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Zusammenfassung

Die Fachgebiete des Mikroblog- und föderierten Information Retrievals
wurden in den vergangenen Jahren jeweils eingehend erforscht. Während fö-
deriertes Information Retrieval das Suchen aus mehreren Quellen untersucht,
die längere Dokumente enthalten, fokussiert sich Mikroblog-Retrieval auf von
Nutzenden erstellte Kurzbeiträge, sogenannte Mikroblogs. Mikroblog-Daten
von Twitter (inzwischen X) wurden bisher gewiss am häufigsten untersucht,
jedoch hat in jüngerer Vergangenheit Mastodon, ein soziales Netzwerk ba-
sierend auf dem ActivityPub-Protokoll, verstärkt Aufmerksamkeit als eine
Twitter-Alternative erhalten. Mastodon unterscheidet sich von zentralisierten
Mikroblogplattformen durch seinen föderierten Aufbau. Die Schnittmenge von
Mikroblog- und föderierter Suche ist bisher nicht erforscht, unter anderem da
kein größerer passender Korpus entsprechender Dokumente existiert. In dieser
Arbeit präsentieren wir solch einen Korpus, bestehend aus 3,6 Milliarden öf-
fentlichen Mastodon-Posts, die innerhalb von 301 Tagen von 1.081 Instanzen
gesammelt wurden.

Wir analysieren den Korpus hinsichtlich verschiedener Metriken, visualieren
die Ergebnisse und führen hinsichtlich des Information Retrievals ein Basisex-
periment durch, welches das Potenzial des Korpus zu präsentieren sucht. Dieses
Experiment hat die Erkenntnis gebracht, dass eine größere Dokumentenmen-
ge zu durchsuchen nicht immer auch mehr relevante Ergebnisse liefert. Diese
Arbeit strebt danach, der Startpunkt für das neue Fachgebiet der föderierten
Mikroblogsuche zu sein. Wir werden Experimente mit dem Korpus via TIREx
ermöglichen, um die Forschung voranzutreiben, ohne dabei jemandes Privat-
sphäre zu verletzen. Den Quellcode unseres rücksichtsvollen, parallelisierten
Crawlers veröffentlichen wir zusammen mit dieser Arbeit.



Abstract

The fields of microblog and federated information retrieval each have received
decent attention in the past years. While federated retrieval studies settings
with multiple resources containing longer documents, microblog retrieval fo-
cuses on short, user-generated content. In microblog retrieval, data from Twit-
ter (now X) has surely been studied the most, but recently, a social network
based on the ActivityPub protocol—Mastodon—has received increased atten-
tion as an alternative to Twitter. Mastodon differs from centralized microblog-
ging platforms in that it is a federated network. The intersection of federated
and microblog search has yet to be explored, but a larger suitable collection
of documents did not exist. In this work, we present a corpus consisting of 3.6
billion public Mastodon statuses, crawled from 1,081 instances over a period
of 301 days. We analyze the corpus with respect to various metrics, visual-
ize our findings, and conduct a baseline information retrieval experiment with
the corpus to preview its potential. In this experiment, we have found that
searching a larger set of Mastodon statuses does not necessarily yield more
relevant results. This work is intended to be a starting point for the new field
of federated microblog search. We will host the corpus on TIREx to enable
research without compromising user privacy, and we release the source code of
our polite, parallelized crawler along with this work.
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Chapter 1

Introduction

Mastodon, a federated free and open source social network, has become increas-
ingly popular, especially in the past two years. After Twitter was acquired by
Elon Musk and renamed X, Mastodon grew from about 0.4 to 1 million active
users,1 a 150% increase. As Mastodon offers microblogging features similar to
those of the platform X, thousands of users have migrated to Mastodon since
the acquisition [He+23]. Because Mastodon was only founded recently2 and
still has considerably fewer users, there has been less research using Mastodon
data compared to data from X, which in contrast “has been one of the most
popular social network sites for academic research”, as Yu and Muñoz-Justicia
[YM20] have put it.

Compared to the social network X, Mastodon’s federated nature poses sig-
nificant differences in how information is distributed. On centralized platforms
like X, all data is in the hand of a single entity. A search on such a platform
usually targets only a single resource which spans all user posts. When search-
ing on Mastodon,3 on the other hand, it is only possible to search a single one
of the currently ca. 10,000 instances1. Searching a single Mastodon instance
is information retrieval with the challenges of a microblog search, just like a
search on X.

As part of the fediverse—federated universe, a network of social networks—
Mastodon utilizes the ActivityPub protocol [Lem+18], an open W3C standard,
for client- and instance-to-instance communication. Though instances do fetch
information from one another, Mastodon is not designed to share all data
between instances. Even if technically possible, it is highly unlikely that a

1According to https://mastodon-analytics.com/
2Initial commit on Feb 2nd, 2016:

https://github.com/mastodon/mastodon/commit/9c4856b
3Searching text in statuses is possible on all instances using a Mastodon version higher

or equal to 4.2.0. See: https://github.com/mastodon/mastodon/releases/tag/v4.2.0
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CHAPTER 1. INTRODUCTION

single instance will know every status (also called toot or post) of the network.
Hence, unlike on the platform X, information retrieval on the whole Mastodon
network additionally comes with the problems of federated search.

As a result, to find the most relevant documents to an information need
in a network-wide Mastodon search, the problems of both federated and mi-
croblog search apply. The key problems of microblog retrieval like the sparsity
inherent to very short documents and the difficult assessment of the qual-
ity [Nav+11] have been studied extensively in the TREC Microblog Search
tracks in 2011–2015 [Oun+11; Sob+12; LE13; Lin+14; Lin+15]. Similarly,
federated retrieval has been investigated, e.g., in the TREC 2013 and 2014
Federated Web Search tracks [Dem+13; Dem+14]. With the recently increased
popularity of Mastodon, the importance of exploring the combination of feder-
ated search and microblog search has increased, too. We call this new research
direction at the intersection of the two previously separately researched fields
federated microblog search.

This thesis aims to promote the field of federated microblog search by
building a large corpus of 3.6 billion Mastodon statuses from 1,081 instances
spanning a time period of 301 days. The corpus will be hosted on TIREx, The
Information Retrieval Experiment Platform [Frö+23a], which is built upon
TIRA [Frö+23b], to enable privacy-preserving experiments in information re-
trieval (IR) and natural language processing (NLP). We analyze the resulting
corpus regarding its size, languages, the level of federation, and other metrics.
Alongside this work, we release our polite crawler used to create the corpus.4

To preview the potential of our corpus, we conduct a baseline retrieval
experiment. We prepare 25 search topics consisting of title, description, and
narrative derived from popular keywords in Google5 and Twitter trends 6, and
most used hashtags from our corpus. Five retrieval systems with access to dif-
ferent sets of statuses from the corpus retrieve documents, and we partly judge
their relevance. To fill the holes in the judgments, we utilize autoqrels [MS23],
and we evaluate the effectivenes of our retrieval systems as well as the corre-
lation between manual and automated judgments.

We have already presented the corpus in an earlier stage and the crawler
at the First International Workshop on Open Web Search (WOWS) [Wie+24].
The repository containing this work’s software package and results can be
found on Webis GitLab: https://git.webis.de/code-teaching/theses/
thesis-ernst. All steps necessary to reproduce the results are described in
that code repository.

4https://github.com/webis-de/mastodon-search
5https://trends.google.com/trends/
6https://archive.twitter-trending.com
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Chapter 2

Related Work

Our work on Mastodon as a microblogging social network is related to previous
work on other microblogging services like the platform X1. As shown by Yu and
Muñoz-Justicia [YM20], X has been very popular among academic research.
Mastodon has received some attention, too, but not nearly as much. Pa-
pers about Mastodon focus, for example, on social relations and the structure
of Mastodon and the fediverse [CGT21; CGT22; ZGR18; ZLG20], modera-
tion [Ana+23; Bon+24], or investigate migration patterns between Mastodon
and X [He+23; Jeo+24; WKR24]. Raman, Joglekar, Cristofaro, Sastry, and
Tyson [Ram+19] have also pointed out a degree of centralization of Mastodon
instances. Centralization impacts information retrieval on a Mastodon corpus,
because the resource selection in federated search might tend to prefer large
instances and ignore small ones, so this aspect should be considered.

Building a corpus of statuses from Mastodon is related to previously built
microblog corpora. There are a number of corpora of the platform X, like the
one used for the TREC Microblog Search tracks 2011 and 2012 [McC+12] or
another corpus for event detection [MMJ13]. While they are useful for studying
microblog search, they are unsuited for federated search. Mastodon corpora
exist, but do not enable federated microblog search, since they have a differ-
ent focus. E.g., Cerisara, Jafaritazehjani, Oluokun, and Le [Cer+18] crawled
English statuses from a single instance and Álvarez-Crespo and Castro [ÁC24]
created a Galician corpus from another single instance.

As a community effort, tools to search Mastodon (instances.social) or
the fediverse (fediversesearch.com) exist. They target instances and thus
resemble a manual resource selection, but do not index documents (i.e., sta-
tuses). Information retrieval on Mastodon has been done scholarly [TCH18],
but does not easily enable subsequent experiments using the same dataset—for
a reason. Dataset handling is a very delicate topic. Some community projects

1https://x.com/
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CHAPTER 2. RELATED WORK

like FediMapper2 which allowed accessing data via an API have been shut
down because of user backlash. A paper that released a Mastodon dataset
has been retracted [Zig+22], mentioning GDPR violations. Therefore, it is
imperative for us to always respect user privacy and, foremost, never publish
raw data from the corpus.

We build upon significant prior work in the fields of microblog search and
federated search. Regarding the latter, Shokouhi and Si [SS11] postulated
the three tasks of collection representation, collection selection, and result
merging, where collection is a synonym for resource. Resource representation
means a broker needs to store data about resources of which the contents are
not entirely known to the broker. We can ignore this task in our setting, since
we collect all statuses ourselves and thus know all contents of every resource
(i.e., Mastodon instance). The other two tasks have also been the tasks of the
TREC Federated Web Search track in 2013 [Dem+13]. Resource selection, the
challenge to pick those resources which contain the most relevant documents
to an information need (i.e., topic), appears to be the most challenging task
in our context. Contrary to the TREC scenario, our resources are almost
uniform in terms of outer document definitions, but the number of resources
is much larger. For this task, the centralization of the network has to be
considered, but also the limited capabilities of small instances. Result merging
is the task of combining the results from querying the different resources.
Because of the homogeneity of all retrieved documents and the fact that they
actually are microblog documents, the result merging task can be altered to
a microblog search in our setting. The TREC Federated Web Search track in
2014 [Dem+14] added the task of vertical selection where queries are classified
into content dedicated to categories like news, finance, or image. Although
this task might become relevant in the future, it is out of scope for this work.
For now we focus on the task of resource selection.

Regarding microblog search we most notably build upon the TREC Mi-
croblog Search tracks in the years 2011–2015 [Oun+11; Sob+12; LE13; Lin+14;
Lin+15]. The tracks of 2011–2013 set the task of ad hoc search, where at a spe-
cific time t the most relevant documents to a topic shall be retrieved. In 2013,
the TREC Microblog Search track introduced evaluation as a service, an effort
to prevent issues with the redistribution of real-world datasets. Tweets were
instead retrievable via an API. TIRA [Frö+23b], TIRA Integrated Research
Architecture, takes this even further and enables experiments by running con-
tainerized software submissions itself. Submitters merely receive the results
of their experiment, but not directly data from the corpus. In 2014, a time-
line generation task was introduced, which was called email digest in 2015,

2https://github.com/tedivm/fedimapper
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and is the challenge of summarizing the content of documents relevant to a
topic. Searching one Mastodon instance resembles the ad hoc search task and
is our focus in this work, though result summarization might be explored in
the future.

As overviewed by Kumar and Sharma [KS18], there are a number of vari-
ables to consider in information retrieval, mainly the architecture of the re-
trieval system and the retrieval model. Elasticsearch tackles some of these
challenges like document storage and indexing, search functionality, and a
relevance measure which is the well-established Okapi BM25 [Rob+94] by de-
fault. Retrieval experiments are commonly conducted and evaluated following
the Cranfield paradigm. One of the assumptions of this paradigm—all rele-
vant documents to a topic are known— [Voo01] is often violated because of
its unfeasibility. As a consequence, holes in the relevance judgments of re-
trieved documents might occur. Efforts to deal with such holes, like the bpref
measure [BV04] or precision estimation [YA06], are not always adopted, but a
number of ways to evaluate effectiveness even without human relevance judge-
ments already exist [Roi+20]. Recent papers have also shown good results
utilizing LLMs to patch holes in relevance judgments [UKL24]. The autoqrels
tool3 from one such paper by MacAvaney and Soldaini [MS23] is used for the
evaluation of our information retrieval experiment. While explicitly stating
that this tool is not able to always judge the relevance of single documents
accurately, the authors achieved good results in ranking systems.

3https://github.com/seanmacavaney/autoqrels
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Chapter 3

Creating a Mastodon Corpus

To build our Mastodon corpus, we identified three necessary main steps: (1)
writing crawler software to retrieve statuses from Mastodon, (2) deciding how
many and which instances to crawl, and (3) crawling these instances. After
explaining our approach to these three steps, we analyze the resulting corpus.

3.1 Crawler Software
Crawler Architecture As a very first step, we scanned the Web for existing
software to build upon. While there are a few projects which point in a similar
direction,123 none fit our needs closely enough or were well-documented in a
way that it was worth the investment of time to read, understand, and utilize
them. We therefore decided to develop our own crawler.

Because we are most knowledgeable about it and for the abundance of pack-
ages it offers, we settled for Python as programming language. The software is
written as a Python package with a few different commands. For crawling, the
command is stream-to-es which retrieves statuses from a single Mastodon
instance. This command relies heavily on Mastodon’s REST API, specifically
the timelines API4, and Mastodon.py ’s5 Mastodon object to interact with the
API. Command line parameters of this command are a URL of an Elasticsearch
installation, credentials of an Elasticsearch user, and a domain of a Mastodon
instance. Until manually aborted or an error is encountered, statuses from the
specified Mastodon instance are retrieved and saved to Elasticsearch by the
program.

1https://github.com/tedivm/fedimapper
2https://github.com/MarcT0K/Franck
3https://github.com/alexdrk14/Mastodon_crawler
4https://docs.joinmastodon.org/methods/timelines/#public
5https://github.com/halcy/Mastodon.py
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Initially, stream-to-es connects to the given Elasticsearch installation try-
ing to find statuses of the Mastodon instance from a previous crawl. If suc-
cessful, the id6 of the last crawled status is retrieved. An intermediate crawl
is performed next: If the crawler did not receive an id from Elasticsearch, it
requests the timelines API once to fetch the latest 40 statuses. If Elasticsearch
yielded an id, the id is passed as min_id parameter to the API. The instance
then returns statuses with ids immediately newer than min_id, effectively
acting like a bookmark. We repeatedly use the id of the latest of the newly
fetched statuses as min_id parameter for the next API request to paginate
through statuses without gaps. As the crawler also always sends the argument
limit=40 to the API to receive the maximum number of statuses, it stops the
intermediate crawl after receiving less than 40 statuses, because there are no
newer statuses in this case.

After catching up on missed statuses, the crawler tries to connect to the
Mastodon instance’s streaming API7: An HTTP connection is held open via
which the instance immediately pushes newly received statuses to all streaming
clients, without the need to poll. The crawler will try to reconnect to the
streaming API on connection loss. Only after 5 consecutive unproductive
streaming connections will the crawler give up streaming and fall back to
polling mode.

The majority of instances disallows streaming categorically. In this case,
the crawler falls back to polling mode immediately. This mode repeatedly
requests the timelines API with the min_id parameter to fetch new statuses, as
explained above, but without stopping. The waiting time between requests is
dynamically adapted based on the number of statuses received per request: On
receiving 40 statuses, the crawler reduces the waiting time between requests,
because likely more statuses reach the timeline than we are retrieving, but
never below one second. On receiving 10 or less statuses, waiting time is
prolonged, but never above 60 minutes. The waiting time between requests
increases faster the less statuses are received. With this adaptive behavior we
try to reduce stress for servers to an absolute minimum.

The crawler also uses the Session object of the Requests package8. It
is passed as an argument to the Mastodon object and serves multiple pur-
poses: The Session object accepts an instance of the LimiterAdapter object
from the package Requests-Ratelimiter 9 as an argument which allows to limit
the number of requests to the server. We use it as another safeguard to not
strain an instance with more than one request per second. One of the possible

6https://docs.joinmastodon.org/entities/Status/#id
7https://docs.joinmastodon.org/methods/streaming/#public
8https://github.com/psf/requests
9https://github.com/JWCook/requests-ratelimiter
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parameters for LimiterAdapter is, in turn, a Retry object from the urllib3
package10. We use it to resend failed requests after errors with a waiting time
between each consecutive retry double the one before, starting at one sec-
ond after the second try. With a maximum of 14 retries per error category,
the crawler keeps running even if the instance is down for a few hours. The
Session object instance also adds our user agent11 to requests, which identi-
fies us to instance admins, offering them a way to contact us. One more way
we utilize the Session object is by trying to reuse TCP connections—another
measure towards using as little of an instance’s resources as possible.

Regarding users, i.e., the authors of statuses, we strive to respect their
privacy settings in our crawl. There is a Mastodon account setting which the
API calls noindex, and on Mastodon is described as follows: “Include public
posts in search results”. This setting is evaluated for every status at crawl
time. When the author does not want to be included (i.e., noindex is true),
only the current time, the status’s id, and the noindex setting itself are stored
for this status.

While the primary thread of the crawler is responsible for crawling an
instance, it also starts two other threads. One of these is printing status
updates to standard output after the first minute of running and then every
ten minutes, which tells the user whether the crawler is still running and
fetching new statuses. The other secondary thread is storing the statuses to
Elasticsearch, emptying the crawler’s double-ended queue (deque) of statuses,
as well as keeping track of the time passed since last emptying the deque,
as explained in the following section. Because both secondary threads only
execute very little Python bytecode, the crawler is not noticeably affected by
the global interpreter lock12.

Storing Statuses to Elasticsearch Received statuses are prepared for
Elasticsearch storage by using the package Elasticsearch DSL13. Inheriting
from this package’s Document class, we largely replicated Mastodon statuses,
mapping most of a status’s data fields (details in 3.1, Data Fields of Stored
Statuses) to Elasticsearch counterparts in a Status object. Elasticsearch DSL
allows to transform instances of Document to a dictionary. We implemented
the FIFO principle with a deque, to which the status dictionaries are input
and the output is an Elasticsearch instance.

The crawler stores all received statuses to given Elasticsearch instance—a
10https://github.com/urllib3/urllib3
11Webis Mastodon crawler (https://webis.de/, webis@listserv.uni-weimar.de)
12https://wiki.python.org/moin/GlobalInterpreterLock
13https://elasticsearch-dsl.readthedocs.io
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130 nodes cluster hosted by the Webis group14 in our case. In Elasticsearch,
every status has mandatory metadata attached to it. Elasticsearch will gener-
ate this metadata when storing a status, or the metadata can be specified in
advance. Part of the metadata is an ID which uniquely identifies each status.
If a status with an already existing Elasticsearch meta ID is stored, the status
is overwritten. Using Python’s uuid package, the crawler calculates a UUID
version 5 which always produces the same output from an input. With the
crawled instance’s domain and the status id as input, the resulting UUID is
passed to Elasticsearch as the status’s meta ID. Thus, we store the same status
multiple times when crawled from different instances, but only once from each
instance, even if fetched repeatedly.

To limit requests to the Elasticsearch installation, we utilized the Elastic-
search15 package’s streaming_bulk method. Multiple items can be grouped
together in chunks and commited to Elasticsearch at once with this method.
Once a minute the crawler checks if it holds at least a full chunk of 500 sta-
tuses. If this condition is met or at least 30 minutes have passed, all statuses
are commited in chunks to the Elasticsearch instance until the status deque is
empty, then the timer is reset.

Due to the number of instances we crawled and hence the large amount
of information to store, we split data into a separate Elasticsearch index per
month by appending _<YEAR>_<MONTH> to the fixed base index name. An
index template16 ensures every index of the crawl always has 2 replicas and 20
shards, to not overload the Elasticsearch instance.

Data Fields of Stored Statuses We tried to replicate Mastodon statuses
as close as possible in our crawl. We adhered to the Mastodon naming scheme
for every data field which we stored verbatim to make it easy to understand
our data. Thus, the Mastodon documentation17 also acts as a reference for the
description of our corpus’s field names. A few fields which were unnecessary
to us were dropped by our crawler prior to storing. Examples of such fields
are like and boost (also called reblog) counts as they are always zero when
a status first appears on a timeline, i.e., when we fetch it. Boosts originally
include the entire post that was boosted, including account data. In contrast,
we only store id and url of the boosted status since the boosted status can
be fetched when needed and to save some storage space.

Additionally, we included some fields that are not originally part of Masto-
14https://webis.de/
15https://github.com/elastic/elasticsearch-py
16https://www.elastic.co/guide/en/elasticsearch/reference/current/

index-templates.html
17https://docs.joinmastodon.org/entities/Status/
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don statuses. Purpose of these fields is to make it easier to create corpus
statistics or compare statuses, and to make corpus utilization more comfort-
able. For example, there is no field to easily and uniquely identify a user.18 Our
custom field handle does exactly that—it is always <USERNAME>@<INSTANCE>.
We also added the time at which the status was received (crawled_at), the
instance we crawled to receive the status (crawled_from_instance), the in-
stance on which the status was published (instance), a boolean indicating
whether the status’s author is registered at the crawled instance (is_local),
and a few other fields to every status. Notable fields we stored, their data type,
and whether they are always present are listed in Table 3.1. Again, refer to
the Mastodon documentation for explanations on what information is stored
in each field.

Table 3.1 Fields of a status as represented in Elasticsearch. Mandatory
fields will always have a non-null value (but might be a zero-length string).
Fields with sub-fields are mere containers for other fields. Because the value of
object type fields can be either null or a single object, their sub-field count
is an upper bound. List type objects can hold any amount of object that
is a non-negative integer, hence: j, k, l,m, n, o ∈ N. List or object types
themselves are not included in the sub-field counts, only their sub-fields of
other types.

Fields of a Status (top-level)
content Ë string
crawled_at Ë date
crawled_from_instance Ë string
created_at Ë date
id Ë string
in_reply_to_id é string
instance Ë string
is_local Ë boolean
language é string
sensitive Ë boolean
spoiler_text é string
uri Ë string

Field Mandatory Type Sub-fields

Continued on next page

18E.g., the field acct is <USERNAME>@<INSTANCE> for remote accounts and just <USERNAME>
for accounts local to an instance.

10



CHAPTER 3. CREATING A MASTODON CORPUS

Table 3.1 (Continued)

visibility Ë string
application é object 2
emojis é list 4j

mentions é list 4k

poll é object 6 + 2l

reblog é object 2
tags é list 2m

5 others various
Sub-fields of account, describing an author
bot Ë boolean
created_at Ë date
discoverable é boolean
display_name é string
group Ë boolean
handle Ë string
id Ë string
noindex é boolean
url Ë string
15 others various 4n+ 3o

Sub-fields of card, describing a website preview
description é string
image é string
language é string
title é string
url é string
11 others various
Sub-fields of media_attachments, i.e., image, video, or sound files
description é string
url é string
5 others various 17

Field Mandatory Type Sub-fields
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3.2 Instance Sample
Gathering Data about Instances With the crawler software ready, we
needed to choose how many and which Mastodon instances to crawl. Natu-
rally, the first step towards there is to find every available instance. Minoru’s
Fediverse crawler 19 makes a good effort to find all fediverse instances by loop-
ing through the steps of checking if the instances already known are alive,
fetching their peers20 list, and compiling a summary list of alive instances.
We use the list provided by the developer’s own installation of this software,21

downloaded on 18th December 2023, which contains 22,178 domains.

Table 3.2 Deduplicated number of instances we were able to fetch activity
and NodeInfo data from, after runs of our obtain-instance-data command.

Run Instances
1 9,595
2 10,086
3 10,339
4 10,346
5 10,346
6 10,347
7 10,351

This list of instances consists of domains running various fediverse software,
not just Mastodon. To get data about the software used on every domain,
we added another command to our software called obtain-instance-data,
which can be run on different kinds of input. One input option is a single-line
JSON array from a file, like the aforementioned list of domains. The program
starts one thread to write all gathered data to a user-specified output file in
JSONL format. Then, one thread per domain from the input file is run. Six to
eight concurrent threads seems to be a good tradeoff between speeding up the
process and not exceeding the rate limit for new connections by internet service
providers. These per-domain threads use Mastodon.py to fetch activity22 and
NodeInfo23 data from an instance. It should be noted that receiving an answer
to one of these two requests does not mean an answer to the other request is
guaranteed. After the last per-domain thread finishes, the program exits.

19https://github.com/Minoru/minoru-fediverse-crawler
20A peer is a domain that an instance is aware of, according to the Mastodon documen-

tation. See: https://docs.joinmastodon.org/methods/instance/#peers
21https://nodes.fediverse.party/nodes.json
22https://docs.joinmastodon.org/methods/instance/#activity
23https://github.com/jhass/nodeinfo
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As a lot of gaps in the acquired data are to be expected, the command’s
second mode of operation tries to fill in some of these gaps. The program
reads its own output file from a previous run and executes the same steps as
explained above, except it skips requests where data is already present. Even
with a request timeout of 30 seconds, running the command multiple times
this way notably increases the amount of data and thus the instances to work
with, as shown in Table 3.2. We ran the command a total of seven times.
Instances we were unable to get activity and NodeInfo data from are mostly
not running Mastodon or, if they are, they are either unresponsive or in some
way access restricted. Both these categories of instances are unsuitable for our
crawl and were sorted out. The final, deduplicated number of instances which
we have both activity and NodeInfo data for is 10,351, all running Mastodon
or compatible (i.e., forks of Mastodon) software. These are the candidate
instances for sampling.

Sampling Instances After finding the candidate instances, we needed to
decide on a sample size. Crawling more instances would increase the possibil-
ities of the resulting corpus, but the capability of our cluster posed a limit in
terms of disk space and how many instances we could crawl simultaneously.
We settled on a sample size of 1,000 instances as a tradeoff between these two
factors.

To find a proper way of sampling instances, we first analyzed the set of
candidate instances regarding different metrics. Out of the metrics we had
available from NodeInfo and activity data, we regarded the following six:

• Total users: number of users registered on the instance

• Monthly users: number of users who signed in at least once during the
last 30 days

• Statuses: number of statuses by users registered on the instance

• Weekly statuses: number of statuses per week by users registered on the
instance

• Weekly logins: number of logins per week on the instance

• Weekly registrations: number of registrations per week on the instance

Loading all activity data is done by our Analyzer object, which is an-
other part of our Python package. When an instance of this object is cre-
ated, a JSONL file output by the command for the previous step—obtain--
instance-data—is read and the data is put in a single pandas DataFrame24.

24https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.
DataFrame.html
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Figure 3.1: Histograms showing the distribution of instances regarding six activ-
ity metrics with a log scale on both axes. The entire set of the 10,351 candidate
instances is colored blue, orange represents our sample set of 1,000 Mastodon in-
stances. Number of statuses, and total and monthly user count are taken directly
from the Mastodon API. Weekly metrics are the arithmetic mean over the four most
recent full weeks from activity API data. Adapted from Wiegmann, Reimer, Ernst,
Potthast, Hagen, and Stein [Wie+24].

The activity API provides the weekly amount of statuses, logins and registra-
tion for the last several weeks. Our weekly values are the arithmetic mean over
the most recent four full weeks.

In the process of loading the data, obvious duplicates are filtered out. A
duplicate in this context is another notation for the same effective domain. Two
duplicates with/without trailing dots and three duplicates originating from
internationalized domain names/punycode were filtered out. For the analysis
only we also sorted out instances with implausible data. We considered a
negative number of statuses implausible and sorted out one such instance.
Another instance, which we removed for analysis, reported obviously untrue
numbers: For one of its two total users it reported 97 billion (!) followers
and 97 million statuses, which at the time of our analysis was more than all
ca. 1.75 million users on the largest instance mastodon.social combined had
authored.
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Figure 3.2: Heatmap showing the Pearson coefficients for the pairwise correlation
between the six activity metrics.

The distribution of instances over the aforementioned six metrics is shown
in Figure 3.1 in blue color, and seems to be roughly log-normal with a skew
to the left. The large amount of instances with lower user count and activity
would lead to these instances dominating a completely random or stratified
sample. Contrary, our goal for the sample was to include the majority of the
most active instances, while still including enough of the lesser active instances,
which is why we conducted weighted sampling [Wie+24]. We defined the six
activity metrics to be random variables: X1 := total users; X2 := monthly
users; X3 := statuses; X4 := weekly statuses; X5 := weekly logins; X6 :=
weekly registrations. Although that is not necessarily correct—as can be seen
in Figure 3.2—, we assumed these variables to be pairwise independent for
simpler calculations. We fit a probability density function (PDF) to each of
the six metrics’ observed data. For every observed value we calculated the
observation probability P (Xn);n ∈ {1, 2, . . . , 6} using the PDF, resulting in
six probability values per instance i ∈ I. The sum of these six separate values
describes the combined probability P (X1, X2, . . . , X6)—given their assumed
independence—which is the probability to observe an instance with the six
activity values that were actually measured. We discounted each instance’s
weight wi by this combined probability to get the sampling probability:

P (i) ≈ wi∑
k∈I

wk

with w =
1

P (X1, X2, . . . X6)

Calculation and sampling is done by the command choose-instances of
our Python software. The program also tries to fetch the timeline of every
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sampled instance, sorts out all uncrawlable instances and replaces them with
newly sampled instances, all in a loop until every instance of the sample is
crawlable. Our final sample can be found in this work’s git repository.25 As
can be seen in Figure 3.1 in orange color, the distribution of sampled instances
over the six activity metrics has less skew than the distribution of candidate
instances, and matches our goal.

3.3 Crawling Instances
Deployment For deployment, we containerized the crawler using Docker.
The steps undertaken in the image building process are defined in our Docker-
file.26 Our image is based on the official Python image27 with Python version
3.12. In the build process, our package’s pyproject.toml file is copied to the
image. Python’s package manager pip28 reads the dependencies listed in this
file and installs the necessary packages inside the image. Finally, our own pack-
age is copied. We pushed the image resulting from the Docker build process
to Webis’s registry where it is accessible for the Kubernetes cluster.

Creating a Helm chart29 of our crawler and its image allowed us to deploy
an arbitrary number of containers with a single command. The files defining
the Helm chart can be found in the git repository30 as well. They state which
image to use, where to find the Elasticsearch installation, limits for CPU and
memory usage, and how to handle the command line input. The latter should
contain Elasticsearch credentials and a path to a file containing all Mastodon
instance domains to crawl. With this setup, the command helm install
deploys a container per instance to Kubernetes.

Time Frame and Resampling We started crawling the sampled instances
on December 21, 2023 at 14:15 hrs. UTC+1. The crawl is currently still in
process. We plan on keeping it running until we gathered statuses for a full
year. With the amount of sampled instances, it was to be expected that some
instances would become unavailable during the time of our crawl. Most of
these instances were simply taken offline for reasons unknown to us. Other

25https://git.webis.de/code-teaching/theses/thesis-ernst/-/blob/main/data/
instances.txt

26https://git.webis.de/code-teaching/theses/thesis-ernst/-/blob/main/code/
Dockerfile

27https://hub.docker.com/_/python
28https://pip.pypa.io/
29https://helm.sh/docs/topics/charts/
30https://git.webis.de/code-teaching/theses/thesis-ernst/-/tree/main/code/

helm
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reasons forcing us to stop crawling individual instances were timeline APIs
set to nonpublic (requiring a token and thus a registration on the server), bot
protection pages, and we seemingly got blocked by one instance. Instances
were only excluded from crawling after several days of downtime. Based on
the data from our initial sampling, we replaced each dropped instance with
the one closest in sampling weight (see 3.2, Sampling Instances).31

When prior unavailable instances turned available again, we re-added them
to the pool of candidate instances for possible resampling. As of October 17,
2024, we removed and resampled 82 unique domains. This number does not
include dropped instances which were later resampled (e.g., due to extended
downtimes). Since the crawler fetches missed statuses (see 3.1, Crawler Ar-
chitecture), there are no gaps in the corpus for such an instance even if not
crawled for months. For the same reason, reinstalling the entire Kubernetes
deployment proved to have no effect on the resulting corpus, which allowed us
to update to a new set of instances after resampling some of them.

3.4 Corpus Analysis
General The numbers regarding the corpus are still subject to change and
thus mostly rounded or estimates. Analyzed is from October 17, 2024. We
gathered a new set of activity and NodeInfo data, as described in 3.2, Gathering
Data about Instances, mainly on the same day, for more accurate statistics.
Cardinalities by Elasticsearch, which we used to get most of the numbers, are
approximate values, based on the HyperLogLog++ algorithm.32

We have been crawling for 301 days from a total of 1,081 instances (but
not from every instance all the time). 922 instances which were included in
the initial sample are still being crawled today. The corpus contains 3.6 billion
statuses, 174 million of which are unique. This equals a ratio of 0.05 of original
posts to duplicates and means we crawled every status from an average of 20.5
different instances. We collected statuses from 24 thousand unique instances
and 840 thousand unique users.

Elasticsearch can output the length of string fields, which it measures in
token count.33 A selection of relevant string fields and their length distribu-

31All changes and their reasons can be examined in the corresponding changelog:
https://git.webis.de/code-teaching/theses/thesis-ernst/-/blob/main/data/
CHANGELOG.md

32https://www.elastic.co/guide/en/elasticsearch/reference/8.15/
search-aggregations-metrics-cardinality-aggregation.html#_counts_are_
approximate

33https://elastic.co/guide/en/elasticsearch/reference/current/token-count.
html

17

https://git.webis.de/code-teaching/theses/thesis-ernst/-/blob/main/data/CHANGELOG.md
https://git.webis.de/code-teaching/theses/thesis-ernst/-/blob/main/data/CHANGELOG.md
https://www.elastic.co/guide/en/elasticsearch/reference/8.15/search-aggregations-metrics-cardinality-aggregation.html#_counts_are_approximate
https://www.elastic.co/guide/en/elasticsearch/reference/8.15/search-aggregations-metrics-cardinality-aggregation.html#_counts_are_approximate
https://www.elastic.co/guide/en/elasticsearch/reference/8.15/search-aggregations-metrics-cardinality-aggregation.html#_counts_are_approximate
https://elastic.co/guide/en/elasticsearch/reference/current/token-count.html
https://elastic.co/guide/en/elasticsearch/reference/current/token-count.html


CHAPTER 3. CREATING A MASTODON CORPUS

101 103 105

Content length

100

101

102

103

104

105

106

107
Nu

m
be

r o
f o

cc
ur

en
ce

s

100 101 102

Account name length

100

101

102

103

104

105

106

107

100 101 102 103

Account note length

100

101

102

103

104

105

106

107

Figure 3.3: Histograms showing the distribution of lengths of three different indexed
string fields with a log scale on both axes. Length is measured in the default token
count of Elasticsearch.

tions can be seen in Figure 3.3. As expected, the content length seems to
be log-normally distributed (with a left skew), with the majority of statuses
having a length of 100 tokens or less. A few statuses reach a length of over
100,000 tokens. Upon manual inspection, it seems to be some sort of trolling,
since they contain a lot of mentions of the same account and an insult. Most
of the account names are one to ten tokens long with a maximum length below
100. Account notes appear to be log-normally distributed, too, with almost
no skew. The peak length is at ca. 50 tokens, overall ranging from one to a
low four-digit number.

Contributing Instances Table 3.3 shows how many statuses were con-
tributed to the corpus from crawling various instances or sets of instances and
how many users were observed on them. We explicitly listed the 10 largest
instances by the number of unique statuses crawled from their public feder-
ated timeline. Out of 174 million unique statuses in our corpus, we observed
78 million or 45 % on the timeline of mastodon.social alone. This number
was smaller on other large instances, but still in the same order of magni-
tude. Similarly, 495 thousand or 59 % of all unique users could be observed on
mastodon.social, with less on other explicitly listed instances but in the same
order of magnitude. The size of mastodon.social compared to other instances
is much more apparent when considering local timelines only, i.e., local sta-
tuses (posted by a user registered on the instance) crawled from the originating
instance. The corpus contains 15.7 million such statuses of mastodon.social,
over a third of all statuses crawled from local timelines. From the local time-
line of fedibird.com, the second largest instance in this metric, we crawled
2.5 million statuses. Based on our corpus’s data, mastodon.social is also
home to 185 thousand of the observed users, which is 28 % of users from local
timelines, or 22 % of all users in the corpus. The instance with the second most
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Table 3.3 Number of statuses (= posts) and users per instance. Rows are
each of the ten largest instances by crawled federated posts, all 1,071 other
instances we crawled, all 1,081 crawled instances combined, all 8,464 instances
from our initial sampling that we could still fetch NodeInfo data from, and all
9,520 instances from a current list of instances that we could fetch NodeInfo
data from. Columns are unique statuses and users observed on an instance’s
timeline—all (federated) or only considering users who are registered on the
instance(s) only (local)—and number of statuses and users as per NodeInfo
data.

Crawled NodeInfo
Federated Local Local

Instance(s) Posts Users Posts Users Posts Users
mastodon.social 78.8M 495k 15,692k 185,028 107.5M 2,144,502
mastodon.online 48.7M 352k 1,249k 7,105 10.0M 190,285
fedibird.com 48.7M 230k 2,531k 6,631 19.6M 39,214
mstdn.social 46.8M 233k 1,598k 13,194 18.3M 241,034
mas.to 40.4M 214k 804k 9,986 9.4M 177,440
mastodon.world 39.4M 222k 774k 6,390 6.5M 184,958
ohai.social 38.0M 305k 85k 1,365 1.6M 39,544
social.vivaldi.net 37.2M 172k 535k 4,744 2.5M 55,993
universeodon.com 36.5M 321k 367k 3,307 3.7M 81,597
flipboard.social 35.9M 371k 176k 1,182 0.3M 4,771
1,071 others 156.0M 798k 19,470k 417,837 304.4M 2,850,350
1,081 crawled 174.4M 849k 43,281k 656,769 483.8M 6,009,688
8,464 initial 819.7M 7,031,949
9,520 current 864.2M 7,060,785
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observed users on their local timelines, mstdn.social, only has 13 thousand
users or 7 % the amount of the largest instance.

In NodeInfo data, the ratios of statuses and users between (sets of) in-
stances are roughly similar to those of the local timelines from our corpus;
the absolute numbers are about one order of magnitude higher. According to
NodeInfo data, there are a total of 819.7 million statuses and 7 million users
on the 8,464 instances from our initial analysis which are still reachable today.
Thus, our corpus currently holds 21.3 % of the statuses and 12.1 % of the users
on these instances of all time. 2,449 Mastodon instances became unavailable in
the time of our crawl.34 From a current list of instances, we were able to fetch
NodeInfo data from 9,520 instances,35 which means at least 1,056 instances
went online (again) in the last 10 months. These additional instances would
add 44.5 million or 5.4 % posts and 28.8 thousand or 0.4 % users.

Source Instances Because we crawled federated timelines, the corpus does
not only consist of Mastodon statuses. It can be seen from Table 3.4 that
misskey.io, the instance which contributed the second most unique sta-
tuses to our corpus, is running Misskey and the third is running RSS Par-
rot. Rss-parrot.net and sportsbots.xyz, both not running Mastodon, are
home to automated accounts only. Only four out of the top ten instances run
Mastodon or compatible software (i.e., Fedibird). 10.6 million statuses origi-
nate from misskey.io, which is about half the amount of mastodon.social,
despite not even crawling the former instance, contrary to the latter. Misskey
seems to be popular in Japan, since we observed the main language on both
of the two instances from Table 3.4 to be Japanese. Together with English,
these are the only main languages on the top instances, as per our corpus.

Sensitive content makes up 3.8 % of unique statuses in our corpus. Some
instances appear to not support or make use of this feature at all, as the
percentage is equal to zero on three top instance. Threads.net apparently
supports it, though 0.04 % of sensitive content seems particularly low next
to other instances with a ratio greater zero, on which it ranges from 1.89 to
4.81 %. The ratio of statuses with attached media out of all statuses has a mean
of 18.17 % across all instances, but differs greatly between the top instances,
from zero up to 58.66 % on sportsbots.xyz. Spoilers are uncommon with
a mean occurence of 2.01 % in our corpus. While cards (i.e., URL previews)
appear with very different frequencies on the top instances in our data, they

34Note that the set of candidate instances is about 5 % smaller than the set of instances
usable for this analysis to ensure crawlability of sampled instances. The initial number of
Mastodon instances with available NodeInfo data is 10,913.

35These instances do not necessarily contain all instances from our list fetched in Decem-
ber, 2023, which are still online.
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Table 3.4 Statistics of the top ten instances (according to first column) and
of the set of all instances observed in our corpus. Columns are the number
of unique statuses (= posts) originating from that instance, the software the
instance is running (�), main language (^), and the percentage of how of-
ten a property is present in all unique statuses from that instance(s). These
properties are: sensitive (�, makes media_attachments click-to-show),
media_attachments (Õ, e.g., images or videos), spoiler_text (�, text dis-
played in front of a click-to-show spoiler, content is hidden in spoiler), card
(URL preview), reblog (õ), in_reply_to_id (ï, reply).

Instance Posts �1 ^ � Õ � Card õ ï

mastodon.social 21.7M Ma en 2.79 25.13 1.13 39.95 15.47 13.76
misskey.io 10.6M Mi ja 4.81 11.54 1.66 8.87 1.31 1.89
rss-parrot.net 5.4M RP en 0.00 0.00 0.00 31.54 0.00 0.00
mstdn.jp 3.8M Ma ja 3.75 9.96 0.99 7.51 0.24 2.85
mstdn.social 3.3M Ma en 1.89 11.05 0.67 22.32 36.42 14.41
threads.net 2.7M ud. en 0.04 32.26 0.00 14.67 0.35 11.27
fedibird.com 2.6M Fe ja 2.78 9.08 1.35 14.80 1.52 6.46
sportsbots.xyz 2.6M ud. en 0.00 58.66 0.00 20.51 0.13 6.97
flipboard.com 2.5M ud. en 0.00 0.24 0.00 82.45 0.43 0.00
live-theater.net 2.4M Mi ja 2.13 6.15 2.04 4.90 0.00 0.46
24,026 instances 174.4M – en 3.80 18.17 2.01 24.71 13.73 11.88

1 Ma: Mastodon; Mi: Misskey; RP: RSS Parrot; Fe: Fedibird (compatible
Mastodon fork); ud.: undisclosed

are generally seen often, in almost every fourth status. The frequencies of
reblogs and replies are nearly equivalent with 13.73 and 11.88 %, respectively,
but with huge differences between instances, too. Accounts which are marked
as a bot make up below 0.1 % of all accounts; the number of group accounts
is negligibly small.

Top Languages, Apps, Media Types, Hashtags By far the two most
used languages in our corpus are English with 34.71 % and Japanese with
23.39 %, measured by the number of statuses and their language field. Among
the rest, German stands out a little, making up 4.46 %, other languages follow
with 1.54 % or less. All numbers are displayed in Table 3.5. Among applica-
tions, the most important one is the Web client which is used to post 5.61 %
of all statuses. The frequency of other applications does not go above 1.05 %.
Note that only ca. 22 % of unique statuses declare an application. Images are
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Table 3.5 Top ten values of four fields in our corpus and the amount of their
occurence in all unique statuses. These fields are language (ISO 639 codes),
application and—if applicable—operating system (ð: Android, : iOS), hash-
tag, and type of media. Hashtag counts are absolute values, all other numbers
percentages.

Language Application Media Hashtag
en 34.71 Web 5.61 image 80.78 news 31,363
ja 23.39 Mastodon (ð) 1.05 unk. 13.12 press 31,037
de 4.46 dlvr.it 1.03 video 4.12 実況 26,370
fr 1.54 Jetpack 0.93 gifv 1.79 News 24,369
es 1.42 iembot 0.90 audio 0.18 nowplaying 22,308
zh 1.34 Mastodon () 0.84 nsfw 15,089
zh-CN 0.84 Tusky 0.72 37c3 11,868
pt 0.73 RSS投稿bot 0.60 bot 11,413
nl 0.71 MastoFeed 0.39 ukraine 10,211
ko 0.49 Ivory () 0.39 Ukraine 9,571

the most common form of media attachments, as they attribute for about four
fifths of all media attachments. 13.12 % of media attachments are of unknown
type though. The majority of top hashtags describe general categories like
news, press, or nowplaying. Two hashtags stand out, because they describe
events. These hashtags are 37c3 which refers to a relatively short event (the
37th Chaos Communication Congress) and ukraine which most likely has to
do with the Russian invasion of the Ukraine.
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Chapter 4

Conducting an IR Experiment
using the Corpus

We conduct a baseline information retrieval experiment to preview the po-
tential and limitations of our corpus. Besides the fixed set of documents,
typical Cranfield paradigm experiments require topics, relevance judgments of
documents and possibly different retrieval systems to compare. This chapter
describes our approach and the results of the experiment.

4.1 Methodology
Document Retrieval Following the Cranfield paradigm, evaluating retrieval
systems requires a set of information needs, also called topics. To derive the
topics from real world information needs, we scanned various sources for search
query keywords or hashtags that appeared frequently during the time we were
building our corpus. These sources were Google Trends1, trending keywords
and hashtags on the platform X2, trending Mastodon hashtags3 and top weekly
hashtags according to our own corpus. We condensed these keywords into 25
topics by formulating search queries from the keywords, adding descriptions
and narratives. These topics are available in the git repository,4 too.

To streamline the retrieval of relevant documents from the corpus, we have
added the command run-search-queries to our Python package. The com-
mand parses the file containing all topics, creates one search query per topic
per system, and sends the queries to the specified Elasticsearch installation. A

1e.g., via https://trends.google.com/trends
2https://archive.twitter-trending.com
3https://mastodon.social/@TrendingHashtags
4https://git.webis.de/code-teaching/theses/thesis-ernst/-/blob/main/data/

topics.xml
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date range is added to each query to ensure that the set of documents is static
across all queries. For each query, the program retrieves the ten documents
with the highest relevance score according to this measure and stores them
along with their ID in a JSONL file. We use Elasticsearch’s default relevance
measure, which is Okapi BM25 [Rob+94].5 The command creates two addi-
tional files, one in TrecRun format and the other in TrecQrel format (without
relevance judgments), according to the file format imposed by TREC.6

We compare five different retrieval systems: (1) the local timeline of mas-
todon.social (the largest instance by status count in our corpus), (2) all
statuses which were originally posted on mastodon.social, (3) the federated
timeline of mastodon.social, (4) all statuses in the corpus from local timelines
(is_local == true), and (5) all statuses in the corpus. Thus, 5 is a superset
of every other system and 1 is a subset of every other system. 1, 3, and 4
inherently contain no duplicates, 2 and 5 are deduplicated upon retrieval to
prevent the same original status with the highest relevance score from flooding
a query, because it was crawled from different instances.

Relevance Jugdments In a Cranfield-style experiment, documents of the
corpus are usually judged before retrieval. We judged documents after retrieval
instead, with the ratings 0 (not relevant) or 1 (relevant). Across the five re-
trieval systems, we judged all retrieved documents of the first five queries
in regard to the corresponding topic. This is our first set of judgments we
ranked the retrieval systems by. For all other queries, we judged exactly one
(the uppermost) relevant document, which is the scenario considered in a pa-
per by MacAvaney and Soldaini [MS23]. Utilizing their package autoqrels,
we filled all holes in the relevance judgments. The manual judgments and
those of autoqrels combined are the basis for another ranking of the retrieval
systems. We furthermore deleted all but the uppermost relevant document
judgment in the five fully manually judged queries per system, rejudged them
with autoqrels, and ranked the systems again on the results. This last rank-
ing allows to directly compare the rankings by our manual judgments and by
the judgments of autoqrels. The process of (re-)judging document relevance
and evaluating retrieval systems is also automated with our Python package
and accessible via the command infer-qrels. We calculated the two recall-
agnostic measures SDCG@10 [Jär+08] and P@10 and, because it is a TREC
standard, nDCG@10 [JK02]. For calculating these measures, we resort to the
ir-measures package by MacAvaney, Macdonald, and Ounis [MMO22].

5https://www.elastic.co/guide/en/elasticsearch/guide/current/
relevance-intro.html

6https://github.com/joaopalotti/trectools?tab=readme-ov-file#file-formats
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CHAPTER 4. CONDUCTING AN IR EXPERIMENT USING THE CORPUS

Table 4.1 Evaluation of retrieval systems by the measures SDCG@10, P@10,
and nDCG@10. Evaluated are three different sets of relevance judgments: all
queries which were gaplessly judged by hand (M—Manual), the same queries
from the Manual column but rejudged by autoqrels (R—Rejudged), and all
queries from the Manual column plus all other queries judged by autoqrels
(C—Combined). ms stands for mastodon.social.

SDCG@10 P@10 nDCG@10
System M R C M R C M R C
ms local 0.57 0.56 0.51 0.52 0.50 0.44 0.85 0.90 0.86
ms origin 0.49 0.56 0.52 0.48 0.48 0.46 0.76 0.89 0.86
ms federated 0.47 0.52 0.55 0.48 0.48 0.51 0.73 0.83 0.86
All local statuses 0.45 0.39 0.51 0.42 0.32 0.46 0.76 0.79 0.86
All statuses 0.45 0.52 0.52 0.48 0.44 0.49 0.67 0.85 0.81

4.2 Results
As shown in Table 4.1, the ranking regarding the recall-agnostic measures in
the manual and rejudged categories is generally the same, except in P@10
some scores are not distinct, whereas in SDCG@10 [Jär+08] they all are. The
three systems around mastodon.social consistently score at least as high as
the global systems. The “mastodon.social local” system, which could access
the least amount of documents, always ranks first with manually judged or
rejudged document relevance, with recall-agnostic scores ranging from 0.5 to
0.57. The other systems rank closely behind, except “All local statuses” which
scores relatively low in the rejudged category with 0.39 in SDCG@10 and 0.32
in P@10.

In the combined category—where all queries are considered—“mastodon.so-
cial federated” ranks first in every measure. Regarding SDCG@10 and P@10,
“All statuses” and “mastodon.social origin” follow in this order. “All local
statuses” has the same score as “mastodon.social origin” in the P@10 mea-
sure, but is behind when considering SDCG@10. “mastodon.social local” ranks
last regarding P@10 and shares its last place with “All local statuses” in the
SDCG@10 measure. All scores of the measures SDCG@10 and P@10 are
packed relatively close in the range of 0.42 to 0.57, with only two exceptions.

The system scores in the nDCG@10 measure are noticeably higher, ranging
from 0.67 up to 0.9. In the combined category, “mastodon.social federated”
also ranks first. Rank two to four are very close behind, and the system with
access to all statuses scores lowest.
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Since the ranking of the systems is the same for documents manually judged
and rejudged by autoqrels regarding SDCG@10, Kendall’s τ coefficient for
these two rankings is exactly 1. For the measure P@10, Kendall’s τ coefficient
is a little lower, approximately 0.84.
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Chapter 5

Discussion

Corpus We have described the architecture of our parallelized, polite crawler,
and we invite everyone to contribute, inspect, or use it. The naming of the
data fields that we store per status adheres to the Mastodon documentation.
A few useful fields have been added to potentially simplify future experiments
with the corpus. We sampled 1,000 Mastodon instances, including most of the
large ones. Instances that appeared to have gone permanently offline during
our crawl were replaced with instances closest in sampling weight. We have
been crawling this set of instances for nearly 11 months and we plan to make it
a full 12 months. The resulting corpus has been presented in several regards,
particularly in terms of the instances which contributed the most statuses.

It has been shown that a considerable portion of statuses after deduplica-
tion originate from instances running software other than Mastodon. Examples
are Misskey, a software appearing twice in the top ten instances, RSS Parrot,
and the undisclosed software of sportsbots.xyz and Meta’s threads.net.
By far the most common languages in the corpus are English (almost 35 %)
and Japanese (ca. 23 %). Only around 4 % and 2 % of statuses are tagged
with the third and fourth most used languages, respectively. Cards are very
common, appearing in nearly every fourth status, which indicates that a lot of
statuses contain a URL pointing to a web page. Media attachments—mostly
images—are also quite frequent, as about 18 % of statuses contain at least one
attachment. Despite occuring often in general, the quota of statuses contain-
ing cards or media attachments differs greatly between the top ten instances:
from ca. 5 % to 82 % for cards and 0.2 % to 59 % for media attachments. Of
all deduplicated statuses, about 14 % are reblogs and nearly 12 % are replies.

Retrieval Experiment We have conducted a baseline retrieval experiment
using our corpus, with 25 original topics derived from popular keywords on
Google Trends, the platform X, and Mastodon. Okapi BM25 [Rob+94] has
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been used to estimate document relevance and, according to these relevance
scores, the top ten results per query have been retrieved. After retrieval, we
have judged document relevancy to the topics for five queries per system and
for one relevant document per query for all other queries. All remaining holes
have been filled utilizing autoqrels, a tool authored by MacAvaney and Soldaini
[MS23]. We have also let autoqrels rejudge the document relevance of queries
completely judged by us. Rank correlation of the five systems between manual
and rejudged relevance ratings has been high, with a Kendall’s τ coefficient
of 1 for the SDCG@10 [Jär+08] and ca. 0.84 for the P@10 measure. In other
words, the system ranking by autoqrels has shown good results, comparable
to the results of the tool’s authors.

In this experiment, retrieval systems with a greater set of documents at
hand do not generally rank higher. While the system with the smallest num-
ber of document available—mastodon.social’s local timeline—has the lowest
score when considering all queries, the system that retrieved from all statuses
only ranks only second to the system that had mastodon.social’s federated
timeline at its disposal. We can only speculate about the reasons for this result.
There might be a sweet spot for the amount of documents to search in when
maximizing the relevancy of retrieved documents, or maybe a set of manually
curated documents1 leads to a higher average relevance than selecting another
instance or timeline.

Another noteworthy observation is that the system which retrieved from
all statuses posted on mastodon.social ranked above the system with only
statuses of mastodon.social’s local timeline at hand. While the set should be
identical for statuses created during the time of our crawl, the former system
also retrieved from statuses created before our crawl.2 Thus, the impact of
changes in the timely dimension should be taken into account.

Limitations and Future Work Our corpus mainly contains statuses orig-
inating from Mastodon instances, but a considerable amount also stems from
instances running other fediverse software. While this might even enable exper-
iments regarding the entire fediverse, it adds to the complexity of Mastodon-
only information retrieval or language processing, as a portion of Mastodon
statuses require external data to unambiguously identify them as such. As
shown in 3.2, Gathering Data about Instances, identifying the software run-
ning on an instance is not difficult if it integrates the NodeInfo standard, but

1The local timeline is a subset of the federated timeline. Additional statuses in the
federated timeline are mostly from accounts external to an instance which were followed by
a user on the original instance at the time of posting.

2Other instances fetched these older statuses and put them on their timeline during our
crawl.
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might be tedious for a larger number of software not integrating it. Filtering
statuses by the Boolean is_local set to true will only yield Mastodon sta-
tuses, but also leave out a portion of all Mastodon statuses. Adding a field to
our corpus indicating the instance software to every status is one possible task
for future work.

Two other fields missing in our corpus are the activity metrics favorite count
and reblog count. Since we usually crawl statuses right after their creation,
these metrics are zero most of the time, or close to that. Furthermore, favorite
and reblog counts are only accurate on the instance a status was originally
posted on, because the home instance of a favoring or reblogging user only
notifies the original instance, or additionally followers’ instances in the case of
a reblog (See Jambor [Jam23] for further explanation). These activity metrics
could be added in a subsequent effort.

In our retrieval experiment, the margins that separate the systems are
mostly relatively small. Hence, the findings should be taken with a grain of
salt. The key point of this work is to enable research on information retrieval
and natural language processing and to present the corpus. Only after several
further experiments can there be findings that might be generalized. We have
also observed two problems in our experiment: Retrieval has sometimes yielded
duplicates or near-duplicates, even after deduplication. This might have been
carbon copies or different bots posting the same news article. The second
problem was retrieving statuses in languages other than English despite a
corresponding filter, because users mislabeled the language of their statuses.
Both problems likely had no impact on the overall outcome of the experiment
as they affected all systems. These problems are not new (e.g., [BZ05; Efr11]),
but we did not tackle them yet, and they should definitely be considered in
follow-up experiments using the corpus.

One more point to consider is the centrality of the Mastodon network.
There is a concentration of users and thus activity and content on the Mastodon
developers’ instance mastodon.social. Our corpus analysis shows that fed-
eration partially mitigates this effect, because the instances are far from iso-
lated. Instead, a great amount of statuses is spread across instances, which
suggests that users are generally interested in content on other instances. In
terms of resource selection, the centrality entails a tendency to always select
mastodon.social for high effectiveness, which might yield a higher number of
relevant results, but not always the single most relevant documents. On the
other hand, politeness dictates to put as little additional load as possible on
very small instances in particular, as admins often privately pay for these. In
conclusion, resource selection in this federated setting is a highly interesting,
but also delicate topic that offers a lot of research potential.
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Conclusion

We have presented a first-of-its-kind comprehensive corpus of Mastodon sta-
tuses. It consists of 174 million deduplicated statuses and 3.6 billion statuses
total, crawled from 1,081 instances over the course of 301 days. Aimed at the
intersection of the previously separately researched areas of microblog and fed-
erated search, the corpus marks a starting point for future efforts in the field
of federated microblog search. In the wake of the recent accelerated growth
of the Mastodon userbase and Meta’s entry into the fediverse, in our view,
this research area deserves more attention. We will provide privacy-preserving
access to the corpus via TIREx, and the code of our polite and parallelized
crawler is published alongside this work.

The analysis of the corpus has shown a great diversity of instances, par-
ticularly in terms of server software. All the statuses posted on these in-
stances reached the timelines of the Mastodon instances that we crawled and
are adding to the variety of our corpus, but also to the range of content lengths.
Conducting the information retrieval experiment has given a first idea of the
possibilities of the corpus and a few aspects to consider when designing a
retrieval experiment that uses the corpus. In our findings, centrality is an
important aspect to consider in resource selection.

Noteworthy limitations of the corpus are the difficult attribution of server
software to statuses, first. Solely using the corpus, discriminating Mastodon
statuses from other statuses is only possible for a portion of statuses. Attribut-
ing all statuses requires external data. Second, activity metrics are missing,
because we crawled statuses right after they have been posted. We might add
fields to tackle both of these limitations later. Nevertheless, the presented
corpus offers an unprecedented opportunity to investigate federated microblog
search.
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