
Bauhaus-Universität Weimar
Faculty of Media
Degree Programme Computer Science and Media

Task-Oriented Query Classification

Master’s Thesis

Ehsan Fatehifar

1. Referee: Prof. Dr. Benno Stein
2. Referee: Prof. Dr. Unknown Yet

Submission date: May 7, 2018

Declaration

Unless otherwise indicated in the text or references, this thesis is
entirely the product of my own scholarly work.

Weimar, May 7, 2018

. .
Ehsan Fatehifar

Abstract

In this thesis, we focus on finding the proper task for the user’s submitted
query as fast as possible. We presume that a query log categorized by tasks
is already available and focus on the problem of finding the right task for a
new query. This will help the user accomplishing a search task or fulfilling an
information need more satisfying. The main aspects of solving this problem
are speed and accuracy.

Moreover, we created three different datasets which are publicly available.
Two of them have approximately 100,000 queries and the third one contains
more than 300,000 queries. These dataset have significantly more queries than
available query logs.

To find the related task to a query, we experimented 4 methods: (1) Trie
data structure to search through queries to find the right task, (2) a hash-based
method called Minhash LSH, (3) Word2Vec models and (4) Elastic search.
Also we investigated the idea of making pseudo-document from the queries in
a task and representing the task with this pseudo-document. The obtained
accuracy by Elastic search is higher than other methods. Also, it is a fast
method and can define a task in ∼2 milliseconds in the given datasets, which
makes it usable in real-time scenarios. We used Word Mover’s Distance(WMD)
algorithm to calculate the distance between two queries in Word2Vec models.
Word2Vec models are accurate but slow for real-time operations. MinHash
LSH, a hash-based method, is faster than Elastic search and Word2vec model,
but its accuracy is lower.

The analysis of the queries in different datasets shows that there are no
distinguishable pattern in these queries that can help us figure out if it is a
hard query to find a task for or not.

Contents

1 Introduction 1

2 Related Work 4
2.1 What is a Task? . 4
2.2 Task Extraction from Query Logs 5
2.3 Available Data . 8
2.4 Methods . 10

2.4.1 MinHash and LSH . 10
2.4.2 Elastic search . 12
2.4.3 Trie Data Structure . 12
2.4.4 Bag of Words Model(BoW) 12
2.4.5 Word Embedding Model 14
2.4.6 Word2Vec Model . 14
2.4.7 Word Mover’s Distance (WMD) 16

3 Approaches and Data 18
3.1 Data . 18

3.1.1 D1 Dataset . 18
3.1.2 D2 Dataset . 19
3.1.3 D3 Dataset . 20
3.1.4 Data Overview . 21

3.2 Trie . 22
3.3 MinHash LSH . 24
3.4 Word2Vec Model . 25
3.5 Word Mover’s Distance . 27
3.6 Elastic Search . 27
3.7 The Idea of pseudo-documents 28

4 Experiments 30
4.1 Trie . 30
4.2 MinHash LSH . 31

i

CONTENTS

4.3 Word2Vec Model . 33
4.4 Word Mover’s Distance (WMD) 36
4.5 Elastic Search . 38
4.6 Pseudo-Document . 42
4.7 Overview . 46

5 Conclusion 49

Bibliography 51

ii

Acknowledgements

A very special gratitude to Matthias Hagen and Michael Völske for their su-
pervision and support.

To my wife, my parents and my sister: because I owe it all to you. Many
Thanks!

iii

Chapter 1

Introduction

There is lots of research on user behaviour when interacting with search en-
gines that aims to improve the user experience. For users, the main goal of
submitting search queries to search engines is to retrieve the information they
want. A search engine should be able to fulfil the needs of the user quickly
and precisely to keep the user satisfied.

Jansen et al. [2008] aimed to help the user by discovering the search intents
in a search session. Gayo-Avello [2009] tried to improve the suggestions based
on users’ previous behaviour. Nogueira and Cho [2017] suggest reformulated
queries to the user for getting better results.

In this thesis, we focus on finding the proper task for the user’s submitted
query as fast as possible, which has never been done before. We presume that
a query log categorized by tasks is already available and focus on the problem
of finding the right task for a new query. The important aspects are the speed
and accuracy of the search. Considering the fact that single second delay in
a website loading time can result in a 7 percent loss in conversion, and 40
percent of web users will abandon a website if it takes longer than 3 seconds
to load[Forrester.com], it is vital for the retrieval method to be fast. However,
just being fast is not enough.

In order to suggest meaningful and useful queries, the accuracy should be
taken into account. Each query contains almost four words in average[Statista.com].
Therefore, most queries are short and ambiguous and that makes the classifi-
cation harder. Moreover, given the fact that 15 percent of searches on Google
every day are new[Google.com], we should have a solution for the queries,
which are new and have no related task in the corpus.

Some users look for a web page containing specific information about a
person or a subject. For this kind of queries, search engines solved the problem.
The search engines work quite well in this area. Usually, the answer is on the
first page of retrieved results. The search engine can even take care of the

1

CHAPTER 1. INTRODUCTION

spelling errors. But some of the queries are more complicated and need more
than a simple answer.

Suppose that a user is looking for information to do a multi-step task. The
answer to this query is not just one result, word or link. The question is too
general to be answered like this. In such cases, users often submit queries
subsequently to gather all of the information they need. Search engines can
help the user by suggesting queries that not only have similar words but also
are related to the same task. These queries are helpful hints to accomplishing
the task.

A very good example of this problem is the query ’plan a wedding’. Plan-
ning a wedding consists of different subtasks. For instance, the user needs
further information about the following tasks: buy a dress, reserve a hotel,
choose a band, order flowers, wedding ring catalogue. By the time of writing
this thesis, after submitting a query, search engines show a result page and
suggest related queries.

The only search engine that provides the user something more than a tradi-
tional result page, is Google. For some queries, in addition to the search results
and query suggestions, Google shows a step-by-step guide. This step-by-step
guide is more related to the query and its corresponding task. But query sug-
gestions are mostly appeared on the result page based on word similarity with
the query. They are not related to one task in most scenarios.

The ability to guide a user to accomplish a search task faster and to inform
a user about other possible steps of the task simultaneously takes the usability
of search engines to the next level.

In our experiments, we used different methods(e.g. Locality-sensitive hash-
ing, Word2Vec models, etc.) to find out which one results in the best perfor-
mance and is suitable for finding the related task for a query.

Since we don’t have access to search engines’ task-categorized query logs, we
must make datasets ourselves. The bigger the dataset, the closer to real-world
scenarios it is. We use available AOL annotated query logs, WEBIS textReuse
Corpus, TREC Task track and TREC Session Track logs. In addition, we
consider websites like WikiHow, that show step-by-step instructions for doing
a task as an extra source that has tasks and queries related to the tasks.

This thesis is divided into five chapters: Chapter 2 discusses in more detail
the related work and previous literature in this field and the used concepts.
Our literature survey shows that the problem hasn’t been tackled on the same
scale before. In Chapter 3 we will talk about approaches that we used. We
use (1) Trie data structure to search through queries to find the right task, (2)
a hash-based method called Minhash LSH, (3) Word2Vec models, (4) Elastic
search and (5) the idea of making a pseudo-document from queries in a task.
The experiments that carried out are investigated in Chapter 4. We reached an

2

CHAPTER 1. INTRODUCTION

accuracy of ∼0.78 on two of three datasets that we prepared by using Elastic
search. Also, the time needed for finding a task is ∼2-3 milliseconds, which
shows it can be used for this task in real-time. Moreover, MinHash LSH has
a satisfying performance with a high speed but lower accuracy. Word2vec
models have a higher accuracy compared to MinHash LSH but its speed issue
makes it inefficient. These experiments are based on methods described in
Chapter 3. Besides, we describe how we combine available datasets, to create
more suitable datasets for our purpose. In the final chapter, future steps and
conclusions will be discussed.

3

Chapter 2

Related Work

In this chapter, we will write about the Task-Oriented Search and the terms
used in the field. Next, we are going to survey the previous work in Task-
Oriented Query Classification and its contribution to this thesis. Then we talk
about the available data and how they helped us to build a bigger dataset. In
the end, a brief history of the methods that we decided to use for doing the
experiments will be presented.

2.1 What is a Task?
Users submit queries to search engines to satisfy their information needs. Jones
and Klinkner [2008] defined a Search Task as follow:

Definition 2.1.1 Search Task. A search task is an atomic information need
resulting in one or more queries.

Awadallah et al. [2014] extended Definition 2.1.1 and defined a complex
search task as:

Definition 2.1.2 Complex Search Task. A complex search task is a multi-
aspect or a multi-step information need consisting of a set of related subtasks,
each of which might recursively be complex.

According to other research, the task or the goal in a search session can be
defined as the cluster of information on different aspects of a query that user
groups want to obtain in order to retrieve the useful information[Lu et al.,
2013].

Spink et al. [2006] defined a Session as:

Definition 2.1.3 Session. A session composed of queries issued by users hav-
ing in mind a particular task/goal.

4

CHAPTER 2. RELATED WORK

Example 2.1.1 Let’s say a user wants to ’plan a wedding’. So, the user will
submit some queries like ’how to plan a wedding’, ’plan a wedding check-list’,
’booking a band’, ’wedding flowers’ consequently. In this example, ’plan a wed-
ding’ is a complex task and search session consists of all the mentioned queries.

For a complex task, the user’s goal at the time of searching is not completely
clear. The goal of a Web search application is to be effective and efficient. So,
if we could be able to help the user finding what he/she needs, we can improve
the search results relevancy and user experience. As you can see in Example
2.1.1, when the user submits one of the queries, the search engine will return
the results which are related to different aspects of the search task that help
the user to accomplish his/her search goals.

Task definition is not absolute and is completely another problem that
should be taken care of separately. For example, "reserving a hotel" can be
a subtask for these two tasks: "plan a wedding" and "trip to London". Or it
can be a task itself. In this thesis, we are not considering the task structure
as hierarchical. We consider the tasks as flat and do the experiments. So, we
are using Definition 2.1.1.

2.2 Task Extraction from Query Logs
For our work, we need a search engine log, in which the queries are categorized
by the task they are related to. The available logs are not suitable for our
purpose. In these logs, there is information about which URL a user clicked
on and the time of the search. In case the search logs are categorized, the
categorization is too general. For example, a query is related to the ’Health’
topic. But we want something more specific; e .g. if the query is related to
’healthy diet’ or ’physical problem’. Session and task extraction from query
logs became an active field and researchers decided to do that automatically.

Automatic task and session detection is not an easy task, because assessing
millions of queries manually is very difficult and time-consuming. When there
is a high number of tasks, one cannot keep track of the query relations all
over the query log. One of the reasons for that is multitasking during a search
session. A study shows that 75% of the users searching for more than one
goal during a search session[Lucchese et al., 2011]. Nowadays, multitasking is
common in Web searching. A user may have a single task or multiple tasks in
mind when he/she starts a search session. Even, there might be new queries
related to a new task submitted during the search process. This is why it is

5

CHAPTER 2. RELATED WORK

not enough just to detect session. That means even when someone can detect
sessions 100% accurate, then he or she should be able to deal with multiple
tasks in a session and recognize them. Considering the short length of queries,
it makes it even more difficult to find the similarity and semantic relation
between queries. Now we are going to mention the methods that tried to detect
sessions and tasks automatically. The simplest method for session detection is
time-based. Researchers tried different time intervals 30 minutes, 60 minutes
and 120 minutes and consider all the queries in between as the same session.
They also considered the queries in each session as if they are belonging to the
same task. Because of the fact that even if they can separate the sessions, they
still have to deal with task separation considering the multitasking during a
search session, this method has a very low accuracy. Some researchers tried
to use clicked URL as an extra information to be able to separate tasks in
a search session, but this information is not always available. Broder [2002]
manually classified a small set of queries into transactional, navigational, and
informational tasks using a pop-up survey of AltaVista users, and manual
inspection. Beitzel et al. [2007] took a random sample of 20,000 queries out of
the entire AOL query stream for 1 week. These queries were manually classified
into the same set of 18 categories by an AOL team of human assessors.

Jansen and Booth [2010] investigated a methodology to classify automati-
cally Web queries by topic and user intent. Taking a 20,000 plus Web query
dataset sectioned by topic[Beitzel et al., 2007], in the first level, they manually
classified each query using a three-level hierarchy of user intent which were
introduced by Broder [2002]. Then for the second level classification, they
defined user intent as the expression of an effective, cognitive, or situational
goal in an interaction with a Web search engine. Rather than the goal itself,
user intent is concerned with how the goal is expressed because the expression
determines what type of resource the user desires in order to address their
underlying need. The topics they defined are too general. There are 20 topics,
e.g. auto, sports. We want more specific topics for our purpose.

There are many examples that such mapping can lead to significant im-
provements in retrieval performance. For example, successful identification of
topic can help alleviate synonym issues (e.g., cobra the snake versus cobra the
anime)[Jansen and Booth, 2010].

Verma and Yilmaz [2014] explored entity based task extraction from search
logs. They claimed that by considering the entities and their associations one
can extract better semantics from user queries. They tried to find entity-
oriented tasks for each category, by populating words that co-occur with en-
tities from that category and represented tasks as a collection of diverse but
conceptually related terms. Existing work extracts tasks from independent
sessions, thus providing information only about a single user. Such tasks have

6

CHAPTER 2. RELATED WORK

limited applications as they do not give a complete picture about tasks that
exist globally. However, entity-oriented tasks can be extracted from search
sessions across several users. Such a global set of tasks can benefit related
search applications too. For instance, it can be used to find similar users by
mining their task histories or for query suggestions[Verma and Yilmaz, 2014].

In their later work [Verma and Yilmaz, 2016], they said: While text-based
features do not exploit entities directly, task dictionaries do not provide a con-
cise or distinct representation of tasks. We overcome these shortcomings by
extracting category oriented tasks by exploiting properties of an existing, pub-
licly available category hierarchy(DBpedia). Based on an empirical evaluation
they showed that category based task extraction results in more accurate and
useful tasks.

One of the most relevant and helpful studies has been conducted by Hagen
et al. [2013] which proposed ’Search Mission Detection’ which aims to identify
those queries a user submits for the same information need. They claimed
their approach is applicable within the time-critical online scenario, where a
search engine tries to support users by incorporating knowledge about their
search history on the fly. A search mission is characterized by logical sessions,
multitasking behaviour, and hierarchical goals. A logical search session is
characterized by consecutive queries for the same information need within a
physical session. A physical search session is characterized by the time gap
between queries. To be able to evaluate their approach, they needed a corpus
of manually labelled query logs. Therefore, they created a new corpus. The
provided dataset is really helpful for us and is a base for making good dataset
for our research. It will be discussed in section 2.3.

Yang and Nyberg [2015] attempted to bridge the gap between two evolving
research areas: development of procedural knowledge bases (such as wikiHow)
and task-oriented search. They tried to extract useful steps from wikiHow
to improve the suggested suggestions to the user. We got the idea of using
wikiHow from this article, but in another way. We do not use the content of
wikiHow pages, because we don’t want to extract the steps. For each query,
we want to find a set of related queries. So, we can make a dataset based on
these query pairs which are related to the same task.

Speed is also an important factor for us. In order to make the approach exe-
cutable in real-time, we do not get help from Web pages or other contents from
external sources like some query classification approaches which are applicable
in post-classification, . As a result, we just rely on the query itself.

7

CHAPTER 2. RELATED WORK

2.3 Available Data
We chose the following datasets to work on:

• Webis-SMC-121: Webis Search Mission Corpus 2012

• Lucchese AOL annotation corpus[Lucchese et al., 2011]

• Webis-TRC-122 : Webis Text Reuse Corpus 2012

• TREC Tasks Track 20153

• TREC Tasks Track 20164

• TREC Session Track 20145

• wikiHow website6

Hagen et al. [2013] choose the Gayo-Avello [2009] sample as their basis.
Gayo-Avello’s corpus consists of 11 484 queries from 215 users sampled from the
2006 AOL query log which is divided into 4040 sessions by a human annotator.
Hagen et al. [2013] extracted all queries of the 215 users contained in the
Gayo-Avello sample. They removed the few queries that are empty or just a
URL. Also, the queries from the 88 users that submitted less than 4 queries
in total. In the end, the Webis-SMC-12 corpus contains 8840 queries from 127
users. Two human annotators divided this sample into 2881 logical sessions and
1378 missions. The main drawback of Gayo-Avello’s corpus is no relationships
between different sessions on the same information need are annotated. Plus,
they removed some queries with no reason.

Lucchese et al.’s [2011] corpus consists of 1424 queries from 13 users also
sampled from the AOL log and clustered from 307 time-gap sessions. It is
manually annotated. But, it does not contain all queries from the sampled
users. Their sample dataset was based on the 500 user sessions with the
highest number of queries. They just considered queries in a very small time
gap(i.e., the first week of user activities).

Potthast et al. [2013] hired writers to write articles on each of the 150 topics
used at the TRECWeb Tracks 2009-2011. They logged the author’s interaction
with a search engine and stored their queries. Webis-SMC-12 interaction log
contains 3826 unique queries for 150 topics.

1http://www.webis.de/data/data.html
2http://www.webis.de/data/data.html
3http://trec.nist.gov/data/tasks2015.html
4http://trec.nist.gov/data/tasks2016.html
5http://trec.nist.gov/data/session2014.html
6http://www.wikihow.com

8

http://www.webis.de/data/data.html
http://www.webis.de/data/data.html
http://trec.nist.gov/data/tasks2015.html
http://trec.nist.gov/data/tasks2016.html
http://trec.nist.gov/data/session2014.html
http://www.wikihow.com

CHAPTER 2. RELATED WORK

TREC Tasks Track 2015 dataset contains 50 tasks with some suggestions,
which are queries that may help to accomplish the user’s task. In total it
contains 547 queries. TREC Tasks Track 2016 dataset contains 50 tasks and
405 queries. Here is an example:

Example 2.3.1 A sample task from TREC Tasks Track 2015 data.
Task id: 1
Task: getting organized at work [I need to get organized at work]
Hints:

• Checklist for getting organized at work

• How to organize office desk

• Tips for getting organized at work

• Organize schedule at office

• How to create a todo/task list

• How to keep a calendar of scheduled meetings and travel

• How to set deadlines and goals

• How to organize your work space

• How to log the time you spend

• Methods to track your progress towards goals

• How to set up a filing system with a binder or folders

TREC Session Track 2014 dataset contains information on user sessions
interacting with a search engine looking for information on a specific topic.
The dataset contains 60 topics and 4666 queries.

Example 2.3.2 A sample topic from TREC Session Track 2014 data.
<topic num=’5’>

<desc>
Suppose you are writing an article about face transplants. You
want general information about face transplants and how face
transplants affect the lives of patients. Find web pages about
face transplants.

</desc>

9

CHAPTER 2. RELATED WORK

</topic>

Queries in a session for topic ’5’:

• face transplants

• face transplant wiki

• face transplant results

In Table 2.1 you can see the statistics of available data.

Corpus WEBIS
AOL

Lucchese
AOL

WEBIS
TRC

TREC
Track15

TREC
Track16

TREC
Session14

Tasks 1298 233 150 50 50 60
Queries 8840 1424 13881 547 405 4666
Uniq. Queries 3736 792 3826 547 405 3248
Max. Q. in T. 138 55 122 20 15 100
Min. Q. in T. 1 1 1 4 5 16
Avg. Q. in T. 2.88 3.4 25.21 10.94 8.1 54.13
Std. Q. in T. 5.75 4.69 18.25 3.64 2.17 18.21

Table 2.1: Statistics of available datasets.

Since these datasets do not have a large number of queries and have some
tasks in common, we merge them. Also, we get suggestions for each query
from different search engines to extend the dataset. The details are available
in section 3.1

2.4 Methods

2.4.1 MinHash and LSH

MinHash (or the min-wise independent permutations locality sensitive hashing
scheme) is a Hash-Based technique for measuring the similarity between two
sets. This technique replaces large sets by much smaller representations called
"signatures". Also, we can compare two sets by producing their signatures
and measure the distance between signatures using Jaccard similarity. But
keep in mind, the signatures do not exactly represent the sets. They are close
estimations. The bigger the signature is, provides a more accurate estimation.

In our case, we consider each query as a set and make the following sample
characteristic matrix:

The columns of the matrix correspond to the queries, and the rows cor-
respond to the set of all words exist in the corpus. There is a 1 in row r

10

CHAPTER 2. RELATED WORK

Element Q1 Q2 Q3
W1 0 1 0
W2 1 0 1
W3 1 0 0

Figure 2.1: A matrix representing a query set.

and column c if the element for row r is a member of the set for column c.
Otherwise, the value in position (r, c) is 0. To minhash a set represented by
a column of the characteristic matrix, pick a permutation of the rows. The
minhash value of any column is the number of the first row, in the permuted
order, in which the column has a 1. [Leskovec et al., 2014]

There is a remarkable connection between minhashing and Jaccard similar-
ity of the sets that are minhashed.The probability that the minhash function
for a random permutation of rows produces the same value for two sets equals
the Jaccard similarity of those sets. [Leskovec et al., 2014]

The Jaccard similarity coefficient is a commonly used indicator of the sim-
ilarity between two sets. For sets A and B it is defined to be the ratio of the
number of elements of their intersection and the number of elements of their
union:

J(A,B) =
(A ∩B)

(A ∪B)

Even though we can use minhashing to compress large documents into small
signatures and preserve the expected similarity of any pair of documents, it
still may be impossible to find the pairs with the greatest similarity efficiently.
The reason is that the number of pairs of documents may be too large, even
if there are not too many documents. we need to focus our attention only on
pairs that are likely to be similar, without investigating every pair. [Leskovec
et al., 2014]

There is a general theory of how to provide such focus, called locality-
sensitive hashing (LSH) or near-neighbor search. One general approach to
LSH is to "hash" items several times, in such a way that similar items are
more likely to be hashed to the same bucket than dissimilar items are. We then
consider any pair that hashed to the same bucket for any of the hashings to be
a candidate pair. We check only the candidate pairs for similarity. If we have
minhash signatures for the items, an effective way to choose the hashings is to
divide the signature matrix into b bands consisting of r rows each. [Leskovec
et al., 2014]

MinHash LSH has a good performance compared to other methods. It is
amazingly fast but not as accurate as Elastic search.

11

CHAPTER 2. RELATED WORK

2.4.2 Elastic search

Elasticsearch is a highly scalable open-source full-text search and analytics en-
gine. It allows you to store, search, and analyze big volumes of data quickly
and in near real time. It is generally used as the underlying engine/technol-
ogy that powers applications that have complex search features and require-
ments.[elastic.co]

It is developed in Java and is released as open source under the terms of the
Apache License. Elasticsearch can be used on all documents across all types.
It provides scalable search and has near real-time search.[elastic.co]

Elasticsearch, the most popular enterprise search engine[db engines.com],
is a Lucene-based search engine. It provides a distributed, full-text search
engine with schema-free JSON documents.

Elasticsearch stores complex entities as structured JSON documents and
indexes all fields by default, providing a higher performance. It is schema-free
and stores a large quantity of semi-structured (JSON) data in a distributed
fashion. It also attempts to detect the data structure, index the data present
and makes it search-friendly.

Elasticsearch performs linguistic searches against documents and returns
the documents that matches the search condition. Result relevancy for the
given query is calculated using TF/IDF algorithm.

2.4.3 Trie Data Structure

De La Briandais [1959] described Trie for the first time. The name ’TRIE’ is
coined from the word ’retrieve’. Trie is the data structure similar to Binary
Tree. It is based on the prefix of a string. The prefix of a string means any
n letters from the start of a string with the length l, where n < l. In this
tree, all the descendants of a node have a common prefix (associated with that
node). The nodes do not contain key values. Key values will be defined by the
position of the node in the tree.

We use this data structure to be able to search fast through queries. It is
a simple method and can be used as a base performance measure compared to
more complicated methods.

2.4.4 Bag of Words Model(BoW)

The Bag of Words model is used in natural language processing and informa-
tion retrieval. In this model, extracted features from a text are represented
as sets of words disregarding grammar and word order but with a measure
of the presence of known words. A text (such as a sentence or a document)

12

CHAPTER 2. RELATED WORK

A

AB AC

ACE

AZ

B C

CA CO

Figure 2.2: A trie for keys "A","AB", "AC", "ACE", "AZ", "B", "C", "CA", and
"CO".

is represented as the bag of its words, disregarding grammar and even word
order.

Any information about the order or structure of words in the document is
discarded. That’s why It is called a "bag" of words. The extracted features
by BoW can be used in machine learning algorithms.

The Bag of Words model learns a vocabulary from all of the documents,
then models each document by counting the number of times each word ap-
pears.

Here is a famous example for BoW:

Example 2.4.1 BoW example.

Consider the following two sentences:
Sentence 1: "The cat sat on the hat"
Sentence 2: "The dog ate the cat and the hat"

From these two sentences, our vocabulary is as follows:
{ the, cat, sat, on, hat, dog, ate, and }

To get our bags of words, we count the number of times each word occurs in
each sentence. In Sentence 1, "the" appears twice, and "cat", "sat", "on",
and "hat" each appear once, so the feature vector for Sentence 1 is:

{ the, cat, sat, on, hat, dog, ate, and }
Sentence 1: { 2, 1, 1, 1, 1, 0, 0, 0 }
Similarly, the features for Sentence 2 are: { 3, 1, 0, 0, 1, 1, 1, 1}

13

CHAPTER 2. RELATED WORK

2.4.5 Word Embedding Model

Word Embedding is another approach for representing text data and differs
from other feature extraction methods. In this model, the words will be rep-
resented based on their usage. As a result, despite the bag of words model,
the words with same meaning, will have the same representation. In the bag
of words model, if we want to represent different words similarly, we have to
explicitly define the relationship of the related words, because in BoW the
usage of the word is not taken into account. Obviously, it is impossible for big
text collections.

A goal of statistical language modelling is to learn the joint probability
function of sequences of words in a language. A fundamental problem that
makes language modelling and other learning problems difficult is the curse of
dimensionality. [Bengio et al., 2003]

Bengio et al. [2003] proposed "to fight the curse of dimensionality by learn-
ing a distributed representation for words which allows each training sentence
to inform the model about an exponential number of semantically neighbour-
ing sentences. Each training sentence informs the model about a combinatorial
number of other sentences".

Associate with each word in the vocabulary a distributed word feature
vector. The feature vector represents different aspects of the word: each word
is associated with a point in a vector space(Figure 2.3). The number of features
is much smaller than the size of the vocabulary.[Bengio et al., 2003]

Collobert and Weston [2008] proposed a general deep NN architecture for
NLP that formed the foundation for many current approaches. But the land-
mark in the history of word embedding is Word2Vec model created by Mikolov
et al. [2013a].

2.4.6 Word2Vec Model

Word2vec is the most popular word2vec model. Word2vec is a group of related
models that are used to produce word embeddings. It learns a vector repre-
sentation for each word using a (shallow) neural network language model. It
takes as its input a large corpus of text and produces a vector space, typically
of several hundred dimensions, with each unique word in the corpus being
assigned a corresponding vector in the space.

Despite Latent Semantic Analysis (LSA) and Latent Dirichlet Allocation
(LDA), word2vec is highly scalable. It learns high-quality word vectors from
huge data sets with billions of words, and with millions of words in the vocab-
ulary. [Mikolov et al., 2013a]

To produce accurate vectors for the words, it is not enough for a model to

14

CHAPTER 2. RELATED WORK

Figure 2.3: Two-dimensional PCA projection of the 1000-dimensional Skip-gram
vectors of countries and their capital cities. The figure illustrates ability of the model
to automatically organize concepts and learn implicitly the relationships between
them, as during the training we did not provide any supervised information about
what a capital city means.[Mikolov et al., 2013b]

consider only previous words for its prediction. Word2vec solves this problem
by utilizing either of two model architectures to produce a distributed represen-
tation of words: continuous bag-of-words (CBOW) or continuous skip-gram.
In the continuous bag-of-words architecture, the model predicts the current
word wt from a window of surrounding context words. Like the bag-of-words
model, the order of the context words does not influence prediction. In the
continuous skip-gram architecture, the model uses the current word wt to pre-
dict the surrounding window of the context words. [Mikolov et al., 2013a] (See
Figure 2.4)

The skip-gram architecture weighs nearby context words more heavily than
more distant context words.

15

CHAPTER 2. RELATED WORK

Figure 2.4: New model architectures. The CBOW architecture predicts the current
word based on the context, and the Skip-gram predicts surrounding words given the
current word.[Mikolov et al., 2013a]

2.4.7 Word Mover’s Distance (WMD)

WMD is an instance of the Earth Mover’s Distance(EMD), a well-studied
transportation problem for which several highly efficient solvers have been de-
veloped. Kusner et al. [2015] presented the Word Mover’s Distance (WMD), a
novel distance function between text documents. Their work is based on recent
results in word embeddings that learn semantically meaningful representations
for words from local co-occurrences in sentences.

The WMD distance measures the dissimilarity between two text documents
as the minimum amount of distance that the embedded words of one document
need to "travel" to reach the embedded words of another document.[Kusner
et al., 2015]

In Figure 2.5 you can see how to compute the distance between two sen-
tences: "Obama speaks to the media in Illinois." and "The President greets
the press in Chicago.".

In Chapter 4, we show that WMD is more efficient and accurate in calcu-
lating distance between queries than measuring simply distances between each
word pairs in two queries and average them.

16

CHAPTER 2. RELATED WORK

Figure 2.5: An illustration of the word mover’s distance. All non-stop words (bold)
of both documents are embedded into a word2vec space. The distance between the
two documents is the minimum cumulative distance that all words in document 1
need to travel to exactly match document 2.[Kusner et al., 2015]

17

Chapter 3

Approaches and Data

In this chapter we will describe the preparation process of the data we want
to use. After that, the experiment criteria for each of the methods discussed
in section 2.4 will be explained.

We created these datasets because the available data(section 2.3) are not
suitable for our experiments. They are not big enough or the categories are
too general. Some corpora needed more manual annotation.

Also, we are going to describe the methods that we used for doing the
experiments.

3.1 Data
We used available datasets discussed in section 2.3 as a base to develop bigger
and more useful datasets for our purpose. We created three datasets based on
them:

1. D1: Combination and merge of WEBIS TextReuse Corpus, TREC Tasks
Track 2015, TREC Tasks Track 2016 and TREC Session Track 2014 after
manual verification(section 3.1.1)

2. D2: Merging Webis-SMC-12 and Lucchese AOL annotation corpus after
manually re-annotation (section 3.1.3)

3. D3: WikiHow data based on bidirectional relationship of questions(section
3.1.3)

3.1.1 D1 Dataset

For making this dataset, we used following datasets:

18

CHAPTER 3. APPROACHES AND DATA

• WEBIS TextReuse Corpus

• TREC Tasks Track 2015

• TREC Tasks Track 2016

• TREC Session Track 2014

The statistics of each dataset is available in table 2.1 in section 2.3.
In total, they have 310 topics. We manually checked the topics and found

out that they have 34 topics in common. After merging them, there are 8,026
unique queries in 276 topics. The advantage of these corpora is that the topics
are defined clearly and the queries related to them are completely related. So,
this corpus has no possible noise and has a high quality. But 8,000 queries are
not enough for testing different methods on a higher scale.

To extend this corpus we got suggestions for each of the queries from four
search engines:

• Google

• Bing

• Ask

• AOL

After getting suggestions, corpus contained 98,676 unique queries in 276
topics. Compared to each of the four datasets, the difference in size of the result
is significant. For example WEBIS-TRC-12 has just 3,826 unique queries.

3.1.2 D2 Dataset

In order to build this dataset, we used following datasets:

• Webis-SMC-12

• Lucchese AOL annotation corpus

The statistics of each dataset is available in table 2.1 in section 2.3.
Despite the datasets used to build D1, the topics in these datasets were not

defined prior to the search. Tasks are manually annotated by looking at a part
of AOL search logs. The queries were categorized based on a task that user
wanted to accomplish in one or multiple session. In both corpora, the common
tasks between users were not taken into account. Also, we re-annotate them
manually again to solve this problem. Moreover, in order to merge them,
we had to find the common tasks between two corpora, which was also done
manually.

19

CHAPTER 3. APPROACHES AND DATA

Corpus Merged +Suggestions
Topics 310 310
Uniq. Topics 276 276
Uniq. (Queries, Task) 19499 102171
Uniq. Queries 8026 98676
Max. Queries in Task 141 2430
Min. Queries in Task 1 23
Avg. Queries in Task 53.51 358.82
Std. Queries in Task 38.42 280.03
Tasks have 1 Query 2 0
Tasks have 2 Queries 0 0
Tasks have 3 Queries 0 0
Tasks have 4 Queries 2 0

Table 3.1: D1 dataset statistics.(Combination and merge of WEBIS TextReuse
Corpus, TREC Tasks Track 2015, TREC Tasks Track 2016 and TREC Session Track
2014 after manual verification)

After the merge, in these corpora, there were 1531 tasks with 102 tasks in
common. They don’t have any user in common. Also, corpus contained 4,528
unique queries belong to 1,429 tasks.

Like the first dataset(D1) we got suggestions from Google, Bing, Ask and
AOL for each query. After getting suggestions, corpus contains 90,282 unique
queries in 1,429 tasks. Like D1, this dataset is also big enough for doing the
experiments.

3.1.3 D3 Dataset

For making this dataset, we crawled an English wikiHow data dump, which
contains 198,163 questions. WikiHow suggests for each question a list of related
questions, but after verifying these suggestions we observed that they are not
necessarily related. Especially for our purpose, they are not related to the
same task.

As a result, we decided to consider questions related to the same task if they
are both mentioned in each other’s suggestions. After applying this criterion,
15,914 of the queries remained and 7,202 tasks were identified.

We got suggestions from Google, Bing, Ask and AOL for each query. After
getting suggestions, corpus contains 331,389 unique queries in 7,202 tasks.
This is the biggest dataset available.

The number of queries in a task is an important factor. While looking for
a task to assign to a query, a task with more queries has a higher chance.

20

CHAPTER 3. APPROACHES AND DATA

Corpus Merged +Suggestions
Tasks 1429 1429
Uniq. (Queries, Task) 4528 93391
Uniq. Queries 4528 90111
Max. Queries in Task 147 2810
Min. Queries in Task 1 7
Avg. Queries in Task 3.17 65.62
Std. Queries in Task 6.38 114.41
Tasks have 1 Query 653 0
Tasks have 2 Queries 325 0
Tasks have 3 Queries 144 0
Tasks have 4 Queries 104 0

Table 3.2: D2 dataset statistics.(Merging Webis-SMC-12 and Lucchese AOL anno-
tation corpus after manually re-annotation)

we keep tasks which have less than 5 queries to do the experiments. Also,
including them in experiments can help us understand how to deal with them.
The only dataset that has tasks with less than 5 queries is D3.

Corpus WikiHow +Suggestions
Tasks 7202 7202
Uniq. (Queries, Task) 15914 331389
Uniq. Queries 15914 331389
Max. Queries in Task 22 448
Min. Queries in Task 1 2
Avg. Queries in Task 2.21 46.01
Std. Queries in Task 1.36 28.75
Tasks have 1 Queries 2436 0
Tasks have 2 Queries 2731 2
Tasks have 3 Queries 1025 6
Tasks have 4 Queries 531 5

Table 3.3: D3 dataset statistics.(WikiHow data based on bidirectional relationship
of questions)

3.1.4 Data Overview

Now, we have three different datasets with different sizes. D1 contains pre-
defined tasks and queries related to them. D2 contains queries from different

21

CHAPTER 3. APPROACHES AND DATA

users which manually divided into tasks. D3 contains data extracted from
WikiHow.com.

In table 3.4 you can see the overview of the collected data.

Corpus D1 D2 D3
Tasks 310 1429 7202
Uniq. Tasks 276 1,429 7202
Uniq. (Queries, Task) 102,171 93,391 331,389
Uniq. Queries 98,676 90,111 331,389
Max. Queries in Task 2,430 2,810 448
Min. Queries in Task 23 7 2
Avg. Queries in Task 358.82 65.62 46.01
Std. Queries in Task 280.03 114.41 28.75
Tasks have 1 Query 0 0 0
Tasks have 2 Queries 0 0 2
Tasks have 3 Queries 0 0 6
Tasks have 4 Queries 0 0 5

Table 3.4: Overview of D1, D2 and D3 datasets statistics.

As you can see D3 is the biggest dataset with the least standard deviation
regarding the number of queries in a task.

Queries contain approximately 3.5 to 5 words in each of the corpora. In
corpus D1, the standard deviation of the number of words in a query is higher,
because some queries in TREC Tasks Track contain a description or extra
information about that query. For example, "look for signs of cyberbullying
(e.g. anxiety about using the computer, closing or blocking the computer
screen, changes in using mobile devices)". We kept the queries like this as
they are because the search engines returned good suggestions for them.

In D2 and D3 there are queries with one character. In D2 they may be
submitted accidentally(e.g. user press enter before typing the whole query). In
D3, some of them are suggestions from search engines. We keep these queries
because want to test on a noisy data. However, these are less than 1% of the
queries.

In table 3.5 more details are available on the query statistics in the corpora.

3.2 Trie
Trie implementation is simple. We can modify the data structure in case
any change happens(e.g. adding new queries to the corpus). Regarding this,

22

CHAPTER 3. APPROACHES AND DATA

Corpus D1 D2 D3
Words 445,382 332,752 1,647,644
Unique Words 37,816 42,340 62,601
Max. Stopwords in Query 0 0 0
Min. Stopwords in Query 20 10 12
Avg. Stopwords in Query 0.71 0.35 1.28
Std. Stopwords in Query 1.14 0.74 1.44
Min. Words in Query 2 1 1
Max. Words in Query 46 17 19
Avg. Words in Query 4.36 3.56 4.97
Std. Words in Query 2.63 1.56 2.03
Min. Length of Query(characters) 4 1 1
Max. Length of Query(characters) 309 91 116
Avg. Length of Query(characters) 27.90 22.57 27.42
Std. Length of Query(characters) 16.52 9.43 9.71

Table 3.5: Overview of D1, D2 and D3 datasets queries statistics.

making a Trie is fast and can be done simultaneously with the arrival of new
queries.

We determine the task for each query by finding the longest prefix for that
query. In the following example, we show how it works.

Example 3.2.1 Trie structure and retrieval
Suppose we have three queries: q1: how to organize q2: how to organize

your desk q3: how to become a doctor
q1 and q2 are related to task 1 and q3 is related to task 2.
For each word in the query a node and a list values should be created. here

is how tree is made:

t r i e [’ how ’] = [1 , 2]
t r i e [’ how/ to ’] = [1 , 2]
t r i e [’ how/ to / organ i ze ’] = [1]
t r i e [’ how/ to /be ’] = [1]
t r i e [’ how/ to / be / organ i zed ’] = [1]
t r i e [’ how/ to / organ i ze ’] = [1]
t r i e [’ how/ to / o r gan i z e /your ’] = [1]
t r i e [’ how/ to / o r gan i z e / your / desk ’] = [1]
t r i e [’ how/ to /become/a/ doctor ’] = [2]

23

CHAPTER 3. APPROACHES AND DATA

As you see, the word ’how’ and ’how to’ are common between task 1 and 2.
Now, if we query this tree and get the longest prefix, we get the following

result for each of them:

’ how to ’ : (’ how/ to ’ , [1 , 2])
’ how to be an organ i z ed person ’ : (’ how/ to /be ’ , [1])
’ organ i ze ’ : (None , None)
’ become a doctor ’ : (None , None)

So, for ’how to’ the longest prefix is ’how/to’ which is related to task 1 and
2. ’organize’ does not have any prefix because none of the queries started with
the word ’organized’.

Making Trie takes around 30 seconds for dataset D1 and 90 seconds for
dataset D3 which has three times more queries than dataset D1. It is signifi-
cantly faster than indexing in the MinHash LSH method. Finding a task can
be done in microseconds. However, the accuracy of this method is quite low. It
was expected because the search method in a Trie is very basic. If the queries
don’t have the same prefix there is no chance that they match. We can’t ex-
pect this method to take the semantics of the queries into account. Maximum
achieved accuracy by this method is 0.14 for dataset D1. The detailed results
are available in section 4.1 table 4.1.

We use this method as the simplest possible method to see how good we
can solve the problem. Also, it gives us a clue about the difficulty of a dataset.
If we achieve a high accuracy in finding related task using this method, a
conclusion would be that the dataset is easy. So, this method can be used
to measure the dataset’s difficulty. In section 4.1 you can see the details of
experiments on different datasets.

3.3 MinHash LSH
MinHash LSH is a fast method which has an acceptable accuracy. We carried
out the experiments on the three datasets introduced in sections 3.1.1, 3.1.2
and 3.1.3. The goal of the experiment is to find a related task for a query as
fast and as accurate as possible.

For each query in the corpus, we take the query out from the corpus and
look into the rest of the corpus to find the related task. Since MinHash returns
a list of similar queries for each query, it is possible to choose the most common
task between them or just get top task returned.

24

CHAPTER 3. APPROACHES AND DATA

Hashing the queries and build a corpus is fast. This method takes 214
seconds for dataset D3, 53.8 seconds for D2 and 61 seconds for D1. You can
see the detailed results in section 4.2 table 4.2. As it is shown in table 4.2, the
time for returning the results will change almost linearly with the growth of
the size of the corpus.

Also, adding and removing elements from the hashes is fast and easy. A
query can be hashed and added in less than 3 milliseconds, no matter how big
a corpus is.

The accuracy of this method is 0.6570 for dataset D1, 0.6586 for dataset
D2 and 0.3750. Compared to other corpora, it performed poorly on WikiHow
data.

As we discussed in section 2.1, a query is not always related to just one task.
It may relate to more than one task. Based on this assumption, we considered
the second predicted task by MinHash LSH method and then recalculate the
accuracy. Accuracy increased in each case around 0.1.

In another experiment, we removed tasks which have less than 50 queries.
Also, we did the experiment on the tasks which have more than 100 queries.
These experiments resulted in a better accuracy, especially in dataset D3. That
means the bigger the numbers of queries in tasks are, would be a better help
to find the related task for a query.

We also did another experiment by determining the task based on just the
most similar query instead of getting the most common task. The results are
available in table 4.6. The most common task strategy performs significantly
better, which is an improvement with an almost no cost. Because the time we
spend to find the most common task is trivial compared to search for similar
queries.

3.4 Word2Vec Model
Word2Vec model is working well in finding similarity between two words. It
also can define the semantic similarity. This model should be trained on a
big corpus, to be able to cover an extended range of words. There are lots of
pre-trained models available.

One problem with this model is dealing with the words which are not in
the model. One way is to assign a random vector to them, but it is not a
good solution and does not show the real similarity to the other words. It
is impossible to have all the words in a corpus. For example, even though
the corpus provided by Mikolov et al. contains 300-dimensional vectors for 3
million words and phrases, some words like ’Dog’ are not in the corpus. Also,
there are lots of new searches every day which contain new words. As a result,

25

CHAPTER 3. APPROACHES AND DATA

the model should be updated regularly which is very difficult to do real-time
because it takes time.

For each query in the corpus, we take it out from the corpus and look into
the rest of the corpus to find the related task.

We compare two queries by comparing each word in a query to each word in
another query and get the average similarity by using similarities returned by
comparing word vectors using GoogleNews-vectors-negative300 corpus. All the
similarity values will be summed up and divided by the number of combinations
of word pairs. This value will be used later to find the most similar query to
the query we have. The smaller the value, means more similar the queries to
each other are.

Since using Word2Vec model returns a similarity value for each query com-
parison, we use different heuristics to choose the similar task.

It is possible to decide the task based on most similar queries returned. In
different experiments, we chose this number n to be 1, 5 or 10. If the number
n is greater than 1, we chose the most common task number between the
returned values. After doing experiments we found that the best value is 10,
and finding the common task has a significantly better performance compared
to choosing the task based on just the most similar query.

Despite a good accuracy, comparisons in this method are too slow compared
to MinHash LSH or Trie. This makes it impossible to use it in real-time. We
chose a random sample set from each of the dataset to see how this method
performs.

For testing this method we had a time limitation. For example, defining a
task in D3 corpus takes 150 to 200 seconds and this corpus contains around
300,000 queries. That means we need approximately 10,000 hours for doing
the experiments on just one of the datasets. Considering this limitation, we
tested this method on TREC Tasks 2015 to see how accurate can it predict
the task for each query. Although all the tasks were manually defined and
have different subjects and vocabulary, the accuracy of this method is 0.31
which is not a good performance for such a dataset(table 4.9). Also, the time
for defining a task for a single query was 1.4 seconds which is too long for a
corpus with ∼500 queries.

As we mentioned before, there are lots of words in the datasets D1, D2
and D3 which are not in GoogleNews corpus, which causes lower accuracy in
measuring the distance between two queries(table 4.8).

The detailed results are available in table 4.11.

26

CHAPTER 3. APPROACHES AND DATA

3.5 Word Mover’s Distance
This method is an optimization of the method we used in section 3.4 to cal-
culate similarity of two queries. WMD is based on Word2Vec model. The
distance between two queries will be calculated as the minimum amount of
distance that the embedded words of one query need to "travel" to reach the
embedded words of another query.

To compare WMD with the simple method for calculating similarity, we
did the same experiment on TREC Tasks 2015 dataset. We used GoogleNews
corpus for this experiment too. In the same amount of time, WMD performed
significantly better with an accuracy of 0.61.

This method also has the speed issue. Each comparison takes a long time
compared to MinHash LSH. Finding a task takes ∼60 seconds in D1. But
WMD causes improvement in accuracy compared to the previous method
which calculates the similarity of two queries by simply adding the similar-
ity values and average them. As a result, we use WMD in the experiments
and ignore the other method.

Using WMD, resulted in a accuracy more than 0.7 on datasets D1 and D2,
and ∼0.56 on dataset D3. It performs better than MinHash LSH considering
accuracy, but we can’t use it regarding it is speed.

3.6 Elastic Search
Elastic search allows you to store, search, and analyze big volumes of data
quickly and in near real time. It performs linguistic searches against documents
and returns the documents that matches the search condition. Result relevancy
for the given query is calculated using TF/IDF algorithm.

Like the experiments in MinHash LSH section, we take out one query and
look into the rest of queries to find similar queries and define the task based
on them.

There are no special parameters in this methods that we can tune. We used
"match" query from "Full text queries’ group. As in the Elastic search offi-
cial documentation1, it is the standard query for performing full text queries,
including fuzzy matching and phrase or proximity queries.

The performance of this method is the highest between all the methods
that we investigated. It has the highest accuracy and has a high indexing and
search speed. It can find the task for a single query quickly and not as quickly
as MinHash LSH, this time will increase slightly not exponentially with the
growth of corpus.

1https://www.elastic.co/guide/index.html

27

https://www.elastic.co/guide/index.html

CHAPTER 3. APPROACHES AND DATA

It’s performance beats MinHash LSH in all three datasets, specially in
dataset D3. For datasets D1, D2 and D3 we achieved the accuracy of 0.7722,
0.7885 and 0.6181 consequently.

By assigning a second task to each query the accuracy improved to 0.85.
Again, the dataset D3 had the highest improvement(table 4.12).

Also, experimenting on tasks with more than 50 queries or 100 queries
resulted in an improvement. The accuracy improvement in dataset D3 was
significant.

Moreover, choosing the most common task from returned results performed
better than choosing the task based on the task of most similar query. But
the difference is less significant compared to MinHash LSH.

We also analyzed the queries of each corpus for which the Elastic search
could predict their related tasks correct or incorrect to see what are their
differences. The detailed results of experiments are available in section 4.5.

3.7 The Idea of pseudo-documents
Each task contains one or more queries. A pseudo-document can be made by
using the queries in each task and combine them to make a single document
which represents the task.

In general, this will lead to faster indexing because the size of indexes is
equal to the number of tasks, not the number of queries. For instance, in
dataset D1 we have 276 tasks but ∼100,000 queries.

There are several questions about how to make these documents. For
example, should the stop words be removed? Or if we combine the queries,
should the word order be preserved? Should we extract keywords from queries
and present a task as a collection of keywords?

We tested all the scenarios above and achieved a high accuracy just by
using Elastic search. We used the queries as they were, without any pre-
processing. The accuracy of this method is 0.78 in average on dataset D1.
Indexing pseudo-documents is more efficient than indexing queries in a task
separately and results in higher accuracy.

There are several problems using this approach for methods other than
Elastic search. The main problem is that the length of queries and documents
are extremely different. For example, a query contains in average 4-5 words in
our datasets, but the average length of a document is ∼400 words in dataset D1
if we remove stop words and duplicate words from a document. Additionally,
in methods like MinHash LSH and WMD, this length difference makes them
inefficient.

Second, the queries are often short by default. When we remove stop words

28

CHAPTER 3. APPROACHES AND DATA

from them, they will be shorter. This will result in less accuracy even in Elastic
search. For example, using MinHash LSH has the accuracy of 0.3 when using
pseudo-documents because of the length difference.

Therefore, the idea of using a pseudo-document can be helpful in this prob-
lem and can lead to very good results.

29

Chapter 4

Experiments

In this Chapter, we are going to write about the experiments and specifica-
tions of each method in detail. We examine 4 methods that were discussed
in previous Chapters. We look for patterns in queries based on correct and
false predictions to see how these methods perform on each of the datasets in-
troduced in Chapter 3. Then we will compare their performance and describe
their advantages and disadvantages and conclude which is the best to use for
solving the problem of assigning a task to the new coming query.

All the experiments were done on a single computer with following specifi-
cations:

• Processor: 2.8GHz quad-core Intel Core i7, Turbo Boost up to 3.8GHz,
with 6MB shared L3 cache

• Storage: 256GB PCIe-based onboard SSD

• Memory: 16GB of 2133MHz LPDDR3 onboard memory

4.1 Trie
In this method, we will make the Trie structure for each dataset. Then we
check the longest prefix of the query in Trie. Since there may be more than 1
task assigned to that node, we choose the most common task between them.
We can’t decide on just one task(e.g. most similar task) in this structure,
because the order of the values in the node is meaningless.

For the experiments Google Pygtrie1 library is used. Building the Trie
structure can be done quickly. For instance, for dataset D1 it took approxi-
mately 30 seconds to build the structure for the whole corpus. For dataset D2
it took 16.5 seconds and for dataset D3, 85 seconds.

1https://github.com/google/pygtrie

30

https://github.com/google/pygtrie

CHAPTER 4. EXPERIMENTS

It is significantly faster than indexing in the MinHash LSH method. More-
over, searching through this data structure is fast and finding a task takes
in average around 75 microseconds in D1, 35 microseconds in D2 and 58 mi-
croseconds in D3. Despite the promising speed, the accuracy of this method is
quite low. It was expected because the search method in a Trie is very basic.
It is like traversing a tree. If the queries don’t have the same prefix there is no
chance that they match. For example, if we have "how to become a doctor"
and "doctor" in the tree and a new query "become a doctor" comes, the two
queries in the Trie won’t be taken into account, because the new query starts
with the word "become". As a result, the longest prefix for this query would be
a Null value. We can’t expect this method to take the semantics of the queries
into account. By using Trie, we achieved an accuracy of 0.14 for dataset D1,
0.0914 for D2 and 0.0332 for D3. The detailed results are available in section
4.1 table 4.1.

We use this method as the simplest possible method to see how good we
can solve the problem. Also, it gives us a clue about the difficulty of a dataset.
If we achieve a high accuracy in finding related task using this method, a
conclusion would be that the dataset is easy. Later, in the experiments, we see
that the highest accuracy obtained on dataset D1 almost in all cases and the
lowest accuracy obtained in D3. So, this method can be used to measure the
dataset’s difficulty.

Corpus D1 D2 D3
Accuracy 0.1403 0.0914 0.0332
Find task for a single query 75µs 44µs 69µs
Time for Making Trie 30 16.5 85
Time Adding a single query to the Trie 75µs 69µs 76µs
Number of Queries 102,171 93,391 331,389

Table 4.1: Trie results

4.2 MinHash LSH
We use datasketch2 library for experimenting MinHash LSH method. As they
described, It is important to note that the query does not give you the exact
result, due to the use of MinHash and LSH. There will be false positives -
sets that do not satisfy your threshold but returned, and false negatives -
qualifying sets that are not returned. However, the property of LSH assures

2https://ekzhu.github.io/datasketch/lsh.html

31

https://ekzhu.github.io/datasketch/lsh.html

CHAPTER 4. EXPERIMENTS

that sets with higher Jaccard similarities always have higher probabilities to
get returned than sets with lower similarities. Moreover, LSH can be optimized
so that there can be a "jump" in probability right at the threshold, making
the qualifying sets much more likely to get returned than the rest.

Algorithm 4.1: Assign a task to a query
inputs : MinHashLsh: A corpus contains hashed values of available

queries,
query: A single query

output: A task which is the query q related to
similar_queries_list =MinHashLsh.query(query)
taskID = find_most_common(similar_queries_list)
return taskID

There are two parameters that can be set for this method: number of per-
mutation and Jaccard similarity threshold. The Jaccard similarity threshold
must be set at initialization, and cannot be changed. So does the number of
permutation functions parameter. More permutation functions improve the
accuracy, but also increases query cost, since more processing is required as
the MinHash gets bigger.

We preprocess the queries before hashing them by doing following steps:

• remove stop words3

• remove duplicate words

• apply stemming on each of the words4

• remove queries with more than 10 words

• remove tasks with less than 50 queries

Based on multiple experiments we chose the number of permutation equal
to 128 and Jaccard similarity threshold equal to 0.4. These values gave us the
best performance considering a trade-off between accuracy and speed for this
method.

The accuracy of this method is 0.6570 for dataset D1, 0.6586 for dataset
D2 and 0.3750. The reason for low accuracy on dataset D3 is that compared
to D1 and D2, lots of the queries start with "how to". Another reason is the
lower average of queries in a task.

3Using stop words from nltk.corpus.stopwords
4Using Porter stemmer

32

CHAPTER 4. EXPERIMENTS

Corpus D1 D2 D3
Accuracy 0.657 0.6586 0.375
Accuracy with 2 tasks 0.7586 0.7538 0.4831
Time for making hash corpus 61s 53.8s 214s
Find task for a single query 1.3ms 0.7ms 3.7ms
Time hashing and adding a single query ∼3ms ∼3ms ∼3ms
Number of queries 102,171 93,391 331,389

Table 4.2: MinHash LSH results

Now, let’s see what are the specifications of queries which their task is
predicted right or wrong. As you can see in table 4.3, in dataset D1, length
of queries for which MinHash LSH could predict their task correctly is bigger
than the false predicted ones considering either query length or average words
in a query. Also, false predicted queries have more stop words. They also have
more unique words. ((Conclusion: more stop words, longer length, more new
words make it harder to predict))

In dataset D2, like in dataset D1, for correct predicted queries, average
query length is bigger than the false predicted ones considering either query
length or average words in a query. Plus, false predicted queries have more
stop words. But, despite D1, They have less unique words(table 4.4).

In dataset D3, the situation is exactly like dataset D1 (table 4.5).
If we choose the most similar query instead of getting the most common

task, the accuracy decreases in all three datasets. So, choosing the most com-
mon task is a better decision. The results are available in table 4.6.

To see the impact of the number of queries in tasks, we decided to keep
the tasks which have more than 50 queries and remove the rest. In another
experiment, the tasks with more than 100 queries were investigated. The
results in table 4.7 show that the accuracy increases when the tasks have more
queries. In dataset D3 we see a significant increase in accuracy after deleting
tasks which have not at least 50 queries. If we change the threshold to 100,
the increase happens again. The results are available in table 4.7.

4.3 Word2Vec Model
For using GoogleNews Word2vec model, we use Gensim[Řehůřek and Sojka,
2010] library. Gensim5 is a free python library which can be used for text
analysis. The reason that we chose this library, is that its implementation is
efficient and robust.

5https://radimrehurek.com/gensim/

33

https://radimrehurek.com/gensim/

CHAPTER 4. EXPERIMENTS

Corpus D1
All Correct False

Words 445,025 279,988 165,037
Unique Words 37,825 23,272 26,508
Min. Stop words in Query 0 0 0
Max. Stop words in Query 20 20 16
Avg. Stop words in Query 0.71 0.61 0.9
Std. Stop words in Query 1.14 1.03 1.31
Min. Words in Query 2 2 2
Max. Words in Query 46 46 46
Avg. Words in Query 4.36 4.17 4.71
Std. Words in Query 2.62 2.03 3.44
Min. Length of Query 4 4 5
Max. Length of Query 309 282 309
Avg. Length of Query 27.9 26.95 29.73
Std. Length of Query 16.52 12.76 21.87

Table 4.3: Dataset D1: Compare query specifications between queries with correct
predicted task and queries with false predicted task, using MinHash LSH method

Corpus D2
All Correct False

Words 332,750 224,217 108,533
Unique Words 42,325 30,155 26,784
Min. Stop words in Query 0 0 0
Max. Stop words in Query 10 9 10
Avg. Stop words in Query 0.35 0.33 0.39
Std. Stop words in Query 0.74 0.72 0.78
Min. Words in Query 1 1 1
Max. Words in Query 17 16 17
Avg. Words in Query 3.56 3.65 3.4
Std. Words in Query 1.56 1.49 1.67
Min. Length of Query 1 1 1
Max. Length of Query 91 86 91
Avg. Length of Query 22.57 23.21 21.34
Std. Length of Query 9.43 9.09 9.93

Table 4.4: Dataset D2: Compare query specifications between queries with correct
predicted task and queries with false predicted task, using MinHash LSH method

34

CHAPTER 4. EXPERIMENTS

Corpus D3
All Correct False

Words 1,647,644 565,914 1,081,730
Unique Words 62,591 38,618 51,557
Min. Stop words in Query 0 0 0
Max. Stop words in Query 12 11 12
Avg. Stop words in Query 1.28 0.84 1.55
Std. Stop words in Query 1.44 1.21 1.5
Min. Words in Query 1 1 1
Max. Words in Query 19 19 19
Avg. Words in Query 4.97 4.55 5.22
Std. Words in Query 2.03 1.83 2.1
Min. Length of Query 1 1 1
Max. Length of Query 116 107 116
Avg. Length of Query 27.42 26.72 27.85
Std. Length of Query 9.71 9.24 9.95

Table 4.5: Dataset D3: Compare query specifications between queries with correct
predicted task and queries with false predicted task, using MinHash LSH method

Corpus D1 D2 D3
Accuracy 0.4875 0.4995 0.1725
Number of Queries 102,171 93,391 331,389

Table 4.6: Choose the top task returned by MinHash LSH instead of most common
task.

Finding the proper task for a query using Word2vec model is highly de-
pendant on the number of words which are in the Word2vec model. If a word
is not in the model, we can’t measure the similarity of the words. So, we
checked how many of the words in different datasets are available in Google-
News model. We got every word in the queries and checked if they are in the
corpus or not. On average ∼15% of the words in the datasets are not in the
in the Word2vec model. If we consider unique words, this value increases to
∼36%. Despite the high percentage of absent words, this method still obtains
a high accuracy. The results are in table 4.8.

Since calculating query similarity using this model needs a longer time
compared to other methods(e.g. MinHash LSH, Trie, Elastic search), we tested
it on a small sample to see how it performs(table 4.9). After doing experiments,
we found out that this method is not only slow but also obtains a low accuracy
on a simple dataset. The results can be improved by using WMD algorithm,

35

CHAPTER 4. EXPERIMENTS

Corpus D1
Queries in Task All >50 >100
Accuracy 0.6570 0.7589 0.7588
No. of Queries 102,171 102,115 101,266

Corpus D2
Queries in Task All >50 >100
Accuracy 0.6586 0.7797 0.8039
No. of Queries 93,391 66,004 45,224

Corpus D3
Queries in Task All >50 >100
Accuracy 0.3750 0.5760 0.7130
No. of Queries 331,389 184,436 47,293

Table 4.7: MinHash LSH prediction accuracy considering tasks which contains
more than 50 and 100 queries.

Corpus D1 D2 D3
Words 445,025 332,750 1,647,644
Unique Words 37,825 42,325 62,591
Total Words not in GoogleNews 79,105 45,048 256,437
Unique Words not in GoogleNews 13,491 18,125 20,458
Total Words not in GoogleNews % 17.7 13.5 15.5
Unique Words not in GoogleNews % 35.6 42.8 32.68

Table 4.8: Words in datasets, which are not in GoogleNews Corpus

which is described in next section.

4.4 Word Mover’s Distance (WMD)
To compare the performance of WMD algorithm and see how it is more efficient
than simply calculating the distance between queries, we did the experiment
on TREC Tasks 2015 dataset. We used GoogleNews corpus for this experiment
too. In the same amount of time, WMD performed significantly better with
an accuracy of 0.61(table 4.9). But the speed issue is not solved, because of
the same amount of comparisons. This algorithm used those similarity values
wisely instead of simply adding them and average them.

This method can be used also to evaluate the quality of suggestions from

36

CHAPTER 4. EXPERIMENTS

Method Simple WMD
Accuracy 0.36 0.61
Time defining task for a query 1.4s 1.4s

Table 4.9: Compare Word Mover’s Distance(WMD) algorithm performance with
simple distance calculation on TREC Tasks 2015 dataset

different search engines. We checked the suggestions for queries from different
tasks from different search engines, to see how close are these suggestions to
each other. We checked the Ask suggestions because of the lower accuracy
of WMD method. Later, after doing experiments, we found out that Ask
suggestions have a bigger share of false predictions than the suggestions from
other search engines. This happens because in some of the Ask suggestions
there are German words because of the location, although the query itself was
in English(table 4.10).
We use WMD function in Gensim library. Here is sample code of how to
calculate the distance between two sentences:

Example 4.4.1 Calculate the distance between two sentences using WMD al-
gorithm.

model = gensim . models . KeyedVectors .
load_word2vec_format (model_name)

#two sample s en t ence s
s1 = ’ the f i r s t sentence ’
s2 = ’ the second sentence ’
#c a l c u l a t e d i s t a n c e between two s en t ence s
#us ing WMD a l go r i t hm
d i s t an c e = model . wmdistance (s1 , s2)

the calculation method illustrated in Figure 2.5.

In average we achieved an accuracy of 0.7794 defining a task for approx-
imately 14,000 queries. The time it takes to define a task in such dataset
regarding the size, takes 15 seconds, which unacceptable not only in real-time
scenarios but also in pre or post-processing.

Also, we checked the task similarity using WMD algorithm to see how
similar are the queries in a task compared to themselves and to queries in other
tasks. We summed up the distance between each query pairs of two tasks and

37

CHAPTER 4. EXPERIMENTS

Queries Accuracy
TREC 547 0.8665
Bing 2131 0.8601
Google 3707 0.8581
AOL 1887 0.8542
Ask 5989 0.6712

avg. accuracy: 0.7794
total queries: 14261
avg. time assigning a task: 15s

Table 4.10: Compare suggestions for queries in TREC Tasks 2015 dataset from
different search engines using WMD algorithm.

average them. As you can see in Figure 4.1 even the distance between the
queries in one task is sometimes more than the distance to queries from other
tasks. The only task which has near zero distance to itself is task number 6.

If we consider tasks as a collection of words in their queries and then mea-
sure their distance to each other using WMD, separating the tasks based on
the distance factor in Word2Vec model is very difficult. In Figure 4.2 the
distance between a task to itself is 0.

In table 4.11 the results of testing WMD algorithm on query sample from
datasets D1, D2 and D3 are available. Despite its accuracy, the time it takes
to look for word vectors and compute the distances between them makes this
method inefficient.

Corpus D1 D2 D3
Accuracy 0.7334 0.7216 0.5687
No. of samples 5500 2500 1000

Table 4.11: Accuracy of WMD on samples of dataset D1, D2 and D3.

4.5 Elastic Search
We used official python library of Elastic search6 in order to do the experiments.

Like in the MinHash LSH section experiments, we take out one query and
look into the rest of queries to find similar queries and define the task based
on them. In Minhash LSH it is not fixed that how many similar queries will be

6https://github.com/elastic/elasticsearch-py

38

https://github.com/elastic/elasticsearch-py

CHAPTER 4. EXPERIMENTS

Figure 4.1: Task Similarity heat map for TREC Tasks 2015 dataset, distance
between queries in a task

returned. In Elastic search submitting a query returns 10 results by default.
Then, the task will be assigned based on these results.

39

CHAPTER 4. EXPERIMENTS

Figure 4.2: Task Similarity heat map for TREC Tasks 2015 dataset, distance
between tasks as a set of words

Algorithm 4.2: Assign a task to a query, using Elastic search
inputs : q_list: list of (query, task) pairs, query: A single query
output: A task which is the query q related to
elastic = index(qlist)
similar_queries_list = elastic.search(query)
taskID = find_most_common(similar_queries_list)
return taskID

40

CHAPTER 4. EXPERIMENTS

Because of the type our task, we used "match" query from "Full-text
queries’ group. It is the standard query for performing full-text queries, in-
cluding fuzzy matching and phrase or proximity queries.

This method has the highest among all the methods that we investigated.
The accuracy, indexing and search time of this method are very good. As you
can see in table 4.12, the time for finding a task for a single query will increase
slightly with the growth of corpus.

Its performance is better than MinHash LSH in all cases on different
datasets. For datasets D1, D2 and D3 we achieved the accuracy of 0.7722,
0.7885 and 0.6181 consequently.

By assigning a second task to each query the accuracy improved to 0.85 in
datasets D1 and D2. Again, the dataset D3 had the highest improvement(table
4.12).

Corpus D1 D2 D3
Accuracy 0.7722 0.7885 0.6181
Accuracy with 2 Tasks 0.8576 0.8597 0.7311
Time for indexing all queries 169s 145s 543s
Find task for a single query 2.3ms 2ms 3.3ms
Time indexing and adding a single
query

∼2ms ∼2ms ∼2ms

Number of Queries 102,171 93,391 331,389

Table 4.12: Elastic Search results

We also analyzed the queries of each corpus for which the Elastic search
could predict their related tasks correct or incorrect to see what are their dif-
ferences. In dataset D1, the queries which their task is correctly predicted,
have lower average stop words, lower average words in a query and shorter
length regarding the number of characters than the queries which their task is
incorrectly predicted. In dataset D2, the situation is different. The difference
between average stop words is trivial. But the average length of queries re-
garding either words or characters is higher in the queries which their task is
incorrectly predicted. In dataset D3, the queries which their task is correctly
predicted, have slightly lower average stop words like in D2, longer length re-
garding the number of characters and higher average number of words in the
query than the queries which their task is incorrectly predicted. The only com-
mon factor between three datasets is lower average stop words in the queries
which their task is correctly predicted compared to the queries which their
task is incorrectly predicted. But the difference is not significant in each of
datasets, which means that we can’t find a pattern by looking at the length of

41

CHAPTER 4. EXPERIMENTS

query and number of stop words in a query.

Corpus D1
All Correct False

Words 445,025 336,498 108,527
Unique Words 37,825 28,448 20,087
Min. Stop words in Query 0 0 0
Max. Stop words in Query 20 20 15
Avg. Stop words in Query 0.71 0.67 0.82
Std. Stop words in Query 1.14 1.08 1.31
Min. Words in Query 2 2 2
Max. Words in Query 46 45 46
Avg. Words in Query 4.36 4.26 4.66
Std. Words in Query 2.62 2.27 3.54
Min. Length of Query 4 4 4
Max. Length of Query 309 290 309
Avg. Length of Query 27.9 27.36 29.76
Std. Length of Query 16.52 14.23 22.49

Table 4.13: Dataset D1: Compare query specifications between queries with correct
predicted task and queries with false predicted task, using Elastic Search

If we define the task based on the task of the most similar query, the
accuracy decreases (table 4.16). So, here is also choosing the most common
task between returned results is a better heuristic.

Experimenting on tasks with more than 50 queries or 100 queries resulted
in an improvement. The accuracy improvement in dataset D3 was significant.

Moreover, choosing the most common task from returned results performed
better than choosing the task based on the task of the most similar query. But
the difference is less significant compared to MinHash LSH.

4.6 Pseudo-Document
This idea works best with the Elastic search. WMD and MinHash LSH do not
perform on pseudo-documents successfully. To show this, we experimented
both methods on a dataset consisting of TREC Task 2015 queries and sugges-
tion for them from Bing, Google and AOL. We didn’t involve ASK suggestions
because they had lots of words which were not in the GoogleNews corpus. In
the first attempt, the obtained accuracies were very low. Then we decided
to do preprocessing on the queries to see if the results improve. For making
pseudo-documents, we did the following steps:

42

CHAPTER 4. EXPERIMENTS

Corpus D2
All Correct False

Words 332,750 270,269 62,481
Unique Words 42,325 35,454 17,918
Min. Stop words in Query 0 0 0
Max. Stop words in Query 10 10 8
Avg. Stop words in Query 0.34 0.35 0.37
Std. Stop words in Query 0.74 0.73 0.76
Min. Words in Query 1 1 1
Max. Words in Query 17 17 14
Avg. Words in Query 3.56 3.67 3.16
Std. Words in Query 1.56 1.52 1.66
Min. Length of Query 1 1 1
Max. Length of Query 91 91 86
Avg. Length of Query 22.57 23.33 19.74
Std. Length of Query 9.43 9.19 9.77

Table 4.14: Dataset D2: Compare query specifications between queries with correct
predicted task and queries with false predicted task, using Elastic Search

Corpus D3
All Correct False

Words 1,647,644 1,038,426 609,218
Unique Words 62,591 46,529 41,455
Min. Stop words in Query 0 0 0
Max. Stop words in Query 12 11 12
Avg. Stop words in Query 1.28 1.27 1.30
Std. Stop words in Query 1.44 1.43 1.46
Min. Words in Query 1 1 1
Max. Words in Query 19 19 19
Avg. Words in Query 4.97 5.07 4.81
Std. Words in Query 2.03 1.97 2.11
Min. Length of Query 1 1 1
Max. Length of Query 116 107 116
Avg. Length of Query 27.42 28.14 26.27
Std. Length of Query 9.71 9.38 10.12

Table 4.15: Dataset D3: Compare query specifications between queries with correct
predicted task and queries with false predicted task, using Elastic Search

43

CHAPTER 4. EXPERIMENTS

Corpus D1 D2 D3
Accuracy 0.7518 0.7635 0.5812
Number of Queries 102,171 93,391 331,389

Table 4.16: Choose the top task returned by Elastic Search instead of most common
task.

Corpus D1
Queries in Task All >50 >100
Accuracy 0.7722 0.7721 0.7721
No. of Queries 102,171 102,115 101,266

Corpus D2
Queries in Task All >50 >100
Accuracy 0.7885 0.7890 0.8147
No. of Queries 93,391 66,004 45,224

Corpus D3
Queries in Task All >50 >100
Accuracy 0.6181 0.6847 0.8082
No. of Queries 331,389 184,436 47,293

Table 4.17: Elastic Search prediction accuracy considering tasks which contains
more than 50 and 100 queries.

• remove one word queries

• remove queries with character length than 3

• remove stop words from queries

• remove top 100 words which are common between multiple tasks

• then join remained words in queries in queries of each task to form a
pseudo-document

WMD obtained an accuracy of 0.05 which is very low compared to its per-
formance when not representing each task as a single document. Its accuracy
on the same data is 0.85. But using pseudo-documents caused a significant
improvement in the task assignment. The time decreased from 15 seconds to 7
milliseconds, however, the accuracy drops considerably. In MinHash LSH the
accuracy drops from 0.63 to 0.20, with having the speed as same as before,
near 1 milliseconds.

44

CHAPTER 4. EXPERIMENTS

Corpus D1 D2 D3
ES predicted correctly 78,898 73,647 204,862
ES accuracy 0.7722 0.7886 0.6182
MLSH predicted correctly 67,129 61,511 124,288
MLSH accuracy 0.6570 0.6586 0.3751
TT* 60,351 56,888 104,922
TF* 18,547 16,759 99,940
FT* 6,778 4,623 15,121
FF* 16,495 15,121 107,161
ES no related task 125 1,270 1,885
MLSH no related task 7,071 7,730 9,190

TT* : ES and MLSH both found the correct task.
TF * : ES found correct and MLSH found a wrong task.
FT* : MLSH found correct and ES found a wrong task.
FF* : ES and MLSH both found a wrong task.

Table 4.18: A comparison between Elastic Search and MinHash LSH

Despite Minhash LSH and WMD, Elastic search needs no preprocessing
when dealing with pseudo-documents. Also, it’s performance is significantly
better than those methods. It obtained an accuracy of 0.81 by using pseudo-
documents on this dataset, compared to 0.90 by not using pseudo-documents.

In table 4.19 you can see the results of experiments using Elastic search and
pseudo-documents, by using train-test split on the three datasets: D1, D2 and
D3. As the results show, the performance of this method is very good despite
the low number of train samples(50/50). The samples were chosen randomly
from each and cover all the tasks. On the same data, considering each query
separately instead of making a pseudo-document for each task, the results are
almost the same with the standard deviation of 0.02. But the indexing time
for pseudo-document is faster.

Corpus D1 D2 D3
Accuracy (train/test%: 80/20) 0.7856 0.7464 0.5966
Accuracy (train/test%: 50/50) 0.7585 0.7232 0.5772

Table 4.19: Define a task using Elastic search and pseudo-documents.

45

CHAPTER 4. EXPERIMENTS

4.7 Overview
The results in table 4.20 shows that Elastic search has the best accuracy on
three datasets compared MinHash Lsh and Trie. Trie has its lowest accuracy
on dataset D3, which is the same for Elastic search and MinHash LSH.

Corpus D1 D2 D3
Trie 0.1403 0.0914 0.0332
MinHash LSH 0.6570 0.6586 0.3750
Elastic search 0.7722 0.7885 0.6181

Table 4.20: Accuracy of Trie, MinHash LSH and Elastic search on dataset D1, D2
and D3.

To see the effects of very short and meaningless queries and the tasks which
not contained enough queries, we filtered these queries and cleaned the data.
We did the following steps to clean the datasets:

• remove queries that belong to more than one tasks

• remove queries with less than 3 characters

• remove single word queries

• remove queries with more than 10 words

• remove tasks with less than 50 queries

After cleaning datasets, accuracy decreased slightly, which shows that Elas-
tic search works fine with noisy data.

Corpus D1 D2 D3
Accuracy on noisy data 0.7722 0.7885 0.6181
Accuracy on clean data 0.7651 0.7817 0.5866
Queries: clean data 96,097 85,225 319,324
Queries: noisy data 102,171 93,391 331,389

Table 4.21: Accuracy of Elastic search on dataset D1, D2 and D3, after cleaning
the data.

As we mentioned before, WMD method can’t be tested on all queries of
all dataset. To compare the performance of all different methods, we took a
random sample from each dataset and use the rest of data as train dataset
and run experiments on them. We took out 1% of queries as test and 99% as
training. This results in ∼1000 test queries for D1 and D2 and ∼3000 for D3.

46

CHAPTER 4. EXPERIMENTS

Elastic search outperforms all other methods and achieves a higher accuracy.
Pseudo-document performs slightly better on D1 and D3.

In dataset D1 test samples, for 11% of the queries, none of the methods
returned the true task. In D2 samples this number is 12.5% and in D3 sample,
15.5%. Here are some queries for which none of the methods found the correct
task:

• "an Easy", "how do I": which are ambiguous queries

• "how to start a speech": it is a suggestion from AOL for question start-
ing with "how to start". Although the assigned task is false based on
the training set when we checked the dataset, WMD and Elastic search
assigned tasks are more related to this query, and exactly about the
speech.

• "when to replace tires": All the methods assign the same task to it. Its
related task in the dataset is about replacing tires of a bike, the assigned
tasks are related to replacing the tires of a car, which is also a true task.

• "RIPAIM": which is a misspelt for RIP AIM(AOL Instant Messenger).

• "lvi.ch", "OK.gov": URLs related to institutes’ names

• "How to delete things from the internet": this query is related to a task
with the subject of online affairs. The assigned task by methods is about
using internet and different websites like Twitter and Facebook.

When all of the methods return the same task for a query but it is false,
normally the assigned task to the query in the datasets is not absolutely correct.
This can be used to improve the datasets’ accuracies.

As shown in this Chapter, the Elastic search has the best performance
among all of the methods. It is fast and accurate and works perfectly by using
the idea of making a pseudo-document. Also, there is no need to pre-process
the queries, because it will take care of everything out of the box. Adding and
removing an element from the index is fast and easy and we can add as much
as meta-data to the queries and index them. It also deals better than other
methods with noisy data. The second best method is MinHash LSH which
is faster than Elastic search, but considering accuracy it can’t beat Elastic
search. Word2Vec models are not suitable for this task because, despite their
accuracy, they are extremely slow. In addition, it suffers from the problem
of missing words from the corpus, and should the model be trained after a
while to cover this limitation, which is also time-consuming and not possible
in real-time.

47

CHAPTER 4. EXPERIMENTS

Corpus D1 D2 D3
MinHash LSH 0.6112 0.6257 0.3935
WMD 0.7220 0.6906 0.6614
Elastic search 0.7725 0.7884 0.7025
Pseudo-doc.: Elastic 0.7793 0.7804 0.7304

Table 4.22: Accuracy of WMD, MinHash LSH and Elastic search on sample of
dataset D1, D2 and D3.

48

Chapter 5

Conclusion

In this thesis, we focus on finding the proper task for the user’s submitted
query as fast as possible, which has never been done before. We presume
that a query log categorized by tasks is already available and focus on the
problem of finding the right task for a new query. This will help the user
accomplishing a search task or fulfilling an information need more satisfying.
The main aspects of solving this problem are speed and accuracy.

Since there was no proper dataset available for our purpose, we created
three different datasets which are publicly available. Two of them have ap-
proximately 100,000 queries and the third one contains more than 300,000
queries. These datasets have significantly more queries than available query
logs.

To find the related task to a query, we experimented 4 methods: (1) Trie
data structure to search through queries to find the right task, (2) a hash-based
method called Minhash LSH, (3) Word2Vec models and (4) Elastic search.
Also, we investigated the idea of making pseudo-document from the queries
in a task and representing the task with this pseudo-document. The obtained
accuracy of the Elastic search is higher than other methods. Also, it is a
fast method and can define a task in ∼2 milliseconds in the given datasets,
which makes it usable in real-time scenarios. Adding and removing an element
from the index is fast and easy. It also deals better than other methods with
noisy data. We used Word Mover’s Distance(WMD) algorithm to calculate
the distance between two queries in Word2Vec models. Word2Vec models
are accurate but slow for real-time operations. MinHash LSH, a hash-based
method, is faster than Elastic search and Word2vec model, but its accuracy is
lower.

The analysis of the queries in different datasets shows that there is no
distinguishable pattern in these queries that can help us figure out if it is a
hard query to find a task for or not.

49

CHAPTER 5. CONCLUSION

Future Work
A bigger verified query log is always better for doing the experiments. It helps
the experiments to be done more similar to the real-world situation. Also,
improving current datasets by manual annotation can be helpful. There are
false suggestions that are not related to a query in a task which should be
removed from datasets or re-assigned with a new task that they are related to.
A procedure which can clean the data automatically and can recognize queries
which are ambiguous or meaningless or belong to a wrong task would be a
lifesaver in the process of preparing a dataset and keeping it clean. Moreover,
different methods other than the ones we used can be examined. The queries
are short and sometimes ambiguous. Finding a way to add extra information
to a query enrich them and to be able to search better in query log helps to
find the related task more accurately. Trying to improve the performance of
hash-based methods regarding their speed will also be very profitable. Using
supervised machine learning algorithms, Facebook’s Fasttext algorithm and
Convolutional Neural Networks may deliver faster and more accurate results.

This problem has not been tackled on the same scale before, and there are
still many unknown areas around it.

50

Bibliography

Ahmed Hassan Awadallah, Ryen W. White, Patrick Pantel, Susan T. Du-
mais, and Yi-Min Wang. Supporting complex search tasks. In Proceed-
ings of the 23rd ACM International Conference on Conference on Informa-
tion and Knowledge Management, CIKM 2014, Shanghai, China, Novem-
ber 3-7, 2014, pages 829–838, 2014. doi: 10.1145/2661829.2661912. URL
http://doi.acm.org/10.1145/2661829.2661912. 2.1

Steven M. Beitzel, Eric C. Jensen, David D. Lewis, Abdur Chowdhury, and
Ophir Frieder. Automatic classification of web queries using very large un-
labeled query logs. ACM Trans. Inf. Syst., 25(2):9, 2007. doi: 10.1145/
1229179.1229183. URL http://doi.acm.org/10.1145/1229179.1229183.
2.2

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. A
neural probabilistic language model. Journal of Machine Learning Research,
3:1137–1155, 2003. URL http://www.jmlr.org/papers/v3/bengio03a.
html. 2.4.5

Andrei Z. Broder. A taxonomy of web search. SIGIR Forum, 36(2):3–10, 2002.
doi: 10.1145/792550.792552. URL http://doi.acm.org/10.1145/792550.
792552. 2.2

Ronan Collobert and Jason Weston. A unified architecture for natural lan-
guage processing: deep neural networks with multitask learning. In Ma-
chine Learning, Proceedings of the Twenty-Fifth International Conference
(ICML 2008), Helsinki, Finland, June 5-9, 2008, pages 160–167, 2008. doi:
10.1145/1390156.1390177. URL http://doi.acm.org/10.1145/1390156.
1390177. 2.4.5

db engines.com. Db-engines ranking of search engines. https://db-engines.
com/en/ranking/search+engine. Accessed: 2018-02-18. 2.4.2

Rene De La Briandais. File searching using variable length keys. In Papers
Presented at the the March 3-5, 1959, Western Joint Computer Confer-

51

http://doi.acm.org/10.1145/2661829.2661912
http://doi.acm.org/10.1145/1229179.1229183
http://www.jmlr.org/papers/v3/bengio03a.html
http://www.jmlr.org/papers/v3/bengio03a.html
http://doi.acm.org/10.1145/792550.792552
http://doi.acm.org/10.1145/792550.792552
http://doi.acm.org/10.1145/1390156.1390177
http://doi.acm.org/10.1145/1390156.1390177
https://db-engines.com/en/ranking/search+engine
https://db-engines.com/en/ranking/search+engine

BIBLIOGRAPHY

ence, IRE-AIEE-ACM ’59 (Western), pages 295–298, New York, NY, USA,
1959. ACM. doi: 10.1145/1457838.1457895. URL http://doi.acm.org/
10.1145/1457838.1457895. 2.4.3

elastic.co. Elastic search official website. https://www.elastic.co. Accessed:
2018-02-18. 2.4.2

Forrester.com. The biggest prize in mobile commerce is influencing offline
sales. https://www.forrester.com/report/The+Biggest+Prize+In+
Mobile+Commerce+Is+Influencing+Offline+Sales/-/E-RES136483/.
Accessed: 2018-02-18. 1

Daniel Gayo-Avello. A survey on session detection methods in query logs and
a proposal for future evaluation. Inf. Sci., 179(12):1822–1843, 2009. doi:
10.1016/j.ins.2009.01.026. URL https://doi.org/10.1016/j.ins.2009.
01.026. 1, 2.3

Google.com. Our latest quality improvements for
search. https://blog.google/products/search/
our-latest-quality-improvements-search/. Accessed: 2018-02-18.
1

Matthias Hagen, Jakob Gomoll, Anna Beyer, and Benno Stein. From search
session detection to search mission detection. In Open research Areas in
Information Retrieval, OAIR ’13, Lisbon, Portugal, May 15-17, 2013, pages
85–92, 2013. URL http://dl.acm.org/citation.cfm?id=2491769. 2.2,
2.3

Bernard J. Jansen and Danielle L. Booth. Classifying web queries by topic
and user intent. In Proceedings of the 28th International Conference on
Human Factors in Computing Systems, CHI 2010, Extended Abstracts Vol-
ume, Atlanta, Georgia, USA, April 10-15, 2010, pages 4285–4290, 2010. doi:
10.1145/1753846.1754140. URL http://doi.acm.org/10.1145/1753846.
1754140. 2.2

Bernard J. Jansen, Danielle L. Booth, and Amanda Spink. Determining the
informational, navigational, and transactional intent of web queries. Inf.
Process. Manage., 44(3):1251–1266, 2008. doi: 10.1016/j.ipm.2007.07.015.
URL https://doi.org/10.1016/j.ipm.2007.07.015. 1

Rosie Jones and Kristina Lisa Klinkner. Beyond the session timeout: auto-
matic hierarchical segmentation of search topics in query logs. In Proceedings
of the 17th ACM Conference on Information and Knowledge Management,

52

http://doi.acm.org/10.1145/1457838.1457895
http://doi.acm.org/10.1145/1457838.1457895
https://www.elastic.co
https://www.forrester.com/report/The+Biggest+Prize+In+Mobile+Commerce+Is+Influencing+Offline+Sales/-/E-RES136483/
https://www.forrester.com/report/The+Biggest+Prize+In+Mobile+Commerce+Is+Influencing+Offline+Sales/-/E-RES136483/
https://doi.org/10.1016/j.ins.2009.01.026
https://doi.org/10.1016/j.ins.2009.01.026
https://blog.google/products/search/our-latest-quality-improvements-search/
https://blog.google/products/search/our-latest-quality-improvements-search/
http://dl.acm.org/citation.cfm?id=2491769
http://doi.acm.org/10.1145/1753846.1754140
http://doi.acm.org/10.1145/1753846.1754140
https://doi.org/10.1016/j.ipm.2007.07.015

BIBLIOGRAPHY

CIKM 2008, Napa Valley, California, USA, October 26-30, 2008, pages 699–
708, 2008. doi: 10.1145/1458082.1458176. URL http://doi.acm.org/10.
1145/1458082.1458176. 2.1

Matt J. Kusner, Yu Sun, Nicholas I. Kolkin, and Kilian Q. Weinberger. From
word embeddings to document distances. In Proceedings of the 32nd Inter-
national Conference on Machine Learning, ICML 2015, Lille, France, 6-11
July 2015, pages 957–966, 2015. URL http://jmlr.org/proceedings/
papers/v37/kusnerb15.html. 2.4.7, 2.4.7, 2.5

Jure Leskovec, Anand Rajaraman, and Jeffrey D. Ullman. Mining of Massive
Datasets, 2nd Ed. Cambridge University Press, 2014. ISBN 978-1107077232.
2.4.1

Zheng Lu, Hongyuan Zha, Xiaokang Yang, Weiyao Lin, and Zhaohui Zheng. A
new algorithm for inferring user search goals with feedback sessions. IEEE
Trans. Knowl. Data Eng., 25(3):502–513, 2013. doi: 10.1109/TKDE.2011.
248. URL https://doi.org/10.1109/TKDE.2011.248. 2.1

Claudio Lucchese, Salvatore Orlando, Raffaele Perego, Fabrizio Silvestri, and
Gabriele Tolomei. Identifying task-based sessions in search engine query
logs. In Proceedings of the Forth International Conference on Web Search
and Web Data Mining, WSDM 2011, Hong Kong, China, February 9-12,
2011, pages 277–286, 2011. doi: 10.1145/1935826.1935875. URL http:
//doi.acm.org/10.1145/1935826.1935875. 2.2, 2.3

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estima-
tion of word representations in vector space. CoRR, abs/1301.3781, 2013a.
URL http://arxiv.org/abs/1301.3781. 2.4.5, 2.4.6, 2.4, 3.4

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean.
Distributed representations of words and phrases and their compositionality.
CoRR, abs/1310.4546, 2013b. URL http://arxiv.org/abs/1310.4546.
2.3

Rodrigo Nogueira and Kyunghyun Cho. Task-oriented query reformulation
with reinforcement learning. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing, EMNLP 2017, Copen-
hagen, Denmark, September 9-11, 2017, pages 574–583, 2017. URL https:
//aclanthology.info/papers/D17-1061/d17-1061. 1

Martin Potthast, Matthias Hagen, Michael Völske, and Benno Stein. Crowd-
sourcing interaction logs to understand text reuse from the web. In Pro-
ceedings of the 51st Annual Meeting of the Association for Computational

53

http://doi.acm.org/10.1145/1458082.1458176
http://doi.acm.org/10.1145/1458082.1458176
http://jmlr.org/proceedings/papers/v37/kusnerb15.html
http://jmlr.org/proceedings/papers/v37/kusnerb15.html
https://doi.org/10.1109/TKDE.2011.248
http://doi.acm.org/10.1145/1935826.1935875
http://doi.acm.org/10.1145/1935826.1935875
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1310.4546
https://aclanthology.info/papers/D17-1061/d17-1061
https://aclanthology.info/papers/D17-1061/d17-1061

BIBLIOGRAPHY

Linguistics, ACL 2013, 4-9 August 2013, Sofia, Bulgaria, Volume 1: Long
Papers, pages 1212–1221, 2013. URL http://aclweb.org/anthology/P/
P13/P13-1119.pdf. 2.3

Radim Řehůřek and Petr Sojka. Software Framework for Topic Modelling
with Large Corpora. In Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks, pages 45–50, Valletta, Malta, May 2010.
ELRA. http://is.muni.cz/publication/884893/en. 4.3

Amanda Spink, Minsoo Park, Bernard J. Jansen, and Jan O. Pedersen. Mul-
titasking during web search sessions. Inf. Process. Manage., 42(1):264–275,
2006. doi: 10.1016/j.ipm.2004.10.004. URL https://doi.org/10.1016/j.
ipm.2004.10.004. 2.1

Statista.com. Global search engine market share as of august 2017,
by search query size. https://www.statista.com/statistics/413229/
search-query-size-search-engine-share/. Accessed: 2018-02-18. 1

Manisha Verma and Emine Yilmaz. Entity oriented task extraction from query
logs. In Proceedings of the 23rd ACM International Conference on Confer-
ence on Information and Knowledge Management, CIKM 2014, Shanghai,
China, November 3-7, 2014, pages 1975–1978, 2014. doi: 10.1145/2661829.
2662076. URL http://doi.acm.org/10.1145/2661829.2662076. 2.2

Manisha Verma and Emine Yilmaz. Category oriented task extraction. In
Proceedings of the 2016 ACM Conference on Human Information Interaction
and Retrieval, CHIIR 2016, Carrboro, North Carolina, USA, March 13-17,
2016, pages 333–336, 2016. doi: 10.1145/2854946.2854997. URL http:
//doi.acm.org/10.1145/2854946.2854997. 2.2

Zi Yang and Eric Nyberg. Leveraging procedural knowledge for task-oriented
search. In Proceedings of the 38th International ACM SIGIR Conference
on Research and Development in Information Retrieval, Santiago, Chile,
August 9-13, 2015, pages 513–522, 2015. doi: 10.1145/2766462.2767744.
URL http://doi.acm.org/10.1145/2766462.2767744. 2.2

54

http://aclweb.org/anthology/P/P13/P13-1119.pdf
http://aclweb.org/anthology/P/P13/P13-1119.pdf
http://is.muni.cz/publication/884893/en
https://doi.org/10.1016/j.ipm.2004.10.004
https://doi.org/10.1016/j.ipm.2004.10.004
https://www.statista.com/statistics/413229/search-query-size-search-engine-share/
https://www.statista.com/statistics/413229/search-query-size-search-engine-share/
http://doi.acm.org/10.1145/2661829.2662076
http://doi.acm.org/10.1145/2854946.2854997
http://doi.acm.org/10.1145/2854946.2854997
http://doi.acm.org/10.1145/2766462.2767744

	Introduction
	Related Work
	What is a Task?
	Task Extraction from Query Logs
	Available Data
	Methods
	MinHash and LSH
	Elastic search
	Trie Data Structure
	Bag of Words Model(BoW)
	Word Embedding Model
	Word2Vec Model
	Word Mover's Distance (WMD)

	Approaches and Data
	Data
	D1 Dataset
	D2 Dataset
	D3 Dataset
	Data Overview

	Trie
	MinHash LSH
	Word2Vec Model
	Word Mover's Distance
	Elastic Search
	The Idea of pseudo-documents

	Experiments
	Trie
	MinHash LSH
	Word2Vec Model
	Word Mover's Distance (WMD)
	Elastic Search
	Pseudo-Document
	Overview

	Conclusion
	Bibliography

