker Module UML Component Diagram

5.3.7 Video Generation

Similarly to frame extraction, video generation in lecture.js is not realized
using a singular module but a combination of modules, global scripts, and
libraries. The manipulation and creation of video and audio files happen at
multiple points throughout the lecture.js pipeline. To power these complex
tasks, the popular software project FFmpeg was imported into lecture.js. To
be more precise, lecture.js utilizes the command-line tools ffmpeg and ffprobe
to analyze and transcribe multimedia files, respectively. To give an efficient
way of accessing these tools, the global script ffmpeg-worker was created as
an interface. The script is utilized extensively by the pipeline to convert the
embedded resources to the right codec and apply the user parameters. It is
also used to combine audio files and frames to video clips, which are later
concatenated to the video lecture. In total, the script provides the following
abstracted sub-components:

• The FFmpeg Caller and FFprobe Caller sub-components allow for
generic command-line access to the ffmpeg and ffprobe command-line
tools using any of the available command-line arguments.

• The Stream Analyzer can extract information from audio or video
streams, which includes the video resolution, the total number of frames,
and the duration.

• The MP4 Creator combines an audio and image file to an MP4 video
file. It accepts several user parameters, including the resolution, scaling
mode, and frames per second.

• The MP4 Concatenator combines a sequence of MP4 video files to a
single MP4 video file.

44

CHAPTER 5. IMPLEMENTATION

• The Video Converter converts a video to the MP4 container with the
video codec libx264, the pixel format YUV420p and the audio codec aac.
These encoding settings are recommended by YouTube12 for uploaded
videos, the API of which will need to be integrated into lecture.js. Addi-
tionally, it scales the video using the desired parameters and renders the
video with the desired frames per second.

• The Video Trimmer trims a video to the desired start and end time.

• The Volume Changer changes the volume of an audio or video file
using a relative decibel amount between -50dB and +50dB.

• The Speed Changer changes the speed of an audio or video file by an
absolute percentage value between 50% and 200%. Therefore, it can at
most halve or double the speed and duration of the media.

• The Video Frame Extractor renders the last frame of a video as an
image file.

Whenever one of these sub-components is called, an FFmpeg log file can be
created alongside the output file unless it is deactivated in the configuration
file. The log file might give clues to potential problems if the user encountered
an FFmpeg error while using the ffmpeg-worker. The pipeline also uses the
stream analyzer sub-component to determine the start and end timestamps of
each video section, which is later used to generate a table of contents.

Figure 5.10: Complete FFmpeg Worker Module UML Component Diagram

12 YouTube’s recommended upload encoding settings:
support.google.com/youtube/answer/1722171

45

https://support.google.com/youtube/answer/1722171?hl=en

CHAPTER 5. IMPLEMENTATION

Additionally, another simple module exists to define the upper and lower
boundaries for video parameters of any video generated using lecture.js. This
video-manager module keeps the parameters consistent across the project ex-
cept for the validator, which also defines the value statically inside the XSD
schema. The video-manager can validate the video parameters, as well as, parse
LSML video resolution strings in the form of "{width}x{height}".

The module currently allows for videos to have 4k resolution and up to
120 frames per second. A resolution or frame-rate higher than those values
will not result in substantial visible quality improvements because Full HD
resolution and 30-60 FPS video playback are the norm for most online users.
The improvement in video quality will not justify the exponentially growing
file sizes and upload times. However, the module also sets lower boundaries
because if these parameters were to be set too small by the user, FFmpeg
might crash. The video-manager defines the following boundaries:

• UPPER_LIMIT_FPS = 120

• LOWER_LIMIT_FPS = 10

• UPPER_LIMIT_WIDTH = 3840

• LOWER_LIMIT_WIDTH = 128

• UPPER_LIMIT_HEIGHT = 2160

• LOWER_LIMIT_HEIGHT = 72

Figure 5.11: Video Manager Module UML Component Diagram

46

CHAPTER 5. IMPLEMENTATION

5.3.8 Uploader

The uploader module was added as a supplemental feature to automate the
upload process of the generated video lectures to the internet. It is intended
to be extended in the future to support multiple web video platforms. For
instance, the e-learning platform Moodle would be a welcome addition. At
this time, the uploader only supports video uploads to YouTube.

Once the pipeline has successfully generated a video lecture, it will cre-
ate a video description suitable for YouTube using a function provided by the
uploader module. This process happens by default, even if the user does not
choose to upload the video afterwards, but this can also be disabled in the con-
figuration file. The description consists of the formatted meta-information that
the user defined using the info markup element. Additionally, if any chapters
were defined using the mark markup element inside the script, the module
uses them to generate a table of contents inside the description. YouTube uses
these timestamps to indicate in their video player where specific chapters of
the video begin and end, as shown in figure 5.12.

Figure 5.12: YouTube’s Video Player with Chapters

47

CHAPTER 5. IMPLEMENTATION

After the description is outputted as a text file, the pipeline checks if a cre-
dentials file for the YouTube Data API is defined in the configuration file. In
case a valid credentials file exists, the user is asked for confirmation to upload
the video. If the user accepts the request, an authentication link is printed in
the terminal. If the user uses Windows 10, the link also gets directly opened in
their default browser. The web page shows a Google authentication prompt,
and the user must log in with their YouTube account details. Once they suc-
cessfully logged in, a token is generated, which the user will need to paste
back into the terminal to start the upload process. Once that is accomplished,
the uploader module is requested to upload the video lecture. The process of
authentication is only required once, and the generated token will be saved
to speed up the upload process for future generated lectures to the account.
Additionally, the module also supports the insertion of the uploaded videos
into playlists owned by the authenticated user. The ID for this playlist may
be set in the configuration file or the settings markup element.

Figure 5.13: Uploader Module UML Component Diagram

48

CHAPTER 5. IMPLEMENTATION

5.4 Parallelization
The lecture.js pipeline performs all primary tasks in sequential order as most
of these primary tasks require data generated by previously executed primary
tasks. However, the pipeline also supports data-parallel parallelization within
specific primary tasks by dividing them into sub-tasks. For example, the gen-
eration of frames is a primary task. In contrast, the generation of an individual
frame would be a sub-task that could be executed parallel to a similar sub-task,
like generating a different individual frame.

These sub-tasks operate on the same set of data but are independent of
each other. Because of this, they can be parallelized in a limited manner so
that each sub-task performs a similar but distinct operation using its copy or
section of the complete data.

For this purpose, a request manager was created as a global script accessible
by all pipeline modules. This request manager manages the execution of general
tasks as requests in a data-parallel manner.

Each sub-task is defined in a request object that consists of a synchronous
or asynchronous function to be called with the defined parameters by the re-
quest manager. Once the request is completed, a synchronous or asynchronous
callback function is called with the output from the function and the de-
fined callback_parameters .

const requests = [];
const request = {

function : someFunction ,
parameters : [123, ’abc’],
callback : (output , numbers , letters) => {

console.log(output); // output from someFunction ()
console.log(numbers); // 456
console.log(letters); // ’def’

},
callback_parameters : [456, ’def’]

};
requests.push(request);

The request manager is then called with the array of request objects and a
set of options. The option max_concurrent defines how many requests of the
batch may be run at any one point in time and max_per_second how many
requests may be started at most per second.
const requester = require(’./ requester.js’);
await requester.run(

requests ,
{ max_concurrent : 3,
max_per_second : 2 }

);

49

CHAPTER 5. IMPLEMENTATION

The request manager will then execute the requests in the order that they
appear in the array asynchronously in parallel within the limitations defined
in the options object. The request manager will return a promise that is only
resolved once all requests were successfully executed. The await keyword in
the code example above indicates that the program will wait for the promise
to be resolved, which means that the pipeline will only continue running once
all sub-tasks are completed. Within the pipeline, the following tasks were par-
allelized:

• Video resources: conversion to the right codec; trimming; manipulation
of volume and speed

• Audio resources: trimming; manipulation of volume and speed

• Text-to-Speech: requests to the APIs

• Frame generation: extraction from PDFs or videos; copying of external
image resources

• Video generation: combining frames and audio into individual clips

As an example of parallelization in the pipeline, the diagram in figure 5.14
shows the data-parallelized sub-tasks of converting embedded external video
resources.

Figure 5.14: Data-parallel Video Resource Conversion

It would have also been possible to parallelize specific primary tasks that
are entirely independent of each other in a task-parallel manner. For example,
the extraction of image frames and the generation of Text-to-Speech audio files
could run at the same time because they do not require any data generated
by each other, as shown in figure 5.15. However, this would have impeded the
performance of the sub-task parallelization within these primary tasks, making
the overall performance gain negligible while sharply increasing the software’s
complexity. Instead, running all primary tasks in a sequential manner ensures
that the resulting output to the user’s terminal follows a logical order. This
improves the user’s overview of the program flow.

50

CHAPTER 5. IMPLEMENTATION

Figure 5.15: Potential Task-parallel Frame Extraction and Text-to-Speech

5.5 Logging
All modules use a custom logging script that extends JavaScript’s built-in
debugging console. The custom logger provides several semantic log types that
may be used depending on the context of a log. The following log types exist:

• message : general message

• info : informative message

• warn : warning message

• error : error message

• fatal : fatal error message, that should be followed by the termination
of the program

• question : question that the user may answer using the terminal

• confirm : question to which the user must respond y (yes) or n (no)

The different types of logs are color-coded and formatted using ANSI escape
codes that work in both Linux andWindows terminals. When a log is printed, it
displays the exact time when it was invoked. Warnings, errors, and informative
messages also provide the script and line number where they were invoked.

The idea behind the custom logger script is to add as much information as
possible to each log while keeping them short and clean. In addition, the logger
script also saves each invoked log as an object and provides several functions
for querying and filtering the saved logs. It also supports the creation of log
files. This function is used by the pipeline to output a log file into the output
folder after each execution of the pipeline.

51

CHAPTER 5. IMPLEMENTATION

The following code example would produce the terminal output shown in
figure 5.16.
var logger = require(’./ logger.js’);
(async function () {

logger.message(’Test’, 123, [4, 5, ’6’]);
logger.info(’Test’);
logger.warn(’Test’);
logger.error(’Test’);
logger.fatal(’Test’);
await logger.question(’What is your name?’);
await logger.confirm(’Are you ready?’);

})();

Figure 5.16: Logs displayed in the Windows 10 terminal

5.6 Style Guide
The source code must be consistent over the many modules and scripts that
were implemented, which is why a basic style guide was specified during de-
velopment. For context in the following sections, a script refers to a single
JavaScript file. In contrast, a module refers to one or multiple scripts related
to one another, which are typically imported as a single module.

Script Structure

In lecture.js, JavaScript files should use the strict mode, which restricts the
language by using more strict semantics and disabling some of JavaScript’s
quirky features. The strict mode causes some otherwise silent errors to be
thrown explicitly and prevents the use of some syntax that is likely to be
defined in future versions of JavaScript. The strict mode can be enabled by
placing the following string at the top of the file:
’use strict ’;

52

CHAPTER 5. IMPLEMENTATION

Then, any modules imported into the script are defined. The module defini-
tions should follow a specific order, where first come the internal Node modules,
then global scripts, followed by other scripts from the same module. Lastly,
other modules and external libraries may be imported. To not pollute the file’s
global namespace with variables, an object is defined that references all the
modules, which is then used to call the modules. The object has a variable
name of one character, which is _ .

const _ = {};
_.fs = require(’fs’);
_.logger = require(’./ logger.js’);
_.logger.message(’This is a log.’);

Another part of a script’s header is the definition of variables with script-
wide scope. These variables may be used from any place within that particular
script. Any constants with file-wide scope must be defined with capital let-
ters, followed by other non-constant variable definitions with file-wide scope.
Whenever possible, variables that will not change in type should be defined as
constants with the keyword const , while other variables definitions should use
the keyword let . Each variable definition should use a separate variable key-
word instead of defining multiple variables with a single keyword. The variable
keyword var should be avoided because it has special scoping rules, where it is
scoped to the beginning of the immediate enclosing function. This means that
if the variable is defined at the end of the file using var , it is also accessible
at the beginning.
// constants
const EOL = _.os.EOL;
// definitions
let COUNTER = 0;

Next come the definitions of private functions, which are only available
from within the script. After these, the definition of an object with the name
__public follows. This public object holds all public functions, each of which
gets a key assigned by which it may be referenced from outside of the object.
At the end of the script, the public object is exported and becomes available
to other scripts that import the script.
// private functions
const privateFunc = () => { ... };
// public functions
const __public = {

publicFunc : () => { ... }
};
module.exports = __public;

53

CHAPTER 5. IMPLEMENTATION

Function Structure

There should be a documentation comment defined above every function using
the JSDoc syntax. This is explained in more detail in section 5.7.

Any function parameters should be tested for the correct type and valid
content when possible. These type tests should be separated into sections for
required and optional function parameters, although both sections must be
located at the top of the function body before any other content.

Functions should return the expected value from a successful execution
using the last return statement at the bottom of the function body, if possible.
Return statements triggered by an error should appear above the successful
return statements inside the function body.

Syntax

Local variables inside functions and object keys should use the snake case
syntax, while configuration values and function names should use the title
case syntax.

Longer strings should be generally defined using backticks, which allows the
insertion of variables directly into the string without concatenation. Strings
that are a few characters long may also be defined using apostrophes. Quota-
tion marks are not to be used to define strings.

Wherever possible, the simple syntax of ECMAScript 6 should be used,
which includes the definitions of functions. Because Node.js supports the syn-
tax and runs outside the web browser, backward compatibility with older web
browsers, which often prevents the usage of ECMAScript 6 on modern web-
sites, is not an issue for this desktop software implementation.
// ECMAScript 5
function name(variable) { ... }
// ECMAScript 6
const name = variable => { ... }

Most asynchronous Node.js functions implement a function parameter,
which should be a callback function to be executed once the asynchronous
function finished its execution. These callback functions are called with an er-
ror parameter, which includes information about possible errors from when the
asynchronous function was executed. They also have a second parameter that
transfers the output from the asynchronous function. This callback structure
of asynchronous functions in Node.js should be avoided in lecture.js. Instead,
JavaScript Promises, then functions and the keywords async and await
should be used.

54

CHAPTER 5. IMPLEMENTATION

Whenever applicable, the synchronous variant of an asynchronous Node.js
function should be used. If that is not possible, the asynchronous variant should
be wrapped into a promise whose fulfillment is to be synchronously awaited
using the await keyword.

5.7 Documentation
All modules and functions in the source code were annotated using docu-
mentation comments with the syntax of JSDoc. JSDoc13 is a documentation
generator for JavaScript that enables the automatic generation of an API doc-
umentation from annotated source code.

Besides the advantage of having an automatic API documentation, the
syntax of the documentation comments is also very similar to JavaDoc14.
JavaDoc is a documentation generator for Java utilized in a wide range of
software projects and of which variants exist for a multitude of programming
languages. This means that the documentation syntax is known to a wide
range of programmers, besides being easy to read in general. An example of a
JSDoc documentation comment used in the software looks like the following:
/**
* checks if a voice exists
*
* @async
* @function
* @alias module:text_to_speech
* @category public
*
* @param {string} voice_name - name of the voice
* @returns {Promise.<boolean >} true if the voice exists
*/
voiceExists : async(voice_name) => {

...
}

A documentation module was created that scans the source directory for
all JavaScript files. With the help of the jsdoc2md15 library, it compiles the
results into a markdown documentation file. Documentation generators like
JSDoc often focus on generating Hypertext Markup Language (HTML) files.
However, in contrast to HTML, markdown files make it possible to directly
view the documentation in the repository on GitLab or GitHub, without the
need to host an additional website to render HTML content.

13 JSDoc: jsdoc.app
14 JavaDoc: docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html
15 jsdoc2md: github.com/jsdoc2md/jsdoc-to-markdown

55

https://jsdoc.app/
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html
https://github.com/jsdoc2md/jsdoc-to-markdown

Chapter 6

Evaluation

Multiple groups were invited to prepare a pre-recorded presentation for the
PAN workshop of the CLEF 2020 conference. These groups and some addi-
tional individuals were contacted to participate in a user study evaluating
lecture.js by producing a video presentation1 or trying out the tool privately.
Four participants provided feedback in an online questionnaire. It included
14 questions covering ease of usage of lecture.js, perceived time savings, qual-
ity of the Text-to-Speech output, and perceived limitations with suggestions
for improvements.2 The study participants had access to a GitHub repository
with the source code and credentials files for Amazon Polly and Google Cloud
Text-to-Speech. An installation guide, a How to use guide, and documentation
of all markup features were provided. Although technical support was offered,
three out of four participants completed the study without additional help.
Although the study provided some great first insights into the feasibility and
possible problems of lecture.js, it is not completely representative of the target
user groups of lecture.js because there were only four participants.

Participants familiarized themselves with the software fairly quickly. The
installation process took less than half an hour for most participants (figure
6.1). Familiarization with the software’s basic usage took one to two hours on
average (figure 6.2).

2

11
<15 minutes
15-30 minutes
30-60 minutes
>60 minutes

Figure 6.1: Installation time

3

1
<60 minutes
1-2 hours
2-3 hours
>3 hours

Figure 6.2: Familiarization time

1 Example video generated in the user study: youtu.be/699e_l6XDI8
2 The questions and results are listed in the appendix starting on page I.

56

https://youtu.be/699e_l6XDI8

CHAPTER 6. EVALUATION

However, the participants felt that only a little time was saved using the
software compared to recording and editing a video themselves (figure 6.3).
Although there are only some perceived time savings, this may improve once
users have more experience using the software or access to a graphical user
interface. The participants judged the learning of the software’s basics as gen-
erally easy (figure 6.4). Simultaneously, they described the difficulty of using
the software to generate videos as moderate, though with a slight tendency
to easy (figure 6.5). However, it must be taken into account that all partici-
pants are very experienced in computer science, which will not apply to the
software’s whole target user group.

1 2 3 4 5

1

2

0

1

0

1 (none) to 5 (a lot)

Figure 6.3: Perceived
time savings

1 2 3 4 5

1

3

0 0 0

1 (very easy) to 5 (very hard)

Figure 6.4: Difficulty
understanding the basics

1 2 3 4 5
0

2

1 1

0

1 (very easy) to 5 (very hard)

Figure 6.5: Difficulty
using the software

The participants were, in general, satisfied with the quality of the Text-to-
Speech output, describing the quality of voices as moderate (figure 6.6) and
the number of available languages as enough (figure 6.7).

1 2 3 4 5
0

1

2

1

0

1 (robotic) to 5 (natural)

Figure 6.6: Voice sound
quality

1 2 3 4 5

1

0

1

0

2

1 (too little) to 5 (enough)

Figure 6.7: Available
languages

There was no clear preference for voices from Google Cloud Text-to-Speech
or Amazon Polly (figure 6.8). This is surprising because, on the whole, Ama-
zon Polly’s voices sound audibly worse than Google Cloud’s voices. However,
this might be explained by the participants only using Amazon Polly’s new
neural voices, which can approach Google Cloud’s WaveNet’s voices in terms
of quality.

57

CHAPTER 6. EVALUATION

Additionally, participants had to correct the pronunciation of very few
words in their video presentations (figure 6.9).

1 1

2
Amazon Polly
Google Cloud
No preference

Figure 6.8: API
preferences

1 2 3 4 5

1

2

0

1

0

1 (none) to 5 (many)

Figure 6.9: Word
mispronunciations

The participants felt somewhat limited in what they could achieve when us-
ing the software (figure 6.10). There were several suggestions for improvements
and additional features. One participant suggested specific simplifications of
the markup language, which were implemented by removing some unnecessary
elements, making some required elements and attributes entirely optional, and
re-naming some elements and attributes. Additionally, an LSML markup ele-
ment for inserting images and an attribute for fitting media elements to the
output resolution was added after a participant suggestion. Some other sug-
gestions were the following, which could be implemented in the future:

• overlaying an audio file over an inserted video
• preview of individual sections of the lecture
• parsing named destinations in PDF documents, where the pages with

destinations can later be loaded as slides using the corresponding anchor
tags

In total, the participants held a positive attitude towards the software. They
indicated it would be likely for them to use the software again to generate video
presentations in the future (figure 6.11).

1 2 3 4 5

1 1

2

0 0

1 (not at all) to 5 (very)

Figure 6.10: Perceived
limitation in the usage

1 2 3 4 5
0 0 0

2 2

1 (very unlikely) to 5 (very likely)

Figure 6.11: Likelihood to
use lecture.js again

58

Chapter 7

Conclusion and Future Work

Due to the COVID-19 pandemic and its impact on people worldwide, pre-
recorded lectures recently experienced a rise in popularity. However, creating
high-quality video lectures can be a difficult, time-consuming, and costly task.
That is why this thesis aimed to develop a tool that would enable teachers
to generate spoken video lectures from their scripts and slides while remov-
ing the need for manual audio recording and video editing. For this purpose,
the custom lecture-markup language LSML was proposed and implemented
as an extension of SSML with many features for Text-to-Video generation.
In addition to language and prosodic features of SSML, LSML supports the
integration of slides, external visual resources, and video manipulation. LSML
scripts are validated, pre-processed, and parsed by a custom software imple-
mentation called lecture.js created in the course of this thesis. The resulting
data is used to request Amazon Polly and Google Cloud Text-to-Speech and
generate natural-sounding speech. The Text-to-Speech audio is then combined
with PDF slides and external video, audio, and image resources provided by the
user to generate a video lecture, which can be directly uploaded to YouTube.

A user study was conducted after the mandatory features were functional
to evaluate the user experience that lecture.js provides. The participants rated
the software to be fairly straightforward to use. They achieved some time
savings, which can undoubtedly be improved upon with future quality of life
features and if the users have more experience working with the program. Most
participants did not dislike the Text-to-Speech output, and all indicated it to
be likely for them to use the software to generate more video presentations
in the future. In the end, lecture.js succeeded in its initial goal to enable its
users to save both time and money when creating video lectures. However,
even more requirements for lecture.js were outlined in this thesis’s planning
stages. All those requirements deemed to be primary were successfully met,
and all mandatory features were implemented.

59

CHAPTER 7. CONCLUSION AND FUTURE WORK

Some of the supplemental features could not be implemented in time. This
leaves room for several aspects of the software that may be extended or im-
proved in the future. The most pressing issue is the missing graphical user
interface, which, once implemented, will lower the learning curve of the soft-
ware even further and enable teachers to create video lectures more efficiently.
Additionally, the highlighting of sections in the slides for improved interac-
tivity would only be efficiently useable when combined with a graphical user
interface. Another important supplemental feature that will need to be added
is the support for subtitles, which will enable deaf or hard-of-hearing students
to follow the lecture more easily.

Additional Text-to-Speech services can also be integrated into the software
to increase the pool of available voices and languages. One of the examples
for such a service is the open-source software OpenMARY. Although Open-
MARY’s voices sound moderately robotic, the project should still be integrated
into lecture.js in the future because it has two significant advantages. Open-
MARY is free, and it supports most SSML markup features. This makes the
software ideal for testing lecture.js and previewing generated lectures without
accruing unnecessary costs from the commercial Text-to-Speech services.

However, even without these features, lecture.js is already usable by teach-
ers in real-life environments, as shown by the user study. A further significant
advantage of lecture.js is that it requires very little maintenance unless there
are substantial changes in the employed APIs and libraries. Although the qual-
ity of the voices was rated as moderate by the user study participants, the
software will continually improve its audio output due to Amazon Polly and
Google Cloud Text-to-Speech improving theirs. This gives the quality of the
audio output great future potential with little to no additional work.

In the present, computer-generated voices still sound distinctly fake. They
are not as robotic as they used to be, though, and some are already suc-
cessfully employed and well-received in real-world applications. The field of
Text-to-Speech generation is making rapid progress in improving the sound
quality and life-like attributes of computer-generated voices. The last few years
saw some especially promising developments in terms of generating natural-
sounding voices using machine learning. This development will undoubtedly
continue in the future and possibly elevate computer-generated voices to a level
where they are virtually indistinguishable from human speech. Perhaps within
the next decade, computer-generated content will be accepted in education
environments just as much as their human counterpart. These technological
advancements spell great news for software like lecture.js, which can leverage
this technology most effectively.

60

Bibliography

Alexa Siterank Competitive Analysis. YouTube Siterank Analysis.
https://www.alexa.com/siteinfo/youtube.com, 2020. accessed on
28.09.2020. 1

AWS Machine Learning Blog. Amazon Polly Neural Text-to-Speech voices
now available in Sydney Region.
https://aws.amazon.com/blogs/machine-learning/amazon-polly-
neural-text-to-speech-voices-now-available-in-sydney-region/,
2019. accessed on 04.09.2020. 5.3.5

J. Couperthwaite, W. E. Leadbeater, and K. Nightingale. Evaluating the use
and impact of lecture recording in undergraduates: Evidence for distinct
approaches by different groups of students. https://www.researchgate.
net/publication/233406488_Evaluating_the_use_and_impact_of_
lecture_recording_in_undergraduates_Evidence_for_distinct_
approaches_by_different_groups_of_students, 2012. 1, 2

A. J. Danielson, V. Preast, H. Bender, and L. Hassall. Is the effectiveness of
lecture capture related to teaching approach or content type?
https://www.researchgate.net/publication/259127182_Is_the_
effectiveness_of_lecture_capture_related_to_teaching_approach_
or_content_type, 2014. 2

R. M. Hadgu, S. H. Huynh, and C. Gopalan. The Use of Pre-recorded
Lectures on Student Performance in Physiology.
https://files.eric.ed.gov/fulltext/EJ1157564.pdf, 2016. 1, 2

Ministry for Culture, Youth and Sport of Baden Württemberg. Video
conference tool for schools in the south west.
https://km-bw.de/,Lde/Startseite/Service/2020+06+22+Big+Blue+
Button+und+Fortbildungsangebote, 2020. accessed on 28.09.2020. 1

E. Nordmann and P. McGeorge. Lecture capture in higher education: Time
to learn from the learners.

61

https://www.alexa.com/siteinfo/youtube.com
https://aws.amazon.com/blogs/machine-learning/amazon-polly-neural-text-to-speech-voices-now-available-in-sydney-region/
https://aws.amazon.com/blogs/machine-learning/amazon-polly-neural-text-to-speech-voices-now-available-in-sydney-region/
https://www.researchgate.net/publication/233406488_Evaluating_the_use_and_impact_of_lecture_recording_in_undergraduates_Evidence_for_distinct_approaches_by_different_groups_of_students
https://www.researchgate.net/publication/233406488_Evaluating_the_use_and_impact_of_lecture_recording_in_undergraduates_Evidence_for_distinct_approaches_by_different_groups_of_students
https://www.researchgate.net/publication/233406488_Evaluating_the_use_and_impact_of_lecture_recording_in_undergraduates_Evidence_for_distinct_approaches_by_different_groups_of_students
https://www.researchgate.net/publication/233406488_Evaluating_the_use_and_impact_of_lecture_recording_in_undergraduates_Evidence_for_distinct_approaches_by_different_groups_of_students
https://www.researchgate.net/publication/259127182_Is_the_effectiveness_of_lecture_capture_related_to_teaching_approach_or_content_type
https://www.researchgate.net/publication/259127182_Is_the_effectiveness_of_lecture_capture_related_to_teaching_approach_or_content_type
https://www.researchgate.net/publication/259127182_Is_the_effectiveness_of_lecture_capture_related_to_teaching_approach_or_content_type
https://files.eric.ed.gov/fulltext/EJ1157564.pdf
https://km-bw.de/,Lde/Startseite/Service/2020+06+22+Big+Blue+Button+und+Fortbildungsangebote
https://km-bw.de/,Lde/Startseite/Service/2020+06+22+Big+Blue+Button+und+Fortbildungsangebote

BIBLIOGRAPHY

https://www.researchgate.net/publication/324943672_Lecture_
capture_in_higher_education_time_to_learn_from_the_learners,
2018. 1

A. J. Prunuske, J. Batzli, Howell E., and S. Miller. Using Online Lectures to
Make Time for Active Learning.
https://www.genetics.org/content/192/1/67, 2012. 2

The Guardian. Zoom booms as demand for video-conferencing tech grows.
https://www.theguardian.com/technology/2020/mar/31/zoom-booms-
as-demand-for-video-conferencing-tech-grows-in-coronavirus-
outbreak, 2020. accessed on 28.05.2020. 1

UNESCO. COVID-19 Educational Disruption and Response.
https://en.unesco.org/covid19/educationresponse, 2020. accessed
on 28.05.2020. 1

World Wide Web Consortium. Cascading Style Sheets Level 2
Recommendation. https://www.w3.org/TR/1998/REC-CSS2-19980512/,
1998. accessed on 31.08.2020. 4.6

World Wide Web Consortium. SSML Specification v1.1.
https://www.w3.org/TR/speech-synthesis11/, 2010. accessed on
31.08.2020. 4, 4.3, 5.3.2

62

https://www.researchgate.net/publication/324943672_Lecture_capture_in_higher_education_time_to_learn_from_the_learners
https://www.researchgate.net/publication/324943672_Lecture_capture_in_higher_education_time_to_learn_from_the_learners
https://www.genetics.org/content/192/1/67
https://www.theguardian.com/technology/2020/mar/31/zoom-booms-as-demand-for-video-conferencing-tech-grows-in-coronavirus-outbreak
https://www.theguardian.com/technology/2020/mar/31/zoom-booms-as-demand-for-video-conferencing-tech-grows-in-coronavirus-outbreak
https://www.theguardian.com/technology/2020/mar/31/zoom-booms-as-demand-for-video-conferencing-tech-grows-in-coronavirus-outbreak
https://en.unesco.org/covid19/educationresponse
https://www.w3.org/TR/1998/REC-CSS2-19980512/
https://www.w3.org/TR/speech-synthesis11/

Appendices

63

User Study Questionnaire
The questionnaire was provided as a Google Form after the user study with
the following questions and results. There were 4 participants in total.

1. How long did it take you to install the software?

2

11
<15 minutes
15-30 minutes
30-60 minutes
>60 minutes

2. How long did it take you to familiarize yourself with the soft-
ware?

3

1
<60 minutes
1-2 hours
2-3 hours
>3 hours

3. How difficult was learning the basics of the software?

1 2 3 4 5

1

3

0 0 0

1 (very easy) to 5 (very hard)

4. How difficult would you describe using the software?

1 2 3 4 5
0

2

1 1

0

1 (very easy) to 5 (very hard)

I

5. Do you feel you saved time using the software compared to
recording and editing a video yourself?

1 2 3 4 5

1

2

0

1

0

1 (none) to 5 (a lot)

6. How would you describe the quality of the voices?

1 2 3 4 5
0

1

2

1

0

1 (robotic) to 5 (natural sounding)

7. Is the amount of available languages enough?

1 2 3 4 5

1

0

1

0

2

1 (too little) to 5 (more than enough)

8. Did you prefer Amazon’s or Google’s voices?

1 1

2
Amazon Polly
Google Cloud
No preference

II

9. Did you have to correct the pronunciation of words?

1 2 3 4 5

1

2

0

1

0

1 (none at all) to 5 (many)

10. Did you feel limited in how you could use the software?

1 2 3 4 5

1 1

2

0 0

1 (not at all) to 5 (very)

11. How likely is it that you would use the software again for gen-
erating video presentations?

1 2 3 4 5
0 0 0

2 2

1 (very unlikely) to 5 (very likely)

12. Was there something that you wanted to do for the video, which
was not possible with the software?

13. Did you happen upon any problems using the software?

14. Do you have any suggestions for improvement?

III

Simple Example Script

<lecture >

<info title="Simple Example" />

<settings voice="amazon -en-gb-amy" />

<deck id="slides1" src="slides1.pdf" active="true" />
<deck id="slides2" src="slides2.pdf" />

Welcome to a short example that will demonstrate the basic
features of the software.

Currently , slide 1 is set as the active slide deck.

<slide page="+1" />

Now we are on the second page of slide 1.
We can also change the slide deck that is open!

<slide deck="slides2" page="1" />

It is also possible to change languages. For a test , this will
be <de>ausgesprochen in Deutsch </de>. It spoke German with
an English accent.

We can also add breaks and a lot of other cool stuff!

<break time="1500ms" />

It is possible to insert images!

<image src="test1.png" />

This program can also play audio files.

<audio src="audio -example.m4a" />

And videos too!

<video src="video -example.mp4" />

</lecture >

IV

LSML XSD Schema
<xs:schema xmlns:xs="http: //www.w3.org /2001/ XMLSchema"

xmlns:ssml="http: //www.w3.org /2001/10/ synthesis"
xmlns="https: // example.com/lecture.js"
targetNamespace="https: // example.com/lecture.js"
elementFormDefault="qualified">

<xs:annotation >
<xs:documentation >

LSML Schema
</xs:documentation >

</xs:annotation >

<!-- import SSML schema https: //www.w3.org/TR/speech -synthesis11 /#AppD -->
<xs:import namespace="http: //www.w3.org /2001/10/ synthesis" schemaLocation="synthesis.xsd" />

<!-- import dependent namespaces , e.g., xml:id -->
<xs:import namespace="http: //www.w3.org/XML /1998/ namespace" schemaLocation="xml.xsd"/>

<!-- LSML types -->

<xs:simpleType name="positiveInteger">
<xs:restriction base="xs:integer">

<xs:minInclusive value="1" />
</xs:restriction >

</xs:simpleType >

<xs:simpleType name="atLeastOneCharacter">
<xs:restriction base="xs:string">

<xs:pattern value=".+"/>
</xs:restriction >

</xs:simpleType >

<xs:simpleType name="absoluteOrRelativePath">
<xs:annotation >

<xs:documentation >
ignore Linux absolute paths starting with a,
tilde (~) because lecture.js can not handle them

</xs:documentation >
</xs:annotation >
<xs:restriction base="xs:string">

<xs:pattern value="[^~]{1}.*"/>
</xs:restriction >

</xs:simpleType >

<xs:simpleType name="timestamp">
<xs:annotation >

<xs:documentation >
defines a timestamp

1) FFmpeg format: 23 :59:59 or 23 :59:59 .999
2) SSML format: 5s or 5000ms

</xs:documentation >
</xs:annotation >
<xs:restriction base="xs:string">

<xs:pattern value="[0 -9]{2}\:[0 -9]{2}\:[0 -9]{2}(\.[0 -9]{3}) ?|[0 -9]+s|[0 -9]+ms" />
</xs:restriction >

</xs:simpleType >

<xs:simpleType name="googleEffectProfile">
<xs:annotation >

<xs:documentation >
defines valid effect profiles for Google Cloud Text -to-Speech:
https: //cloud.google.com/text -to-speech/docs/audio -profiles#available_audio_profiles

</xs:documentation >
</xs:annotation >
<xs:restriction base="xs:string">

<xs:enumeration value="wearable -class -device" />
<xs:enumeration value="handset -class -device" />
<xs:enumeration value="headphone -class -device" />
<xs:enumeration value="small -bluetooth -speaker -class -device" />
<xs:enumeration value="medium -bluetooth -speaker -class -device" />
<xs:enumeration value="large -home -entertainment -class -device" />
<xs:enumeration value="large -automotive -class -device" />
<xs:enumeration value="telephony -class -application" />

</xs:restriction >
</xs:simpleType >

<xs:simpleType name="youtubePrivacyStatus">
<xs:annotation >

<xs:documentation >
defines a privacy status for a video when uploaded to YouTube

</xs:documentation >

V

</xs:annotation >
<xs:restriction base="xs:string">

<xs:enumeration value="public" />
<xs:enumeration value="unlisted" />
<xs:enumeration value="private" />

</xs:restriction >
</xs:simpleType >

<xs:simpleType name="resourceSpeed">
<xs:annotation >

<xs:documentation >
attribute that defines the speed of an embedded audio
file as a percentage value between 50% and 200%

</xs:documentation >
</xs:annotation >
<xs:restriction base="xs:string">

<xs:pattern value="([5 -9][0 -9]|1[0 -9][0 -9]|200)%" />
</xs:restriction >

</xs:simpleType >

<xs:simpleType name="resourceSoundLevel">
<xs:annotation >

<xs:documentation >
attribute that defines the volume of an embedded audio file

</xs:documentation >
</xs:annotation >
<xs:restriction base="xs:string">

<xs:pattern value="(\+|\ -) (([1 -4]?[0 -9]{1}) |50)dB" />
</xs:restriction >

</xs:simpleType >

<!-- The following LSML language elements are dynamically determined
at run -time using the available languages for the voice APIs.
They may need to be updated from time to time!
This includes the main definitions here , as well as
the references to them further down below! -->

<xs:element name="ar"/><xs:element name="ar-XA"/><xs:element name="arb"/><xs:element name="bn"/><
xs:element name="bn-IN"/><xs:element name="cmn"/><xs:element name="cmn -CN"/><xs:element name="cmn -
TW"/><xs:element name="cs"/><xs:element name="cs-CZ"/><xs:element name="cy"/><xs:element name="cy -
GB"/><xs:element name="da"/><xs:element name="da-DK"/><xs:element name="de"/><xs:element name="de -
DE"/><xs:element name="el"/><xs:element name="el-GR"/><xs:element name="en"/><xs:element name="en -
AU"/><xs:element name="en -GB"/><xs:element name="en-GB -WLS"/><xs:element name="en -IN"/><xs:element
name="en -US"/><xs:element name="es"/><xs:element name="es -ES"/><xs:element name="es-MX"/><

xs:element name="es-US"/><xs:element name="fi"/><xs:element name="fi -FI"/><xs:element name="fil"/>
<xs:element name="fil -PH"/><xs:element name="fr"/><xs:element name="fr-CA"/><xs:element name="fr-
FR"/><xs:element name="gu"/><xs:element name="gu-IN"/><xs:element name="hi"/><xs:element name="hi -
IN"/><xs:element name="hu"/><xs:element name="hu-HU"/><xs:element name="id"/><xs:element name="id -
ID"/><xs:element name="is"/><xs:element name="is-IS"/><xs:element name="it"/><xs:element name="it -
IT"/><xs:element name="ja"/><xs:element name="ja-JP"/><xs:element name="kn"/><xs:element name="kn -
IN"/><xs:element name="ko"/><xs:element name="ko-KR"/><xs:element name="ml"/><xs:element name="ml -
IN"/><xs:element name="nb"/><xs:element name="nb-NO"/><xs:element name="nl"/><xs:element name="nl -
NL"/><xs:element name="pl"/><xs:element name="pl-PL"/><xs:element name="pt"/><xs:element name="pt -
BR"/><xs:element name="pt -PT"/><xs:element name="ro"/><xs:element name="ro -RO"/><xs:element name="
ru"/><xs:element name="ru -RU"/><xs:element name="sk"/><xs:element name="sk -SK"/><xs:element name="
sv"/><xs:element name="sv -SE"/><xs:element name="ta"/><xs:element name="ta -IN"/><xs:element name="
te"/><xs:element name="te -IN"/><xs:element name="th"/><xs:element name="th -TH"/><xs:element name="
tr"/><xs:element name="tr -TR"/><xs:element name="uk"/><xs:element name="uk -UA"/><xs:element name="
vi"/><xs:element name="vi -VN"/><xs:element name="yue"/><xs:element name="yue -HK"/>

<!-- LSML custom elements -->

<xs:element name="slide">
<xs:annotation >

<xs:documentation >
switches to another slide deck and/or page

</xs:documentation >
</xs:annotation >
<xs:complexType >

<xs:attribute name="page" use="required">
<xs:simpleType >

<xs:restriction base="xs:string">
<xs:pattern value="(\+|\ -) ?[0 -9]+| next|previous|first|last" />

</xs:restriction >
</xs:simpleType >

</xs:attribute >
<xs:attribute name="deck" type="xs:string" use="optional" />
<xs:attribute name="fit" use="optional">

<xs:simpleType >
<xs:restriction base="xs:string">

<xs:enumeration value="contain" />
<xs:enumeration value="cover" />
<xs:enumeration value="fill" />

</xs:restriction >

VI

</xs:simpleType >
</xs:attribute >

</xs:complexType >
</xs:element >

<xs:element name="video">
<xs:annotation >

<xs:documentation >
inserts a video resource

</xs:documentation >
</xs:annotation >
<xs:complexType >

<xs:attribute name="src" type="absoluteOrRelativePath" use="required" />
<xs:attribute name="keepFrame" type="xs:boolean" use="optional" />
<xs:attribute name="clipBegin" type="timestamp" use="optional" />
<xs:attribute name="clipEnd" type="timestamp" use="optional" />
<xs:attribute name="speed" type="resourceSpeed" use="optional" />
<xs:attribute name="soundLevel" type="resourceSoundLevel" use="optional" />
<xs:attribute name="repeatCount" type="positiveInteger" use="optional" />
<xs:attribute name="fit" use="optional">

<xs:simpleType >
<xs:restriction base="xs:string">

<xs:enumeration value="contain" />
<xs:enumeration value="cover" />
<xs:enumeration value="fill" />

</xs:restriction >
</xs:simpleType >

</xs:attribute >
</xs:complexType >

</xs:element >

<xs:element name="image">
<xs:annotation >

<xs:documentation >
inserts an image resource

</xs:documentation >
</xs:annotation >
<xs:complexType >

<xs:attribute name="src" type="absoluteOrRelativePath" use="required" />
<xs:attribute name="fit" use="optional">

<xs:simpleType >
<xs:restriction base="xs:string">

<xs:enumeration value="contain" />
<xs:enumeration value="cover" />
<xs:enumeration value="fill" />

</xs:restriction >
</xs:simpleType >

</xs:attribute >
</xs:complexType >

</xs:element >

<!-- modified SSML elements -->

<xs:element name="lexicon">
<xs:annotation >

<xs:documentation >
defines a lexicon and assigns it an ID

</xs:documentation >
</xs:annotation >
<xs:complexType >

<xs:sequence >
<xs:element name="lexeme" minOccurs="1" maxOccurs="unbounded">

<xs:annotation >
<xs:documentation >

defines a lexeme (basic lexical unit) inside a lexicon
</xs:documentation >

</xs:annotation >
<xs:complexType >

<xs:choice minOccurs="2" maxOccurs="2">
<xs:element name="grapheme" type="xs:string" minOccurs="1" maxOccurs="1" />
<xs:element name="alias" type="xs:string" maxOccurs="1" />
<xs:element name="phoneme" type="xs:string" maxOccurs="1" />

</xs:choice >
</xs:complexType >

</xs:element >
</xs:sequence >
<xs:attribute ref="xml:id" use="required" />
<xs:attribute name="alphabet" type="xs:string" use="optional" />

</xs:complexType >
</xs:element >

<xs:element name="voice">
<xs:annotation >

<xs:documentation >

VII

changes the narrating voice
</xs:documentation >

</xs:annotation >
<xs:complexType mixed="true">

<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element ref="slide" />
<xs:element ref="video" />
<xs:element ref="image" />
<xs:element ref="audio" />
<xs:element ref="mark" />
<xs:element ref="say -as" />
<xs:element name="p" type="ssml:paragraph" />
<xs:element name="s" type="ssml:sentence" />
<xs:element name="token" type="ssml:tokenType" />
<xs:element name="w" type="ssml:tokenType" />
<xs:element name="lang" type="ssml:langType" />
<xs:element name="prosody" type="ssml:prosody" />
<xs:element name="emphasis" type="ssml:emphasis" />
<xs:element name="sub" type="ssml:sub" />
<xs:element name="phoneme" type="ssml:phoneme" />
<xs:element name="break" type="ssml:break" />
<xs:element name="lookup" type="ssml:lookupType" />

<!-- LSML Language Codes (see explanation above) -->

<xs:element ref="ar"/><xs:element ref="ar -XA"/><xs:element ref="arb"/><xs:element ref="
bn"/><xs:element ref="bn-IN"/><xs:element ref="cmn"/><xs:element ref="cmn -CN"/><xs:element ref="
cmn -TW"/><xs:element ref="cs"/><xs:element ref="cs-CZ"/><xs:element ref="cy"/><xs:element ref="cy -
GB"/><xs:element ref="da"/><xs:element ref="da -DK"/><xs:element ref="de"/><xs:element ref="de -DE"/
><xs:element ref="el"/><xs:element ref="el-GR"/><xs:element ref="en"/><xs:element ref="en -AU"/><
xs:element ref="en-GB"/><xs:element ref="en-GB-WLS"/><xs:element ref="en -IN"/><xs:element ref="en-
US"/><xs:element ref="es"/><xs:element ref="es -ES"/><xs:element ref="es-MX"/><xs:element ref="es-
US"/><xs:element ref="fi"/><xs:element ref="fi -FI"/><xs:element ref="fil"/><xs:element ref="fil -PH
"/><xs:element ref="fr"/><xs:element ref="fr-CA"/><xs:element ref="fr-FR"/><xs:element ref="gu"/><
xs:element ref="gu-IN"/><xs:element ref="hi"/><xs:element ref="hi-IN"/><xs:element ref="hu"/><
xs:element ref="hu-HU"/><xs:element ref="id"/><xs:element ref="id-ID"/><xs:element ref="is"/><
xs:element ref="is-IS"/><xs:element ref="it"/><xs:element ref="it-IT"/><xs:element ref="ja"/><
xs:element ref="ja-JP"/><xs:element ref="kn"/><xs:element ref="kn-IN"/><xs:element ref="ko"/><
xs:element ref="ko-KR"/><xs:element ref="ml"/><xs:element ref="ml-IN"/><xs:element ref="nb"/><
xs:element ref="nb-NO"/><xs:element ref="nl"/><xs:element ref="nl-NL"/><xs:element ref="pl"/><
xs:element ref="pl-PL"/><xs:element ref="pt"/><xs:element ref="pt-BR"/><xs:element ref="pt-PT"/><
xs:element ref="ro"/><xs:element ref="ro -RO"/><xs:element ref="ru"/><xs:element ref="ru-RU"/><
xs:element ref="sk"/><xs:element ref="sk -SK"/><xs:element ref="sv"/><xs:element ref="sv-SE"/><
xs:element ref="ta"/><xs:element ref="ta -IN"/><xs:element ref="te"/><xs:element ref="te-IN"/><
xs:element ref="th"/><xs:element ref="th -TH"/><xs:element ref="tr"/><xs:element ref="tr-TR"/><
xs:element ref="uk"/><xs:element ref="uk -UA"/><xs:element ref="vi"/><xs:element ref="vi-VN"/><
xs:element ref="yue"/><xs:element ref="yue -HK"/>

</xs:choice >
<xs:attribute name="name" type="xs:string" use="required" />

</xs:complexType >
</xs:element >

<xs:element name="say -as">
<xs:annotation >

<xs:documentation >
interprets and says its contents in a certain way

</xs:documentation >
</xs:annotation >
<xs:complexType >

<xs:simpleContent >
<xs:extension base="atLeastOneCharacter">

<xs:attribute name="interpret -as" use="required">
<xs:simpleType >

<xs:restriction base="xs:string">
<xs:enumeration value="cardinal" />
<xs:enumeration value="ordinal" />
<xs:enumeration value="characters" />
<xs:enumeration value="spell -out" />
<xs:enumeration value="fraction" />
<xs:enumeration value="expletive" />
<xs:enumeration value="unit" />
<xs:enumeration value="date" />
<xs:enumeration value="time" />
<xs:enumeration value="telephone" />

</xs:restriction >
</xs:simpleType >

</xs:attribute >
<xs:attribute name="format" type="xs:string" use="optional" />
<xs:attribute name="detail" type="xs:string" use="optional" />

</xs:extension >
</xs:simpleContent >

</xs:complexType >
</xs:element >

VIII

<xs:element name="audio">
<xs:annotation >

<xs:documentation >
inserts an audio resource

</xs:documentation >
</xs:annotation >
<xs:complexType >

<xs:attribute name="src" type="absoluteOrRelativePath" use="required" />
<xs:attribute name="clipBegin" type="timestamp" use="optional" />
<xs:attribute name="clipEnd" type="timestamp" use="optional" />
<xs:attribute name="speed" type="resourceSpeed" use="optional" />
<xs:attribute name="soundLevel" type="resourceSoundLevel" use="optional" />
<xs:attribute name="repeatCount" type="positiveInteger" use="optional" />

</xs:complexType >
</xs:element >

<xs:element name="mark">
<xs:annotation >

<xs:documentation >
defines a marker

</xs:documentation >
</xs:annotation >
<xs:complexType >

<xs:attribute name="name" type="xs:string" use="required" />
<xs:attribute name="chapter" type="xs:string" use="optional" />

</xs:complexType >
</xs:element >

<!-- LSML Root & Document Structure -->

<xs:element name="lecture">
<xs:complexType mixed="true">

<xs:choice maxOccurs="unbounded">

<xs:element name="info" minOccurs="0" maxOccurs="1">
<xs:annotation >

<xs:documentation >
defines information about the document

</xs:documentation >
</xs:annotation >
<xs:complexType >

<xs:attribute name="title" type="xs:string" use="optional" />
<xs:attribute name="description" type="xs:string" use="optional" />
<xs:attribute name="authors" type="xs:string" use="optional" />
<xs:attribute name="copyright" type="xs:string" use="optional" />

</xs:complexType >
</xs:element >

<xs:element name="settings" minOccurs="0" maxOccurs="1">
<xs:annotation >

<xs:documentation >
defines settings for the generated video lecture

</xs:documentation >
</xs:annotation >
<xs:complexType >

<xs:attribute name="voice" type="xs:string" use="optional" />
<xs:attribute name="resolution" use="optional">

<xs:simpleType >
<xs:annotation >

<xs:documentation >
defines a video resolution in the format "{width}x{height}", e.g

., "1280 x720"
</xs:documentation >

</xs:annotation >
<xs:restriction base="xs:string">

<!-- match width in range of 128 to 3840
match height in range of 72 to 2160

http: // gamon.webfactional.com/regexnumericrangegenerator/
-->
<xs:pattern value="

(12[89]|1[3 -9][0 -9]|[2 -9][0 -9]{2}|[12][0 -9]{3}|3[0 -7][0 -9]{2}|38[0 -3][0 -9]|3840)x
(7[2 -9]|[89][0 -9]|[1 -8][0 -9]{2}|9[0 -8][0 -9]|99[0 -9]|1[0 -9]{3}|20[0 -9]{2}|21[0 -5][0 -9]|2160)" />

</xs:restriction >
</xs:simpleType >

</xs:attribute >
<xs:attribute name="fps" use="optional">

<xs:simpleType >
<xs:restriction base="xs:integer">

<xs:minInclusive value="10" />
<xs:maxInclusive value="120" />

</xs:restriction >
</xs:simpleType >

</xs:attribute >

IX

<xs:attribute name="breakAfterSlide" type="positiveInteger" use="optional" />
<xs:attribute name="breakAfterParagraph" type="positiveInteger" use="optional" /

>
<xs:attribute name="googleEffectProfile" type="googleEffectProfile" use="

optional" />
<xs:attribute name="youtubePrivacyStatus" type="youtubePrivacyStatus" use="

optional" />
<xs:attribute name="youtubePlaylistId" type="xs:string" use="optional" />

</xs:complexType >
</xs:element >

<xs:element name="deck" minOccurs="1" maxOccurs="unbounded">
<xs:annotation >

<xs:documentation >
initializes a PDF document with an ID

</xs:documentation >
</xs:annotation >
<xs:complexType >

<xs:attribute name="id" type="xs:string" use="required" />
<xs:attribute name="src" type="absoluteOrRelativePath" use="required" />
<xs:attribute name="active" type="xs:boolean" use="optional" />
<xs:attribute name="fit" use="optional">

<xs:simpleType >
<xs:restriction base="xs:string">

<xs:enumeration value="contain" />
<xs:enumeration value="cover" />
<xs:enumeration value="fill" />

</xs:restriction >
</xs:simpleType >

</xs:attribute >
</xs:complexType >

</xs:element >

<xs:element ref="lexicon" minOccurs="0" maxOccurs="unbounded" />

<xs:element ref="slide" />
<xs:element ref="video" />
<xs:element ref="image" />
<xs:element ref="audio" />
<xs:element ref="voice" />
<xs:element ref="mark" />
<xs:element ref="say -as" />
<xs:element name="p" type="ssml:paragraph" />
<xs:element name="s" type="ssml:sentence" />
<xs:element name="token" type="ssml:tokenType" />
<xs:element name="w" type="ssml:tokenType" />
<xs:element name="lang" type="ssml:langType" />
<xs:element name="prosody" type="ssml:prosody" />
<xs:element name="emphasis" type="ssml:emphasis" />
<xs:element name="sub" type="ssml:sub" />
<xs:element name="phoneme" type="ssml:phoneme" />
<xs:element name="break" type="ssml:break" />
<xs:element name="lookup" type="ssml:lookupType" />

<!-- LSML Language Codes (see explanation above) -->

<xs:element ref="ar"/><xs:element ref="ar -XA"/><xs:element ref="arb"/><xs:element ref="
bn"/><xs:element ref="bn-IN"/><xs:element ref="cmn"/><xs:element ref="cmn -CN"/><xs:element ref="
cmn -TW"/><xs:element ref="cs"/><xs:element ref="cs-CZ"/><xs:element ref="cy"/><xs:element ref="cy -
GB"/><xs:element ref="da"/><xs:element ref="da -DK"/><xs:element ref="de"/><xs:element ref="de -DE"/
><xs:element ref="el"/><xs:element ref="el-GR"/><xs:element ref="en"/><xs:element ref="en -AU"/><
xs:element ref="en-GB"/><xs:element ref="en-GB-WLS"/><xs:element ref="en -IN"/><xs:element ref="en-
US"/><xs:element ref="es"/><xs:element ref="es -ES"/><xs:element ref="es-MX"/><xs:element ref="es-
US"/><xs:element ref="fi"/><xs:element ref="fi -FI"/><xs:element ref="fil"/><xs:element ref="fil -PH
"/><xs:element ref="fr"/><xs:element ref="fr-CA"/><xs:element ref="fr-FR"/><xs:element ref="gu"/><
xs:element ref="gu-IN"/><xs:element ref="hi"/><xs:element ref="hi-IN"/><xs:element ref="hu"/><
xs:element ref="hu-HU"/><xs:element ref="id"/><xs:element ref="id-ID"/><xs:element ref="is"/><
xs:element ref="is-IS"/><xs:element ref="it"/><xs:element ref="it-IT"/><xs:element ref="ja"/><
xs:element ref="ja-JP"/><xs:element ref="kn"/><xs:element ref="kn-IN"/><xs:element ref="ko"/><
xs:element ref="ko-KR"/><xs:element ref="ml"/><xs:element ref="ml-IN"/><xs:element ref="nb"/><
xs:element ref="nb-NO"/><xs:element ref="nl"/><xs:element ref="nl-NL"/><xs:element ref="pl"/><
xs:element ref="pl-PL"/><xs:element ref="pt"/><xs:element ref="pt-BR"/><xs:element ref="pt-PT"/><
xs:element ref="ro"/><xs:element ref="ro -RO"/><xs:element ref="ru"/><xs:element ref="ru-RU"/><
xs:element ref="sk"/><xs:element ref="sk -SK"/><xs:element ref="sv"/><xs:element ref="sv-SE"/><
xs:element ref="ta"/><xs:element ref="ta -IN"/><xs:element ref="te"/><xs:element ref="te-IN"/><
xs:element ref="th"/><xs:element ref="th -TH"/><xs:element ref="tr"/><xs:element ref="tr-TR"/><
xs:element ref="uk"/><xs:element ref="uk -UA"/><xs:element ref="vi"/><xs:element ref="vi-VN"/><
xs:element ref="yue"/><xs:element ref="yue -HK"/>

</xs:choice >
<xs:attribute name="startmark" type="xs:string" use="optional" />
<xs:attribute name="endmark" type="xs:string" use="optional" />

</xs:complexType >
</xs:element >

X

</xs:schema >

XI

LSML Feature Support Table

• means the feature is support

• means the feature is not supported
• <element> is an element with content and <element/> an empty element

• attribute is a required and [attribute] an optional attribute

Document Structure

XII

XIII

XIV

Slide Control

XV

Text Structure

XVI

XVII

Voices and Languages

XVIII

Generic Attributes

XIX

Correcting Mispronunciations

XX

XXI

XXII

Prosodic Features

XXIII

XXIV

XXV

External resources

XXVI

XXVII

XXVIII

XXIX

XXX

Amazon Polly Effects

XXXI

XXXII

	Introduction
	Related Work
	Requirements
	LSML Language Definition
	Document Structure
	Slide Management
	Text Structure
	Voices and Languages
	Correcting Mispronunciations
	Prosodic Features
	Embedding External Resources

	Implementation
	Development Environment
	Program Structure
	Modules
	Pipeline
	Validator
	Preprocessor
	Parser
	Text-to-Speech
	Frame Extraction
	Video Generation
	Uploader

	Parallelization
	Logging
	Style Guide
	Documentation

	Evaluation
	Conclusion and Future Work
	Bibliography
	Appendices
	User Study Questionnaire
	Simple Example Script
	LSML XSD Schema
	LSML Feature Support Table

