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Abstract

Conversational argument retrieval is the problem of ranking argumentative
texts in a collection of focused arguments, ordered based on their quality.
This study investigates eight different deep neural ranking models proposed
in the literature with respect to their suitability to this task. In order to
incorporate the insights from multiple models into an argument ranking, we
further investigate a simple linear aggregation strategy.

The Touché @ CLEF shared task on Conversational Argument Retrieval
(Task 1) targets a retrieval scenario in a focused argument collection composed
of roughly 387740 arguments to support argumentative conversation.

We approach the problem of argument retrieval as finding relevant premises
to the input query. Considering the lack of annotated data for the purpose
of ranking, we take a distant supervision approach. Based on this approach,
the conclusion (claim) of the arguments play the role of queries and the corre-
sponding premises of the argument are the related documents to that queries
in an ad-hoc information retrieval scenario. Using a fuzzy similarity measure
we have assigned unrelated premises to each conclusion and formed all the
information provided by a qrel file in a typical ranking task.

To learn the relation of the queries and the related and unrelated documents
we have utilized deep neural ranking models. We first use a Siamese network
to generate similarity score. DRMM, KNRM, , and CKNRM are the deep
neural ranking models used for retrieving arguments. We use the contextu-
alized embedding known as BERT in three networks including vanilla-BERT,
DRMM and KNRM. We also exploited an end-to-end neural ranking model
called SNRM which does not require any candidate document in the inference
phase.

Finally, we aggregate the document scores for the test queries achieved by
different networks. Before the aggregation, we analyzed how diverse the result
of the networks are from each other. A linear regression is performed on the
validation set to learn how to estimate the final document scores for the test
queries.

Test results suggest that focusing on the models whose main concern is
to map the interaction between the input pairs would contribute to the better
results. The poor test scores of the models highlight the fact that argument re-
trieval in the sense of retrieving arguments meeting different argument quality
dimensions is not a trivial problem.
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Chapter 1

Introduction

Considering that there are different types of opinions toward different topics
and typically there is not necessarily one unique correct answer for them,
getting an overview of different opinions would be an exhaustive practice and
takes considerable amount of time (Wachsmuth et al. [2017b]). In this situation
a model which can neutrally retrieve arguments regarding to the controversial
topics would be of a high importance. It can provide the user with a reasonable
approach toward the questions whose answers may not seem that easy or help
them build up a stance for a given topic. Retrieving related arguments for
a given topic can be exploited in automated decision making and opinion
summarization.

The main concern of this study, as suggested by Bondarenko et al. [2020],
is "retrieval in a focused argument collection to support argumentative con-
versations". The dataset that we work on in this study in order to take part
in the Touché shared task competition, is the result of crawling arguments
from 4 different debate portals which leave us with 387,740 arguments whose
components (claim and premises) are specified.

According to Wachsmuth et al. [2017a], argument quality has different di-
mensions which can be categorized in logical, rhetorical, and dialectical. It is
important to note that getting a mathematical explanation of the quality as-
pects of the arguments introduced by Wachsmuth et al. is not an easy task and
based on our knowledge, it is still an open question. Furthermore, we believe
that creating a dataset having the annotation which can cover such quality
measures would be expensive as a complex manually human annotation in a
large scale is required. Actually these two mentioned problems makes the task
of argument retrieval a challenging task.

In this study we have focused on retrieving the related arguments according
to the given query by the user. This means that our main focus would be on
the logical dimension. To this end, we will use the deep neural ranking model.
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CHAPTER 1. INTRODUCTION

In other words, using distant supervision technique, we train the deep neural
ranking model for the purpose of ad-hoc retrieval in a conversational argument
collection. We hope that among the related arguments that the neural ranking
models will retrieve, other quality aspects would also be met.

The dataset provided in this study includes argument component anno-
tations; namely conclusion (claim) and premise. Based on this annotation,
we have used a kind of distant supervision technique. We actually hold some
assumptions to map the problem of argument retrieval as an ad-hoc retrieval
problem. We introduce the problem of argument retrieval as finding related
premises to a query. In order to train and validate the exploited models, we
take the approach that the premises of the arguments can be considered as
the related documents to the queries which are in fact the conclusion of the
arguments. Based on this approach the network would provide the user with
the arguments whose premises are related to the given query. The premises of
the retrieved arguments may support or attack the query (e.g. retrieving the
arguments will be done regardless of the stance).

Holding the approach of distant supervision, we have already defined the
premises of a conclusion as the related documents to the queries. For the
ranking tasks however, the models still require unrelated documents to the
query. With the help of fuzzy similarity, we have assigned unrelated premises to
each conclusion in the dataset. This way we can construct a dataset including
the information of the query relevance known as qrel file which is mandatory
for building the ranking models. Forming a dataset with the query relevance
information without having click-through or query log data could be considered
as the main innovation of this study. This makes training the networks used
for ad-hoc retrieval task possible.

By splitting the dataset into training and validation set, we train and vali-
date different deep neural ranking models which learn how to produce similar-
ity scores between queries and documents. For the training set we will provide
each query (conclusion) with a related and unrelated document (premise) and
in the validation phase, thanks to the validation measures for ranking, we
inspect how good the network is in retrieving the related documents.

In this study; we exploited Siamese based networks with recurrent units
as sub-networks. We can see how good the performance of a representation-
focused network is in retrieving the relevant arguments.

We then inspect the performance of the models which try to grab infor-
mation from the interaction of the input pairs (interaction-focused networks).
DRMM, KNRM and CKNRM produce the ranking score based on different
approach toward mapping the interaction between input pairs.

We have also made use of contextualized embedding networks to inspect
the effect of state-of-the-art techniques for the text representation in the per-
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CHAPTER 1. INTRODUCTION

formance of the ranking. We hope that a deeper understanding of the text
pairs, thanks to the contextualized embedding, can lead to better arguments
retrieval. Vanilla BERT, KNRM with BERT and DRMM with BERT are the
networks with contextualized embedding that have been used in this study.

All the models that are introduced up to now, require candidate documents
to retrieve related documents. They do a kind of re-ranking for the test phase.
To avoid the problem of error propagation in cascade pipelines, we inspect
an end-to-end neural ranking model called stand alone neural ranking model
(SNRM).

In order to improve the ranking results and aggregate the assumptions held
behind the various exploited networks, we utilized a linear regression technique
trained on the normalized validation scores to aggregate the test ranking scores
produced by the networks.

In the test phase, we are given 50 test queries and asked to retrieve the
best arguments. BM25 scores between the given test queries and conclusions
are used to select the candidate arguments. The networks then do the task of
re-ranking of the premises of the candidate arguments. Note that SNRM, as
an end-to-end neural ranking model, doesn’t require any candidate document
to do a re-ranking thanks to the inverted index that it produces from the
document and query representations.

Based on the test results provided by the competition committee, KNRM
has illustrated the best result among the exploited models. For the case of
DRMM, using the contextualized embedding improved the results. Finally,
the test results suggest that a certain level of performance is achieved when
we use contextualized embedding.

The performance of the retrieval models of all competitors of this shared
task confirms that the argument retrieval is not a trivial task specially when
evaluating the quality of the arguments based on certain measures such as util-
ity and rhetorically well-written criteria come to the discussion. This raises
up the need for developing a dataset which can provide the models with the
information required for retrieving "good" arguments (arguments which meet
different quality dimensions). It also highlights the need for preparing a math-
ematical modeling or explanation of the argument quality dimension to be
included in the cost function of the models.

Chapter 2 provides some background and introduce the concept of argu-
ments. We explain different types of the deep neural ranking models and at
the end, introduce the Touché shared task.

Chapter 3 explains about the dataset. We explain in detail about the
visualization and the preprocessing steps that are required for each type of
network. We explain how form the training and validation sets. We introduce
the networks that have been used in this study. We give a detailed explanation
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CHAPTER 1. INTRODUCTION

about the model structures and the cost functions. We also introduce the
metrics that have been used for evaluating the rankings.

Chapter 4 explains the experiments. We elaborate on the details of train-
ing the models and show the resulting curves resulted from training and val-
idation of the models. We explain how the trained models are then used to
rank the documents given a test query. We finally explain about the analysis
of the model results and how diverse the retrieved documents from each other
are and based on this analysis explain the linear regression process in order to
aggregate the model results.

Finally in Chapter 5 gives a summary of what we have done in the study,
a brief analysis of the results are discussed and future works are suggested.

4



Chapter 2

Background and Related work

In this chapter, we give a background about the study. We, first, define what
we mean by "argument" in the context of this work, clarify why argument
retrieval is important, and what criteria can be considered for ranking the
arguments. We then take a look at the deep neural network architectures
offered by scientists which have been used for the purpose of ranking.

2.1 Argument Retrieval

In this section we introduce what an argument is and why argument retrieval
is important. Finally, different contributions toward the problem of argument
retrieval will be introduced.

2.1.1 What is an Argument

According to Dumani [2019], arguments may have existed since humans started
communicating with each others. People use arguments in order to prove or
contradict an opinion. Argument topics are controversial and different people
have different opinion toward them. Rieke et al. [1997] defines an argument
as an argumentation unit which is composed of a claim and its support. We
refer to the supports as premises.

Premises can support or attack a claim. It can be possible to use the
premises of one claim to support or attack other claims. A conclusion could be
a word, phrase or even a sentence. Typically the premises are texts composed
of multiple sentences or paragraphs.

The relation between the argument units can be shown by graphs. This
way a better understanding scheme could be achieved for the structure of the
arguments. Figure 2.1 shows an example of representing graphs with its unit
relations through a graph. In this figure premise 1 and 2 (p1 and p2) are the
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CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.1: The relation between the argument units (Dumani [2019])

supporting components for the main conclusion while the third premise (p3)
attacks it.

2.1.2 Why Argument Ranking

Considering that there are different types of opinions toward different topics
and typically there is not necessarily one unique correct answer for them, get-
ting an overview of different opinions would be an exhaustive practice and
takes considerable amount of time (Wachsmuth et al. [2017b]). In this situ-
ation, a model which can neutrally retrieve the arguments regarding to the
controversial topics would be of a high importance. It can provide the user
with a reasonable approach toward the questions whose answers may not seem
that easy. Retrieving arguments with good quality for a given topic can be ex-
ploited in automated decision making and opinion summarization (Wachsmuth
et al. [2017b]).

2.1.3 Approaches

Wachsmuth et al. [2017b] introduced one of the first prototypes for a search
engine for arguments. The system worked on the crawled arguments from
debate websites and ranked them. They exploited a classical ranking model;

6



CHAPTER 2. BACKGROUND AND RELATED WORK

namely BM25F, built on top of Luence, in order to rank the arguments for a
given query.

ArgumenTex was a system for retrieving topic-related arguments among
a large collection of web documents offered by Stab et al. [2018]. The main ap-
proach is composed of two stages: firstly the relative documents were retrieved,
then the arguments were identified in the retrieved documents and finally, a
classification of pro and con was applied to the arguments. For the phase of
achieving top-ranked documents they applied Elasticsearch and BM25.

For the evaluation of how convincing an argument is, Habernal and Gurevych
[2016] exploited neural networks. After getting the subject judgments regard-
ing to how convincing the arguments are, they feed the arguments into bidi-
rectional LSTM to make a prediction on which argument is more convincing.

Dumani [2019] proposed a two-stage system for retrieving argumentation.
He firstly retrieves the related conclusions to a given query. Then the similar
claim’s premises can be retrieved. He argued that different similarity mea-
sures can be exploited in order to retrieve semantically similar claims to the
given query such as plain language models with additional smoothing and tak-
ing the textual context of the claim into account. For the second phase a
search through the clusters of similar premises happens. Figure 2.2 illustrates
a diagram of the two stages of the approach.

When ranking the arguments comes to the discussion, the very first ques-
tion comes up is that, based on which criteria the arguments would be ranked.
Different argument quality aspects can be categorized into three main groups:
logical, rhetorical, and dialectical dimensions. (Wachsmuth et al. [2017a]).

Logical aspects focus on the soundness of the arguments. Wachsmuth
et al. argued that the logical arguments have acceptable premises and are
relevant to their conclusions.

Rhetorical aspects as defined by Kennedy [2007], is the ability to know
how to persuade. According to Blair [2011], these criteria show how successful
the argument is in persuading the target audience of a conclusion.

Dialectical arguments are the ones by help of which the user can build
his/her own stance for a given topic (Wachsmuth et al. [2017a]). This category
of quality may somehow be considered as the ’utility’ of the arguments.1

In this study we have a special focus on the related arguments to a given
query so our main concern would be to retrieve somewhat logical arguments.

1Wachsmuth et al. [2017a]
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CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.2: A two stage model for retrieving related premises for a given
query(Dumani [2019])

2.2 Neural Ranking Models

According to Guo et al. [2019] neural ranking models have an extensive use in
ad-hoc retrieval, question answering and automatic conversation. Guo et al.
[2019] state that the similarity function for two input texts s and t can be
achieved by the equation 2.1.

f(s, t) = g(ψ(s), φ(t), η(s, t)) (2.1)

in which ψ(s), φ(s) and η(s,t) are representation of the texts s, t and the pair
of s and t respectively.

2.2.1 Symmetric vs. Asymmetric

These structures are based on homogeneity assumption for documents and
queries (Guo et al. [2019]). For the symmetric networks, as the input texts
are homogeneous, by exchanging the input texts the output would remain the

8



CHAPTER 2. BACKGROUND AND RELATED WORK

same. The functions for extracting features in such structures are identical
and if we have an interaction function it would also be symmetric. In the
auto-conversation and question answering tasks, as the input text pairs are
of the same lengths, these networks represent good performance (Guo et al.
[2019]). Table 2.1 includes some neural networks based on this assumption.

In the Asymmetric networks if we exchange the text pairs we get different
results. They are used for the heterogeneous text pairs where the texts are
of the different lengths. Such neural networks would be good choices for the
ad-hoc retrieval tasks. (Guo et al. [2019]). Table 2.1 has named some of the
networks which been offered with this type of structure.

2.2.2 Representation vs. Interaction focused Networks

Another way of categorizing the neural ranking models is based on their ap-
proach toward extracting features of the input texts. Representation-focused
neural structures assume that the relevance between the text pairs relies on
compositional meaning of the input texts. They typically have a complex func-
tion (deep neural network) for the text feature extractors; namely φ and ψ.
This type of architecture is better for the short input texts (Guo et al. [2019]).
Table 2.1 names the networks which hold this assumption for producing rank-
ing score.

Interaction-focused neural structures consider that the relevance relies on
the relation between the input pairs. They are divided into non-parametric
(ni) and parametric interaction function (pi). Models with parametric interac-
tion function require sufficient dataset. Non-parametric models on the other
hand, are efficient online models compared to the parametric interaction func-
tion structures. Parametric types better matches the IR tasks rather than
representation based models (Guo et al. [2019]). Table 2.1 shows the networks
based on interaction focused networks.

Hybrid architectures take the advantage of representation and interaction
focused network at the same time. Combined and coupled strategy are two
types of the hybrid structures. In the combined model, the two types of ar-
chitectures are considered as two sub-models. Coupled strategy is a compact
hybrid strategy(Guo et al. [2019]). Table 2.1 shows the networks with this
approach.

2.2.3 Single vs. Multi-Granularity Networks

Single granularity architectures in which the relevance is computed on the fea-
tures extracted from a single form of the text inputs. The evaluation function
just takes as the input the output of the feature and the interaction func-
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CHAPTER 2. BACKGROUND AND RELATED WORK

tion. In multi-granularity architecture the relevance is computed over differ-
ent granularity of the features, either based on different feature level (vertical
multi-granularity) or based on different types of language units (horizontal
multi-granularity) of the inputs. The features and interaction function and
the input to them become important for the evaluation function. In horizontal
multi-granularity, we consider multiple language units (such as word, n-grams,
or sentences) as input assuming that the language has intrinsic structure. Ta-
ble 2.1 contains the name of the networks with this approach for architecture.

2.3 Touché 2020 shared task

As defined by Bondarenko et al. [2020], the task is "retrieval in a focused
argument collection to support argumentative conversations". The goal of the
task is to prepare a model which can support a user who searches for arguments
for debate with appropriate data. For the given queries the model should
come up with the good and supportive arguments which is retrieved from
arg.me corpus2. An argument with a good quality meets different measures
dimensions for argument quality. Alongside the topic relevance that a good
argument has with the input query, it should be rhetorically well-written. The
other quality aspect of a good argument is utility. This means that to what
extent the argument can help the user build a stance regarding to a topic.

The retrieved arguments by the models would be annotated manually and
the performance of the models are reported by taking the mean of nDCG@5
scores over the 50 test queries. The performance measure for the test phase
was unknown to the participants at the time of submission.

In this study, we try to retrieve the arguments which are relative to the
given query. Argument retrieval is done regardless of the stance of the argu-
ments. In the machine learning terminology this task is known as a ranking
task.

2https://webis.de/data/args-me.html
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Table 2.1: Neural ranking models and their types offered by different researchers

type model name year

Symmetric Architectures

DSSM Huang et al. [2013]
DeepMatch Lu and Li [2013]

Arc-II Hu et al. [2014]
MatchPyramid Pang et al. [2016]

Asymmetric Architectures

DRMM Guo et al. [2016]
KNRM Xiong et al. [2017]
HiNT Fan et al. [2018]

DeepRank Pang et al. [2017]
PACRR Hui et al. [2017]

Representation-focused Architectures

DSMM Guo et al. [2016]
Arc-I Hu et al. [2014]
CNTN Qiu and Huang [2015]
CLSM Shen et al. [2014]

MV-LSTM Wan et al. [2016a]

Interaction-focused Architectures
parametric(pi) and non-parametric(ni)

DRMM (ni) Guo et al. [2016]
KNRM (ni) Xiong et al. [2017]
Arc-II (pi) Hu et al. [2014]

Match-SRNN (pi) Wan et al. [2016b]
BERT-based (pi) Yang et al. [2019]

Hybrid Architectures
DUET Mitra et al. [2017]
IARNN Wang et al. [2016]

CompAgg Wang and Jiang [2016]

Multi-granularity Architectures
Vertically (v) vs. Horizontally (h)

MutligranCNN (v) Yin and Schütze [2015]
MACM (v) Nie et al. [2018b]

MP-HCNN (v) Rao et al. [2019]
MultiMatch (v) Nie et al. [2018a]
Conv-KNRM (h) Dai et al. [2018]

MIX (h) Chen et al. [2018]
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Chapter 3

Dataset and Models

In this chapter we introduce the dataset that has been used in the study.
A visualization which gives an image of the dataset would be represented.
Thereafter, all the models that are exploited in the study will be introduced.
Their structures, training process, and loss function terms are discussed.

3.1 Dataset

The dataset has been taken from the corpus of the args.me1 which is com-
posed of arguments that have been crawled from 4 different debate portals.
Debatewise (14,353 arguments), IDebate.org (13,522 arguments), Debatepe-
dia (21,197 arguments), and Debate.org (338,620 arguments) leave us with
387,740 arguments in total. They are in json format and each entry is an
argument. For each argument we have a unique ID, conclusion, premise, the
source where the argument has been obtained from, the stance of argument
whether it supports the topic or contradicts or it just holds a neutral point of
view toward the topic, the time of obtaining the argument and other metadata.

In this study we just make a focus on ID, which makes the arguments
unique, the conclusion and premises. Note that it is important for us to obtain
the relevant arguments, and this should be done regardless of the stance of the
premise with respect to the conclusions. Because of that the stance information
of the arguments are useless for us.

Note that in the dataset there are arguments whose premises have the
length of less than 15 words. We put our assumption on the fact that such
arguments cannot represent a valid and convincing argument by which the
user can build a stance toward a topic. As a result, we just ignored them and
this left us with 317,133 arguments.

1https://webis.de/data/args-me.html

12



CHAPTER 3. DATASET AND MODELS

3.2 Preprocessing and Visualization

Exploiting the distant supervision technique contributes us in the training and
validation phase to have an approach that the conclusions could be considered
as the queries which can be given by the users. The premises would play the
role of documents in a ranking scenario in which the networks try to rank them.
In order to apply the normalization functions simultaneously on the arguments,
we have converted the json format to the panda dataframe in which each row
represents an argument. For each row we then have the columns named:
ID, conclusion, premise. Note that each premise is considered as a related
document to its corresponding conclusion (query).

3.2.1 Preprocess Conclusions

In order to get an impression how many premises each unique conclusion may
have, we intend to group all the arguments with the same conclusion. This re-
quires a text normalization so that we make sure that we group the arguments
correctly. For instance, it is desirable to group the arguments with the claims
"Abortion", "abortion!", and "abortion" in the same group as they are dis-
cussing about the same topic. We convert all of the claims to have the form of
lower case and store them for each argument which will be called "normalized
conclusion". Note that the normalized conclusion will be also use to assign
unrelated premises to the arguments. It is also exploited for calculating the
BM25 score in the test phase when we want to select candidate arguments
to be re-ranked. In the next chapter (section 4.3) we will elaborate on the
two-step retrieval process.

3.2.1.1 Punctuation Removal and Case Sensitivity

In some cases, we have the same phrases with and without punctuation. In
order to avoid to consider them as two separated arguments when we want
to analyze them, we decided to simply remove the punctuation. An example
of such cases is "gay marriage should be allowed" and "gay marriage should
be allowed!!!". Also for the cases where the conclusion is just a name, case
sensitivity can contribute us take the same conclusions as two separated ones.
The example is "abortion" and "Abortion".

3.2.1.2 Stop Words Removal and Stemming

Similarity of the conclusions are used in two steps: when we are assigning the
unrelated premises to the conclusions and in the test phase when we want to
retrieve candidate arguments for a given user query. When we want to evaluate
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a similarity between two conclusions, stop words can mislead us. They may in-
crease the similarity or decrease it unrealistically. We create a new column for
each argument called "norm_con" which is the normalized version of conclu-
sion of the argument achieved by dropping the stop words. For detecting the
stop words in the claims we have used nltk2 package. Stemming methods did
not necessarily give us convincing results. In other words, using the existing
tools lead to a situation where different forms of the same stem were treated
differently and considering the length of the conclusions, it had a destructive
effect on the measuring the similarity of the conclusions.

3.2.1.3 Conclusion Visualization and Statistics

With the aim of getting a picture of the conclusions, we have done some
analysis on them. Information such as how many premises each conclusion
has and how long each conclusion is. To get such information about the data
we work on the processed conclusions (normalized conclusions).

Table 3.1 shows the normalized conclusions which have the highest number
of premises.

In general there are 66,473 unique conclusions. The histogram of the argu-
ments based on the length of the unique conclusions are shown in figure 3.1.
The vocabulary size of the set of unique claims is 29,970 tokens.

3.2.2 Preprocessing Premises

Premises are the documents that we try to retrieve in the training phase and
they need a specific preprocess in order to get ready to be fed to the network.
Normalization of the premises completely depends on the network that we use
as the networks use different types of tokenization.

3.2.2.1 Tokenizing Punctuation

For the classic embedding such in which we assign a static vector to each to-
ken, we require to handle the punctuation such as "," as "<COMMA>" or
"." as "<PERIOD>". For the contextualized embedding provided by net-
works BERT, we do not require to tokenize the punctuation as the network
will handle them properly. In our study KNRM and CKNRM and SNRM net-
work exploit static tokenization and punctuation tokenization is mandatory.
Using a manually developed python dictionary, we could simply replace the
punctuation with their corresponding assigned tokens.

2https://www.nltk.org/
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Table 3.1: Normalized conclusions with the highest number of premises

norm cons number of premises

abortion 2,401
gay marriage 1,259
rap battle 1,256
god exists 942

death penalty 941
gun control 645
contradict 631
god real 484
god 450

ivf debate 425
abortion illegal 350
existence god 334
abortion legal 332
earth flat 292
euthanasia 290

gay marriage legal 290
death penalty abolished 262
marijuana legalized 256

gun rights 252
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Figure 3.1: Histogram of the unique claims based on the number of tokens

3.2.2.2 Removing the Consecutive Repetitive Tokens

After replacing the punctuation with special tokens, we should focus on con-
secutive repetitive tokens which could be originally a word or a mapped punc-
tuation. It is sometimes the case that a user in a debate portal has used a
special punctuation repetitively in a row or just used the same word for mul-
tiple times in order to insist on a fact. In any case this would not bring any
semantic information for our network, so we replace them with just one of
repeated word.

3.2.2.3 Mapping Digits to Words

During a debate it is pretty possible that a person uses numbers. Sometimes
people write the numbers in digit, which could not be informative for the
network. It is a common practice to change the digits into word formats.
For mapping the digits to the words we have used a python package called
"inflect"3.

3source code and installation instruction found in: https://pypi.org/project/inflect/
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3.2.2.4 Removing the URLs

A premise may contain URL to refer to a specific source. As the URLs do
not contain any white space, they are treated as a single token for the static
embedding. They also contain special characters, which make the tokenization
complicated without holding any specific semantic meaning. Because of that,
we drop all the URLs in the premises. Using regex, we could detect the URL
stings in the premises.

3.2.3 Annotating Premises as Related and Unrelated

It is typical for the shared ranking tasks that the queries and the related and
unrelated documents are given in a qrel file, and such file is used for training
the models. In the ranking tasks such information is provided by query log or
click-through data. Considering the type of the annotation that is provided in
the dataset in which just the argument components are specified, we have used
a distant supervision approach for getting the required information to solve the
ranking problem. This means that in order to avoid an expensive procedure of
generating human annotated qrel file for the ranking task (assigning relevant
score to the documents for each query), we have taken the benefit of the
existing annotation information.

This distant supervision happens when we assume the premises as the
documents and the conclusions or claims of the arguments as the queries.
Note that it is possible that a claim has multiple premises. This means that
there are several arguments with the same claim, but the premises are different.
In each argument, we put our assumption on the fact that the corresponding
premise for each query is a related document to that query.

For the task of ranking we still require to assign unrelated document to each
query. To do so, we group the arguments by their conclusion text. Regarding
the number of samples, we refer to the number of premises that the specific
conclusion text has. For each unique query, we take an argument sample of
20 times of the number of premises. Then we compute the similarity of the
conclusion samples and that specific conclusion. In 3.2.5, we will discuss about
the similarity metric that we have used for unrelated document assignment.
We take the corresponding premises of the most unrelated query samples. The
assumption is that the premise of an unrelated claim to a conclusion, can be
considered as an unrelated document of that claim. This way we assign for
each argument an unrelated premise.
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Figure 3.2: Histogram of the premises based on their length (number of tokens
separated by white space)

3.2.4 Visualization of Premises

In general, we have 317410 number of premises. The vocabulary size for the
set of all premises is 586,796. Figure 3.2 shows the histogram of the arguments
based on the premises (Number of tokens separated by white space). Note
that we had some arguments whose premises exceed the length of 1,750. As
the number of such arguments were not that much, we considered them as
outlier to get an appropriate and meaningful histogram scaling. The mean of
the number of words for the premises is about 403 words. 85% of the premises
have the length of less than 200 words.

Such visualizations for the premises and queries will give us a hint about
selecting the maximum sequence lengths in the experiments.

3.2.5 Selection of the Similarity Measure

Assigning unrelated premise to a specific conclusion completely depends on
the definition of the similarity measure. For the selection of the similarity
measure we took all the arguments whose conclusion include the term abortion
as a sample. This sample left us with nearly 2000 unique conclusion text which
could be claimed that they are relatively related to each other. Then we took a
random argument whose conclusion does not have any relation with this topic.
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A good similarity measure should give a high score for the two conclusions that
are taken from the "abortion" set and relatively give a small score between a
conclusion from "abortion" set and "non-abortion" set.

Based on the multiple trials that we had, cosine similarity of the embedded
representation (with fast-text and glove)of the conclusions, or the TF-IDF
features did not give us a meaningful difference for the similarity values of the
two conclusion pairs. A possible explanation for not giving a meaningful result
is the sparse vector representation of the conclusions, considering the length of
the conclusions. Among the similarity measures of the sentences we have found
that the fuzzy similarity provide us with a meaningful similarity score between
conclusions, so that we can rely on them for detecting unrelated conclusions.
"fuzzywuzzy" provides the tools for string matching and the fuzzy similarity
is based on the Levenshtein distance.

3.3 Train and Validation Dataset

Now that we have the required fields for each argument we can start forming
the training and validation dataset. For the training dataset we do not have
any limitation for the arguments. In the validation dataset however, we have
just concentrated on the arguments whose conclusions have exactly 5 related
documents. In other words, after grouping the arguments based on the nor-
malized conclusion, we have 5 premises as related premises. For each of the
related document we provide 20 unrelated ones. We do so as in the validation
phase we provide the network with 5 related and 100 unrelated premises for
each query of the validation set. We have assigned more irrelevant documents
to each validation query compared to the training query to make the valida-
tion phase a bit challenging. Compared to the case in which each validation
has 5 positive and 5 negative documents, such number of irrelevant documents
makes the validation more realistic. For evaluating the model performance we
focus on the first 20 retrieved documents and get the MAP@20, MRR@20, and
nDCG@20 score.

In the training and validation phase each query is fed into the network along
with the related and the unrelated premise. Based on the visualization of the
conclusions and premises we have found that 10 and 100 would be a good
choice for the query(conclusion) and document(premise) length respectively.
The shorter queries and documents have been padded to these lengths and the
longer ones have been truncated to these values.

In order to explore the hyper-parameters such as learning rate and the
number of hidden layers, and check how the models work we took a small
sample of training (including 10,000 arguments) and validation (with the size of
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105 arguments) and ran the model with the sample dataset. We then exploited
the the networks to the large scale original dataset.

3.4 Neural Ranking Models

In this section we provide a detailed explanation of the structures of the models
that have been used in this study. Note that we have taken the authors’ im-
plementation of the corresponding models mostly in PyTorch. The only model
implemented in TensorFlow is Stand alone Neural Ranking Model (SNRM).
In each subsection, we provide the link of the model implementation.

3.4.1 Recurrent Neural Networks

In this study, we have used Gated Recurrent Units (GRU) in order to have
a concentration on the representation-based network. This network creates
a representation for the input pairs known as query and documents. The
concatenation of the query and the document representations are then fed to
a linear layer to produce a similarity score. Figure 3.3 Shows a block diagram
of the recurrent network for producing the similarity score for the given query
and document. Bidirectional units with the hidden size of 512 have been used
for GRU units and the linear layer is a fully connected network with the input
of 4*512 to 1 (the concatenation of 2 bidirectional units produces an output
with the dimensionality of 4 times of the hidden state). The implementation
of the model can be achieved in GitHub.4

Gated Recurrent Unit With the aim of capturing the dependencies of
the sequence of input these gated units were proposed by Cho et al. [2014].
The flow of the information is modulated by gates. There are in general two
types of gates: updating and reset gate.

Activation gate hji is in fact the linear combination of the previous activa-
tion and the candidate activation. Equation 3.1 indicates how the activation
gate is updated (Chung et al. [2014]):

hjt =
(
1− zjt

)
hjt−1 + zjt h̃

j
t (3.1)

where the updating gate Zjt decides about the influence of previous activation
gate and the candidate activation. The updating gate is computed by the
following equation (Chung et al. [2014]):

4model implementation of Siamese, KNRM and CKNRM in GitHub:
https://github.com/thunlp/Kernel-Based-Neural-Ranking-Models/tree/master/src
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Figure 3.3: Similarity scores using recurrent neural network

zjt = σ (Wzxt + Uzht−1)
j (3.2)

Candidate activation can be obtained by the equation 3.3 (Chung et al. [2014]):

h̃jt = tanh (Wxt + U (rt � ht−1))
j (3.3)

where rt is the reset gate and � is the element-wise multiplication. Reset gate
has also the same equation to the updating gate and can be obtained by the
equation 3.4 (Chung et al. [2014]):

rjt = σ (Wrxt + Urht−1)
j (3.4)

Figure 3.4 shows a GRU with its related gates (Chung et al. [2014]).

Cost function The cost function used for this network is a typical pair-
wise learning to rank loss which is represented by the equation 3.5 (Xiong et al.
[2017]):
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Figure 3.4: GRU with its gates (Chung et al. [2014])

l(w, b,V) =
∑
q

∑
d+,d−∈D+,−

g

max
(
0, 1− f

(
q, d+

)
+ f

(
q, d−

))
(3.5)

In this equation D+,−
q is the ground truth for the related and unrelated docu-

ment sets. w and b are the fully connected layer parameters to be learned and
the word embedding is V . Minimizing this cost function would lead the model
to put the related documents in a higher rank compared to the unrelated ones.

3.4.2 Deep Relevance Matching Model (DRMM)

Guo et al. [2016] proposed a novel model which concentrates more on the inter-
action relation that the text pairs have rather than the representation of them.
They have addressed the problem of relevance matching by a joint deep struc-
ture over the local interaction of the query and the document terms. The local
interaction of the text pairs are calculated based on the term embedding. The
variable-length interaction terms are transformed to the fixed-length match-
ing histograms. Based on the histograms, a feed forward network is deployed
to learn hierarchical matching patterns and produce matching score for each
query term. Finally, the similarity score is the result of weighted aggregation of
the similarity matching of the query terms. The weights are achieved through
a gating network (Guo et al.). The link to the model implementation is given
in 3.4.4.

3.4.2.1 Model Architecture

The general structure of the model has been shown in the figure 3.5.
Based on the explanation of the network, the similarity score between the

query terms w and the document terms d are calculated by the following
equations 3.7 (Guo et al. [2016]):
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Figure 3.5: DRMM architecture (Guo et al. [2016])

z
(0)
i = h

(
w

(q)
i ⊗ d

)
, i = 1, . . . ,M

z
(l)
i = tanh

(
W (l)z

(l−1)
i + b(l)

)
, i = 1, . . . ,M, l = 1, . . . , L

s =
∑M

i=1 giz
(L)
i

(3.6)

where ⊗ is the intersection operator, z(l) represent the intermediate hidden
layers, W (l) is the l-th element of the weight matrix and b(l) is the bias. Finally
h is the mapping function from the local interaction and matching histograms.
Now, we explain the different parts of the network.

Matching Histogram Mapping Due to the various document and
query lengths the local interactions have different lengths. Rather than loca-
tion preserving representation through matching matrix Guo et al. proposed
a strength preserving representation for the local interaction relation. In this
form of representation the local interactions (i.e. cosine similarity) are grouped
according to the discrete levels of signal strength bins. They used five bins in
their study. Thanks to the matching histogram we come up with a fixed-sized
representations for the local interactions. Note that in our experiment due to
the simplicity of learning of the multiplicative relationships and reducing the
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range, we have exploited the LogCount-based Histogram. This means that the
logarithm of the counts for each bin has been calculated (Guo et al.).

Feed Forward Matching Network In this study, we have used a three
layer feed forward neural network for learning the term similarity scores. For
the input layer we have used 1024 units and for the hidden layers we have
used 256 and 5 units. Finally the output layer has a neuron which clarifies the
matching score of the query term.

Term Gating Network Query term importance has been modeled in
this model by the term gating network. The gate of each term will clarify to
what extend the term will have contribution for calculating the similarity rel-
evance. The gating functions are softmax function which is shown in equation
3.7:

gi =
exp

(
wgx

(q)
i

)
∑M

j=1 exp
(
wgx

(q)
j

) , i = 1, . . . ,M (3.7)

where wg denotes the weight vector of the term gating network and x
(q)
i is the

i-th query term.

Cost Function The cost function for the learning phase is the same as
the one that we use for the recurrent network. This is typical for training the
neural networks for the task of ranking.

3.4.3 Neural Ranking Models with Kernel Pulling

In this type of neural ranking models kernel pulling is applied to a function of
interaction between documents and queries. The output of such kernels would
be an input to a ranking model which typically is a linear layer. For the kernels
we have used radial basis functions (RBF).

3.4.3.1 Kernel-Based Neural Ranking Model (KNRM)

In the Kernel based Neural Ranking Models (KNRM), we aim to produce a
similarity score for a given query and document. This model composes of
three important parts: translation model, kernel pooling, and learning to rank
model (Xiong et al. [2017]). Figure 3.6 shows the layers and components of
the KNRM model.
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Figure 3.6: Different layers of the KNRM structure (Xiong et al. [2017])

Translation model The translation matrix is used for word-level simi-
larity. Each element of the matrix is the cosine similarity of the embedding
vector for the query and document terms. The element Mij of the translation
matrix can be calculated by the equation 3.8 (Xiong et al., 2017):

Mij = cos
(
~vqti , ~vtdj

)
(3.8)

in which ~vtiq and ~vtjd are the embedding of the query and document term i
and j respectively.

Kernel pooling The kernels will transform the result of the translation
matrix into query-document ranking features (φ(M))(Xiong et al. [2017]). This
conversion can be obtained by the equation 3.9:

φ(M) =
n∑
i=1

log ~K (Mi) (3.9)

Note that ~K (Mi) will apply K kernels to the i-th query word’s row of the
translation matrix and results in a k-dimensional feature vector. This fact has
been shown in 3.10:

~K (Mi) = {K1 (Mi) , . . . , KK (Mi)} (3.10)
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Kk (Mi) are the RBF kernels which are obtained by the following equation
(3.11):

Kk (Mi) =
∑
j

exp

(
−(Mij − µk)2

2σ2
k

)
(3.11)

Learning to rank layer Finally, the learning to rank model is a multiple
linear layer model with the tanh as the activation function (Xiong et al. [2017]).
Therefore, the learning layer can be represented by the equation 3.12:

f(q, d) = tanh
(
wTφ(M) + b

)
(3.12)

in which the w and b are the weights and biases of the final linear layer respec-
tively.

Learning process and back propagation process The cost function
of this network is the same as the one used in the recurrent network.

The learning process is done through a back-propagation process. Back-
propagating the gradients from the ranking features to the embedding layer is
obtained by the following equation (equation 3.13). Based on gradients that
have been received from the learning to rank layer, the kernels will pull the
term similarities to their µ to increase the TF-counts or push them away. The
force depends on the distance from the µ and the value of σ for each kernel
(Xiong et al. [2017]).

g (Mij) =
K∑
k=1

g (Kk (Mi))× σ2
k

(µk −Mij) exp
(

(Mij−µk)2

−2σ2
k

) (3.13)

Figure 3.7 shows the effect of kernel layers in the forward and in the back
propagation of the gradient.

For the learning to rank layer (linear layer) the error is propagated back
through the linear layer.

3.4.3.2 Convolutional Kernel-Based Neural Ranking Models (Conv-
KNRM or CKNRM)

The most important difference between this network and KNRM is the use of
a set of convolutional filters to form different n-gram embedding. Figure 3.8
illustrates the different layers and components of the network. In this figure
the uni- and bi-gram embedding have been shown. Kernel pooling, learning to
rank layer, and the cost function stay the same as for the previous network.
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Figure 3.7: The effect of kernels in the ranking and learning process (Xiong et al.
[2017])

N-gram Embedding and Cross-matching In convolutional Kernel-
based Neural Ranking models (Conv-KNRM) the n-grams of the document
and queries would be calculated through the convolutional filters. The convo-
lutional filters slide over the text and compute a continuous score v for each
window using the word embedding and the filter weights. This has been shown
by the following equation (Dai et al. [2018]):

v = w · Ti:i+h, v ∈ R (3.14)

where the filter window has the size of h and w represents the filter weights.
Exploiting F filters of the size h, combining the results using a linear layer,
and using a relu activation function will contribute to a representation with
the dimensionality of F. The F dimension embedding for the h-gram would be
obtained by the equation below (3.15) (Dai et al. [2018]):

~ghi = relu
(
W h · Ti:i+h +~bh

)
, i = 1 . . .m (3.15)

where ~ghi ∈ RF is the embedding of the ith dimension for the h-gram.

Cross-Matching In this layer the similarity of the query and document
n-grams is calculated using the cosine similarity (Dai et al. [2018]). The equa-
tion for each element resulting from the cross-matching is gained by equation
3.16 (Dai et al. [2018]):

M
hq ,hd
i,j = cos

(
~g
hq
i , ~g

hd
j

)
(3.16)

Note that if the dimensionality of n-gram embedding is considered to have
the dimensionality of hq and hd for the query and document respectively, then
the resulted cross-matching matrix has hq by hd dimensions.
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Figure 3.8: Different layers of the Conv-KNRM structure (Dai et al. [2018])

3.4.4 BERT: A Contextualized Language Model

In order to achieve to a better performance for the ranking task, we try to get
a better understanding of the text. Due to MacAvaney et al. [2019] contextu-
alized embedding would help us getting to such goal. Unlike the traditional
embedding such as word2vec or glove, contextualized language models will
consider the context of appearance of a word in order to assign it an em-
bedding. For instance the word bank may have different representations in
different sentences depending on the context of the occurrence.

Among the contextualized embedding techniques, BERT (Bidrectional En-
coder Representation from Transformers) has represented one of the best per-
formances in different NLP tasks. According to Devlin et al. [2018] BERT is
trained with a masked language model task and can be fine tuned for different
downstream NLP tasks. In Masked Language Model (MLM) objective, some
of the tokens are masked randomly and the model tries to predict the id of the
original token based on its context. This objective enables the model to encode
the right and left contextual information of the tokens in the representation.
BERT provides us with the opportunity to encode multiple text segments and
considering this ability, we can make judgments about text pairs (MacAvaney
et al. [2019]).

According to Vaswani et al. [2017], BERT network is the result of stacking
transformer layers which has been illustrated in 3.9. Each transformer unit
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Figure 3.9: Structure of Transformer (Vaswani et al. [2017])

has an encoder (left half) and decoder (right half of figure 3.9). The Encoder
is composed of 6 layers each of which is composed of 2 sublayers. Firstly a
self-attention mechanism and secondly is position-wise fully connected feed-
forward network (a two linear layer network with ReLU activation function)
(Vaswani et al. [2017]). The Decoder is also a 6 layer model where each layer
has the 2 sub-layers as in the encoder plus a third sub-layer: a multi-head
attention over the output of the encoder stack. In this study, we have utilized
a BERT base uncased model with the hidden layers of 12 and the hidden size
of 768. Note that for the implementation of the neural ranking models with
the contextual embedding can

In the following subsections we will discuss about the neural ranking models
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whose embedding is based on BERT. Note that the model implementations are
accessible in GitHub5.

3.4.4.1 Vanilla BERT

According to MacAvaney et al. [2019] this network is obtained by the fine-
tuning of the BERT model with a linear layer stacked at top. This means
that a linear layer would be at the top of BERT model and for the training
process we use larger learning rate for the linear layer and a smaller value for
modifying the pretrained BERT weights. Note that the loss function is the
pairwise loss typical for the ranking tasks.

3.4.4.2 BERT and DRMM

With the aim of aggregating the ranking knowledge and the contextualized
embedding, we can stack any neural ranking model on the top of BERT model
(MacAvaney et al. [2019]). In this study, we have put DRMM model to see
how the performance will change.

3.4.4.3 BERT and KNRM

The other neural ranking model which uses the contextualized embedding in
our study is KNRM. As we have used the model with static embedding, this
network will give us a good illustration of how the contextualized embedding
will effect the performance of the model.

3.4.5 Standalone Neural Ranking Model

All the networks that have been discussed up to now require some candidate
documents for the test query to give some results. This means that they
typically do a re-ranking for the top document hits from a traditional retrieval
model. Consequently, it is possible that the performance of the model gets
restricted to what the first ranker would provide. In other words, an error
caused by the first ranker is propagated to the following ranker. Guo et al.
[2019] called this phenomena as error propagation in cascade structures. To
overcome this problem Zamani et al. [2018] suggested the Standalone Neural
Ranking Model (SNRM).

The main important innovation of this network is the latent sparse rep-
resentation of the document and query for constructing an inverted index.
Meanwhile, this representation grabs the semantic relationships between the

5https://github.com/Georgetown-IR-Lab/cedr
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query and documents (conclusions and premises in our study) (Zamani et al.
[2018]).

The retrieval process is defined as finding the documents which have non-
zero elements for the non-zero elements of the query representation. Zamani
et al. argued that considering the retrieval process, the sparser the query
representation, the faster the retrieval would be. It is also clear that the queries
are typically of a shorter length compared to the documents. As a result,
assuming the same representation dimension for the documents and query,
the query representation should have much more zero elements compared to
the document representation. For the model implementation we have used its
GitHub repository6.

3.4.5.1 Model Architecture

Based on the aforementioned facts for the query and document latent space
representation, Zamani et al. suggested a model which learns the representa-
tion of the n-grams for the query and documents. The learned sparse repre-
sentation is in fact the average pooling of the sparse representation of different
n-grams (Zamani et al. [2018]). Equation 3.17 states the sparse representation
of document n-grams with the length of |d|. This is how the query represen-
tation can also be obtained (Zamani et al. [2018]):

φD(d) =
1

|d| − n+ 1

|d|−n+1∑
i=1

φngram (wi, wi+1, · · · , wi+n−1) (3.17)

In this equation, φngram is a fully connected feed-forward network which
learns the sparsity representation for a given n-gram with the terms w1, w2, · · · , w|d|.
Note that using n-grams as the input to the model helps the network get the
interaction relation and term dependencies between the words (Zamani et al.
[2018]).

The hourglass shape of the φngram forces the input information gets dense
in the middle layers and then it goes through the later layers for getting a high
dimension (e.g. 20000). Figure 3.10 shows the structure of the network for
creating a sparse representation of the input text.

3.4.5.2 Training and Loss Function

For the training phase the query and the related and unrelated documents
are given to the network. For the related document a label of 1 and for the
unrelated ones -1 would be assigned. Figure 3.11 illustrates the training phase
of the network.

6https://github.com/hamed-zamani/snrm
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Figure 3.10: Sparse representation network (Zamani et al. [2018])

The loss function for this network has two terms: retrieval term and sparsity
term (Zamani et al. [2018])) which are explained in the following sub-sections.
Note that in contrast to a typical auto-encoder-decoder, the representation
network in this model does not have a reconstruction term in its cost func-
tion as we do not plan to recusntruct the input. Rather than that, a sparse
representation is of our interest.

Retrieval Objective This term of the loss function is the one that other
neural ranking models also have. Hinge is a kind of pair-wise loss which is used
and is achieved by the equation 3.18

L = max {0, ε− yi [ψ (φQ (qi) , φD (di1))− ψ (φQ (qi) , φD (di2))]} (3.18)

where ε is a hyper parameter for defining the margin of the related and the
unrelated documents. This kind of pair-wise loss function tries to put the
related documents on a higher rank comparing to the unrelated ones with a
margin.
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Figure 3.11: Training process of SNRM (Zamani et al. [2018])

Sparsity Objective As we have pointed out before, sparsity is an impor-
tant parameter specially for query representation. Sparsity means the ratio of
the number of zero elements to the total number of elements in the representa-
tion. For a representation vector ~v This can be demonstrated by the equation
3.19:

sparsity ratio (~v) =
total number of zero elements in ~v

|~v|
(3.19)

Zamani et al. argued that optimizing the L0 norm of the representation
vector could contribute to the maximum sparsity but the point is that taking
the derivative of such norm is not possible as it is non-differentiable. Alterna-
tively they suggested minimizing L1 which can be stated as:

L1(~v) =

|~v|∑
i=1

|~vi| (3.20)
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Loss Function By concatenating the two terms explained above we get
the loss function used in SNRM which can be stated by 3.21 (Zamani et al.
[2018]):

L (qi, di1, di2, yi) + λL1 (φQ (qi) ‖φD (di1)‖φD (di2)) (3.21)

where ||means the concatenation operator and the hypert-parameter λ controls
the sparsity of the representations.

3.4.5.3 Document Retrieval

After the model has been trained by the related, unrelated documents and
queries, we can create sparse representation of the documents offline for the
purpose of inverted index construction. Note that the invert index of the
documents are constructed not based on the words but the elements of the
latent space. The score of each document can for a given query in the test
phase can be calculated by the equation 3.22 (Zamani et al. [2018]):

retrieval score (q, d) =
∑
~qi|>0

~qi~di (3.22)

The retrieval score is in fact the dot product of the query and document
representation in the latent space. Figure 3.12 shows the retrieval process of
the documents for the given query and the index construction.

3.5 BM25

After the models have been prepared in the training phase, for a given query
in the test phase, they still require some candidate documents, as the process
of giving ranking score to all of the documents in the corpus would be com-
putationally expensive and time consuming. In order to provide the queries
with the related documents (or better to say premises) we have retrieved the
related conclusions using BM25 (Best Matching) retrieval model. The trained
networks try then, to re-rank the premises corresponding to the retrieved re-
lated conclusions. Compared to premise retrieval which will be conducted by
the trained models, this phase of related conclusion retrieval is fast (considering
the length of the conclusions).

BM25 is a probabilistic retrieval model which uses some attributes such as
term frequency, document frequency and document length, in order to calculate
the relevance score for each document given the query terms. If we assume
the query terms as q1, ..., qn the ranking score for the document D can be
calculated by the following equation (Pérez-Iglesias et al. [2009]).
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Figure 3.12: Document retrieval process (Zamani et al. [2018])

score(D,Q) =
n∑
i=1

IDF (qi) ·
f (qi, D) · (k1 + 1)

f (qi, D) + k1 ·
(
1− b+ b · |D|

avgdl

) (3.23)

where |D| is the length of the document D in words and avgdl is the average
length of the documents in the corpus. b and k1 are constant and for our study
the values are 0.75 and 1.5 respectively. f(qi, D) is the frequency of the query
term qi in the document and the IDF is given by the equation 3.24:

IDF (qi) = log
N − n (qi) + 0.5

n (qi) + 0.5
(3.24)

where N is the number of documents in the collection and n(qi) is the number
of documents having the query term qi.
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Figure 3.13: Linear regression

3.6 Aggregation

In order to improve the performance of the ranking and aggregate the intuition
behind the networks used in this study, we performed a regression among
the scores calculated by different models for each of the documents. The
aggregation is done through a linear regression. The linear regression is fitted
to the validation and then the final scores are interpreted for the given test
queries.

For the validation queries we calculate the relative scores of the related and
unrelated premises using the networks. In order to get the scores in the range
of [0,1] we do a normalization using the following formula:

x′ =
x−min(x)

max(x)−min(x)
(3.25)

By fitting a linear regression, we assume that there is a linear relation
between the network scores and the similarity labels of the conclusion and
premises. Figure 3.13 shows the main idea of linear regression in which we try
to minimize the error (in our case mean squared error) between the estimated
line and the real label values.

Note that in our regression problem, the labels get the value of 0 and 1 (for
unrelated and related documents respectively) and the normalized similarity
scores of the networks (x-axis) vary between 0 and 1. In the linear regression
problem the feature space is the normalized network scores. As we aggregate
the result of 7 networks (excluding SNRM), the feature space is 7.

Finally, considering the ranking scores as the feature space, we apply the
linear regression on the normalized calculated similarity scores of the docu-
ments to get the final score for the given test query.
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Figure 3.14: An ideal ranking for a validation query

3.7 Validation Metrics

In this study we have used three well-known metrics for the task of ranking
namely MRR, MAP, and nDCG. Note that the validation data in our study are
arguments whose conclusions have 5 premises as the related and 100 unrelated
premises. As a result, for each validation query (conclusion) we rank 105
documents (premises). Figure 3.14 shows the ideal ranking for a validation
query. We then take the top 20 hits and calculate the metrics on them.

3.7.1 Mean Reciprocal Rank (MRR)

Based on the definition that Radev et al. [2002] provides, reciprocal ranking is
the multiplicative inverse of the rank of the first correct answer. The mathe-
matical equation for this statement is shown by the equation 3.26:

MRR =
1

|Q|

|Q|∑
i=1

1

ranki
(3.26)

where ranki refers to the rank of the first relevant document for the i-th query.
Figure 3.15 can better explain the concept of this measure through an example.
For the first query, the model provides a ranking for 3 documents. The very
first relevant document happens to be ranked as the third place. Because of

that we assign
1

3
to the model for this query. The scores for different queries

are calculated, and finally we take the average of all the scores.
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Figure 3.15: An example of MRR calculation

3.7.2 Mean Average Precision (MAP)

According to Turpin and Scholer [2006], the average precision for a query can
be calculated by the equation 3.27:

AveP =

∑n
k=1(P (k)× rel(k))

number of relevant documents
(3.27)

where rel(k) is a function which returns 1 if the item in the rank k is relevant
and 0 otherwise. P (k) is the precision at the cut-off k. When the score for each
query has been calculated we take the mean of all of them which is reflected
in the equation 3.28:

MAP =

∑Q
q=1AveP (q)

Q
(3.28)

where Q is the total number of queries. Figure 3.16 demonstrates the concept
of MAP through a simple calculation.

3.7.3 Normalized Discounted Cumulative Gain (nDCG)

Järvelin and Kekäläinen [2002] used graded relevance values for the documents
in order to produce model scores for the queries. The main intuition in their
definition is to punish the highly relevant documents which have not been
ranked at the top list. The DCG at a particular rank position p is given by
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Figure 3.16: An example of MAP calculation

the equation 3.29:

DCGp =

p∑
i=1

reli
log2(i+ 1)

(3.29)

Note that the punishment of the high relevant documents ranked at lower rank
positions is done through a logarithmic term in the denominator.

The normalized DCG can be obtained by dividing the obtained value of
DCGp by the ideal DCG (IDCGp). This normalization has been shown by
the equation 3.30:

nDCGp =
DCGp

IDCGp

. (3.30)

In this study, as we do not have a graded relevant values for the premises
and conclusions, we made use of a binary version of the formula. This means
that the documents are either relevant or irrelevant to the query.
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Chapter 4

Experiments and Results

This chapter discusses the experiments and also the results that have been
achieved in each step of this study. After a brief explanation of forming the
training and validation set from the result of preprocess phase, this chapter
demonstrates the training and validation phase of the models, the parameters
that have been used and the resulting curves. This chapter also explains how
to the inference phase is performed in the neural ranking models in the test
phase. By having the network results for the queries, we explain how we can
aggregate the results so that we can improve the ranking for the test queries.
The model scores for the test queries and an analysis of it is the last section
of this chapter.

4.1 Training and Validation Data

After parsing the json file of the collection and taking the id, conclusion, and
premise parts, applying the preprocessing steps explained in the previous chap-
ter, we are left off with 2 pandas dataframes for the train and validation ar-
guments. Each row in the tables represent an argument. The columns also
represent the attributes of the arguments which are:

• id: which is unique for each argument

• conclusion: the conclusion of the arguments

• normalized conclusion: the conclusion of the argument with stop words
removed

• premise: the premise unit of the argument

• unrelated id: the id of an argument with an unrelated premise to the
conclusion (For the validation arguments we have 20 unrelated ids)
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Figure 4.1: Different datasets and their number of arguments

• unrelated premise: the unrelated premises to the conclusion (the way of
assigning the unrelated premises have been discussed in 3.2.3) (For the
validation arguments we have 20 unrelated premises)

We have 312,248 arguments for the training and 4,885 arguments for the
validation set. We tried to keep the validation set small in order to incorpo-
rate more information in the training phase while still allowing a meaningful
assessment of model performance during validation. Note that the validation
set will be used later as the training set for the regression model which per-
forms score aggregation. For training the aggregation model we have just used
positive and one of the negative premises of the arguments. Figure 4.1 shows
the different sets that have been created in this study with their corresponding
number of arguments.

As the pre-processing phase of the contextualized embedding networks is a
bit different (they do not require the punctuation to be tokenized), we formed
two separate train and validation table for these networks. Note that the train
and validation arguments are the same for these sets so that the results could
be comparable.

4.2 Model Training

Now that we have training and validation sets, we can form the tensors to
feed to the network for the training and the validation phase. We have taken
10000 random arguments from the training set to tune the hyper-parameters
of the models to achieve best performance for minimizing the cost function.
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This sample data is also used to inspect whether the training and validation
process are executed correctly without any error. Debugging these processes
with smaller number of data would be easier and requires less time.

Table 4.1 shows the result of the tuning of the most important model
hyper-parameters. BDRMM stands for the DRMM with the contextualized
embedding (which in our case is BERT). Same explanation holds for BKNRM.
VBERT is Vanilla BERT network which is the result of stacking linear layers
to the BERT model. Note that the notation of x:y for the linear layers row
in the table illustrates the number of units in two consecutive fully connected
(linear) layers. For the case of not having a hyper-parameter by a model we
have used the symbol "x" for it.
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Now that we get the models running with a good performance in reducing
the cost function it is time to feed in the original training dataset. The orig-
inal training dataset with 312,248 arguments have been fed to the networks.
Considering the model and data sizes and the complexity of the computations,
all the computations are done on a GPU to make the computations faster in
a parallel way. This means that for the training and validation every input
batches and models should be transferred into GPU. The following algorithm
1 shows the training and validation phase of the models.

Algorithm 1: Model training and validation algorithm
Result: Model with the best validation result
model initialization;
forming the training and validation tensors;
best-score = 0;
while n < number-of-epochs do

train the model with the training set and modify the weights;
if n % validation-step == 0 then

get the score for 105 premises for the validation query;
generate the validation score;
compute the mean of error over the previous training batches;
if validation-score > best-score then

best-score ← validation-score;
save model;

end
end

end

We keep the batch size to 32 for different networks. For all the networks,
after 1239 training batches we run the validation to evaluate the performance
of the network and if the MAP@20 measure was better than the best result
obtained so far, the saved model will be replaced correspondingly. For the case
of nDCG@20 measure a more realistic score could be obtained if the query-
relevance information of the ranking task was soft. Based on the definition
of MAP@20 and MRR@20, it is clear that the MAP@20 measure yields a
more realistic score for the models as it takes into the consideration all of the
retrieved documents and only on the very first related document.

In each epoch, we perform 8 evaluation runs and for the cases of networks
with static embedding, we run train the models for 10 epochs. For the BERT
models as it will be seen, there is no need to do the fine tuning for this many
epochs. We have fine tuned the models with the contextualized embedding for
5 epochs. This saves the time and avoids complex computations out of which
we do not get noticeable improvement.
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The average error and validation curves for different networks are displayed
for every evaluation that we have done on the validation set. This results in
displaying 80 points for every single model with static embedding and 40 points
for the BERT-based models. Note that the validation points are displayed in
percentage and the coordinates of the best MAP@20 achieved in the corre-
sponding run (the step number and the MAP@20 value) have been specified
with a blue dot and written on the curves.

4.2.1 Recurrent Network

The embedding dimensionality for the input tokens is 300 and the learning
rate of 0.001 represented reasonable results on the sample data. The hidden
size for the GRUs have been selected to be 512. For the linear layer we have
the dropout layer with the rate of 0.5. Dropout is a regularization technique in
which we define a probability ratio by which, the neurons in the feedback path
will be omitted. According to Srivastava et al. [2014] this may contribute to a
more generalization for the network and is a technique for avoiding over-fitting.
This means that the neurons will be excluded from the process of training in
the back-propagation path with the probability of 0.5. Figure 4.2 shows the
results of training loss and the validation phase of the model. Note that on
the x-axis, the term "step" means every 1,239 training batches in which we do
a validation.

4.2.2 DRMM

Based on the sample data we have decided to have 1,024 bins. This number
of bins is also the number of units in the input of the feed-forward network.
For the feed-forward network we exploited 2 hidden layers of 256 and 5 units.
With the learning rate of 10−3 a learning curve which is illustrated in figure
4.3 could be achieved.

4.2.3 KNRM

After we run the network on the sample of 10,000 training set we decided to
have 21 bins as it was suggested by Xiong et al. [2017]. Learning rate and
word embedding dimensionality are as the same as recurrent network. Figure
4.4 shows the train and validation phase.
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4.2.4 CKNRM

The parameters for the network are the same as for KNRM model. Convolu-
tional layers are 2D filters whose input is of dimension 1 and the output has
the dimensionality of 128. The window sizes of the convolution layers are 1,
2, and 3 as suggested by Dai et al. [2018]. The ReLu activation function has
been applied on the output of the convolutional layers. Figure 4.5 shows the
training loss as well as the validation phase for CKNRM.

4.2.5 Vanilla BERT

The learning rate for the BERT layers is much smaller than for the linear layer,
as we do not intend to make large changes to the pre-trained contextualized
embedding. We keep the learning rate of the BERT layers to be 2 ∗ 10−5 and
for the linear layer the learning rate is 10−3. For the purpose of generalization
we add a dropout layer with the probability of 0.1. The linear layer has the
input size of 768 to 1. 768 is the embedding dimensionality for a token in
BERT model. Figure 4.7 illustrates the training and the validation phase of
the network.

4.2.6 BERT and DRMM

The learning rates for the BERT and non-BERT layers are the same as the
Vanilla BERT. The number of bins is 11, as suggested by MacAvaney et al.
[2019]. The feed-forward network is the same as the one used in DRMM.
Figure 4.8 shows the training and validation curves.

4.2.7 BERT and KNRM

The Learning rate for the fine tuning of the BERT layers and training the
KNRM layers are kept the same as for the Vanilla BERT model. The number
of bins is 11, and the parameters for RBF functions are kept as what was
suggested by the authors in MacAvaney et al. [2019] as the results on the
sample data were acceptable. Figure 4.9 shows the loss function in the training
phase as well as the results in the validation phase for different epochs.

4.2.8 SNRM

For this model we did not use any hidden layer and it showed reasonable results
on the sample data. Learning rate is selected to be 10−4, and no drop out was
used. Figure 4.6 shows the loss curve for the training and the validation metrics
during the training and the validation phase.
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Table 4.2: Achieved evaluation scores of the models in the best MAP score

Metrics @20

Model MRR MAP nDCG

GRU 28.4 24.1 38.05
DRMM 67.00 52.8 64.77
KNRM 84.35 72.64 80.24
CKNRM 86.72 73.32 82.08
SNRM 82.41 70.14 78.97

Vanilla BERT 95.12 88.5 91.00
KNRM BERT 94.57 90.18 89.80
DRMM BERT 95.97 88.09 91.34

Table 4.2 summarizes the best validation results achieved from the models.

4.3 Test Queries

After training the models and getting the best one from the validation phase,
it is time to give the models the test queries and see what documents would
be ranked top. Except the SNRM model which has generated inverted in-
dex and can retrieve the documents on its own, other networks require to
be provided with the candidate documents (premises). Inspired by Dumani
[2019] approach, we also suggest a two stage argument retrieval process, in
which BM25 will clarify the candidate premises and in the second step of the
pipeline, the trained networks re-rank the candidate premises suggested by
BM25 for the given test queries.

After getting the test queries in the format of XML, we have parsed them
into Pandas dataframe. We applied the pre-processing steps used for training
and validation arguments to form the normalized version of the test queries
(punctuation removal and removing the stop words).

We first group all the arguments in the collection based on the normal-
ized conclusion column. Using BM25 we retrieve the most relevant normalized
conclusions. We select the top 100 normalized conclusions. The premises cor-
responding to retrieved normalized conclusions are the candidate documents
to be ranked by the neural networks. Note that each of the normalized con-
clusion may have a different number of premises. Consequently, the number
of documents to be re-ranked may vary for different test queries. Figure 4.10
shows how we provide the trained networks with the document-query pairs to
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Figure 4.2: Train and validation curve - Siamese Network with GRUs

Figure 4.3: Train and validation curve - DRMM

48



CHAPTER 4. EXPERIMENTS AND RESULTS

Figure 4.4: Train and validation curve - KNRM

Figure 4.5: Train and validation curve - CKNRM
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Figure 4.6: Train and validation curve - SNRM

Figure 4.7: Train and validation curve - Vanilla BERT
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Figure 4.8: Train and validation curve - BERT and DRMM

Figure 4.9: Train and validation curve - The stack of BERT and KNRM model
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Figure 4.10: A two stage retrieval process for the inference phase: Candidate
documents to be re-ranked by the networks are suggested by BM25

rank in the test phase.
After getting the document scores, we sort them based on the score in a de-

scending order. We introduce the top 100 premises as the retrieved arguments
for each test query. For the competition the results are saved in TREC for-
mat and for each trained model we provided a list of (50*100=5000) retrieved
arguments. The fields in the prepared file for the test queries contained the
following columns (each row belongs to an argument):

• The topic (query) number

• The document ID retrieved by the model (the argument ID of the re-
trieved premise)

• The rank of the document based on the ranking score

• The ranking score calculated by method

• Name of the retrieval method alongside the group name

In the appendix A we have shown the very first retrieved argument by each
model for a sample test query.
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4.4 Analysis of Documents Retrieved for Test
Queries

In this section, we analyze how diverse the retrieved documents by different
models in the test results are. As the 100 top hits would be different from
model to model, for each test query, we have exploited 2 measures to analyze
how the results overlap with each other.

Firstly, the Jaccard index will tell us to what extend the retrieved docu-
ments are in common for different models. The equation 4.1 shows that the
coefficient measures the intersection of the results.

J(A,B) =
|A ∩B|
|A ∪B|

(4.1)

The second index is the Spearman correlation coefficient. It is in fact the
Pearson correlation coefficient between the ranking variables (Daniel et al.
[1978]). The following equation (4.2) shows how Spearman index can be cal-
culated for two ranking sets rgX and rgY with n samples (Daniel et al. [1978]).

rs = ρrgX ,rgY =
cov (rgX , rgY )

σrgXσrgY
(4.2)

where σ is the standard deviation and cov is the covariance of the ranking
variables.

The document scores achieved by the models for each test query can be
considered as a vector of scores whose dimensions are the documents (argu-
ments) that have been retrieved by the corresponding model. In the first step,
we calculate the explained ranking similarity measures over the achieved re-
sults by each model pair for each test query. In order to visualize the results,
we have taken the mean of the indexes calculated over the 50 test queries. The
heat-map of the resulting calculation is illustrated by the the figure 4.11. The
upper one is the mean of the Jaccard for 50 queries and the lower one is for
the Spearman index.

The ones on the diagonals of the heat maps mean that both indexes pro-
duce 1 for two identical sets. It is clear that the networks which are based
on the contextualized embedding have produced more similar results rather
than the other networks. SNRM which retrieves the documents without using
preliminary ranking has retrieved pretty different results compared to other
networks. The Spearman coefficient for the SNRM model doesn’t produce a
number which means that the number of documents in common are extremely
low that no coefficient can be calculated. Kernel based networks (KNRM
and CKNRM) have more documents in common when we compare their re-
trieved documents with the ones retrieved by other models. The Jaccard index
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Figure 4.11: The heat map of the Jaccard (upper) and Spearman (lower) correlation
coefficient for the 50 test queries

calculated between recurrent based siamese network and the other networks
demonstrates that the number of retrieved documents in common is low. The
Spearman coefficients are also too small.

This heat map will help us to understand which models could be included
for the aggregation and which not.

4.5 Aggregation

Now that we have the top 100 arguments for each query resulting from 8
different networks and visualized how diverse the model results are for the test
queries, we can aggregate the network results. Note that we do not include the
SNRM results in the aggregation as the produced results are pretty different

54



CHAPTER 4. EXPERIMENTS AND RESULTS

from the ones offered by the other networks. We consider the results produced
by SNRM as an outlier for the task of regression.

We train the linear aggregation model on the validation set. This means
that fitting the regression model happens on the scores achieved by the models
for the conclusion of the validation arguments and their correponding premises
and the validation conclusion and one of the unrelated premises. We then
normalize the ranking scores and fit the linear model to the normalized scores.
Note that the regression model happens in a space whose dimensions are the
normalized model scores. In our case, as we ommit the SNRM model from
participating in the final aggregation, we have a dimensionality of 7 for the
regression model. We have (2 * 4885 = 9770) query-document pairs for training
the regression model. For the related premises to the query we assigned a label
of 1 and otherwise 0.

For each test query we take the union of all the retrieved documents by
different networks. If a document does not exist in the list of retrieved ar-
guments by a specific model, we assign a score of zero to the corresponding
dimension. The final score of each document is the estimation of the linear
regression model on the model scores between the test query and that specific
argument.

4.6 Test results

Evaluation of the test results is done by the competition committee. They have
manually annotated the retrieved arguments based on the argument quality
dimensions such as general topic relevance, logically cogent arguments, rhetor-
ically well-written arguments and utility (e.g. To what extend the retrieved
argument can be used for building a stance regarding to a topic). The per-
formance of the models is stated by taking the mean of nDCG@5 over the
50 test queries. This means that for each test query the 5 very top hits of
the models have been evaluated. The performance of the models developed
by the competitors were not that promising. This could be realized by the
fact that the most of the performances were bellow the baseline model perfor-
mance. The baseline model is Drichlet language model and its nDCG@5 score
is 75.6%. Table 4.3 shows the performance of the utilized model for the test
queries. The symbol "x" has been used for the models whose performances
are not reported by committee. We assume that for the excluded models the
performances were not higher than the ones displayed in table 4.3.

Generally speaking, although the result of the validation scores had a pre-
dictable behavior (the performance of the models on the validation sets im-
proved over different models as we expected), such behavior cannot be realized
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Table 4.3: Test scores of the models

Model nDCG@5 (%)

GRU x
DRMM x
KNRM 68.4
CKNRM x
SNRM x

Vanilla BERT 40.4
KNRM BERT 31.9
DRMM BERT 37.1
Aggregation 37.2

in the test results. There is no correlation between the test and validation re-
sults. This could be mostly related to the training and the validation phase.
Based on the limitation that we had on the annotated data and the lack of
mathematical definition of the quality measures of the arguments to be in-
cluded in the cost function, we mainly focused on the relevance aspect of the
retrieved arguments with the hope of satisfying the other aspects. In other
words, the cost function to be minimized in the training phase and then the
validation measures we provided for the networks in validation phase are based
on the relevance assumption. It is not guaranteed that a relevant argument is
necessarily rhetorically well-written or is good in terms of utility.

Manually annotating the retrieved arguments is time consuming and is an
expensive procedure. Because of that the nDCG metric has been calculated for
the first 5 top-hits of the models. We have calculated our automatic metrics in
the validation phase for the top 20 hits. Considering a larger set of retrieved
data (i.e. metric @20) may affect the reported performances in the test set.

For the validation phase the models had to rank 105 documents for a given
query (claim of the validation argument). In the test phase however, we pro-
vided different number of candidate premises to be re-ranked by the network.
This might vary from 300 to even 1,200 arguments. Considering the number
of documents to be scored in the validation and test phase, it can be realized
that the network has a harder to task to do. This might contribute the vali-
dation scores not be able to give a realistic picture of the model performances.
Increasing the number of premises for the validation data would make the val-
idation and consequently, the training phase more computationally expensive.
Decreasing the number of candidate premises provided by B25 would lead the
good arguments to be skipped.
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Considering the validation scores of the models and the analysis of the
diversity of the model outputs for the test phase, it is not surprising that the
performance of the recurrent based Siamese network and also the SNRM would
not be that satisfying. Note that both of the networks compute the similarity
score based on the representation of the input-pairs. For the task of ad-hoc
retrieval such representation focused models would not be a good choice as
they cannot handle the exact matches and also the interaction of the input
pairs is overlooked.

For the SNRM model the representation of the input pairs for creating
the inverted index is under question. Maybe the structure of fully connected
network for n-grams is not a good choice to grab the contextual information.
The regularization term (minimizing the L1 norm) that has been used in the
cost function of the model could be also challenged for the purpose of creating
representation. On the other hand, in order to accelerate the retrieving process,
the authors came up with the idea of sparse representation of the input pairs.
In the retrieval phase, we calculate the inner product of the query and the
document representations which may not be that informative for the sparse
vectors. The calculated scores for the related and the unrelated documents
would not differ that much.

Due to the idea of using RBF kernels for modeling input interaction, it could
be expected that the kernel based models may outperform DRMM. KNRM
holds a novel approach for modeling the interaction of the input pairs compared
to DRMM.

For the case of kernel based networks, contextualized embedding illustrates
better performance than the Conv-KNRM which highlights the fact that for
grabbing the contextual information the state-of-the-art methods outperform
the approach of using convolutional windows. A better configuration of the
window sizes of the convolutional layers may improve the results of the network.

Outperforming the performance of the models with the contextualized em-
bedding is noticeable also for the case of DRMM. This means that the deeper
understanding thanks to the contextualized embedding is really a concept that
has to be worked on.

Aggregation model did not improve the performance of the argument re-
trieval in the test phase. This may relate to the selection of the models to take
part in the aggregation scenario. Poor performing networks such as Siamese
and DRMM could be excluded for the aggregation. Other alternative aggre-
gation strategies would also contribute an improvement in the results.

KNRM with the performance of 68.4% got the 4th place among the com-
petitors and the only model which had a better performance rather than the
baseline model achieved the score of 80.4% for the nDCG@5 score. It seems
that it holds an approach of language modeling to solve the problem.
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The problem of argument retrieval when it comes to retrieving rhetorically
well-written and utility is hot and emerging problem and clearly not an easy
task. Lacking of the mathematical explanation of the quality dimension for
the retrieved arguments to be included in the validation metrics and also lack
soft annotated data (a data which gives relative score for the document and
query pairs) makes the challenge difficult.
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Chapter 5

Conclusion

In this study we exploited deep neural ranking models to retrieve arguments
for the given query. In order to map the problem of argument retrieval to
an information retrieval and avoiding creating qrel file for the ranking task,
we used a distant supervision technique. We defined the conclusion of the
arguments as the queries and the premises as the documents. We defined the
task of retrieving relevant arguments as searching for related premises for a
given query.

The ranking task in this study is composed of multiple stages: data pre-
processing, training, validation, tests and result aggregations.

Data preprocessing In this step, we firstly visualized the existing data.
This means that the length of query and premises, the vocabulary sizes were
inspected. This helped us to understand which arguments could be filtered
out. Thanks to the preprocessing, we could take a reasonable query and doc-
ument lengths to feed into the models. By inspecting the arguments, we also
recognized the type of preprocessing that are required such as digital to word
conversion for numbers, how to handle the punctuation and repetitive words.

Holding the distant supervision approach, we assumed the premises of the
arguments as the related documents to the queries. We still required a set
of unrelated documents in the training phase though. In the final step of
preprocessing phase we assigned 1 unrelated premise to each training and 20
unrelated premise to each validation argument. This way we have created a
dataset containing binary query relevance information. This information made
the use of deep neural ranking model for the ad-hoc retrieval task possible.

Training and validation phase We have exploited different deep neural
ranking models to compare their performances in ranking. After a certain
number of training batches, we fed the network with the validation dataset
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and if the result was better than the best one achieved up to now, we replaced
the saved model with the model configuration with which we achieved the best
validation results.

In this study we have exploited 8 different neural networks. Siamese neu-
ral network with recurrent sub-network units, deep relevance matching model
(DRMM), kernel based neural ranking model (KNRM) and the CKNRM,
vanilla BERT, KNRM with BERT embedding, DRMM with BERT embed-
ding and stand alone neural ranking model(SNRM) are the ones that have
been studied here.

Test phase The 50 given test queries by the Touché competition is our
test set. We believed that the most relevant queries to the test set are the
ones whose premises can get the best ranking score when they are fed to the
networks along with the test queries.

All of the networks (except SNRM) require a set of candidate data for rank-
ing the arguments. They do a kind of re-ranking of the candidate arguments
suggested by BM25 score. The score was calculated over the normalized con-
clusions and the input test query (query and conclusion without having any
stop word). SNRM retrieved the documents (premises) based on the inverted
index that it generated from the sparse representations.

Result aggregation In order to improve the results, we made use of
linear regression so that we can aggregate the results. Before that, we required
to analyze how diverse the results of the networks from each other were. We
recognized the test result of the SNRM as outlier as the retrieved documents
were completely different from other ranking results.

Test results The reported mean of nDCG@5 score for the performance of
the exploited models over the 50 test queries suggests that the KNRM has the
best performance with the score of 68.4%. Using the kernels for representing
the interaction of the query and the document contributes the best performance
compared to the other models.

Utilizing the contextualized embedding contributed to an improvement in
performance in DRMM. For the case of kernel based models, compared to
CKNRM, in which the convolutional filters were used for grabbing the context
information, contextualized embedding represents a better performance. In
general it seems that deeper understanding of the input pairs thanks to the
contextualized embedding would lead to a better ranking performance based
on relevance criterion.

The task of argument retrieval is a challenging task in terms of retrieving
the arguments which satisfy the quality dimensions of the arguments. We have

60



CHAPTER 5. CONCLUSION

focused more on the relevant arguments, however, this may not represent the
most rhetorically well-written ones or the ones which really can build a stance
for a user for a given topic. Lack of annotated data including information
about the argument quality and a concrete mathematical explanation of the
quality dimensions are the greatest challenges in creating the models for the
aim of argument retrieval.

Future works Preparing a dataset whose annotation can help the model
retrieving arguments which meet different argument quality dimension is a
feature work which seems to be of a high priority. Providing a concrete math-
ematical explanation which can map the argument quality dimension is also
important to be included in the cost function and validation metrics.

In this study, we used neural ranking models which typically require candi-
date documents for ranking. This may restrict the model performance to the
algorithm by which the candidate arguments are provided. On the other hand,
SNRM provided a diverse results compared to other networks which may be a
signal for unreliable results. A future work is to make a specific focus on this
end-to-end neural ranking model. A better representation of the documents
and query may contribute to a reliable result. In this way, we may modify the
structure of the network for document representation or we can also exploit
contextualized language models for having a better embedding of the tokens.

For the aggregation task, a more intuitive strategy for selecting the models
are required as the result did not improve compared to the individual mod-
els. Other than linear regression other ranking aggregation strategies may can
contribute to a better result.

Although we have tried several structures of deep neural ranking models
to retrieve arguments, it is still under question whether any other network
structure exists which can provide us with better results. The other work can
concentrate on the aggregation models. Considering that there exist different
types of neural ranking models, a good strategy of aggregation may contribute
to more promising results.

Instead of generating binary classes of related and unrelated premises to
the conclusion, we may, somehow, can annotate the premises to have different
levels of similarity and this way nDCG can provide us with more meaningful
evaluation measures. Generating a corpus with soft similarity level would be
a great step toward developing the system for argument retrieval.

In this work, we focused on the related arguments. However, we have
different dimensions for measuring the quality of the arguments. Working on
deep networks which can concentrate more on these dimensions may contribute
to a retrieval system with more convincing and better quality of arguments.
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Appendix A

Sample Retrieved Arguments

In this appendix, we show some sample retrieved arguments by the models
for a test queries in the Touché shared task. For the test query: "Should
Corporal Punishment Be Used in Schools?", the very first arguments retrieved
by models are as the table in A.1. This table gives a sense about how the
arguments look like in the corpus and how good the retrieved arguments are.
Note that for the long premises, because of lack of space, we have used "..."
which means that this is not the complete version of the premise.
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APPENDIX A. SAMPLE RETRIEVED ARGUMENTS
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