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Abstract

Social systems theory is a sociological framework that differentiates society
based on functional aspects: Each subsystem of society, such as politics, econ-
omy, or science, performs a specific and well-delineated function. Primarily de-
veloped by German sociologist Niklas Luhmann, it is one of the most influential
theories in modern (qualitative) sociology. Yet, it is notorious for its complex-
ity and has rarely been applied in quantitative research thus far. The central
question of this thesis therefore is whether it is possible to operationalize Luh-
manns’ social systems theory using computational methods to automatically
recognize and attribute systems to text data. The proposed solution follows a
two-step process: first, a set of descriptive terms is obtained from a corpus of
Niklas Luhmann’s primary literature. Each social system is associated with a
particular set of twenty terms that semantically describe the nature of a sys-
tem. Then, a generative semi-supervised classification method, the Seed-guided
Multi Topic Model by Zha & C. Li (2019), is applied to categorize documents
according to Luhmann’s proposed taxonomy for social systems. A full ablative
study investigates the problem at hand on four different datasets. This includes
a replication of previous work, a novel scalability assessment, and the detec-
tion of social systems in two different setups: in-domain, i.e., the detection of
systems in Luhmann’s own texts, and cross-domain, i.e., the transfer of the
seed term set to detect systems in a subset of the German Wikipedia. While
the in-domain setup yields excellent results, both in classification performance
and in the usability of the model for downstream tasks, demonstrating the
validity and suitability of the method, the results in the cross-domain setup
are of mixed quality, suggesting future investigations into the behavior of the
model for domain transfer.
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Chapter 1

Introduction

Classification is a core task across nearly all scientific disciplines, and comes in
many different types, forms, and purposes. By arranging objects or phenomena
into orderly categories, trends can be identified, relevant things can be sepa-
rated from irrelevant things, groups can be compared, or recommendations can
be made.

In the social sciences, especially in the field of sociology, which has a long-
standing tradition of quantitative research and statistical methods, one mode
of classification finds widespread application: the assignment of observations,
for example, survey responses, text transcripts, or cultural artifacts, to a set of
categories, which can then be compared with statistical tools. In this way, clas-
sification serves to quantify naturally occurring (social) phenomena and is the
foundation for operationalizing and addressing a wide range of research ques-
tions. In this context, classification is commonly referred to as coding, based
on a predefined codebook of possible categories, and guidelines describing how
and when each category (code) is applicable. Traditionally, a human assessor
is faced with the task of assigning the appropriate categories.

At the same time, given the digital convergence, social communication is
increasingly mediated through digital media, and is thus observable and pro-
cessable computationally. Large text corpora, in particular, have become a
valuable resource for sociological analyses because they promise direct and
low-barrier access to a wide range of latent variables of interest to sociology
(Muller-Hansen et al., 2020; Roberts et al., 2016). This creates new possibilities
to analyze societal phenomena quantitatively, which have previously only been
addressed through qualitative analysis. But with ever more complex and sizable
sets of observations, this task quickly becomes insurmountable through hu-
man effort only, necessitating the development of computer-aided approaches
to support social science research.
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The structural approach to sociological theory, with prominent advocates
being sociologists Emil Durkheim, Talcott Parsons, and Niklas Luhmann (Hey-
debrand, 2001, p. 15230), encompasses theoretical frameworks that directly
relate to the notion of categorization: they grasp society by means of differen-
tiation, i.e. they conceptualize it as the sum of different parts, and analyze how
these parts constitute themselves, what they consist of, and how they interact.
One of the most prominent theories of this kind is the theory of social systems
set forth by Niklas Luhmann. According to Luhmann, society consists of dif-
ferent (sub-)systems that are each categorized by their function—for example,
Politics, Art, Education, or Economy,.

However, Luhmanns’ theory is not only notoriously complex (Albert, 2019,
p. 2), but has so far almost exclusively been applied in a qualitative way. De-
spite the considerable value algorithmic methods for text analysis promise to
deliver for practitioners in the field of the social sciences, many analyses base
their insight on rather basic methodological approaches (Jacobs & Tschétschel,
2019), be it because of unawareness of other technical possibilities, methodolog-
ical prejudice, or simply the barrier of entry. This creates issues with regard to
scaling, repetition, and systematization of experiments (Grimmer & Stewart,
2013; Jacobs & Tschotschel, 2019). The quantitative analysis of social system
theory is no exception here: it has so far been restricted to comparing the
relative frequency of keywords describing each system in a large multilingual
text corpus (Roth etal., 2017).

Yet, recent advancements in computer science would allow social science
research to tackle increasingly complex issues with the help of algorithmic solu-
tions (Roberts et al., 2016). Especially semi-supervised learning gives impetus
for promising new applications, circumventing one of the basic problems of
computational classification: the need for a large amount of labeled training
data, which is often not available to cater to specific research questions in
sociology, such as the automatic classification of social systems. Here, seed-
guided classification, also referred to as Dataless Classification (DC, Chang
etal., 2008), introduces a specific type of weakly supervised learning on text
data that learns a classifier without any labeled data. Instead, each class is
described by a set of representative seed terms, which are presumed to express
the “nature” of the class, i.e. characteristics that a document should exhibit to
be deemed part of said class. As Chang et al. argue, this approach incorporates
the semantics of the label into the classification process, akin to how a human
might categorize text. A human tasked with deciding whether a newspaper
article fits the ressort of politics does so by relating the semantic meaning en-
coded in the class name to the content of a to-be-classified document, not by
comparing a set of labeled examples to the candidate.
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This thesis aims to explore the use of such a seed-guided classification model
as a quantitative operationalization of social system theory. By extracting a
set of descriptive seed terms directly from relevant social science literature,
and subsequently fitting a weakly-supervised classification model using these
terms as prior information, for the first time, automatic classification of social
systems in text data becomes possible. While promising a scalable, flexible, and
accurate quantitative grounding for novel insight in social systems research,
this warrants a pilot study to critically evaluate the suitability of the method.

To this end, this thesis sets forth four main contributions: (1) a replication
study of previous baseline evaluations of the SMTM, verifying both previous
claims on classification performance, and conducting a comparative evaluation
of different seed term extraction methods; (2) an investigation of the model’s
ability to scale to large text corpora, applying it to categorize a large subset of
German Wikipedia articles; (3) a dataset of labeled documents for describing
each social system mined directly from the publications of Niklas Luhmann,
on which an in-domain classification experiment is conducted as first foray
into automatic classification of social systems; and finally (4) a cross-domain
classification experiment transferring seed terms mined on Luhmannian liter-
ature onto the Wikipedia dataset, establishing a first quantitative grounding
for social system analysis.

In the following, Chapter 2 reviews related work on social system theory
(Section 2.1), topic modeling in general (Section 2.2), and seed-guided classifi-
cation in particular (Section 2.3). Based on this, Chapter 3 describes in detail
the SMTM model (Section 3.2), as well as different methods for seed term min-
ing (Section 3.3). The two datasets that were constructed as part of this thesis,
derived from Niklas Luhmanns’ monographs and from Wikipedia, are intro-
duced in Chapter 4, and the experimental setup is detailed. Finally, Chapter 5
presents the four aforementioned experiments and discusses the suitability of
the SMTM model for social systems classification. Chapter 6 concludes this
thesis, and provides outlook on future applications of the method.



Chapter 2

Background

This chapter is divided into three parts: first, Section 2.1 provides background
information on the theory of social systems, notably developed by German
sociologist Niklas Luhmann. Then, Section 2.2 continues with an introduction
to topic modeling, encompassing basic concepts, advantages, and drawbacks
of the method, with a focus on applications in social science research. Finally,
Section 2.3 gives an overview on the state of the art in semi-supervised, seed-
guided classification, reviewing different approaches to both classification and
seed term mining.

2.1 Social System Theory

In order to clarify the problem that the system theory approach is trying to
address, it is first necessary to briefly outline the fundamental issues that drive
the field of sociology. Sociology established itself as an independent area of re-
search only in the middle of the 19th century during which massive changes
in the entire society occurred (Saalmann, 2016, p. 14). Most notably, the first
and second industrial revolutions took place, leading to urbanization and fun-
damental changes in education, family, working conditions and political orga-
nization. This in turn raised interest in questions regarding the inner workings
of society and social structures, which soon led to the development of so-
cial theories, theoretical frameworks offering an explanatory approach (ibid.,
p. 14). In essence, all sociological theories try to address one central question,
prominently formulated by Max Weber: “[wie] soziales Handeln deutend [zu]
verstehen und [...] in [...] seinem Ablauf und seinen Wirkungen urséchlich [zu]
erklaren [sei]”(Weber & Winckelmann, 1972, p. 1)—how social action/society
is to be understood and explained causatively in its course and effects.
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Equal
+ _
Segmentation Centralization
E + Families, tribes, nations, ... Civilizations, empires, ...
E
»n Functional Differentiation Stratification
- Economy, Science, Art, ... Castes, Estates, Classes, ...

Figure 2.1: Social Differentiation (adapted from Roth, 2015, p. 113)

One particular group of theories approaches this question from a struc-
tural perspective (Saalmann, 2016, p. 42), with prominent advocates of this
approach being sociologists Emil Durkheim, Talcott Parsons, and Niklas Luh-
mann (Heydebrand, 2001, p. 15230). “Structuralism is an intellectual tendency
that seeks to understand and explain social reality in terms of social struc-
tures” (ibid., p. 15230). From this perspective, societal processes are char-
acterized primarily as increasing differentiation, a key aspect of Luhmanns’
theory of society.! Here, differentiation refers to the “intrasystem process of
subsystem formation” (Luhmann, 1977), i.e. how a whole thing can be inter-
nally divided into parts, or, more specifically: how society can be decomposed
into aspects.

To arrive at the differentiation of society that Luhmann ultimately pro-
poses, it is first necessary to trace its historical development (Luhmann, 1987,
161f.) through four possibilities of social differentiation, which are depicted in
Figure 2.1 along the two axes of equality (whether there is an inherent order
between segmented units) and similarity (whether segmented units share the
same characteristics). The path of historic development can be retraced by
starting in the upper left cell and continuing clockwise, ultimately arriving at
functional differentiation.

Starting with early societies, subsystems were characterized by notions of
clans, tribes, and families. This is referred to as differentiation by segmentation,
and society is divided into subsystems that are similar and equal (ibid., 161f.
Roth et al., 2017, p. 3). Over the course of the neolithic revolution, as more ad-
vanced civilizations emerged, this division has been replaced by one motivated
by centralization: first empires develop, and society could be differentiated in
the center-periphery spectrum, which forms subsystems that are similar, but

L As Albert (2019, p. 3) remarks, while Luhmanns’ Gesellschaftstheorie is often translated
as social theory, the translation theory of society is more fitting, as Luhmann deliberately
breaks with the notion of the social in classical sociology, which is often a variant of the theme
of community; for Luhmann, differentiation and the resulting systems constitute society, not
a shared set of norms and values, which traditionally defines what is social.
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unequal. Soon, this was replaced by differentiation by stratification, as hierar-
chical societal systems emerge, like cast systems, or estates of the realm. Here,
division is achieved through ranked (sub-)communities, or unequal, dissimilar
subsystems (Roth etal., 2017, p. 4). Finally, functional social differentiation
emerged in the modern age from its historically antecedent forms (Holmstrom,
2007, p. 257; Albert, 2019, p. 4,). Here, each system is defined by its function
to society. For example, the system of science has the function of observation,
the system of economy has the function of distribution, the system of politics
has the function of exerting control. These functional systems are dissimilar,
but equal.

Functional differentiation divides society into units based on function, by
applying a so-called binary code to all inter-societal communication. For exam-
ple, all communication that applies the code true/untrue is placed within the
system of science; all communication that applies the code innovative /imitative
is placed within the system of art. Each function system applies one single
code only and exclusively. However, one act of communication might be al-
luding to (or categorized as belonging to) different systems at the same time
(Roth & Schiitz, 2015, p. 17). Besides a code and function, systems encompass a
medium, i.e. the subject of communication, the primary method through which
the system is communicated, and a program, deciding which of the two binary
alternatives of the code is applicable to the communication at hand (Albert,
2019, p. 8). Within the aforementioned example, the system of science commu-
nicates about truth (its medium), and scientific theory (its program) dictates
truth (its code). Similarly, the system of art is about style (its medium), and
fashion (its program) distinguishes between innovative and imitative (its code,
Roth & Schiitz, 2015, p. 25; Roth etal., 2017, p. 5).

A second way of characterizing the system-constituting process is through
their effect of reducing complexity, which is the key difference between a system
and its environment: “[A] system is always less complex than its environment.”
(Ritzer, 2010, p. 335). Modern supply chain management could be used as a
concrete example for this (see also ibid., p. 335): sourcing raw materials is
reduced to information about their price and quality. All other information
(such as the political situation in countries materials are sourced from) is
ignored to reduce the complexity of the process, and becomes part of the
environment; the supply chain as its own system thus constitutes a simplified
view, i.e. component or sub-system, of society.

Reducing complexity induces decision processes (Holmstrom, 2007, p. 258).
This increases uncertainty and contingency (ibid., p. 258; Ritzer, 2010, p. 335):
“Contingency means that being depends on selection which, in turn, implies
the possibility of not being and the being of other possibilities.” (Luhmann,
1976, p. 509). To manage contingency, “systems develop new subsystems |...]
in order to deal effectively with their environment” (Ritzer, 2010, p. 335).

6
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Table 2.1: Overview social systems (adapted from Roth & Schiitz, 2015, p. 24).

System Code Medium Program Function
Political Government/Opposition  Power Ideology Limitation
Economy Non-/Payment Money Price Distribution
Science Un-/True Truth Theory Verification
Art Innovative/Imitative Style Fashion Creation
Religion Immanent/Transcendent  Faith Confession Revelation
Legal Un-/Lawful Norm Law Standardization
Sport Success/Failure Achievement  Goal Mobilization
Health I11/Healthy Illness Diagnosis Restoration
Education Un-/Placeable Vita Curriculum Formation
Mass Media  Non-/Informative Medium Topic Multiplication

Returning to the supply chain example from before, this could mean that a
company creates a department to monitor the political situation, in order to
include it in their decision making processes.

Luhmann further notices the problem of double contingency (Luhmann,
1995, p. 103): as social systems are established through communication, “ev-
ery communication must take into consideration the way that it is received.
But we also know that the way it is received will depend on the receiver’s es-
timation of the communication” (Ritzer, 2010, p. 339). This forms a feedback
loop: what the receiver understands depends on the communicator, who in
turn depends on his expectation of the receiver (Vanderstraeten, 2002, p. 84).
Social systems address this problem by defining a common reference frame
for both parties, encoding societal expectations, norms, and values to ease
communication taking place within the system (Ritzer, 2010, p. 340).

A third component to distinguish systems is autopoiesis: within Luhmanns’
theory, social systems are autopoietic, i.e. “they produce all their elements
within themselves” (Albert, 2019, p. 5). For example, for the economic sys-
tem, its basic element (and the medium it is communicated by) is money. Yet,
the system itself defines what is accepted as money, what money is worth, and
what money can be used for (Ritzer, 2010, p. 336). “Within its boundaries,
an autopoietic system produces its own structures. [...] [within the economic
system| banks are established to store and lend money” (ibid., p. 336). Further-
more, autopoietic systems are self-referential and closed. This means that (1)
they use themselves as a reference frame (the legal system is about laws, that
refer to how laws can be enacted, applied, and interpreted; cf. ibid., p. 337),
and (2) “there is no direct connection between a system and its environment”
(ibid., p. 337), for example, the economic system only responds to needs of the
surrounding societal environment to the extent they can be expressed in terms
of money (the medium of the economic system).
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To summarize, the notion of social systems as characterized by Luhmanns’
system theory is generally derived by function; systems serve to simplify com-
munication between different aspects (sub-systems) of society, and solve the
double contingency problem within these communication processes. Further-
more, systems are autopoietic and thus all elements needed for their existence
emerge from within themselves. While different sources provide different num-
bers and kinds of systems within society that fulfill these criteria, a general
consensus of ten different functional systems exists (Roth & Schiitz, 2015).
Table 2.1 provides an overview on those ten. For each, the code they divide
communication with, the medium they communicate through, the program
they communicate by, and the societal function they serve is listed.

While Luhmanns’ theory of social systems is notoriously complex (Albert,
2019, p. 2), it is also primarily applied in qualitative research as theoreti-
cal framework in which societal phenomena can be (qualitatively) analyzed
and interpreted. Approaches trying to combine this framework with quantita-
tive methods remain scarce. Roth et al. (2017) uses the Google n-gram corpus
(Michel et al., 2011) to track the importance of systems over time, by compar-
ing the relative frequency of system names as well as related terms occurring
(i.e. the word “science” for the scientific system). Their analysis is repeated
across different languages (German, English, French).

2.2 Topic Modeling

One specific method of computational text analysis that has gained widespread
adoption in research is topic modeling: the decomposition of texts into topics —
common themes, frames, or concepts, appearing as language patterns through-
out and across the texts contained in a corpus. It aims to make the complexity
of large text corpora manageable by representing each included text as a com-
bination of such topics. It thus naturally lends itself to coding, i.e. classification
in the social sciences, as its basic building block of identifying recurring pat-
terns across many (textual) observations is inductive and theory-agnostic in
nature and therefore can be applied to quantify text within many sociological
theoretical frameworks (Jacobs & Tschotschel, 2019).

2.2.1 Generative Text Model

Conceptually, a topic model takes a term-document matrix, denoting which
terms occur in which documents, and how often, as input. The algorithmic
task to be solved is to create a decomposition of this matrix into two la-
tent probability matrices, which constitute the output of a topic model: (1)
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Algorithm 1: Generative process of the Latent Dirichlet Allocation
LDA, Blei etal., 2001) algorithm (Blei etal., 2001).

(
1 foreach d € D do

2 choose N ~ Poisson(e), the number of terms in the document
3 choose 6 ~ Dir(«), the topic distribution of the document
4

5

6

foreach t,,,n € {1,..., N}: do
Choose a topic z, ~ Multinomial()
Choose a term t,, from p(t,|z,, 5), a multinomial probability
conditioned on the topic z,
end

3

8 end

a document-topic probability matrix, which, for each document, indicates the
relative likelihood of each topic being observed for this document. (2) a term-
topic probability matrix, which, for each term, indicates the relative likelihood
of this term being observed under the given topic.

The most widely used approach to solve for this decomposition is LDA. It is
a generative text model, and can be best explained by following the generative
process for a document, as each document in the to-be-analyzed collection is
treated as the result of such. Given the two aforementioned latent probability
distributions, a document is generated in three steps, depicted in Algorithm 1:
(1) the number of terms in the document is sampled, dictating the length of
the generated text (line 2); (2) a topic distribution is sampled, dictating the
themes occurring in the generated text (3); (3) for position in the text, a term
is sampled based on the documents topic distribution chosen, and the topic-
word prior distribution (lines 5 and 6). With LDA, this generative process can
be reversed. Given the observed documents, the two latent probability distri-
butions that dictated the generation of the texts are estimated. This allows
to identify trends and common themes in given text data with a conceptually
simple and traceable manner, which gives rise to the popularity of the method
in digital humanities studies.

2.2.2 Applications in Social Sciences

Roberts et al. (2014) showcase the use of a probabilistic topic model to analyze
open-ended (i.e. free-text) survey responses with reduced human intervention.
A topic model is used to quantify common themes among all responses to an
open-ended question. These themes are then examined, interpreted and used
to draw conclusions with respect to predetermined covariates (for example, po-
litical orientation of the respondent). A novel contribution is their Structural



CHAPTER 2. BACKGROUND

Topic Model, which can adjust inference to such covariates for higher reliability.
Maier etal. (2018) present an in-depth review of the application of standard
LDA topic models in communications research, encompassing 20 publications
ranging from the analysis of political speeches, over newspaper articles and
tweets to public comments and blog posts. They place special emphasis on
the preprocessing steps taken, parameter selection, as well as checks for inter-
pretability, validity and reliability in each publication to develop a common
methodological guideline for the application of LDA topic models in commu-
nications research.

Jacobs & Tschotschel (2019) conduct two case studies to showcase the
feasibility of topic modeling as a tool for discourse analysis. First, they analyze
11 744 political speeches in the European Parliament from 1999 to 2016 to gain
insight on the extent of hegemony within trade policy-making. They apply
standard LDA with 120 topics and conduct a qualitative interpretation of the
resulting topics. In their second case study, they analyze Austrian news paper
articles with regard to the concept of economic growth and economic crises
with a similar approach. R. Huang (2019) analyze 51288 postings from the
Chinese social media platform Weibo using LDA in conjunction with social
network analysis techniques to reveal the link between the structure and the
focal topics of communities with regards to labor issues.

2.2.3 Limitations

Jacobs & Tschotschel (2019) conduct a meta-analysis on the feasibility and
practicality of utilizing topic models in discourse analysis. They remark that
topic modeling is agnostic to the underlying theoretical framework it is em-
ployed to operationalize, and therefore exhibits high methodological polyva-
lence. Another benefit is the context-dependency of word semantics that is
reflected in topic models: as LDA derives topics from word cooccurrences, it
is equipped to handle polysemy, and does not impose a precognition on the
language use present in the corpus. Another benefit of this inductive process
is the feedback the method gives to the researcher: instead of imposing a pre-
defined categories on text, as would be the case for supervised classification
approaches, the unsupervised nature of topic modeling allows to refine the
categories during interpretation, dependent on what patterns actually occur
in the target data.

In this regard, Roberts et al. (2014) note, too, that a key benefit of topic
models is their explorative nature: in standard social science coding practices,
a predefined set of labels is assumed to describe survey responses, which may
or may not fit the actual obtained data. Here, topic models can be helpful,
as they model the latent information in the text directly, and in a case of
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mismatch between prior expectation and data, the theoretical framework or
the coding practices can be revised. Wesslen (2018) highlights the intuitive
interpretation and possibilities for visual interfaces to topic models.

Ramage et al. (2009) identify trust in the output of computational methods
as a main problem for the application of such techniques for support in social
science research. For (unsupervised) topic-model-based approaches, three chal-
lenges are apparent: (1) characterization of topics: latent topics have no inher-
ent canonical descriptions, and characterizing a topic by its word distribution
after inference is prone to poorly representing the actual meaning of a topic.
Single-word descriptions (“names”) are problematic in particular. (2) mean-
ing of topics: comparing the output of topic models trained on different data
(subsets) can be misleading, as the topic context and meaning may change.
This further aggravates the characterization problem. (3) trustworthiness of
topics: a models output must be judged by human assessors working in the
intended domain, to gauge the trustworthiness and usefulness of a model for
social science research. This places additional emphasis on result presentation
and accessibility, as tools for interactive exploration of the topic space are
deemed an important aid in model interpretability.

Wesslen (2018) identifies two technical problems that hinder the widespread
use of topic-model-based approaches in social sciences: first, the word and
topic probabilities inferred by the generative process are point probabilities
that lack the confidence intervals required for statistical testing. Second, topic
models are multi-modal since topic model inference is an NP-hard problem.
Thus, a solution cannot be deemed globally optimal and depends on the model
initialization. As this can lead to different results being generated from the
same data, the legitimacy of such results is questionable. A similar technical
problem is remarked by Jacobs & Tschotschel (2019), who identify the number
of topics the model is initialized with as drawback, as with most traditional
approaches to topic modeling, this is an a-priori parameter chosen by the
practitioner, which may or may not align with the actual number of topics
present in the corpus. They further note that topic modeling works best in a
setting with well-delineated topics and text data from a coherent domain.

2.3 Seed-guided Classification

Seed-guided classification is a specific type of weakly supervised learning on
text data that learns a classifier without any labeled data. Instead, each class is
described by a set of representative seed terms, which are presumed to express
the “nature” of the class, i.e. characteristics that a document should exhibit to
be deemed part of said class. As Chang etal. (2008) argue, in this approach,
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the meaning of the label is incorporated into the classification process, similar
to how a human would categorize a text. A human who is to decide whether a
newspaper article fits into the politics section relates the meaning encoded in
the class name to the content of a document to be classified, rather than com-
paring a set of labeled examples to the candidate. More formally, the problem
can be described as follows: given an unlabeled document set D and a set of
classes C, assign each document d € D to one more more classes ¢ € C' using
only the set of descriptive seed terms S, associated with each class as prior
information.

2.3.1 Types of Seed-guided Classification

Zha & C. Li (2019) differentiate three types of seed-guided classification: (1)
classification-based approaches focus on deriving pseudo-labels for documents
based on the given seed terms and apply a supervised classification algorithm
using the bootstrapped training data. In the following, this is referred to as
pseudo-label approaches to avoid unclear usage of the term classification. (2)
semantic approaches aim to embed a classes’ seed term representations and the
unlabeled documents into a shared vector space. Classification is then achieved
by nearest-neighbor search among the classes. (3) probabilistic approaches uti-
lize probabilistic models to derive latent classes in text data in a generative
fashion.

Pseudo-label Approaches. One of the first approaches for seed-guided
classification was proposed by Liu etal. (2004). They aim to bootstrap a set
of pseudo-labels from D to apply established supervised classification methods
to. A representative document is built for each class in C', consisting of its seed
words. This allows to compare each document in D to the representative doc-
ument of a class using the cosine similarity of both document representations.
A document is then assigned to the class it is most similar to. The most similar
documents for each class are retained as pseudo labels for a NB classifier. Ko
& Seo (2004) bootstrap document labels for training a supervised classifier
from category labels. First, term co-occurrence with the category label is used
to build an extended set of descriptive seed terms, forming clusters. A NB
classifier is then trained on these term sets to extend the classification to the
document level.

Semantic Approaches. For the group of semantic approaches, methods
based on Explicit Semantic Analysis (ESA) are widespread: Chang et al. (2008)
use nearest-neighbor classification in an ESA vector space derived from Wiki-
pedia, calculating the distance between the document (centroid) and each cat-
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egory label. One upside of the vector-space based approach is that they can
be extended to multi-lingual classification problems, as long as a shared vector
space can be constructed (Song etal., 2016). While inferior to modern prob-
abilistic approaches, given recent advances in phrase embedding techniques
(Cer et al., 2018; Reimers & Gurevych, 2019), revisiting this method might be
worthwhile.

Probabilistic Approaches. Most of the probabilistic approaches to seed-
guided classification extend unsupervised topic modeling schemes such as LDA
to incorporate prior information, steering the topic inference into the desired
direction. Hingmire & Chakraborti (2014) & Hingmire etal. (2013) first infer
latent topics using unsupervised LDA. Then, these topics are labeled by a hu-
man assessor and training is continued, incorporating the new label information
to collapse topics with the same label into one category. To perform classifica-
tion without human intervention, X. Li et al. (2018) propose the Seeded Topic
Model (STM, C. Li etal., 2016), that adopts Generalized Pélya Urn sampling
instead of the standard Gibbs-sampling based inference procedure to incorpo-
rate seed term supervision for a single-membership classification task. Zha &
C. Li (2019) extend the STM model to mixed-membership classification.

2.3.2 Seed Term Mining

The mining of seed terms (also referred to as keywords) aims to extract a lex-
icon of descriptive terms to aid in a classification problem. Early approaches
utilize such methods to build lexicons for tasks like sentiment analysis or opin-
ion mining (Hai et al., 2012; Hu & Liu, 2004; Remus et al., 2010). These lexicons
were then often used to directly infer the classification of a document based on
term occurrences, and thus needed to be quite large. More recent approaches,
notably generative seed-guided classification, have considerably reduced the
required size of seed term sets, by expanding the semantic information en-
coded in such a set through a generative process. Two processes of mining
such terms can be discerned: (1) fully automated approaches, requiring no
interaction apart from initialization; and (2) human-in-the-loop approaches,
where a human judge is part of the seed selection process.

Independent of the method seed terms are derived with, Jin et al. (2020) set
forth three criteria for a high-quality seed term set: (1) seed terms should be
representative for their associated categories; (2) seed terms should not be rare
words; (3) seed terms for different categories should have little to no overlap.
These criteria characterize two underlying properties of seed terms: they should
be descriptive of the category they are attributed to, and contrastive to all other
categories in the category set.
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Automated Approaches. The fully automated approach, which performs
seed term selection without human intervention, can be characterized similarly
to the problem of keyword extraction in natural language processing (NLP):
construct a set of words which reflect the topics and information contained
a document. However, the notable difference between both concepts is the
level of granularity: keyword extraction usually happens at the document-level,
i.e., for each document, such a set of descriptive terms is found; seed term
extraction happens at the level of classes, i.e. a common set of terms is found
describing a coherent group of documents. Yet, a large body of work in keyword
extraction can be applied to seed term selection as well, primarily stemming
from two categories of methodological approaches (C.-C. Huang etal., 2015;
Zhang et al., 2020): (1) graph-based methods, identifying important terms by
imposing a graph structure on the words in a text, for example by analyzing
the cooccurrence of terms; and (2) statistical methods, identifying important
terms based on their statistical properties.

Human-in-the-Loop Approaches. In this type of approach, a human is
part of the selection process, either with, or without the help of a computer.
For the former, domain experts are tasked with building a seed term set based
on their intrinsic knowledge. In the latter hybrid process, a computer performs
an initial selection based on a (focused) collection of relevant documents, which
is then refined by the human judge. For example, Liu et al. (2004) extract seeds
words from a document set D with entropy-based feature selection, clustering
D using an unsupervised clustering algorithm (k-means) and ranking all words
in D by their discriminative power. The human judge is then tasked to assign
each of these words to a class. In practice, human-in-the-loop approaches re-
main scarce, as human interference is costly and complicated. Yet, for social
science research in particular, having a domain expert judge incorporated in
hybrid process is paramount for a high-quality classification result.

Ko & Seo (2004) start out with a single word (title) for each category and
automatically derive a set of descriptive seed words based on co-occurrence
patterns. Using term occurrence vectors over the document set D, they select
seed words by calculating the cosine similarity between each term and title
vector, selecting those terms as seed words for a category that exhibit a high
similarity with its title, but a low similarity to other categories’ title vectors.
Similarly, Jin etal. (2021) also base their seed word selection on the category
title only, yet propose a two-step process: first, a noisy set of candidate words
is mined by calculating the Pointwise Mutual Information (PMI) for every
category title and term over the document set D; then, after selecting the
top-scoring terms associated with each title, the seed set is refined by train-
ing interim classifiers to gauge the impact of each individual seed term, and
subsequently select a final set of terms which yields the lowest model error.
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When supervised data is available to bootstrap seed terms from, other auto-
mated methods become possible: Jin et al. (2020) utilize a PMI-based measure
to select highly descriptive terms for each label. They propose adjusting the
PMI score using the term frequencies, to not only mine words that are se-
mantically appropriate to represent a category, but also have the necessary
frequency and coverage to successfully serve as prior for seed-guided classifica-
tion. In a similar information-theoretic approach, Jagarlamudi et al. (2012) use
the Information Gain (IG) of each term-category combination to identify seed
terms. Additional measures for classic keyword extraction such as TF/IDF
(Spérck-Jones, 1972) or term saliency (Chuang et al., 2012) are applicable in
the case of supervised training data as well.

2.3.3 Domain Adaption

For any classification problem, an unknown classification function A has to be
found that translates from an input space (training samples represented by fea-
tures) to an output space (class labels). This classification function is attentive
to the probability distributions of features in the training samples (Kouw &
Loog, 2019). Domain adaption is defined as a change in classification setting,
where input space and output space remain the same, while the probability
distributions of features change — a phenomenon also known as ‘covariate shift’
(ibid.). Consider a generic text classification problem in NLP: the input space
are documents encoded in a bag-of-words (BoW) representation. The output
space are labels, for example positive (1), neutral (0) and negative (-1) senti-
ment. One particularly widespread training source for sentiment classification
are movie reviews (Maas etal., 2011). As such, a sentiment classifier trained
on this corpus will be attentive to the particular feature (i.e. term) frequencies
occurring in the text domain of movie reviews. However, using an example
given by Blitzer etal. (2007), the word ‘useful’ will probably not occur often
to denote positive sentiment in this particular setting. Yet, when the classifi-
cation context (i.e. text domain changes) to reviews of kitchen appliances, the
word ‘useful’ becomes much more frequent in positive descriptions of items:
the underlying feature distributions have changed, degrading the performance
of the classifier when it is not adapted to the new domain.

Jin et al. (2020) have proposed the use of dataless classification algorithms
to tackle the issue of domain adaption: first, a set of seed terms is learned from
a labeled source domain; this seed term set is then used to initialize a dataless
classifier in the target domain. The idea is that, if the seed term set contains
general terms that are descriptive of a class in both domains, the dataless
classifier will learn to be attentive to new features in the target domain co-
occurring with the transferred general features, achieving domain adaption.
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Returning to the example of sentiment classification adapting from movie re-
views to kitchen appliance reviews, the seed term set for positive sentiment
learned on the source domain might include the terms good, intriguing, and
perfect. In the target domain, the terms good, perfect are descriptive of positive
sentiment too, which allows the dataless classifier to perform domain adaption.
It picks up on wuseful being descriptive of positive sentiment as well (since it
co-occurs frequently with good and perfect), and is less attentive on intriguing
(which likely exhibits a much lower frequency in the target domain).

Jin etal. (2020) demonstrate that dataless classification, specifically the
method of C. Li etal. (2016), exhibits a vastly superior classification perfor-
mance in a domain adaption setting, compared to supervised learning methods
such as support vector classification (SVC) or multinomial bayes classification
(MNB). They train (or extract seed terms, respectively) the classifiers on a
source dataset of crawled newspaper articles, labeled with their respective ar-
ticle categories. The classifiers are then evaluated both on the source and on
a target dataset, which also consists out of newspapers articles, yet is crawled
4 years later, such that a shift in vocabulary can be presumed and domain
adaption becomes necessary. While supervised methods outperform dataless
ones on the source data test set, the inverse is true for the target data test
set: here, dataless classification performs similar to, and sometimes better than
itself the original data, yet the performance of supervised classifiers degrades
heavily down to half of their original scores. Thus, the dataless methods out-
performs the supervised classifiers both in absolute scores in the target domain,
as well as stability across domains.
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Methodological Approach

This chapter describes the methodological approach to seed-guided classifica-
tion used in this thesis. It is structured as follows: Section 3.1 formally defines
the to-be-solved problem, Section 3.2 introduces the Seed-guided Multi-label
Topic Model (SMTM, Zha & C. Li, 2019) model by Zha & C. Li (ibid.) as
one of the state-of-the-art solutions to the task. Finally, Section 3.3 describes
different methods of deriving a seed term set from labelled data, most notably
that of Jin etal. (2020), which has previously been demonstrated to be one of
the best-performing approaches.

3.1 Problem Statement

Let D be a set of size |D|, and d a document in D composed of terms ¢ from a
vocabulary T of size |T'|. Further, let C' be in a predetermined set of categories
¢, where each category is characterized by a set of seed terms S. C T', encoding
prior knowledge about the content of each category. The goal is to (1) assign
each document d € D to one or more categories ¢ € C' such that the assignment
corresponds to the prior information given by S, sufficiently well; and (2) assign
each term ¢ € T' a category probability, such that the assignment corresponds
to the prior information given by S, sufficiently well. These two requirements
can be interpreted as decomposing the document-term matrix D x T into a
document-category matrix D x C' and a category-term matrix C' x T', which
together optimally model the latent category space given the prior information
encoded in S. Thus, two components are needed: an algorithmic approach that
is able to accurately perform such a decomposition, and a suitable method of
constructing a seed term set S, for every category.
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Figure 3.1: Plate notation for the SMTM model, taken from Zha & C. Li (2019).
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3.2 Seed-guided Multi-Topic Model

The SMTM model, proposed by Zha & C. Li (2019) is a multi-class exten-
sion to the STM introduced by C. Li etal. (2016). It encompasses two kinds
of topics: category topics, in one-to-one correspondence to the desired cate-
gories of the underlying classification problem, and a general background topic,
capturing general semantic information in the to-be-classified texts that are
not indicative of a certain category. Each term in each document can either
be associated with one category topic, or the background topic. In this way,
both document-category and term-category probability distributions can be
estimated through the fitting process and used for downstream tasks, most
prominently text classification. This section formally defines the model: first,
the generative process is described, then the concept of supervision for topic
model inference is introduced, and finally, the model inference and prediction
process is detailed. All equations, unless otherwise noted, are taken from Zha
& C. Li (2019), but were adapted to be consistent with the nomenclature.

3.2.1 Generative Process

The basic idea of generative text modeling across all topic models, such as
LDA, is also present in SMTM: each topic has a term distribution, and each
document has a topic distribution. Each term in a document is then the re-
sult of combining these distributions in a generative manner. However, two
auxiliary variables are introduced allowing the SMTM model to differentiate
category topics from the background topic.
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First, at the term level, a binary indicator variable x4, for each term ¢ and
document d is set equal to 1 if the term is associated with a category topic, and
equal to 0 if associated with the background topic. This binary indicator is the
result of a Bernoulli process with parameter A, that is globally uniform and
derived from a Beta prior, and can thus be iteratively estimated. Together with
a selector variable z4, which denotes which category c is currently associated
with ¢, these variables jointly model if, and to which category each term in
each document belongs. Secondly, at the document level, an auxiliary Bernoulli
variable o . is introduced, equal to 1 if category cis ‘selected’ for the document,
and 0 otherwise. The Bernoulli distribution of a4 . is sampled from is dependent
on a document-specific parameter a4, which depends on a Beta prior with
hyperparameters p and ¢, and can thus be estimated according to a documents’
contents. Given these selection mechanisms, together with the classic Dirichlet
prior term distributions, each with its respective parameters, the generative
process for a text as assumed by the SMTM model is depicted in Figure 3.1
and can be summarized as follows:

1. Sample a background word distribution ¢g ~ Dirichlet(y)
2. Sample A ~ Beta()
3. For each category c € C:
(a) Sample a word distribution ¢. ~ Dirichlet(S;)
4. For each document d € D:

(a) Sample a4 ~ Beta(p,q)
(b) For each category ¢ € C":
i. Sample selector ag. ~ Bernoulli(ag)
(¢) Determine selected category set Ay = {k: aqr =1}
(d) Sample category distribution 8; ~ Dirichlet(yoaq + 7111)
(e) For each position ¢ € {1, ..., |d|}:
i. Sample x4; ~ Bernoulli(\)
ii. If zg; = 0:
« Sample wg; ~ Multinomial(¢o)
i, If 2y = 1:
o Sample z4,; ~ Multinomial({04 : k € Aa})
e Sample wy; ~ Multinomial(é.,,)
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3.2.2 Incorporating Supervision

The model as devised so far is unsupervised: its convergence is purely dictated
by the word occurrences in the document collection. To incorporate the prior
information given by the seed terms, and thus influence the model conver-
gence to produce the desired classification result, Zha & C. Li (2019) propose
a guided Gibbs-sampling-like procedure based on the Generalized Pélya urn
model. In normal Gibbs sampling, in each iteration, the counts for every ob-
servation are subject to uniform modification, i.e., every count is increased or
decreased by the same score (=1) every time. By applying the Generalized
Pélya urn model, the promotion can be biased, as count modification is not
assumed to be uniform anymore. This allows to influence the inference process
by incorporating supervision based on seed term occurrence.

This can be achieved at two levels: document level and term level. At the
document level, individual promotion scores can be chosen in such a way that
a document shows greater affinity towards a category of which it contains seed
terms, dictated by a D x C' matrix that indicates the category promotion
associated with each document/category combination. Similarly, at the term
level, a term shows greater affinity towards a category with seed terms it co-
occurs with, dictated by a 7" x C' matrix that indicates the category promotion
scores associated with each term. Both promotion matrices are static and can
be precomputed for efficient inference.

Supervision at Document Level

Supervision is integrated at the document level by constructing a category-
document scoring matrix P, where the value P, 4 for category ¢ and document
d is estimated based on seed terms occurring in the document. First, u.q is
calculated, denoting the importance of seed term occurrence in documents:

Uc,d:{l Scﬂ{teT|ted}7é®’M€[071]. (3.1)

i otherwise.

Here, p is a parameter to weigh the importance of observing seed terms. If
i is small, seed term occurrences are valued highly, if u is large, seed term
occurrences are less important for promotion. u. 4 is then normalized across all
categories for each document and multiplied by the number of categories:

c,d
Pg=—= .|C| 3.2
,d . Uor g | | ( )
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Supervision at Term Level

Similarly to the document level, supervision is integrated at the term level
by constructing a category-term scoring matrix (), where the value @).; for
category ¢ and term t is estimated based on cooccurrence with seed terms, as
formerly proposed by C. Li etal. (2016). First, u., is calculated, which is the
average probability of cooccurrence for term t across all seed terms s € S, for
category c:

SESe

SESe

Here, df(s) denotes the number of documents containing seed term s, and
df (t,s) denotes the number of documents containing both term t and seed
term s. This average is then normalized across all categories for a term to
obtain 4., with € being a very small value' to avoid 0:

~ Ue,t
ot = ot e). 3.4
Ue,t max <Zc/ Uty 6) ( )

Finally, (). is obtained by normalizing 1., across all terms for a category, and
multiplying by the number of terms in the vocabulary:

uc,t

Zt’ Ue,t!

Qc,t = : |T| (35)

3.2.3 Inference

The model parameters are inferred iteratively. In every iteration, first x4, and
24 are sampled for each document d and term ¢:

P(Zdtaxdt’tazﬂd,tamﬁdh 7ﬁ07ﬁ1>7077177r) X
ﬁd t+7r n(;ctl t 4By
+n1 fion Zt,(n;i,t-h@o)
ny 4 Z‘Z B (3'6)

ng® i ¥ S (n G +B)

ad,cﬂd c +ad,c’yo+71

X &=o — Zdt = C, T t=1
ZC/(ad,c’ndi’/tJrad,c/WOJﬂ’l) ’ e

Tat = 0

All variables noted with n are counting occurrences: ng is the total number of
terms assigned to the background topic, ng; is the number of times a term ¢ is
assigned to the background topic, n; is the total number of documents assigned
to categories, n.; is the number of times term ¢ is assigned to an individual

e = 0.01 as per Zha & C. Li (2019)
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category c. The superscript n”%! denotes that the assignment of the current
term t in document d is excluded from the count. Then, a4, is sampled for
every document and category:

P(ad,c|t7 2, Xy Qg cy ﬁOv 617 Y0, V1, 7T) X
L'(nge +70 + ) x Dlag®o + Cn + ngl)
XL ([eg[vo + 70 + Cn) x (p+ o) Qg = 1 (3.7)

L(y0 +71) % T'(lag®lyo + Cy +ngc)
XD(log®lvo + Cm) x (q+C = |ag®—1)  age=0

Here, ng4,. denotes the number of times category c is assigned to document d,
and ng,. is its sum over all categories. Further, |o;¢| is the number of categories
a document is assigned to, with the superscript denoting that the current
category is excluded from the count.

The sampling process of one iteration of the SMTM model is shown in
Algorithm 2. In the first block (lines 1-23), for each term ¢ in each document
d, the counts of the current topic assignment as indicated by z4; and z,, are
decreased (lines 4-11), a new topic assignment for ¢ is sampled (line 12, see
Equation 3.6), and the counts for the new assignment are increased (lines 13-
20). In the second block, for each document d and category ¢, the a-selector
is sampled similarly, by first decreasing the counts for the current value (line
26), sampling ag. (line 27, see Equation 3.7), and increasing the counts for
the new assignment.

While this procedure is very similar to the standard Gibbs sampler, the no-
table difference is that counts are not increased /decreased in a uniform manner,
but rather by the individual promotion scores as given in P, ; for document
assignment counts, and )., for term assignment counts. This results in a sam-
pling procedure as formalized by the generalized Pdlya urn model.

3.2.4 Prediction

One fundamental shortcoming of the SMTM model, as well as topic-model-
based classification in general is the inability to predict classes for a new,
previously unconsidered document. Multiple approaches have been proposed
to address this shortcoming (Yao et al., 2009), yet few can operate without the
need of refitting the entire model to the augmented data.

A basic, yet very efficient approach that can be applied to infer class prob-
abilities for a new document is a NB-like approach (ibid.). Given a term-
category probability matrix ¢ that can be estimated from the count matrices
derived during the fitting process, and a BoW document vector d that holds
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Algorithm 2: SMTM sampling procedure
1 foreach d € D do

2 foreach t € T do

3 if ¢t € d then

4 if 24 = 0 then

5 ng < ng — 1

6 No¢ < Noy — 1

7 else

8 ny<+<ng—1

9 nd,zdyt <~ nd,zd’t - Pzd,t,d
10 Mt zge € Mzgy — Qzgot
11 end

12 sample x4, zq+

13 if 4, = 0 then

14 ng < ng+1

15 ngs < nos + 1

16 else

17 n<n+1

18 Nd,zgy < N zq, + Pzd,t,d
19 nt,zdﬂt <~ nt,zdﬂt + de,t,t
20 end

21 end
22 end
23 end
24 foreach d € D do
25 foreach c € C' do

26 Ng <~ Nqg — Qg

27 sample g

28 Nng < Ng + Qg.c
29 end
30 end

the number of occurrences in the document for each term ¢, the category
distribution 6, is given by Bayes’ rule:

s =" ¢ x d. (3.8)

teT

Usually, éd is normalized to > éd = 1 to be usable as probabilities for down-
stream tasks. As noted by Yao etal. (2009), this method is expected to perform
rather poorly, and represents a general baseline method with sub-par accuracy.
Yet, no specialized prediction methods have so far been developed for SMTM.
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3.3 Seed Term Selection

In order to train the SMTM model, first, a suitable set S, of seed terms has
to be inferred for each category. This section introduces four methods for seed
term extraction from a given corpus of labeled training documents, three auto-
mated approaches (TF-IDF, PMI, Term Saliency) and one human-in-the-loop
approach.

3.3.1 TFIDF

TFIDF (Sparck-Jones, 1972) is a common baseline for keyword extraction and
important measure in Information Retrieval (IR) to estimate the relative im-
portance of a term to a document in a document collection. It can be intuitively
extended to measure the importance of terms for categories, by treating each
category as the sum of its documents. It is thus defined as:

thdf (t,c) = tf(t,c) * idf (t) = tf(t,c) - <log dﬁl) + 1) (3.9)

where tf(t,¢) is the number of times term ¢ occurs in documents of category
¢, and df(t) is the total number of documents containing ¢.

3.3.2 Pointwise Mutual Information

PMI (Church & Hanks, 1990) has been proposed by Jin et al. (2020) for seed
term selection, measuring the degree of association of each term ¢ to each
category c¢ from an information-theoretic perspective. PMI is defined as:

P(t,c)
P(t) - P(c)
df (t, ) Xeec df(€)

df(t) - df(c)

where df(t,c) is the number of documents of category ¢ term t appears in,
df (¢) is the number of documents of category ¢, and df(t) is the number of
documents term t appears in overall. However, PMI tends to predict high
degrees of association for very rare terms, which is opposed to the second
criterion for a a good seed term set defined by Jin etal. (ibid.).

P(c|t)
P(c)

pmi(t, c) = log = log
(3.10)

= log

24



CHAPTER 3. METHODOLOGICAL APPROACH

Thus, to combat this issue, Jin etal. (2020) introduce frequency-adjusted
PMI by multiplying each terms’ PMI value with its log-document-frequency,
and setting a threshold 6 below which the PMI is set to zero:

log df (t) - pmi(t,c) if df(t) >0

otherwise.

pmMiag(t, c) = { (3.11)

I

3.3.3 Saliency

Term saliency (Chuang et al., 2012) is usually used to estimate the importance
of a term for each topic post-inference in the general LDA setting. Yet, it can
also be applied prior to infer the importance of terms for categories. First, a
category-term probability matrix is constructed, which indicates the likelihood
P(c|t) that the term t is observed in category c. Further, the marginal prob-
ability P(c) of this matrix indicates the likelihood of any random term being
observed in category c. The saliency of a term t is then defined as:

P(cl|t
saliency(t) = P(t) - > P(c|t) - log (¢ ),
ceC P<C)
where Y .. P(c|t) - log % is the Kullback-Leibler divergence between P(c|t)
and P(c), referred to in this context as the distinctiveness of a term. For seed
term selection, the saliency is estimated from observed term counts:

saliency(t) = aft) 3 df(t.c) log Af(t,¢) - eec df ()
Yaer df(t) 22 df(t) df(t) - df (c)

This rationale behind term saliency can be motivated from an information-

theoretic standpoint (ibid.): the more dissimilar the category likelihood of a

specific term is in comparison to the likelihood of any term, the more infor-

mative it is. The distinctiveness is multiplied with the overall probability of a

term occurring, placing an emphasis on more frequent words.

(3.12)

(3.13)

3.3.4 Human-in-the-Loop Selection

As outlined in Section 2.3.2, several Human-in-the-Loop (HITL) approaches
to seed term selection have been proposed. While the objective of this thesis
is to develop a fully automated process, one manual approach is considered
as reference. Both the method of X. Li etal. (2018) and Zha & C. Li (2019)
rely on the same three-step process, initially proposed by Chen etal. (2015):
first, standard unsupervised LDA is applied to infer latent topics; then, latent
topics are mapped to the closest corresponding category; and finally, for each
category, up to 10 of the most probable terms are chosen as seed terms, based
on their topic probability.
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Chapter 4

Data & Experimental Setup

This chapter describes the data and experimental setup used throughout the
subsequent study on social system classification. First, Section 4.1 provides
information on the creation and provenance of the datasets used or constructed
as part of this thesis, first describing each in detail; then, Section 4.2 describes
the setup of the experiments that have been conducted.

4.1 Data

Four data collections are used or created for experimentation. The first two,
Twenty Newsgroups (20NG) and Ohsumed, are existing datasets chosen due to
their popularity in prior work on seed-guided classification; here, they are re-
lied upon as baseline to verify the correctness of the model implementation, to
conduct a replication study of previous papers, and to perform parameter op-
timization for later steps. The third dataset encompasses a large set of articles
from the German Wikipedia, and is used as a massive resource of real-world
text data to conduct social system classification on, as well as an ablation study
investigating the scalability of seed-guided classification. The fourth dataset is
newly introduced and derives from a set of monographs published by Niklas
Luhmann on each of his theorized social systems. It is intended to mine seed
terms from and thus gain first insight into how feasible it is to detect social
systems in text data using seed-guided classification.

In the following, each of these four datasets is described in detail, includ-
ing from where data was obtained, and which processing steps were taken to
transform it for experimental use. Alongside that, Table 4.1 includes detailed
information about each datasets’ characteristics: document count, vocabulary
size, category count, category size, and document size.
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Table 4.1: Document count, vocabulary size, class count, mean class size, and mean
document length for the datasets used throughout the experiments.

Dataset | D] |7 |C| Category Sizef Doc. Sizet

Mean Std. Mean Std.
20NG 18 846 134098 20 942.3 96.98 65.24 182.44
Ohsumed 13929 43486 23 605.6 606.34 97.40  32.53
Wikipedia 95222 1986831 9 17632.6 24888.44 247.78 257.17
Luhmann 2653 22 645 9 294.8 186.47  8R.78 5.74
T in number of included documents ¥ in number of included terms

4.1.1 Twenty Newsgroups

The 20NG dataset is a multi-label, single-membership dataset that comprises
about 18000 postings from Usenet newsgroups, spanning 20 topics of discus-
sion. It is split into train and test subsets, based on postings published before
and after a specific date. Each posting features different annotated parts.

For the scope of this experiment, headers, footers and quotes were stripped
from the 20NG data. This reduces the obtainable evaluation scores in com-
parison to prior publications testing on the 20NG data, yet provides a more
realistic classification setting and inhibits overfitting on meta-text. Before the
model is trained on the data, it is converted to lowercase, accents are stripped
and characters are mapped to ASCII encoding. All terms occurring in less than
5 documents were removed from the vocabulary, together with stopwords from
the curated english stopword list supplied by sklearn.

4.1.2 Ohsumed

The Ohsumed dataset! consists of abstracts of publications from the medi-
cal domain, taken from the MEDLINE database. In line with the evaluation
experiments of Zha & C. Li (2019) and Joachims (1998), the texts of 13929
unique abstracts are considered for classification among 23 disease categories.
Opposed to 20NG, the Ohsumed dataset allows mixed membership, i.e. one
document can belong to multiple categories. The same text preprocessing ap-
proach as with the 20NG data was taken.

4.1.3 Wikipedia

Wikipedia data was obtained from the German Wikipedia dump of November
1st, 2021. Three separate dump files were combined to retrieve the necessary

"http://disi.unitn.it/moschitti/corpora.htm
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data. The plain text dump? contains clean plain text of each German Wikipedia
article as processed by the Elasticsearch search backend of Wikipedia. It is used
instead of the commonly used wikitext data dump featuring in-text markup,
as this markup is notoriously hard to parse, and no structural information from
the text is required for the downstream task. Therefore, the pre-parsed dump
supplied by Wikipedia itself is used. Further, the metadata dump?® includes,
for each Wikipedia page, the namespace (indicating if the page is an article,
a category page, a discussion page, etc.), the title, and the ID. Finally, the
categorization dump* includes category membership in the form of (page_id,
category) tuples. Note that only the lowermost categories in the Wikipedia
category hierarchy are included in this resource, and all parent categories have
to be reconstructed.

As a first step, a joint data table is build by merging the plain text data
(uniquely identified by an articles’ title) with the metadata (containing title
and ID) and corresponding categories (specified by article ID and category
title). However, each page is only annotated with its immediate corresponding
categories (leaf categories) of the Wikipedia category system. Yet, since a total
of 476 607 categories exists in the German Wikipedia, a more coarse-grained
categorization is desired for filtering and classification of the data. A promising
approach for this is utilizing the 40 root categories of the factual classification
of the German Wikipedia®® (Appendix A). To obtain the root categorization
of Wikipedia articles, first, the complete Wikipedia category graph has to be
reconstructed, in order to establish a mapping between each of the 476 607 total
categories and the 40 root categories. This graph is not readily available and
has to be induced from the category links present in the categorization data
dump. As each of the categories is its own Wikipedia page, which links to
its respective parent categories, these links constitute the directed edges of the
category graph. A mapping between a leaf category and a root category is then
established if a path from leaf to root exists. Note that the category graph is
not a strict tree: it can contain multiple linkages and cycles. Therefore, each
category can be mapped to more than one root. The final categorization of each
article then is the union of all root categories corresponding to an articles’ leaf
categories.

’https://dumps.wikimedia.org/other/cirrussearch/20211101/
dewiki-20211101-cirrussearch-content. json.gz

3https://dumps.wikimedia.org/dewiki/20211101/dewiki-20211101-page.sql.gz

‘https://dumps.wikimedia.org/dewiki/20211101/dewiki-20211101-categorylinks.
sql.gz

Shttps://de.wikipedia.org/wiki/Kategorie:Sachsystematik

6Besides factual classification, spatial classification and temporal classification are avail-
able. Additionally, meta classifications such as disambiguation, lists and Wikipedia-specific
tags can be obtained. However, none of these alternatives prove useful in filtering a compre-
hensive subset of the German Wikipedia.
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In order reduce the dataset to a manageable size, since the resource require-
ments of the SM'TM model are quite high and a focused version of the dataset
is desirable to increase model accuracy, the dataset is sampled using the root
category information. As indicated in Appendix A, required and rejected cat-
egories are defined. Each article has to be a member of at least one required
category and cannot contain any rejected category. Rejection categories are
chosen to remove articles about persons, places, and events, as these contain
little content relevant to the system classification. Conversely, root categories
that closely relate to any of the social systems are made a requirement. Each
articles’ category set is reduced to only the 9 required categories ( Wirtschaft,
Gesundheit, Bildung, Kommunikation und Medien, Politik, Religion, Recht,
Kunst und Kultur, Wissenschaft). Note that there is no corresponding cate-
gory to the social system of Moral; instead, Gesundheit is added, as Health has
been suggested as additional social system (Roth & Schiitz, 2015, p. 24).

Based on this filtered set, only those articles are retained that belong to
between 1 and 4 categories. Furthermore, articles are filtered by token count,
only including those who consist of between 50 and 5000 tokens. Since the
vocabulary size still exceeds the compute resources available, the text of each
article was reduced to only contain terms with a minimum document frequency
of 10. In addition to the standard sklearn stop-words, a custom stop-word
list was curated to filter out Wikipedia-specific language and meta-text (see
Appendix B). This results in a total 95 222 articles with multi-class, multi-label
annotations for further consideration.

4.1.4 Luhmann

As primary source for the characterization of social systems, and to mine re-
spective seed terms from, the main work that constitutes Luhmanns’ formula-
tion of system theory was retrieved, encompassing nine monographs published
between 1990 and 2008. Each book used, alongside its corresponding social
system and year of publication is listed in Table 4.2. All books were obtained
in PDF form and converted to machine-readable plain-text using GROBID
(Lopez & Romary, 2015), a state-of-the-art toolkit for extracting text and
structural information from PDF files.

In order to obtain the seed terms for each social system, plain text is first
extracted from the monographs’ PDF files, omitting all structural information
included in GROBID. Then, the text is tokenized and in addition to the stan-
dard stop-word set for German as supplied by sklearn, a custom stop-word
list is curated to combat common extraction errors. For example, the publish-
ers name occurs frequently in the page headers of some books and is therefore
omitted. The complete custom stop-word list is given in Appendix B.
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Table 4.2: Overview of Luhmanns’ monographies on Social System Theory.

System Original Monography Title Year
Science Die Wissenschaft der Gesellschaft 1990
Law Das Recht der Gesellschaft 1993
Economy  Die Wirtschaft der Gesellschaft 1994
Art Die Kunst der Gesellschaft 1997
Politics Die Politik der Gesellschaft 2000
Religion Die Religion der Gesellschaft 2000
Education Das Erziehungssystem der Gesellschaft 2002
Moral Die Moral der Gesellschaft 2008

Since using the books directly would only yield eight very long documents,
which diminishes their usability for classification, pseudo-documents are cre-
ated by splitting each books’ text into chunks of 90 (whitespace-separated)
words, roughly corresponding to the mean document length of the Ohsumed
data. All these chunks, labeled with the respective social system explained by
the book each chunk stems from, together form the final Luhmann dataset. As
each chunk stems from one book, it is a multi-class, single-label dataset.

4.2 Experimental Setup

Four different experiments are conducted as part of this thesis. First, a replica-
tion study of Zha & C. Li (2019) and Jin et al. (2020) is performed. It includes
an in-depth evaluation of model parameters, applies four different seed term
mining strategies, and compares the classification results of the SMTM model
with supervised methods, contextualizing its performance. This allows to mo-
tivate an optimal parameter choice for all subsequent experiments.

In the second experiment, the scalability of the model is investigated. While
the baseline evaluation operates on rather small datasets, the scope is now mas-
sively expanded to included a sizable subset of the German Wikipedia. Based
on the Wikipedia categories obtained as described in the previous section, in-
domain classification is performed by extracting seed terms, and classifying
texts into their respective categories using the nearly 100 000 articles.

Third, a first step towards classifying social systems in text data is taken
by applying the SMTM model to the Luhmann dataset, mining seed terms and
conducting categorization on Luhmanns’ books themselves. This is to ensure
that the model is equipped to work on the domain-specific data and establish
a first foray into social system classification to compare later results to.
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In the final experiment, the goal is to detect social systems in a cross-
domain setting, by mining seed terms for each social system from the corre-
sponding monography published by Niklas Luhmann, and transferring them
to a target domain by training the SMTM model on the Wikipedia dataset.
The results are compared to the previously conducted in-domain classification.

In total, these four experiments provide a complete ablation study of all
critical parts of the model and allow a first insight into the feasibility of using
seed-guided classification for the detection of social systems in text data. All
experiments were conducted on a large SLURM-based compute cluster ( Webis
Gammaweb®). Each training job utilized a full cluster node equipped with a
40 core CPU and 430GB of RAM. However, due to the nature of the model,
inhibiting parallel execution, only one of the available cores was under load.

While Zha & C. Li (2019) provide a model implementation alongside their
paper, it is not equipped to scale up to the size of the Wikipedia data. There-
fore, a custom implementation was written in Cython, a subset of the Python
language that can be cross-compiled into native C code for maximum per-
formance. The implementation adheres to the sklearn model API for inter-
operability with text processing tools widely established in the field of digital
humanities. All code and data created as part of this thesis is openly available®.

"https://slurm.schedmd.com
8https://webis.de/facilities.html#gammaweb
https://git.webis.de/code-teaching/theses/thesis-gienapp

31


https://webis.de/facilities.html#gammaweb
https://git.webis.de/code-teaching/theses/thesis-gienapp

Chapter 5

Experimental Results &
Discussion

Given the experimental setup described in Section 4.2, this chapter reports on
each individual experiment, compares them, and discusses their outcome and
impact. The baseline evaluation is conducted in Section 5.1, followed by the
scalability evaluation in Section 5.2. Then, social system classification com-
mences, first in the in-domain setting (Section 5.3), and finally in the cross-
domain setting (Section 5.4).

5.1 Baseline Evaluation of SMTM

The first experiment replicates the evaluation studies of Zha & C. Li (2019)
and Jin et al. (2020), quantifying the performance and behaviour of the SMTM
model. First, four different methods of seed term selection are evaluated (Sec-
tion 5.1.1), followed by an evaluation of the impact of training iterations (Sec-
tion 5.1.2), model parameters (Section 5.1.3), and a comparative evaluation
with supervised classification methods (Section 5.1.4). Throughout, each step
is conducted once on the 20NG dataset and once on the Ohsumed dataset,
with results reported for each. This is to quantify and compare the models’
performance between the single membership and mixed membership setting.

5.1.1 Impact of Seed Term Selection

To gain insight on the impact the different seed term selection methods as well
as the number of seed terms used have on the classification result, for each of
the four methods described in Section 3.3, the SMTM model is fitted on each
of the two datasets respectively, using the top k seed terms, with k € [1, ..., 50].
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Figure 5.1: Number and method of seed terms and obtained precision, recall, and
F1 score on the 20NG dataset. Average and Standard Deviation over 25, 50, and 100
iterations each. Full (top) and zoomed to < 15 seed terms (bottom).

Both TFIDF and Saliency-based seed term selection are parameter-free.
For PMI-based seed term selection, we use the parameter choice of Jin et al.
(2020) and set § = 5. For HITL seed term selection, the seed term set as
derived by X. Li etal. (2018) for 20NG and Zha & C. Li (2019) for Ohsumed
is used. Note that both only include up to 10 seed terms per topic, thus the
evaluation only includes models fitted up to this point for the HITL method.
The model is initialized with the parameter recommendations by Zha & C.
Li (ibid.), with p = 03, # =1, p =q¢ =1, o = p1 = 0.01, 7 = %, and
~v1 = 1077. For each seed term method, separate runs are conducted at 25,
50, and 100 iterations, yielding varying results. Figure 5.1 shows the obtained
Precision, Recall, and F; score by seed term count on the 20NG dataset for each
method. The average and standard deviation across all three runs is shown.
The lower portion of the figure shows a zoomed-in view for less than 15 seed
terms. For all performance metrics, manual and PMI-based selection performs
best, while TFIDF and saliency-based selection performs worse, with TFIDF
being the better of the two up to 10 seed terms, and the saliency method for
more. While PMI-based selection performs worse than HITL selection for very
few seed terms, it performs better from 10 terms on.

33



CHAPTER 5. EXPERIMENTAL RESULTS & DISCUSSION

Precision Recall F1

051 - -

0.4 - -
o
3
& 03| L |

0.2+ - -

01T | | | | L O | | | | Lo | | | | |

0 10 20 30 40 5 0 10 20 30 40 5 0 10 20 30 40 50
Number of Seed Terms Number of Seed Terms Number of Seed Terms
PMI HITL TFIDF Saliency
Precision Recall F1

051 - -

0.4 - L
Qo
3 03 - L
]

0.2 - -

01 | | L C | | L C | | |

5 10 15 5 10 15 5 10 15
Number of Seed Terms Number of Seed Terms Number of Seed Terms

Figure 5.2: Number and method of seed terms and obtained precision, recall, and
F; score on the Ohsumed dataset. Average and Standard Deviation over 25, 50, and
100 iterations each. Full (top) and zoomed to < 15 seed terms (bottom).

A second trend observable for all methods is that higher seed term counts
do not necessarily increase classification (F;) performance. While scores are
universally increasing up to 15 or 20 seed terms, depending on the method,
a downwards trend for recall is observable beyond that point, while precision
remains about the same. One possible explanation for this trend could be
that a higher seed term count “broadens” the scope of each category up to a
point where the sampling process does not select the corresponding categories
anymore (increasing false negatives), thus yielding lower recall values, while se-
lected topics are then chosen with a comparatively higher confidence (increas-
ing true positives), thus explaining the precision remaining high throughout.

Crucially, the data depicted in Figure 5.1 describes a single-class classifi-
cation setting. The model is inherently a multi-class process, so the final pre-
diction is derived by choosing the label with the highest predicted probability,
while other predictions are discarded, which is a precision-oriented choice.
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Figure 5.2 shows the same evaluation conducted on the Ohsumed dataset.
The first trend is also observable here: HITL and PMI-based selection out-
perform TFIDF and saliency-based selection. Additionally, in this multi-class
setting, PMI outperforms all other methods by a larger margin than in the
single-class setting examined on the 20NG data. Yet, the second observed trend
is reversed: with higher seed term counts, the recall now keeps increasing, while
the precision slightly drops beyond 20 terms. This can be explained following
the same reasoning as before: higher seed term counts yield less distinct class
boundaries, which in turn increases the model uncertainty.This leads to more
classes per document being predicted by the model, increasing the recall at the
cost of precision. In the single-class setting, this effect is canceled out by reduc-
ing the prediction to the choice of highest confidence, which recovers from the
loss of precision (reducing the number of false positives), but may introduces
false negatives, lowering recall.

Overall, in both settings the PMI-based method of selecting seed terms
performs best out of all tested approaches, with respect to both precision and
recall. For experiments where no data is available to derive labels from auto-
matically, the HITL method proposed by Chen etal. (2015) achieves similar
well-performing results. For all methods and settings, the ideal count of seed
terms was around 20 terms, after which performance was deteriorating either
in terms of precision, or recall, depending on the setting. Furthermore, across
both settings, PMI-based seeding is the least sensitive method with respect to
iteration count, as the variance in evaluation scores across the three different
iteration counts is among the lowest observed for each run.

5.1.2 Impact of Sampling Iteration Count

A second influencing factor on model performance is the number of sampling
iterations the model is fitted with. As in the previous experiment, the model
is initialized with the parameter recommendations by Zha & C. Li (2019). For
each number of iterations n € [10, 20, ..., 140], the model was fitted separately
10 times to eliminate variance from random initialization. PMI-based seed
term selection is used, as it has been shown to perform best prior. Evaluation
was conducted for both datasets. The average precision, recall, and F; score
by iteration count are reported in Figure 5.3.

In the evaluation conducted by Zha & C. Li (ibid.), only the Fy score up
to 20 iterations on the Ohsumed data was reported and a fast convergence as
well as stability beyond 10 iterations has been remarked. Yet, in Figure 5.3,
a different trend can be observed: while the F; score remains relatively stable
after 20 iterations (Ohsumed) and 40 iterations (20NG), the precision and
recall scores reported additionally change significantly.
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Figure 5.3: Number of iterations and obtained precision, recall, and F; score,
averaged over 10 runs on the 20NG and the Ohsumed dataset.

For Ohsumed (mixed-membership classification), the recall starts out with
0.65 at 10 iterations, but decreases to 0.54 with higher iteration counts. This
trend can be attributed to the sparsity of the models’ sampling strategy: the
model favors few predicted categories instead of many predicted categories,
thus, with higher iteration counts, the number of predicted classes per sample
tends to decrease. This in turn reduces the obtained recall, as the probability
of selecting a relevant class by chance is lower. On the other hand, the precision
increases, from 0.42 at 10 iterations to 0.53 at 140 iterations. Once again, the
models’ sparsity is contributing to this trend: while the number of predicted
categories per sample decreases with higher iteration counts, the models’ con-
fidence in each prediction increases, in turn lowering the false positive rate,
thus increasing precision.

For 20NG (single-membership classification), a similar, yet less pronounced
effect can be observed: again, precision is steadily increasing with higher itera-
tion counts, while the recall is slightly decreasing. Since for single-membership
classification only the category with the highest model confidence is selected,
it is to be expected that the relative changes in evaluation scores are less sensi-
tive to iteration count. In both settings, recall and precision change at similar
rates with respect to the iteration count, which leads to a stable F; score, cor-
roborating the observation made by Zha & C. Li (2019). Yet, the additional
insight gathered for precision and recall allows to define a more robust recom-
mendation for iteration count: in precision-oriented settings, a high iteration
count of > 100 is preferable, while for recall-oriented settings, the existing
recommendation of < 50 iterations holds true.
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Figure 5.4: Precision, recall, and F; for different combinations of p and +; on the
20NG dataset. Maximum per metric marked orange. Parameter recommendation by
Zha & C. Li (2019) marked green.

5.1.3 Impact of Model Parameters

To maximize the performance of the SMTM model, parameter tuning is carried
out. In accordance with the recommendations of Zha & C. Li (2019), the
primary parameters that are likely to have the largest impact on classification
results p and . g controls the impact of document-level supervision, i.e. a low
value for p results in high importance being placed on observing seed(-related)
terms in documents, while a high value for u, seed term (co-)occurrence is less
important for the sampling process. 7y controls the sparsity of the model, i.e.
a low value for 7, result in fewer categories per sample being preferred, while
a high value for vy favors a less sparse category assignment.

The secondary parameters, which Zha & C. Li (ibid.) found the model
to be generally not sensitive to are fixed to the default recommendations of
p=gq=1, 68y = p = 0.01, and v, = 10~7. Parameter tuning of p and
Yo is carried out as a full grid search, evaluating the model for each unique
combination of parameters. Evaluation was conducted at 100 iterations, which
produces a model that exhibits balanced performance with respect to both
precision and recall. Once more, the PMI-based seed term sets is used.

Figure 5.4 shows parameter evaluation results for the 20NG dataset. For
precision, p shows less influence, yet values around 0.6 perform most favorable.
7o has greater impact on resulting scores, with lower values yielding higher
model performance, i.e. the more sparse the sampling process is, the higher the
precision. For recall, the inverse trend is observable: higher values of ~, yield
high scores. Also, unlike for precision, p shows to be more influential, with
higher importance for seed terms leading to higher model performance. For
Fy, the parameter recommendations by Zha & C. Li (ibid.) (v = %, pu=0.3)
are approximately reproduced, with the maximum F; score at v = 1, u = 0.2.
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Figure 5.5: Precision, recall, and F; for different combinations of x4 and 1 on the
Ohsumed dataset. Maximum per metric marked orange. Parameter recommendation
by Zha & C. Li (2019) marked green.

Figure 5.5 shows parameter evaluation results for the Ohsumed dataset.
Once again, with respect to precision the model is sensitive to changes in v, but
less so for changes in p. Similarly to the 20NG data, in the mixed-membership
setting, both vy and p are positively correlated with precision, but negatively
correlated with recall. For F; the experiment on Ohsumed data, too, reproduces
the parameter recommendation by Zha & C. Li (2019) with the maximum F,
score at 79 = 3.0, u = 0.2. Overall, three important insights are apparent from
the parameter evaluation: (1) Parameter choice shows similar impact on eval-
uation results in both single-membership and mixed-membership classification
settings. (2) The link between category count and the v, parameter (y9 = %)
as established by Zha & C. Li (ibid.) is reproduced for precision and Fy; for
recall-oriented settings, the sparsity should be decreased by increasing the g
parameter. (3) The recommendation of y = 0.3 holds true for both recall and
Fy; for precision-oriented settings, increasing y seems to be beneficial.

5.1.4 Comparison with Supervised Methods

This section focuses on comparing SMTM with standard supervised classifi-
cation methods. Three different widely used supervised approaches and two
naive approaches were chosen to contextualize the performance of the semi-
supervised method. Each of them is described below, with details provided on
parameter choices and training procedure. Alongside the scores of these ‘base-
line” methods, for each dataset, a selection of current state-of-the-art (SOTA)
approaches is reported, with scores taken from the respective papers. Previous
studies (Jin etal., 2021; 2020; Zha & C. Li, 2019) have shown that SMTM
outperforms other multi-class, semi-supervised, seed-based classifiers, and it is
considered SOTA for this classification paradigm.
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SMTM. The SMTM method is initialized with the optimal parameters as
found in Section 5.1.1 and Section 5.1.3: = 0.2 and vy = %. Seed terms are
extracted from the training data using the PMI-based method, with the top
20 seed terms being used as prior to condition the model. The model was then

fitted with 100 sampling iterations. An average over 10 runs is reported.

Random Assignment. As first naive baseline approach, a random assign-
ment of labels to categories, with class probabilities derived from the respective
distribution in the training data, is given. The average performance over 10
runs is reported.

Seed Term Overlap. As second naive baseline approach, a classificator
based on seed term occurrence is derived. It follows a simple decision rule
given seed words extracted from the training set: if a seed term occurs in a
document in the test set, this document is deemed part of the category of the
seed term. For single-membership classification, the most occurring category
is chosen. For mixed-membership classification, all categories present are used.
Its purpose is to provide an estimation of the lower bound of information the
seed terms hold without any contextual cooccurrence information from the
corpus.

SVC. Also used by Zha & C. Li (2019) as supervised baseline, SVC is a
widely used classifier. Parameters where found found using an exhaustive grid
search and 5-fold cross validation. Training was conducted on TFIDF vectors.
Both linear and RBF kernels were tested, with parameters C' € [1, 10, 100, 1000],
and (for RBF only) v € [0.0001,0.001,0.01,0.1] Best parameters are C' = 1,
and a linear kernel, corroborating the setup used by Zha & C. Li (ibid.).!

Multinomial Bayes Classification. As second supervised classification al-
gorithm, MNB was used, since it is a probabilistic approach to classification
and thus conceptually more related to the dataless method than SVC. Term
occurrence vectors where used as text representation. Parameters where found
found using an exhaustive grid search and 5-fold cross validation, with tested
values « € [0.001,0.01,0.02,0.03,0.04,0.05,0.1,0.15, 0.2]. Best parameters are
a=0.05.1

IMixed-label output is not naturally supported by SVC and MNB. They were trained
in a multi-class, single-label setting accordingly, by reducing the Ohsumed labels to the first
label of each sample.
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Table 5.1: Accuracy, precision, recall, and Fy scores for different classification al-
gorithms on the 20NG dataset, with text representation used given. Approaches
marked with T are semi-supervised; all unmarked are supervised. All evaluation
scores of approaches marked with ¥ are taken from the respective papers.

Name Representation Acc. Prec. Rec. Fy

SMTMT Bag-of-Words 0.498 0.672 0.494 0.545
,  Multinomial Bayes Bag-of-Words 0.687 0.683 0.674 0.671
& SVC TFIDF 0.663 0.672 0.652 0.655
'S Decision Tree TFIDF 0.402 0.400 0.393 0.394
& Seed Term Overlap! Bag-of-Words 0.370 0.533 0.365 0.387

Random Assignment! Bag-of-Words 0.051 0.050 0.050 0.050
< Guidotti & Ferrara (2021)¥ Sparse Tensors 0.864 0.863 0.856 0.856
8 Gupta et al. (2020)* Multi-Sense Emb. 0.862 0.862 0.862 0.862
@ Yamada & Shindo (2019)*  Bag-of-Entities — — —  0.862

Decision Tree Classification. Decision tree classifiers are often used in
domains where model explainability is valued highly. As SMTM also offers
high interpretability of the process through the probability distributions over
words, decision tree classifiers are included in the comparison as representa-
tive for highly interpretable models. Parameters were found found using an
exhaustive grid search and 5-fold cross validation. Both Gini and Entropy-
based fitting criteria where tested, with Gini fitting criterion performing best.

Each of the aforementioned methods was trained and evaluated on both
datasets. For the 20NG data, Table 5.1 summarizes the comparative evalua-
tion results, with accuracy, precision, recall, and F; score for every method,
alongside evaluation scores taken from three recent SOTA publications.

In comparison to the supervised baseline methods, SMTM proves competi-
tive. It places second after MNB for precision, and third for recall and accuracy.
Yet, while recall is lower by 0.158 compared to the next best (SVC), it is im-
portant to note that in the single-membership setting, the selection process
of SMTM yields a precision-oriented choice. Thus, lower recall values are to
be expected, at the cost of high precision, which in turn is on par with other
methods. Overall, the semi-supervised approach of SMTM performs well on the
20NG data, reaching close to the performance of established supervised classi-
fication techniques, and even outperforms the Decision Tree method in every
regard while offering similar levels of model explainability. Though, compared
to the supervised SOTA, it shows room for improvement.
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Table 5.2: Accurracy, precision, recall, and F; scores for different classification
algorithms on the Ohsumed dataset, with text representation used given. Approaches
marked with T are semi-supervised; all unmarked are supervised. All evaluation
scores of approaches marked with ¥ are taken from the respective papers.

Name Representation Acc. Prec. Rec. F;

SMTMT Bag-of-Words 0.254 0.498 0.497 0.478
, SVC TFIDF 0.338 0.721 0.363 0.452
g Multinomial Bayes Bag-of-Words 0.306 0.667 0.317 0.391
'S Decision Tree TFIDF 0.150 0.594 0.094 0.135
& Seed Term Overlap! Bag-of-Words 0.102 0.337 0.697 0.415

Random Assignment! Bag-of-Words 0.000 0.038 0.000 0.000
< Lin etal. (2021)} GCN Embeddings 0.728  — — —
S Wu etal. (2019)F GCN Embeddings 0.685 —  —  —
9 Camacho-Collados & Pile- CNN+LSTM 0.375 — — —

hvar (2018)*

Furthermore, the SMTM approach shows a clear gain in performance com-
pared to the seed term overlap baseline, with a net increase of 0.158 for the F;
score. Thus, it can be concluded that the generative approach is successful in
utilizing the seed term co-occurrence information in the training data to derive
a more robust classifier. Yet, the good result of the simple overlap approach
provides further validity to the seed term selection method, as based on the
terms only, a sufficient classification can be achieved in many cases.

Table 5.2 shows the results of the comparative evaluation on the Ohsumed
dataset. For each method, accuracy, precision, recall, and F; score is given,
alongside evaluation scores taken from three recent SOTA publications. In
this mixed-membership setting, SMTM fares even better than on the 20NG
data: while accurracy and precision are comparatively lower than for other
approaches, a much higher recall leads to SMTM placing first by F; score.
While the SOTA approaches only provide accuracy, they once again suggest
that the semi-supervised method could be improved upon. For Ohsumed, too,
the seed term overlap approach scores fairly high. While precision is sub-par,
recall is the highest among all tested systems, achieving a high F; score. While
the evaluation results are slightly lower than the scores given by Zha & C. Li
(2019), this is likely to be attributed to the more stringent approach to data
cleaning, stripping metadata that could favor overfitting when training. All
things considered, SMTM continues to be a highly competitive semi-supervised
classification approach, offering classification performance nearly on-par with
related supervised methods while offering high degrees of model flexibility,
explainability, and usability.
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5.2 Evaluation of SMTM Scalability

The second experiment addresses questions regarding the scalability of the
SMTM model. While it has shown favorable performance on established base-
line datasets, both 20NG and Ohsumed are comparatively small. Therefore,
the much larger Wikipedia dataset is used to train and evaluate the model
in-domain, i.e. seeds are mined from the same dataset the model is then fitted
and evaluated on. While the Wikipedia dataset is similar to Ohsumed in struc-
ture, featuring multi-class mixed-membership categorization, this experiment
differs from the Ohsumed one in three regards (see also Table 4.1): (1) larger
corpus size, with almost a sevenfold increase in document count (2) increased
document size, with average document length being about 2.5 times as long
(3) fewer, but more imbalanced document categories. Differences in evaluation
scores between the two experiments are therefore likely to be due to one of
these three factors.

The previously established optimal parameter choice was used: p = 0.2
and v = %. Seed terms are extracted using the PMI-based method, with
the top 20 seed terms being used as prior to condition the model (Table C.1).
The model was then fitted with 200 sampling iterations, an increase by 100
to account for the larger document count and vocabulary size. This choice
was validated by fitting secondary models at 50 and 1000 iterations, with the
former producing lower overall scores, and the latter being near-identical. The
other two parameters seem well-chosen, too: the average number of predicted
labels (influenced by 7) is near-equal to the actual average labels in the ground
truth (1.8 vs. 1.67), while a model fitted with g = 0.5 produces worse over-
all scores. Table 5.3 lists evaluation scores per class label, alongside number
of label instances in the training data and average document size per class.
Evaluation scores are further reported as micro-average, macro-average, and
weighted average.

5.2.1 Impact of Corpus Size

So far, no studies assess the performance of the SMTM model beyond the
size of the previously used 20NG and Ohsumed datasets. Yet, in real-world
classification tasks, such as the proposed social system detection, much larger
amounts of data are to be expected. On the first look, the overall perfor-
mance seems to decrease for the Wikipedia dataset compared to the previous
Ohsumed evaluation: a drop in (macro-averaged) F'; score to 0.274, compared
to the previous of 0.498 is observable. This is due to a significant reduction
in precision. While the recall of the model actually increases (0.566 vs. 0.498),
the precision drops to 0.297 compared to a previous 0.497.
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Class Prec. Rec. Fy #Label. Avg. Len.
Gold Pred.
Kommunikation & Me- 0.378 0.508 0.434 15563 20888 228
dien
Politik 0.056 0.412 0.099 1858 13583 350
Wirtschaft 0.338 0.551 0.419 14995 24402 235
Gesundheit 0.505 0.780 0.613 13996 21610 246
Wissenschaft 0.986 0.198 0.329 79398 15905 237
Kunst & Kultur 0.177 0.122 0.144 27833 19279 244
Bildung 0.087 0.799 0.157 1638 15021 293
Religion 0.079 0.896 0.145 1806 20507 308
Recht 0.066 0.831 0.123 1606 20080 302
Micro Average 0.299 0.323 0.310
Macro Average 0.297 0.566 0.274
Weighted Average 0.641 0.323 0.332

Table 5.3: Evaluation scores, label count in training data, and average document
length for SMTM fitted on Wikipedia data in-domain; per class (upper part) and
averaged (lower part).

However, attributing this decrease purely to the increased corpus size is
misleading: when evaluating per-category (Table 5.3), extreme variation in
performance per category is observable. This variation however is not indicative
of scaling problems: when computing the overall performance only on classes
with at least 10 000 instances, it increases to 0.388, making up almost half of the
difference between original Wikipedia and Ohsumed performance, while still
representing over 95% of the training data. Thus, the problem does not seem
to be inability to scale up to larger datasets, but rather the Wikipedia data
in question. This warrants a closer investigation of the other two experimental
factors, document scale and label imbalance, with the latter a likely being a
highly contributing factor to the observed differences.

5.2.2 Impact of Document Size

Not only is the Wikipedia corpus larger in overall size compared to previously
evaluated datasets, its documents are also longer on average. From a theoretical
standpoint, the model is likely to be sensitive to the average document length,
as its initialization depends on document-level co-occurrence (Section 3.2.2)—
the more often a term co-occurs with a seed term of a category, the more
indicative it is of that category. Increasing the document length effectively
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increases the number of categories a term is likely to be associated with: the
more words in its neighborhood (i.e. document), the more likely a seed term
is to appear. Moreover, the longer a document is, the more multi-faceted it
possibly is; in the case of Wikipedia, longer articles usually consists of many
sections, each featuring a focused sub-part of the overall content. This in turn
yields a higher chance of more categories appearing near a term.

Investigating the evaluation data per category, there is a moderate negative
trend observable between document length and precision (p = —0.66), and
a slight positive correlation between document length and recall (p = 0.37).
Given the impact theorized before, these trends are expected: if a term is likely
to be indicative of multiple categories, and the higher document length tends to
favor such an effect, its predictive power for a single class decreases. This yields
a higher amount of multiple class assignments or wrong assignments, thus
decreasing precision. On the other hand, multiple class assignments increase
the overall count of predictions made in a multi-class setting, increasing recall.

Given that the average number of predicted categories per document is
comparatively low (¢ = 1.8) due to the models’ parameters, wrong assignments
seem to be the majority of cases here over multiple assignments, explaining the
less pronounced dependency between recall and document length opposed to
precision and document length. This apparent connection between document
length and model performance warrants a revisiting the model initialization
in future studies, as a sliding-window approach with shorter lengths, defining
co-occurrence with seed terms by maximum distance, as opposed to on the
document-level could yield improvements to model accuracy.

5.2.3 Impact of Class Imbalance

The final difference between the baseline evaluation experiment on Ohsumed
data and the scalability evaluation on Wikipedia data is the number, size,
and characteristics of classes in the label data. While there exist less classes
overall, they are highly imbalanced, with number of training instances per class
ranging from 1606 to 79 398 samples, nearly 50 times as much.

It is important here to consider the inherent difference of the SM'TM model
to comparable supervised training methods. A supervised training model is
likely to show degraded performance on imbalanced training data, as less in-
formation is available for less-represented classes, in turn not allowing the
supervised model to generalize well about that class, resulting in diminished
prediction accuracy and imbalanced output. SMTM on the other hand faces
the inverse problem: since the seed term mining process yields the same amount
of terms (i.e. information) about each class, any imbalanced training set is ef-
fectively made balanced from the perspective of the model. Any imbalances
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might only have influence on the respective quality of seed terms for each class.
The class predictions of the model are thus more likely to follow a uniform dis-
tribution rather than the skewed distribution in the training data.

This effect is observable on the Wikipedia data (Table 5.3): while the la-
bel distribution in the ground truth gold labels is highly skewed, the label
distribution of the model predictions is much more uniform. Further, under-
represented classes generally exhibit a high recall (i.e. a significant portion of
the to-be-identified instances is correctly assigned by the model), yet a dra-
matically worse precision — likely the result of the model "over-assigning" the
class label to other training samples. In essence, this means that the model is
successful in capturing the general characteristics of each class from the pro-
vided seed terms (high recall), yet the imbalanced gold label data penalizes
against the balanced output of the model (low precision).

Whether this is shortcoming of the model or the label data depends on the
classification scenario and application the model is used in. Generally, SMTM
is advisable for use in settings where a balanced output is desirable. However,
it can be argued that the classification of social systems is such a balanced
setting: as the union of social systems constitute society, we expect all systems
to occur more or less equally in large text corpora, and we want the model to
be equally sensitive to each system. This further substantiates the suitability
of the model for the task at hand.

5.3 Social System Classification (In-Domain)

The third experiment, for the first time, applies the SMTM model to classify
social systems in text data. As a first step, this classification is conducted in-
domain: seed terms are mined on the Luhmann corpus, which is also the data
collection the classification is performed upon. This allows to (1) quantitatively
assess the models performance, since gold labels for the Luhmann data are
present, which is not possible in a cross-domain setting; and (2) investigate
the models properties to establish a baseline to compare future cross-domain
experiments to. This allows to assess the general feasibility of classifying social
systems using the SMTM model.

5.3.1 Seed Term Selection

To obtain descriptive seed terms for each of the social systems, PMI-based
seed term selection (see Section 3.3.2) is applied to the Luhmann corpus. Each
monograph is mapped to one 8 social systems: education, art, moral, politics,
law, religion, economy, and science. A minimum term frequency of 3 is used
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for the frequency-adjusted PMI calculations. Given the model evaluation in
Section 3.3, a value of k = 20 terms yields the best results. Table C.2 shows
the top 30 terms per category, with an indicator drawn at the cutoff.

The majority of seed terms are semantically coherent with the classes they
are supposed to characterize. While some are less specific (e.g. ‘neigen’ for
Religion, or ‘physische’ for Politics), no ill-fitting terms are extracted. Some
of the chosen terms however are very specific to Luhmanns’ writing, e.g., ‘re-
flexionstheorien’ for Education, ‘kommunikationsfihigkeit’ for Religion, or ‘au-
topoiesis’ for Science. Also, domain-specific words such as the names of other
sociologists (‘durkheim’; ‘weber’) appear, however at a very low rate. Some
terms appear in multiple forms (‘kopplung’ and ‘kopplungen’, both for Poli-
tics), suggesting that stemming could yield further improvements in the future.
Overall, the set of seed terms is deemed qualitatively appropriate, lending fur-
ther validity to the PMI-based approach. An overall trend from very specific
and descriptive to less specific and descriptive can be observed with increasing
rank, yet even beyond the quantitatively determined cutoff value of 20 terms,
appropriate seed terms are included.

Table 5.4 provides quantitative insight into the quality of the seed term sets
by calculating seed coverage statistics: the mean covered document ratio, i.e.,
the number of documents that contain at least one seed term of the respective
class divided by the total count of considered documents, and the mean number
of seed terms per document, i.e. the occurrence count of unique seed terms of
a class. These value are calculated once in a within-class setting, considering
only the documents labeled as belonging to the respective class, and using
the complete set. The within-class coverage ratio is balanced across all classes
and fairly high, hinting at a good descriptiveness of the extracted terms. The
overall cover ratios are less balanced, approximately mirroring the imbalance
of document count per class. Still, virtually all documents contain at least
one seed term of any class, and the mean seed term ratio across all classes
and documents is fairly high at 3.62 terms. This further validates the PMI-
based term extraction, as both the overall coverage, yet also the class-specific
coverage of documents is high, prompting a high classification performance.

5.3.2 Model Evaluation

To evaluate the classification performance of the SMTM model, it was fitted
using the previously mined seed terms in single-class prediction mode, meaning
that at the end of the training process, the predictions of each document
are reduced to the class with the highest probability. The parameter choice
established in Section 5.1 was used: = 0.2 and vy = %.The model was fitted
to the data for 200 iterations, mirroring the setup on the Wikipedia data.
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Class Covered Document Ratio  Mean #Seeds p. Doc.
Within Class All Docs.  Within Class All Docs.
Politics 0.78 0.25 1.63 0.39
Moral 0.78 0.36 1.71 0.66
Art 0.89 0.48 2.30 0.91
Economy 0.78 0.14 1.51 0.23
Education 0.72 0.09 1.25 0.13
Law 0.81 0.23 1.62 0.34
Religion 0.95 0.05 1.95 0.06
Science 0.93 0.40 2.43 0.69
Overall — 0.95 — 3.23

Table 5.4: Ratio of documents containing at least one seed term, mean number
of seed terms per document, and Fy score per class, w.r.t only within-class / all
documents.

Table 5.5 shows precision, recall, and F; for each class and aggregated using
micro, macro, and weighted average. These scores can be directly compared to
the results on the 20NG corpus, which, too, is a single-class task.

On average, the model performs even better than in the baseline setting.
A (macro) Fy of 0.604 (Luhmann) vs. 0.545 (20NG) can be observed, with an
increased recall (up to 0.645 from 0.494) at a similar precision (0.645, slightly
decreased from 0.672). The documents in the Luhmann corpus are all of a fixed,
equal length of 90 terms (including stop terms, deviations might occur for the
last document in a book). This effectively removes the influence of document
length on classification performance, and substantiates the claim that a label
imbalance is the most contributing factor, as the effect is also observable in this
experiment: a strong positive correlation between label count and precision
(p = 0.76), a medium negative correlation between label count and recall
(p = —0.51) is present, replicating the results observed on the Wikipedia data.
However, since the class imbalance is less severe, the absolute effect on scores
is diminished. When relating the evaluation results with the seed coverage
statistics in given prior in Table 5.4, a positive correlation between overall
coverage and F; score (p = 0.50) is apparent. This corroborates the findings
of X. Li etal. (2018), who note that a high document coverage of seed terms
positively impacts the classification performance.
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Class Precision Recall F; Label Instances
Gold  Pred.
Moral 0.905 0.584 0.710 731 472
Art 0.639 0.751 0.691 449 527
Economy 0.695 0.619 0.655 236 210
Politics 0.514 0.601 0.554 278 325
Education 0.735 0.592 0.656 169 136
Law 0.623 0.675 0.648 252 273
Religion 0.221 0.895 0.354 19 7
Science 0.475 0.697 0.565 244 358
Micro Average 0.645 0.645 0.645
Macro Average 0.601 0.676  0.604
Weighted Average 0.697 0.645 0.654

Table 5.5: Precision, recall, and F; per class and averaged for the classification
model trained on Luhmann data without domain transfer, with number of ground
truth and predicted label instances.

Overall, the model can therefore deemed sufficiently equipped to categorize
text, even in special domains such as Luhmanns’ books. The classification
performance is on par with the baseline setting, even exceeding in recall, and
the per-class observations replicate previous results as well. The parameter
choice is further validated, proving successful in different text domains, scope,
and scale. The PMI-based seed term selection method is both qualitatively
and quantitatively appropriate.

5.3.3 Investigation of Model Properties

The evaluation of the model has shown very good classification performance.
This makes it an interesting candidate for downstream tasks beyond classifica-
tion of documents. This section illustrated two possible use cases: (1) measur-
ing the strength of association between categories, providing insight into how
social systems are interrelated in the Luhmann data; (2) analyzing the most
relevant words for each topic for possible downstream tasks in document high-
lighting and qualitative analysis of the model itself. Note that throughout this
section, the multi-class mode of the model was used, instead of the single-class
mode in the previous subsection on classification performance, in order to be
able to extract inter-class relations.
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Moral .0.025 0.02 0.036 0.014 0.048W0.022 Count Ratio
Art 0.025.0.018 0.036 0.031 0.036 0.048 Moral 530 0.20
Economy  0.02 0.018. 0.05 0.037 0.0290.05 0.027 Art 678 0.25
Economy 235  0.09

Politics 0.036 0.036 0.05 .0.021 0.029 0.04 0.036 Politics 377 0.14
Education 0.014 0.031 0.037 0.021 .0.032 0.047 0.026 Education 153 0.06
Law 321 0.12

Law 0.048 0.036 0.029 0.029 0.032.0.043 0.031 Religion 107 0.04
Religion @0.048 0.05 0.04 0.047 0.043.0.044 Science 473 0.18

Science 0.0220.027 0.036 0.026 0.031 0.044.

b=
<

Document Count 2659
Mean C. per Doc. 1.08

Moral
Politics
Law
Religion
Science

Economy
Education

Table 5.6: Cosine similarity between all system pairs (left side) and predicted label
count and label ratio (right side).

Class Relation Analysis. The output of the model in form of the a-matrix
allows to interpret the relation of social systems to each other. To quantify the
relation of social systems, the cosine similarity between the columns corre-
sponding to each social system in the a-matrix is calculated. Two systems
that appear together in higher frequency yield a comparatively higher sim-
ilarity than two systems that do not appear together. Table 5.6 shows the
cosine similarity of each pair of social systems (left side) and the per-system
prediction count, as well as overall number of documents and mean number of
predicted systems per document.

Since the count of predicted categories per document is very low, it roughly
mirrors the label distribution of the single-class setting. Furthermore, since
rarely more than one label is assigned, the cosine similarity between systems
is extremely low. Only between Science and Art some degree of similarity is
observable, albeit also very low at just 0.1. However, this is consistent with
social system theory from a qualitative point of view: as set forth in Section 2.1,
Luhmann postulates his systems to be distinct and complementary to each
other. Therefore, given the very short document lengths encountered here, it
is to no surprise that only very little overlap occurs. This however gives rise to
the necessity of performing the experiment in another text domain with much
more and much larger documents, such as Wikipedia, to properly investigate
the inter-system relationships.
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Term Relevance Analysis. A second property of interest, complementary
to the document-level analysis, is the investigation of terms, i.e. what terms
are highly relevant for each category, as this allows to better assess the seman-
tic scope of a category, and therefore establish or reject correspondence with
the desired social system classification. To rank terms with respect to each
category, the relevance metric proposed by Sievert & Shirley (2014) is used:

p(t €T ,ceC)=Nog (o) + (1 — ) log (?) , (5.1)

where ¢, . is the probability the model predicts for term ¢ and category c,
and p; is the marginal probability for term ¢. A value of A = 0.5 was chosen
for a balanced mix between predicted probability and marginal probability.
Table D.1 shows the Top 30 relevant non-seed terms per social system. Note
that seed terms were deliberately omitted as they still occupy almost all of the
top ranks for each system, showing only terms that are learned by the model.

The learned relevant terms are coherent with the social system they are sup-
posed to represent in all cases. While Luhmann-specific terminology is present
throughout, the model seems to generalize well beyond the information given
by seed terms. Not only are the terms descriptive of their respective class,
almost no overlap between classes is observable. A very little amount noise
is contained, for example numbers (‘39’, ‘40’, ‘14, ‘1700’) or non-descriptive
terms like ‘off”. The stopword filtering should therefore be improved further.
As noted for seed term extraction as well, stemming could yield better results,
as multiple forms of a single term are frequently included.

Overall, the descriptiveness and semantic coherence of the single topics give
validity to the results, and the experiment can be regarded as successful. In the
in-domain setting, both classification performance as well as model properties
show promising signs for future downstream tasks.

5.4 Social System Classification (Cross-Domain)

In the final experiment, the cross-domain setting for classification is tested: a
seed term set mined from the Luhmann data is applied to categorize docu-
ments in the Wikipedia corpus. Since the text domains of the two data sources
are different, a covariate shift is likely and has to be accounted for. Besides
evaluation of the classification performance, an exemplary analysis of the mod-
els properties is included, illustrating possible use cases of the model for social
science experiments.
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5.4.1 Seed Term Selection

The seed term extraction process is repeated from the previous experiment
(Section 5.3.1). However, in the proposed domain-adaptive setting, this pro-
cess only adheres to two of the three criteria for a high-quality seed term set
(Jin etal., 2020): that seed terms should be representative for their associated
categories, and that categories should have little to no overlap in their seeds.
The third, that seed terms should not be rare words, is dependent on the term
frequencies in the target data due to covariate shift. As X. Li etal. (2018)
note, the document coverage of seed words correlates positively with the mod-
els classification performance. Thus, “rare” can be operationalized as “has low
document coverage”. Consequently, the candidate set is further refined using
document frequency information from the target Wikipedia data. First, a can-
didate set of 50 terms for each category is extracted from the Luhmann data
using the previously established appraoch. Then, to account for covariate shift,
this candidate set is ordered descending by the document frequency of terms
in the Wikipedia data. The top k seed terms are chosen, where k corresponds
to the desired number of seed terms for model training, with & = 20 in this
case.

Table C.3 shows the top 30 mined seed terms per category, with an indicator
drawn at the cutoff value. Once more, all seed terms are semantically coherent.
In comparison to Table C.2, slight changes in the seed term set of each cate-
gory are observable due to the document-frequency-based reordering. The seed
terms are less specific and more common in everyday language. No ‘Luhmann-
specific’ terms, i.e. terms that relate to general properties of system theory,
like ‘selbstorganisation’, ‘reflexionstheorie’, or ‘kommunikationsfahigkeit’ are
present, increasing the widespread usability of the seed term set. Once again,
usable seed terms occur beyond the twenty term cutoff.

Table 5.7 repeats the analysis of seed term coverage from Section 5.3.1 us-
ing the adjusted seed term set. However, since no gold labels are present, the
within-class analysis cannot be conducted. Instead, listed in the table for com-
parison are the coverage statistics on in-domain data over all documents for
comparison purposes. The cross-domain coverage is similar to the in-domain
coverage. Yet, while overall coverage is down by seven percentage points, all
but one class have an increased coverage value. Especially for underrepresented
classes in the in-domain data (like Religion), the cross-domain setup improves.
Not only the coverage, but also the mean number of seed terms per docu-
ment increases in the per-class evaluation, and once again does so the most for
underrepresented classes. In half the cases, the mean almost doubles. A signifi-
cant increase is also present in overall number of seeds. In total, the increase of
seed coverage is a promising sign that the domain transfer is indeed possible.
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Class Covered Document Ratio Mean #Seeds p. Doc.
In-Domain Cross-Domain In-Domain Cross-Domain
Politics 0.29 0.31 0.44 0.49
Moral 0.57 0.53 0.86 1.16
Art 0.57 0.64 0.93 1.46
Economy 0.17 0.30 0.23 0.50
Education 0.18 0.36 0.22 0.62
Law 0.26 0.28 0.34 0.45
Religion 0.05 0.18 0.06 0.24
Science 0.42 0.49 0.67 0.90
Overall 0.97 0.90 3.67 5.60

Table 5.7: Ratio of documents containing at least one seed term and mean number
of seed terms per document per class, within-domain (Luhmann data) and cross-
domain (Wikipedia data).

Further, a higher document count and vocabulary size seem to be the improv-
ing factor, heightening the chance of encountering high-frequent seed terms.
Adjusting the seed term set using the target domain document frequencies of
terms has proven beneficial as well.

5.4.2 Evaluation of Classification Performance

Evaluating the models’ classification performance in a cross-domain setting
presents a problem: no gold labels are present in the target domain. However,
one option is to train on the target domain, but evaluate on the (known) labels
of the source domain. In this case, the model is trained on Wikipedia data
using seed terms extracted from the Luhmann corpus, and its performance is
evaluated on the Luhmann label data. Two options to derive predictions for
this test set are possible: (1) concatenate both corpora, as to train on both
and have the Luhmann documents included in the models’ a-matrix; and (2)
use the NB-like prediction process introduced in Section 3.2.4, circumventing
the need to include Luhmann documents when training the model.

The second strategy is chosen in order to not introduce a train/test leakage
in the models training process, which could potentially impact classification
results and undermines the cross-domain setup. However, as noted in Sec-
tion 3.2.4, the NB-like approach is expected to perform sub-par. Therefore, only
the relative change in performance between the in-domain and cross-domain
setting, not the absolute values should be interpreted. A label probability dis-

52



CHAPTER 5. EXPERIMENTAL RESULTS & DISCUSSION

Precision Recall F,
In-D. Cross-D. In-D. Cross-D. In-D. Cross-D.
Politics 0.14 0.09 0.00 0.33 0.01 0.15
Moral 0.28 0.31 0.83 0.62 0.41 0.41
Art 0.14 0.19 0.68 0.94 0.24 0.31
Economy 0.00 0.09 0.00 0.44 0.00 0.15
Education 0.00 0.06 0.00 0.24 0.00 0.09
Law 0.05 0.03 0.13 0.01 0.08 0.02
Religion 0.00 0.00 0.00 0.00 0.00 0.00
Science 0.07 0.12 0.62 0.22 0.13 0.15
Micro Avg. 0.15 0.16 0.46 0.49 0.23 0.25
Macro Avg. 0.09 0.11 0.28 0.35 0.11 0.16

Table 5.8: Precision, recall, and F; score for NB-like predicitions of the In-Domain
and Cross-Domain model, per class and averaged.

tribution is calculated for each document in the Luhmann corpus, once using
the cross-domain model trained on Wikipedia, and once using the in-domain
model trained on the Luhmann corpus. The two top-scoring classes of each doc-
ument are assigned as predictions to emulate the mixed-membership setting.
Both models are evaluated against the Luhmann gold labels, with precision,
recall, and F; score given in Table 5.8, per class and averaged.

As expected, the NB-like approach performs much worse than the origi-
nal predictions made by the in-domain SMTM model. Suprisingly, the cross-
domain model performs slightly better than the in-domain model. The micro
average increases less than the macro average for all three measures from in-
domain to cross-domain setting, due to the reduced variation in per-class scores
in the cross-domain setting. The highest increase in observable for macro-
averaged recall, which is 0.07 higher from 0.28 to 0.35.

When comparing the in-domain results to the cross-domain results, three
classes (economy, education, religion) are never predicted by the in-domain
model, as both precision and recall are zero, yet recover a bit under the cross-
domain model. This is likely due to the much expanded vocabulary size: while
every term of the test set occurs in the vocabulary of both models, the latent
probability distributions of the cross-domain model are apparently more useful,
as more context information derived from word cooccurrences is encoded in
the cross-domain model. Given the higher term counts and vocabulary size of
the Wikipedia corpus, terms can be observed in more training samples, and in
turn, more information about them can be encoded, improving predictions.
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Table 5.9: Cosine similarity between all system pairs (left side) and predicted label
count and label ratio (right side).

However, Religion remains a problematic class, as even by the cross-domain
model, the label is never assigned. This is presumably due to an ‘overshadow-
ing’ effect: since for each document, only the two highest-scoring categories are
selected, and since Religion is the least frequently occurring class in the gold
label set, more ‘powerful’ categories are selected by default, even when terms
relating to the Religion class are indeed present in a document.

Extrapolating from these results, and given the promising classification
performance in both the previous experiment on Wikipedia data as well as
the in-domain Luhmann classification, the models’ ability to correctly identify
social systems in large text corpora is deemed sufficiently high.

5.4.3 Investigation of Model Properties

To further validate the model given its favorable classification results, the
analysis of model properties is repeated, to compare the cross-domain model
to the original in-domain one. Once again, class relations and term relevance
are analyzed using the same methodology as before.

Class Relation Analysis. Table 5.9 shows the cosine similarity of each
pair of social systems (left side) and the per-system prediction count, as well
as overall number of documents and mean number of predicted systems per
document. Compared to the in-domain setting, an increase in mean detected
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categories per document leads to increased cosine similarity scores, as more
document-level class cooccurrence can be observed. For example, Moral is as-
signed to about 40% of articles, and thus shows an increase in similarity to
other high-frequent classes. Beyond the pairings with Moral, the other three
systems pairs with high similarity are Economy and Politics, Politics and Re-
ligion, and Art and Science.

While these results appear to be reasonable at first glance—politics and
economy are intertwined, moral judgment occurs in all contexts, and both
art and science assign meaning to the world—the interpretation should be
done with caution. Since this is a cross-domain setting, the one-to-one cor-
respondence between assigned classes and social systems given before cannot
be accepted without reservation. In fact, as the term relevance analysis will
show, there is a significant semantic drift between both corpora, altering the
interpretation of categories.

Term Relevance Analysis. Table D.2 shows the Top 30 relevant non-seed
terms per social system. Note that seed terms were deliberately omitted as
they still occupy about half of the top terms for each system. All other terms
were learned by the model. The results are of mixed quality overall. Compared
to the in-domain setting, the strong coherence and correspondence between
terms and system is lost. Instead of a focused and well-delineated selection
of appropriate terms in each system, a common theme across all systems in
the cross-domain setting are terms that semantically relate to scientific descrip-
tions of plants, animals, or chemical compounds. This hints at an inherent flaw
of the Wikipedia data underlying the classification: even the filtered subset of
Wikipedia is highly skewed towards articles describing species or substances,
which in turn influences the topic detection. This skew also influences the
semantics of the seed terms, introducing a topical drift.

One prominent example of this is the Art system: its seed term set includes
terms like ‘ordnung’, ‘form’, or ‘einheit’ — terms that are semantically ambigu-
ous, and occur in different contexts in the Luhmann data (where e.g. ‘ordnung’
refers to ‘Gesellschaftsordnung’) and Wikipedia (were ‘ordnung’ overwhelm-
ingly refers to ‘order’ in the biological sense). This prompts to formulate a
fourth requirement for seed term selection: seeds should be semantically un-
ambiguous and refer to the same concept in source and target data. This effect
is also very noticeable in the system of EFducation. A strong topical drift into
terms relating to Healthcare is observable. This is likely due to seed terms like
‘mensch/en’, ‘geburt’; or ‘kind’. Their semantic meaning in Wikipedia is over-
shadowed by articles with a medical context, and thus the intended educational
interpretation of the terms in the Luhmann data is lost.
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The system with the best semantic correspondence is, unsurprisingly, Sci-
ence. Second to that are Economy, featuring a topical focus on concepts like
automatization, technology, and processes, and Politics, with a focus on ger-
many, people, interpretation of meaning (‘sachbegrift’, ‘wortherkunft’; ‘sinne’),
and conditional frameworks (‘praxis’, ‘rahmen’, ‘zusammenhang’). The system
Religion, which has the lowest seed term coverage both in-domain and cross-
domain, yet features one of the most specific (in the sense of unambiguous)
seed term sets is also capturing concepts like history, meaning of words, and
translations, which are core tasks for exegesis, and can thus be related to Re-
ligion in a broader sense. Yet, the overall correspondence of detected term
distributions in the Wikipedia to the desired Luhmannian systems is scarce.

Some noise words are also apparent (‘displaystyle’, ‘gnd’; ‘frac’, ‘com’),
suggesting that more strict text preprocessing is needed. While the same trend
of observing multiple forms a the same word (‘person’, ‘personen’) formerly
noted for the seed term sets is also noticeable here, in light of the ambiguity
problems, aggressive stemming might not yield further model improvements.
The tradeoff between the reduced vocabulary size yielding higher predictive
power for single words and the increase in ambiguity introduced by stemming
is to be investigated closely in future work.
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Chapter 6

Conclusion

In this thesis, the possibility of performing automatic detection of social sys-
tems in text data was explored. Starting out with a description of social sys-
tem theory as notably developed by sociologist Niklas Luhmann, it was then
operationalized within the framework of seed-guided classification. The moti-
vation behind this is that a specific realization of the seed-guided classification
method, called SMTM, provides all the benefits of topic modeling, which has
found widespread application in the fields of digital and computational human-
ities due to its properties, while offering the possibility of influencing which
latent topics are detected in a given text corpus through a set of so-called
seed terms. This allows to condition the model to detect latent categories in
text that correspond to each of the to-be-detected social systems without the
expense of creating a large amount of domain-specific training data.

To achieve this goal, seed-guided classification in general and the SMTM
model in particular were described in detail, reflecting on its advantages, draw-
backs, and possibilities of use. Two properties make it especially useful for the
task at hand: first, it takes a set of representative seed terms for each category
as input, circumventing the expensive and tedious process of creating labeled
training data in a large enough quantity for supervised methods. It further al-
lows to mine seed terms directly from relevant primary social science literature
for a consistent operationalization of otherwise notoriously difficult concepts.
Secondly, it provides as output probability distributions on two levels of gran-
ularity, namely a term-category and a document-category probability matrix.
This allows for a high degree of model explainability and interpretability, as
well as a large variety of downstream tasks.

Yet, the proposed method was never applied for social science research prior
to this thesis. Therefore, the major contribution of this thesis is an in-depth
evaluation of the model’s properties and different methods of automated seed
term extraction, both with respect to established benchmark corpora for clas-
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sification in computer science, as well two novel datasets created to investigate
the models’ suitability in two settings: in-domain, detecting social systems
within texts written by Niklas Luhmann, mining seed terms and applying
the model on a dataset of nine monographs, each corresponding to one so-
cial system; and cross-domain, which mines seed terms on the aforementioned
Luhmann corpus, and applies the model on a large-scale Wikipedia corpus,
encompassing nearly 100000 articles covering a wide variety of content.

The baseline evaluation on the 20NG and Ohsumed datasets has shown
the SMTM model to be a competitive semi-supervised classification method,
performing on par to other supervised baseline methods. Previous results of
other studies have been successfully replicated, enhancing the validity of the
method and establishing a universally well-performing parameter choice, as
well as suggestions for adapting the model to the task at hand. The three
influential parameters u, 7o, and iteration count allow the model to adapt
to various settings, with different operating points regarding seed influence,
prediction sparsity, and precision/recall tradeoff.

The comparison of different seed term extraction methods yielded a clear
recommendation to use the PMI-based selection, which produces seed term
sets that are both quantitatively optimal as well as qualitatively sensible. A
HITL-based procedure for integrating human-curated seed terms has continued
to prove well-performing as per previous studies and this evaluation. This is a
promising sign for employing seed-guided modeling for social science research,
as labeled data to mine seed terms using automatic approaches may not be
available for all tasks. Integrating domain experts into a hybrid process seems
to a be a fruitful area of future research.

Adding insight to existing work, the scalability evaluation proved SMTM
to be a highly flexible and scalable model that can cope well with imbalanced
data, generating largely balanced output. In addition to class imbalance, doc-
ument length is identified as an influencing factor, which suggests the need for
further research in model initialization techniques, for example using a sliding-
window over a document-based seed occurrence approach. Overall, smaller
document lengths together with a large vocabulary size improves results.

In an in-domain setting, SMTM shows outstanding performance, being able
to produce classification results and to exhibit model properties that are not
only quantitatively impressive, but also align well with theoretical expecta-
tions. The term relevance analysis in particular shows the model to be able
to generalize well beyond the given seed terms, and to identify well-delineated
categories, in close semantic correspondence to the social system theory under-
lying the experiment. This is a successful first foray into utilizing seed-guided
methods to assists in quantifying phenomena in digital humanities research
that have so far been addressed in a qualitative way exclusively.
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However, the cross-domain setting performs less favorable. The model has
difficulties transferring the semantics encoded in the seed term set to the target
domain, and shows to be sensitive to the latent structures of the underlying
data. The Wikipedia dataset seems ill-suited to further pursue social system
classification on, as it is too skewed to technical articles and the natural sci-
ences. Repeating the analysis of a dataset with properties closer to the domain
seed terms are sourced from, for example newspaper articles, seems necessary.

The SMTM model itself could be improved further: as NB-like inference
for unseen documents produces largely unreliable results, a specialized post-
training method for inferring classes would be a welcome addition. Also, more
research into model initialization methods is warranted. Methods that rely
on word embeddings instead of cooccurrence to incorporate supervision into
the model possibly mitigate the impact of term ambiguity, and improve the
cross-domain performance by making it more robust to covariate shift. Using
an externally pre-trained embedding model allows to incorporate seed terms
that are not part of the target vocabulary, or occur only very infrequently.
Embedding-based methods could also be used to quantify the semantic shift
of terms between source and target corpora, combating the noted problems.

Given the use cases for topic modeling in the social sciences exemplified
in Section 77?7, employing SM'TM beyond the analysis of social systems is sug-
gested for all cases where influence on the resulting topics is wanted. This
could include analysis of free-text surveys, where answer categories of inter-
est are formulated by the investigating researchers and need to be mapped
to the responses at hand. By working in a bi-directional process, the validity
of these pre-defined categories could be further interpreted by comparing the
model properties, i.e. the relevant terms and class associations to the intended
descriptions of topics, or their seed term sets, respectively.

SMTM further helps to overcome the problems noted in Section ?7: as
the categories are pre-defined by their seed sets, the problem of characterizing
and assigning meaning to topics is alleviated. Also, the traditional initializa-
tion problems of defining a topic count, and the possibility to derive different
outcomes on the same data are diminished: the topic count is an inherent
part of the classification process, and since the initialization process relies on
word cooccurrence patterns instead of chance, the model variation is (while
still present) reduced to a minimum. In total, SMTM offers all the advantages
of a topic-model-based data analysis process, such as the intuitive interpreta-
tion, and possibilities for building visual interfaces to the data, while reducing
the impact of classic problems associated with the method. The possibility of
training the model without extensive label data, but instead on seed terms
either curated by a domain expert or mined directly from relevant literature
opens up exciting possibilities for future applications of the SMTM method in
social science and digital humanities research.
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APPENDIX A. WIKIPEDIA CATEGORIZATION

Table A.1: Overview of German Wikipedia root categories. Articles have to belong
to at least one required (Req.) category, and cannot belong to a reject (Rej.) category.

Category Rej. Req. Related Social System

Bildung v Education
Digitale Welt

Energiewesen

Erde v

Ereignisse v

Feuer

Fiktion

Geographie v

Geschichte

Geschlecht

Gesellschaft

Gesundheit v Health
Internationalitat

Kommunikation und Medien v Mass Media
Kunst und Kultur v Art
Lebensstadien

Lebewesen als Thema

Methoden, Techniken und Verfahren

Militdrwesen

Naturwissenschaft und Technik

Organisationen v

Personen v

Planen und Bauen

Politik v Politics
Raum

Recht v Jurisprudence
Rekorde

Religion v Religion
Sicherheit

Spiele

Sport

Umwelt und Natur

Verkehrswesen

Wasser

Weltraum

Werke

Wirtschaft v Economy
Wissen

Wissenschaft v Science
Zeit v
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Appendix B

Stop Word Lists

Wikipedia Stopwords. fur, displaystyle, the, isbn, wurde, dass,
uber, and, konnen, etwa, wurden, zwei, sowie, art, doi, jedoch, beim,
auflage, hrsg, kommt, mehr, gibt, meist, dabei, englisch, bzw, pdf,
wahrend, oft

Luhmann Stopwords. unmarked, la, niklas, luhmann, suhrkamp, taschenbuch,
bibliothek, he, wem, entry, re, vgl, law, ibid
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