
Bauhaus-Universität Weimar
Faculty of Media
Degree Programme Computer Science for Digital Media

Advancing and Benchmarking
Large-Scale Content Extraction from

the Web

Master’s Thesis

Sanket Gupta

1. Referee: Prof. Dr. Benno Stein

Submission date: November 4, 2022

Declaration

Unless otherwise indicated in the text or references, this thesis is entirely the
product of my own scholarly work.

Weimar, November 4, 2022

. .
Sanket Gupta

Abstract

Websites are essential information sources. A webpage contains main content, which is
the most relevant part of the web page, such as news articles, sports events, informative
posts, as well as boilerplate text such as header, footer, advertising, and copyright notice.
Content Extraction is the process of locating and extracting a webpage’s main content, dis-
tinguishing between the main content and the boilerplate. It is important to separate the
main content from the boilerplate because it improves text analysis for unstructured and
semi-structured data and lets us use automated systems to draw more accurate conclusions
about our business problems, like displaying only main content on smaller devices, improv-
ing search engine results, minimising storage costs, lack of data mobility, and complex data
management.

Significant research has gone into the development of content extraction algorithms.
However, little research has been conducted on assessing the quality of content extraction
algorithms to identify the most effective extractors for various web pages.

In the thesis, we examined various open-source content extractors, designed an ensemble-
based content extractor, and benchmarked the extractors against a gold standard using
text-based similarity metrics. We also discussed collecting labelled web pages from various
sources, analyzing annotation errors in the gold standard, putting web pages into groups
based on their complexity or using the K-means clustering algorithm, and benchmarking
scores for these groups. We discovered that no single content extraction algorithm outper-
forms the rest. The best content extraction algorithm varies with the complexity of a web
page.

Contents

1 Introduction 1
1.1 Motivation . 3
1.2 Goals & Approach . 4

2 Background 6
2.1 Related Work . 6

2.1.1 Statistics-based Content Extraction 6
2.1.2 Machine Learning Based Content Extraction 9
2.1.3 Visual Based Content Extraction 10
2.1.4 Benchmarking of Extractors . 11

2.2 Extractors . 12

3 Creating and Analyzing Datasets for Benchmarking Extractors 17
3.1 Collecting Annotated Web Pages for Benchmarking Extractors 17
3.2 Data Preparation . 22
3.3 Classifying Web Pages used for Benchmarking to Determine Diversity . . 23
3.4 Catalogue and Quantify Gold Standard Manual Annotation Error 26
3.5 Grouping Web Pages by the Complexity 31
3.6 Grouping Web Pages using the K-means Clustering Algorithm 33

4 Surveying Text Similarity Metrics for Benchmarking Extractors 39

5 Designing Ensemble Model Extractors 44
5.1 Threshold based Ensemble Content Extractor 45
5.2 Machine Learning based Ensemble Content Extractor 46

i

CONTENTS

6 Evaluation 49
6.1 Benchmarking of Extractors . 49

6.1.1 Benchmarking using the Source Dataset 49
6.1.2 Benchmarking using the Dataset Formed by Web Pages Complexity 53
6.1.3 Benchmarking using the Dataset Formed by K-Means Clustering Al-

gorithm . 56
6.2 Extractors Rank Correlation Among Text Similarity Metrics 59
6.3 Most Effective Score Distribution Across Web Pages for all the Benchmarked

Extractors . 63

7 Conclusion and Future Works 65

Bibliography 67

ii

Acknowledgements

I am thankful to Dr. Johannes Kiesel, Mr. Janek Bevendorff and Mr. Nikolay Kolyada for
guiding me throughout my thesis. They were consistently supportive and generous with
their knowledge and skills, and their assistance and direction throughout the duration of
the thesis were unparalleled. I would like to thank Prof. Dr. Benno Stein for sharing
his knowledge of Machine Learning, which was of immense benefit to me as I worked on
my thesis. Lastly, I would like to express my gratitude to my friends and family for their
support.

iii

Chapter 1

Introduction

The World Wide Web is a tremendous informational resource. The number of websites has
expanded dramatically, from 17 million in 2000 to over 1 billion in 20181. Approximately
63 percent of the population has access to the World Wide Web2. Scientists, educational
institutions, and business intelligence, to mention a few, use the information available on
the web for their purpose. Internet penetration is phenomenally high. Approximately
80% of the internet’s information is unstructured and has enormous potential3. Unstruc-
tured data presents several difficulties, including data indexing and search results prone
to inaccuracy, costly data storage, and complex data processing. As the volume of data is
increasing at an alarming rate, it becomes impossible for humans to process information
effectively and precisely on a large scale. Natural Language Processing lets users quickly
extract meaningful information from a vast corpus of unstructured data. Before employing
natural language processing techniques, eliminating possible boilerplate from unstructured
data can be of immense value. The boilerplate is the sections of web pages that are of
less interest to the reader, such as the header, footer, and advertisements, to name a few.
Therefore, it is crucial to filter, organize, locate, and manage unstructured data on the
Internet.

Each webpage is intended to convey specific information. A sports webpage, for instance,
features sports-related events and includes advertisements, copyright, and a footer. A
reader focuses primarily on the sports story and disregards the other less critical com-
ponents. These additional sections provide meta information, such as contact or mailing

1https://siteefy.com/how-many-websites-are-there/
2https://www.axios.com/2021/12/03/world-internet-usage-un
3https://blog.bitext.com/the-bulk-of-data-wandering-on-the-net-is-unstructured-data

1

CHAPTER 1. INTRODUCTION

information, connections to related pages, etc.

The following are the primary components of a web page (Insa Cabrera et al. [2013]):

• Main content: The content is the most important to the web page’s purpose.

• Navigation / Header: A navigation menu lists links to additional web pages,
typically internal sites. They do not contribute to the main content but provide
connections and descriptions of additional user-relevant material.

• Advertisements: As a method of monetizing websites, the author typically employs
advertisements. These sections are typical of no relevance to the user, but they
contain information based on the reader’s recent search history.

• Footer: The footer is the portion at the bottom of the website that contains a
copyright notice, social media connections, contact information, business information,
and other related information.

Content Extraction is the process of identifying and extracting the webpage’s primary tex-
tual content. There are two techniques for content extraction: manual and automated.
Manual content extraction is when a reader visually examines a webpage, identifies signif-
icant text, and extracts it. The process of discovering and extracting relevant information
using software or any other automated technique is called automated content extraction.
In manual content extraction, for example, when a user visits a webpage, the user glances
over the page and attempts to find the most interesting sections. Background information,
layout interpretation, and saccades allow users to locate their desired content. However, a
machine does not have such resources to determine the main content. Figure 1.1, a snap-
shot from a website, depicts the previously stated scenario. A reader will have no issue
recognizing the webpage’s main content; one can ignore the navigation menu at the top
and the advertising on the right.

Most algorithms determine the primary content based on statistics such as stop word
density, link density, HTML tags, length of text, etc., while some utilize machine learning.
Automatic content extraction offers a more cost- and time-effective alternative to manual
content extraction. As a result, benchmarking the extractors is required to assess their
performance in various contexts.

2

CHAPTER 1. INTRODUCTION

Figure 1.1: A web browser snapshot of makeawebsitehub.com. There are various sections on
the webpage, navigation at the top, the primary content on the left, and an advertisement and
connections to relevant articles on the right. The reader can readily distinguish between the main
content and the additional components.

1.1 Motivation

The exponential rise of the Internet has resulted in an abundance of semi-structured and
unstructured data. Identifying relevant information from a web page can be used for a vari-
ety of applications, including but not limited to presenting relevant information on smaller
devices, improving search engine results, and data mining. For consumers, businesses,
and researchers to save time and money, reduce manual errors, enhance their data-driven
operations, and avoid duplication of effort, it is crucial to extract the main content for
processing information on a large scale.

3

CHAPTER 1. INTRODUCTION

There are research articles on improving the performance of web-mining and information
retrieval from web pages, comparing results with standard extractors. However, little re-
search has been conducted on benchmarking these extractors on a large scale, the scenarios
in which different extractors function, the quality of labelled datasets used for benchmark-
ing, and scoring metrics. Such an analysis can be significant when determining which
extractor to use to extract the main content from a web page.

1.2 Goals & Approach

The objective of the thesis is to fill the research gap and provide a systematic method for
benchmarking extractors. It’s main contribution are:

• Collection of 15 content extraction algorithms: We analyzed generic content
extraction algorithms that do not require domain-specific customization or are de-
signed to extract specific text/tags from web pages. We accumulated 15 algorithms
published in scientific journals and on GitHub, and the algorithms were coded in
Python, Java, Go, and Scala.

• Collection of web pages for benchmarking extractors: Labelled web pages
were gathered from multiple sources. The sources include the cleaneval dataset, read-
ability, dragnet, and article-extraction-benchmark GitHub repositories. Sun et al.
labelled around 700 web pages manually, and we contacted the author to allow ac-
cess to their manually labelled dataset. Around 3100 archived webpages and their
gold standard were collected from various sources.

• Exploratory data analysis on a labelled dataset: We conducted exploratory
data analysis on the web pages and their gold standard. The error rate in the gold
standard, the proportion of text recognized as the main content on a web page, K-
Means cluster algorithm analysis to detect cluster formation, classifying web pages
by categories, and estimating the complexity of a web page were all addressed. It is
discussed in depth later in the thesis.

• Largest empirical evaluation of content extractors: The extractor’s output
on a web page was compared to its gold standard using text similarity score met-
rics. 15 extractors were evaluated using the score metrics 4-Gram, Levenshtein Edit
Distance, Jaccard Index, RougeLSum, and Bag of Words.

4

CHAPTER 1. INTRODUCTION

• Design of an ensemble extractor model: We developed an ensemble model for
content extraction and compared its performance on scoring criteria to competing
algorithms.

The outcomes of the research are intriguing. We discovered that no single content extrac-
tion method outperforms the rest. The best content extraction algorithm varies with the
complexity of the web page. In the coming chapters, we shall go into the implications of
the findings.

5

Chapter 2

Background

This chapter reviews content extraction algorithms that are available as open source in
the section 2.2. Section 2.1 addresses scientific research addressing statistical, machine
learning, and visual-based techniques for content extraction. Section 2.1.4 reviews ex-
isting benchmark scores of content extraction algorithms using a text similarity measure
published by Konstantin Lopukhin.

2.1 Related Work

HTML tags notify the developer and browser about the content of a web page. HTML
offers a highly flexible way to express code; as a result, developers frequently abuse HTML
tags while creating websites together with a large amount of unstructured data whose
format varies from page to page. There is a discrepancy between how a browser renders a
webpage and how the HTML is written. Because of the above obstacles, designing a content
extraction algorithm that runs on all websites is difficult. Researchers have explored several
methods for extracting the core material; some of the strategies are covered below.

2.1.1 Statistics-based Content Extraction

It includes utilizing rules to determine the main content of a webpage. Various leaf node
characteristics are retrieved and compared to a static or dynamic threshold. The majority
of existing content extraction methods are statistically based. Several of the characteristics
utilized in this method include link density, text density, stop word density, nearby element
characteristics, etc. This approach is utilized by algorithms such as trafilatura, readability,

6

CHAPTER 2. BACKGROUND

body text extraction, and JustText.

Finn et al. describes Body Text Extraction as the process for identifying a webpage’s
primary content. Two types of tokens are considered to comprise a webpage: HTML tag
tokens and text tokens. Thus, an HTML page may be represented as a sequence of bits B,
where Bn = 0 denotes that the ith token is a word and Bn = 1 indicates that it is a tag.
The problem is currently viewed as an optimization issue. It needs i and j to be identified
to maximize the number of tag tokens below i and above j and the amount of text tokens
between i and j. Text is only gathered between i and j. In other words, the algorithm
identifies the plateau in the slope curve. The optimization function is defined as:

Ti,j =
i−1∑
n=0

Bn +

j∑
n=i

(1−Bn) +
N−1∑

n=j+1

Bn (2.1)

Trafilautra’s (Barbaresi [2021]) extraction algorithm is based on a cascade of rule-based
filters and content heuristics. Content delimitation is performed by XPath expressions
targeting common HTML elements, attributes, and irregularities of main content man-
agement systems. The selected nodes of the HTML tree are then processed, i.e. checked
for relevance (notably by element type, length and link density) and simplified as to their
HTML structure. Extraction is robust and modular, providing a trade-off between pre-
cision and recall in most settings. Main texts are returned, with optional preservation of
structural elements (paragraphs, titles, lists, quotes, code, line breaks, in-line text format-
ting). Extraction of metadata is also included, such as descending frequency title, site
name, author, category, categories and tags. For data extraction, the library acts like a
wrapper around html date; a module specifically developed for this task.

JustText (Pomikálek [2011]) employs a straightforward segmentation method. By de-
fault, web browsers display the contents of certain HTML elements as blocks. The purpose
of these tags is to divide the HTML page into textual sections. BLOCKQUOTE, CAP-
TION, CENTER, COL, COLGROUP, DD, DIV, DL, DT, FIELDSET, FORM, H1, H2, H3,
H4, H5, H6, LEGEND, LI, OPTGROUP, OPTION, P, PRE, TABLE, TD, TEXTAREA,
TFOOT, TH, THEAD, TR, UL are all block-level tags. A series of two or more BR tags
can also be used to divide blocks.

7

CHAPTER 2. BACKGROUND

Multiple observations may be made regarding these blocks:

• Short paragraphs including a link are nearly always boilerplate.

• Any block containing several links is nearly usually a boilerplate.

• Long blocks containing grammatical content are always practical, but all other long
blocks are nearly always unproductive.

Both primary blocks and boilerplate blocks tend to form clusters, meaning that additional
boilerplate blocks and vice versa surround a boilerplate block. Determining if a text is
grammatical or not can be difficult, but a simple heuristic based on the number of stops
words can be utilised. While a grammatical text will normally have a specific number of
stop words, boilerplate information such as lists and enumerations contain few stop words.
The algorithm’s primary premise is that lengthy blocks and certain short blocks may be
categorised with a high degree of certainty. The remaining short blocks can then be cate-
gorised based on their surroundings.

Weninger et al. describes Content Extraction via Text Ratio as a method to extract
content text from diverse webpages by using the HTML document’s tag ratios. Tag Ratio
is the ratio of the count of HTML tags characters to the count of HTML tags per line. A tag
ratio histogram is built between the line number and its tag ratio. The histogram is then
passed through the Gaussian kernel. It is performed because without smoothing; many
content lines will be lost. The content selection is then performed by threshold strategy.
The strategy is to identify a threshold that distinguishes between content and non-content
regions of tag ratios. Any tag ratio value more than or equal to the threshold should be
classified as content, while any tag ratio value less than should be labelled as not content.
The difficulty then becomes locating the optimal value for threshold.

Sun et al. [2011] describes Content Extraction by text density, a fast, accurate and general
method for extracting content from diverse web pages, and using DOM (Document Object
Model) node text density to preserve the original structure. The method makes use of
standard text characteristics such as content and noise. It was discovered that web page
noise is typically well structured and comprises fewer materials and shorter phrases. In
contrast, the text is typically extensive and structured easily. Character number (number
of all characters in its subtree) and Tag number (number of all tags in its subtree) are
calculated for each node on a webpage. Text Density is then calculated for each node as

8

CHAPTER 2. BACKGROUND

the ratio of Character Number to Tag Number. Text Density quantifies the amount of
text in each web page node. It assigns high values to nodes that often include lengthy,
simply-formatted text and low values to nodes that are heavily formatted and contain less,
shorter content. The study determined that most of the page’s noise comprises hyperlinks;
hence, further statistical information such as LinkCharNumber (number of all hyperlink
characters in its subtree) and LinkTagNumber (number of all hyperlink tags in its sub-
tree) was calculated. In addition, Composite Text Density is generated for each node, and
content is retrieved using a threshold technique. The objective of the threshold technique
is to establish a threshold t that separates nodes into content and noise parts. Any node
whose text density is more than or equal to t should be labelled as content, whereas any
node whose text density is less than t will be labelled noise.

2.1.2 Machine Learning Based Content Extraction

Web2text (Vogels et al. [2018]) uses machine learning based approach to extract main
contents. Web2Text expects input from web pages to be formatted in (X)HTML. Using
Jsoup, each document is processed into a Document Object Model (DOM) tree. This DOM
tree is preprocessed by deleting empty nodes, nodes containing just whitespace, and nodes
whose content cannot be extracted. Web2Text’s content extraction algorithm is based on
sequence labelling. A web page is treated as a sequence of blocks labelled main content
or boilerplate. There are multiple ways to split a web page into blocks, the most popular
currently used being lines in the HTML file or DOM leaves. Features are properties of
a node that may indicate it being content or a boilerplate. Such features can be based
on the node’s text, CDOM structure or a combination thereof. It distinguishes between
block features and edge features. Block features capture information on each block of text
on a page. Edge features capture information on each pair of neighbouring text blocks.
It then assigns unary potentials to each text block to be labelled and pairwise potentials
to each pair of neighbouring text blocks. The unary potentials are the probabilities that
the label li of a text block i is content or boilerplate. The pairwise potentials are the
transition probabilities of the labels of a pair of neighbouring text blocks. The two sets of
potentials are modelled using convolutional neural network (CNNs) with 5 layers, ReLU
non-linearity between layers, filter sizes of (50, 50, 50, 10, 2) for the unary network and
of (50, 50, 50, 10, 4) for the pairwise network. CNN receives a sequence of block features
corresponding to the sequence of text blocks to be labelled and outputs unary potentials
for each block. The pairwise CNN receives an edge class corresponding to edges to label

9

CHAPTER 2. BACKGROUND

and output the pairwise potentials. Authors employ dropout regularization with a rate of
0.2 and L2 weight decay with a rate of 10-4 to ensure each layer produces a sequence the
same size as its input sequence. A total of 128 features were extracted for each block.

2.1.3 Visual Based Content Extraction

In the VIPS algorithm introduced by Cai et al., the content structure of a page is deduced
by combining the DOM structure and the visual cues. Each DOM node is checked to deter-
mine whether it forms a single block. Visual separators among these blocks are identified,
and the weight of a separator is set based on the properties of its neighbouring blocks. The
next phase aims to find all appropriate visual blocks contained in the current sub-tree. For
each node representing a visual block, its DoC (Degree of coherence) value is set according
to its intra-visual difference. DoC indicates the degree of consistency inside the block. This
process is iterated until all appropriate nodes are found to represent the visual blocks in
the web page. Separators are horizontal or vertical lines in a web page visually crossed
with no blocks in the pool. From a visual perspective, separators are good indicators for
discriminating different semantics within the page. A visual separator is represented by
a 2-tuple: (Ps, Pe), where Ps is the start pixel, and Pe is the end pixel. The weight
of a visual separator is assigned based on the distance between its neighbouring blocks.
Rules are used to set a weight for each separator and include the following: If background
colours are different on two sides of the separator, the weight will be increased. When the
structures of the neighbouring blocks are very similar (e.g. both are text), the weight of
the separator will be decreased. The construction process starts from the lowest weight,
and the blocks beside these blocks are merged to form new virtual blocks. This process it-
erates till separators with maximum weights are met. After that, each leaf node is checked
to see if it meets the granularity requirement. After that, it again goes to the Visual Block
Extraction phase to further construct the sub-content structure within that node. If all the
nodes meet the requirement, the iterative process is stopped, and the vision-based content
structure for the whole page is obtained. The proposed VIPS algorithm takes advantage
of visual cues to obtain the vision-based content structure of a web page. Since we trace
down the DOM structure for visual block extraction, the algorithm is top-down. The page
is partitioned based on visual separators and structured as a hierarchy closely related to
how a user would browse the page.

Gottron explains in the article Content Code Blurring: A New Approach to Content

10

CHAPTER 2. BACKGROUND

Extraction how to make use of visual characteristics. Typically, additional information
is carefully structured and contains a few short sentences. The main text is lengthy and
uniformly formatted. The tags correspond to the markup. The text instead contributes
the content outside of the tags. The fundamental separation specified by code and content
is utilized in two unique methods to create an appropriate document representation. The
first method creates a new path for document representations in the context of content
extraction by identifying each character, whether it is content or code. A document is
therefore regarded as a string of code and content characters. The second method is based
on a token sequence, similar to how Body Text Extraction operates. Each tag and word
is associated with a token. Consequently, the entire document is represented as a series of
tag and word tokens. The sequence is known as the content code vector (CCV). For each
element in the CCV, calculate the ratio of content to code (CCR) in its neighbourhood to
identify whether it is mainly surrounded by content or code. An area with high CCR values
correlates to a region that contains the essential information. To determine the CCR, it
computes a weighted and local average of the values in a neighbourhood with a defined
symmetric range for each entry. If every element in this neighbourhood began with a value
of 1, the neighbourhood average would likewise be 1; the same holds for neighbourhoods
with a starting value of 0. In inhomogeneous areas, the average value will vary between 0
and 1 based on the surrounding factors.

2.1.4 Benchmarking of Extractors

Konstantin Lopukhin has published benchmarking of extractors for commercial services
and open-source libraries newspaper3k, readability-lxml, dragnet, boilerpipe, html-text,
trafilatura, go-readability, Readability.js, Go-DomDistiller, news-please, Goose3, inscrip-
tis, html2text, jusText, BeautifulSoup.

The collection of data occurred in two phases. To get long-tail URLs, a random sam-
ple of one thousand domains from the one million most popular websites, according to
Alexa, was selected. The second step was acquiring news stories from major websites. To
do this, all URLs, excluding YouTube links, were concatenated, yielding 356 URLs from
189 domains (several domains had more than 10 pages).

The N-Gram text similarity metric was utilized for benchmarking. Precision quantifies
how "clean" the output article body is or how effectively unnecessary content is omitted.

11

CHAPTER 2. BACKGROUND

Recall quantifies how effectively the system preserves intended article body components.
First, the N-grams methodology was chosen over the Bag of Words method because single
words might appear in an article’s favourable and undesirable portions. A set of words
does not punish unnecessary repetitive text; thus, instead of a set, n-gram counts were
also taken into account. On a total of 181 web pages, trafilatura, go readability, and go-
domdistiller performed best on the N-gram based text similarity measure, according to
the reports. This thesis is an expansion of their work by using additional text similarity
measures, adding a larger corpus (3k+ webpages), and adding a few new extractors.

2.2 Extractors

The primary responsibility of the extractors is to eliminate all possible boilerplates, such
as advertisements, a notice of copyright, header, footer, navigation etc., from the web page
and deliver the main content. There are extractors accessible as open source or commer-
cial software; however, we have chosen generic extractors that can function on any website
with minimal configuration and can be deployed for benchmarking. Since most algorithms
do not consider images or media part as the primary content, we only concentrated on
text extraction. A lack of implementation details for the extractors approach was one of
our difficulties when selecting extractors. The extractors were gathered after reading and
examining research articles, which various authors utilized to compare their implementa-
tion to other extractors. We avoided extractors that require domain-specific modification
or extractors that are designed to extract specific text/tags from online pages, as bench-
marking such extractors on a collection of web pages from various domains would produce
misleading results.

Listed below are the content extraction algorithms selected for benchmarking:

• Boilerpipe The Java-based boilerpipe library eliminates boilerplate and templates
surrounding the primary content by detecting boilerplates using shallow text prop-
erties such as word length and sentence length. Kohlschütter et al. describes and
implemented the library, which is distributed under the Apache License 2.0. How-
ever, we have utilized the Python wrapper for the open-source library licensed under
the Apache License 2.0 (Kohlschütter et al. [2010]).

• BeautifulSoup (bs4) It is one of the most used Python libraries for scraping data
from HTML or XML. The library is licensed under MIT. BeautifulSoup contains a

12

CHAPTER 2. BACKGROUND

variety of simple approaches for extracting specific data from a webpage, including
article tags, headings, paragraphs, and navigation. Using the library, however, we
retrieve the whole HTML body tag text. Although the library lacks configurable
options to minimize boilerplate and extract only the main content, it was selected
for benchmarking to compare its performance to other extractors on web pages con-
taining minimum boilerplate surrounding the main content (Richardson [2010]).

• Body Text Extraction A Python implementation of the algorithm under MIT-
licensed was discovered (Vogels et al. [2018]). The implementation is based on Finn
et al. BTE (Body Content Extraction) technique for extracting the primary text of
a web page while eliminating surrounding irrelevant content. The Body Text Ex-
traction approach is based on the notion that the primary content part of a webpage
consists primarily of text and contains relatively little markup (Finn et al. [2001]).

• Go Domdistiller The algorithm is written in Go, a programming language licensed
under MIT. The library is built on DOM Distiller implementation, which is also
loosely based on Kohlschütter et al. [2010]. According to the documentation, the
library is superior to DOM Distiller since DOM Distiller only includes render-level
information. For example, things that are obscured from viewing are not considered
content, nor are images that are too small considered lead images, etc1. The library
pulls metadata from articles and is particularly suitable for processing news articles
(Mobius and Fadlillah [2020]).

• Lxml Cleaner A Python module for removing HTML tags that are predefined from
web pages. The library needs tuning. Internally, trafilatura python-based extractor
uses Lxml Cleaner. The same tuning as the algorithm trafilatura was utilized. The
module was chosen for benchmarking to determine whether the additional processes
performed by trafilatura significantly improve content extraction.

• Goose is a Java, Scala, and Python application. Python implementation was chosen
since it was simple to configure and deploy. The library is particularly intended for
article-style webpages, from which it may extract not only the primary text but also,
most likely, graphics that are part of the primary text. The licensing for this library
is Apache license 2.0. Goose3 ranks HTML nodes depending on characteristics such
as punctuation density, frequency of stop words, text length etc. Based on the node’s

1https://github.com/markusmobius/go-domdistiller

13

CHAPTER 2. BACKGROUND

score, the nodes are tagged as boilerplate and ultimately eliminated. The remaining
nodes are the primary content nodes (GravityLabs [2010]).

• Html2Text A library written in Python that converts HTML pages into ASCII text.
The downside of html2text is that it does not preserve the text components’ spatial
positioning. A few instances where the web page is difficult to extract may result
in improper text alignment. The library is licensed under version 3.0 of the GNU
General Public License (Swartz [2014]).

• Html_Text An enhancement to Beautifulsoup’s Python-based library. The ad-
vantage of the hmlt_text library over the Beautifulsoup library is that extracted
information does not include inline styles, javascript, or any other content that is not
visible to the user. The library was selected for benchmarking purposes to compare
its results with Beautifulsoup on simple web pages with less available boilerplate
(TeamHG-Memex [2016]).

• Inscriptis After Beautifulsoup, it is also one of the most often utilized libraries. The
script functions similarly to Beautifulsoup and offers few benefits, except it preserves
the spatial positioning of text components, which HTML2Text does not (weblyzard
[2016]).

• JustText The code for the library is written in C++, Java, Go, and Python. It
is a generic removal script. There are 2 steps that the JustText script utilizes. In
the first phase, three features are computed for each segment: token length, link
count, and stop word count. The second phase (sensitive to context) modifies the
categorization of short and near-good segments based on the classification of their
neighbours. Good is assigned to a short segment if its adjacent segments are either
Good or Near-good. Good is assigned to a Near-good node if at least one of its
neighbours is Good (Gaël Lejeune [2020]).

• Readability The algorithm is primarily developed in javascript; however, go and
python wrappers are available. The licensing for the library is Apache 2.0. The go-
implemented script has been used for benchmarking. The conversion function accepts
the document as input and outputs the article title, HTML string with processed
article content, article length in characters, article description (or automatically ex-
tracted snippet), and author metadata (byline) (videoinu [2020]).

14

CHAPTER 2. BACKGROUND

• Resiliparse is an extractor on rule-based filters and content heuristics. It applies a
set of rules for removing page elements such as navigation blocks, sidebars, footers,
some ads, and (as far as they are possible to detect without rendering the page)
invisible elements (Bevendorff et al. [2018]).

• Trafilatura The GNU General Public License version 3.0-compliant Python library
for main text discovery. Trafilatura employs readability, lxml and justtext as backup
processes. The library applies a cascade of rule-based filters. Content delimitation is
performed by XPath expressions targeting common HTML elements and attributes
as well as peculiarities of major content management systems, first in a negative
perspective with the exclusion of undesirable portions of the HTML code (e.g. div
class="nav">) and then by focusing on the desired content. The same processes are
carried out on comments if they are included in the extraction. The selected nodes of
the HTML tree are then processed, i.e., relevancy is assessed (particularly by element
type, text length, and link density), and their HTML structure is reduced (Barbaresi
[2021]).

• Web2Text A boilerplate elimination approach based on a convolutional neural net-
work. The algorithm consists of three phases. The initial phase is processing HTML
into a DOM tree and extracting features from tree blocks. On top of these traits, the
second phase includes training and predicting unary and pairwise probabilities. In
the third stage, the blocks selected as major content in the second step are merged
(Vogels et al. [2018]). The implementation is explained in further detail in section
2.1.2.

The extractors listed above can be classified into two categories: simple extractors and
main content extractors. Simple extractors remove minimal or no boilerplate and retrieve
the entire body tag text, whereas main content extractors remove all possible boilerplate
and recover the main content. Table 2.1 provides a concise overview of extractors. Until
otherwise specified, the word extractor will be used for both the simple and the main
content extractors in subsequent chapters.

15

CHAPTER 2. BACKGROUND

Table 2.1: Selected Content Extraction Algorithms for Benchmarking

Extractor Category Author Programming Language

boilerpipe Main Kohlschütter et al. java
body text extraction Main Finn et al. python
go domdistiller Main Mobius and Fadlillah go
lxml cleaner Main Behnel c++, python
goose Main GravityLabs go, java, python
justtext Main Pomikálek c++, go, java, python
readability Main Mozilla javascript, go, python
resiliparse Main Bevendorff et al. cython
web2text Main Vogels et al. scala, python
html2text Simple Swartz python
html_text Simple TeamHG-Memex python
inscriptis Simple weblyzard python
beautifulsoup (bs4) Simple Richardson python

16

Chapter 3

Creating and Analyzing Datasets for
Benchmarking Extractors

This chapter describes the data collected from various sources for benchmarking and pro-
vides detailed data insights. Section 3.1 describes collecting data from various sources.
Section 3.2 discusses parsing gold standards into a standard format to facilitate the pro-
cessing in subsequent chapters. Section 3.3 discusses categorizing web pages into different
categories to determine the diversity of web pages used for benchmarking. Section 3.4 de-
scribes analyzing human errors while defining the gold standards. Section 3.5 and section
3.6 discuss grouping web pages by complexity and using the K-means cluster algorithm
respectively.

3.1 Collecting Annotated Web Pages for Benchmarking

Extractors

Web pages and their gold standard are the fundamental unit for comparing the extractors
mentioned in section 2.2 using the score metrics stated in chapter 4. The gold standard
of a web page is the annotation (main content) that has been checked and corrected to
evaluate content extraction algorithms. The significant challenge was collecting web pages
and its gold standard from numerous domains for benchmarking the content extractors.
The first step would be to collect web pages from multiple domains of varying content sizes.
The second step would be to define its gold standard. To determine the gold standard,
one strategy would be to manually analyze each web page and annotate its main content.

17

CHAPTER 3. CREATING AND ANALYZING DATASETS FOR
BENCHMARKING EXTRACTORS

Before this phase, standards must be set on which HTML sections should be identified
as the main text. The undertaking is difficult, time-consuming, and costly. The second
approach would be to select the extractors with the highest performance based on research
papers and available benchmarks, utilize the extractor’s output as the gold standard, and
then compare the other extractor’s findings to the gold standard. Nevertheless, this would
not be an accurate comparison of the extractors. When comparing the results in different
contexts, the results would be skewed.

We followed the first strategy outlined above, but we searched online for labelled web
pages that might be utilized for benchmarking. We investigated the GitHub repositories of
the deployed extractors used in this study, analyzed research publications for the dataset
used by the authors for benchmarking, and contacted 4 authors to access the manually
labelled dataset. A total of 3114 web pages and their gold standard were collected from
various domains, such as news, sports, electronics, fitness etc., from the five sources listed
below.

• Readability dataset (Mozilla [2015]) The Go language implementation of readabil-
ity.js had 115 labelled websites in the test module repository on Github. The markup
was maintained in the gold standard. The gold standard format is depicted in Figure
3.1a.

• Article Extraction Benchmark dataset (Konstantin Lopukhin) It is a GitHub
repository that assessed commercial and open source content extraction algorithms
on 181 labelled webpages consisting of HTML files compressed with gzip and the
gold standard encoded in JSON format with the fields articleBody containing the
gold standard and URL containing the source of the webpage. Figure 3.1c depicts
the format specified for the gold standard. The key is the URL’s SHA-256 hash.
Each HTML source filename corresponded to the key used in the gold standard to
link the web page to the gold standard.

• Content Extraction via Text Density dataset (Sun et al. [2011]) Section 2.1
examines the research article. The authors of the research article have collected web
pages from the domains Arcs Technica, BBC, Yahoo, and the New York Times, with
100 randomly selected web pages in each domain, as well as the Chaos dataset con-
taining 200 randomly selected web pages from Google News and other blog platforms.

18

CHAPTER 3. CREATING AND ANALYZING DATASETS FOR
BENCHMARKING EXTRACTORS

700 web pages were collected and stored in txt format using UTF-8 encoding for the
gold standard. The gold standard format is depicted in 3.1d.

• CleanEval dataset (Baroni et al. [2008]) The CleanEval contest was held in 2007
to prepare online data for use as a corpus for linguistic and language technology
research and development. The major assignment involved removing boilerplate from
the website, such as the navigation menu, advertisements, footer, and copyright
notice. The websites were gathered from diverse domains by submitting Google
queries containing common search terms. The gold standard was recorded in txt
format, and a total of 737 websites were tagged. Figure 3.1b depicts CleanEval’s
gold standard format. The tag before each text block identifies the leaf node tag
containing the content. These tags were deleted during the data preparation process.

• Dragnet dataset (dragnet org [2012]) Dragnet is an open-source, C++ based con-
tent extraction technique. The gold standard for 1381 archived websites from the
Dragnet dataset was maintained in text format in the project’s GitHub repository.

No documentation was available describing the guidelines used to annotate the main con-
tent of the web pages obtained from different sources. It was learned that most webpages
were in English, while few were written in other languages, and that the gold standard was
stored using multiple encoding techniques, such as utf-8, utf-8 with bom, and ansi. While
parsing the gold standard, the various encoding techniques caused considerable challenges.
A summary of data sources is presented in Table 3.1.

Table 3.1: Labelled webpages data sources

Data Source Data Size Gold Standard Format

Readability 115 html
Article Extraction Benchmark 181 json
Content Extraction via Text Density Ratio 700 txt
CleanEval 737 txt
Dragnet 1381 txt

19

CHAPTER 3. CREATING AND ANALYZING DATASETS FOR
BENCHMARKING EXTRACTORS

(a) Readability (.html). The markup was maintained along with the main text

(b) CleanEval (.txt). Highlighted text contains url and leaf node markup information

(c) article-extraction-benchmark (.json). Highlighted text is the SHA-256 value of the url. The same key
was used as the filename of the source web page.

20

CHAPTER 3. CREATING AND ANALYZING DATASETS FOR
BENCHMARKING EXTRACTORS

(d) content extraction via text density (.txt). The encoding scheme is UTF-8 with BOM (highlighted in
yellow)

(e) dragnet (.txt).

Figure 3.1: Examples of gold standard files from data sources

21

CHAPTER 3. CREATING AND ANALYZING DATASETS FOR
BENCHMARKING EXTRACTORS

"7bd033687f11eb016e8edf5a141c35f8047a8a85f72fa00691d6d74981fa8113": {
"articleBody": "’Ronaldo signing would be great for PSG’ - PastoreSaint-Germain play-
maker Javier Pastore has admitted that he would love to see Real Madrid attacker Cris-
tiano Ronaldo sign for the club.\n\nThe Portuguese has been linked with a move to Carlo
Ancelotti’s side in recent weeks and the Argentina international believes the former Manch-
ester United man would have an excellent effect on the squad.\n\nR̈onaldo is one of the
world’s best players, he scores almost every game,ḧe told L’Equipe.\n\nḦe knows how to
make the difference on his own. If he signs for PSG, it would be great for the club, and for
the players who are already here.\n\nS̈o I would say yes to him coming!\̈n\nRonaldo scored
46 goals in La Liga last season as Jose Mourinho’s side was crowned champions.\n\nFollow
Goal.com on Twitter to get the latest soccer news directly. Check out Goal.com’s Facebook
page; be part of the best soccer fan community in the world!\n\n\n\n\n,
"filename": "R493.html",
"source": "dragnet"
},

Figure 3.2: The JSON format to standardize the gold-standard format across various data
sources. The key (highlighted in blue) is the SHA-256 of the webpage’s source content. articleBody
holds the primary text of its source webpage, source refers to the web page’s source, and filename
is the name of the web page’s archived file.

3.2 Data Preparation

Several corpora sources adopted individual gold standard formats, such as JSON, TXT,
and HTML, as indicated in section 3.1. The datasets employed by earlier authors varied
widely in structure, size, and content. Due to many encoding standards, parsing the gold
standard presented a significant challenge. The gold standard format was standardised for
the thesis to examine the gold standard and evaluate the extractors.

The gold standard format was manually encoded to adjust the encoding systems with
the utf-8 encoding scheme, and non-translatable characters were replaced with a question
mark (?). Figure 3.2 depicts the JSON format standard (thesis standard format) to store
the gold standards of the archived web pages. The Article Extraction Benchmark dataset
(section 3.1) format was implemented, which utilized the URL SHA-256 hash as the key.
However, since the URLs for each web page were unknown, the HTML content SHA-256
value was utilized as the key for the gold standard in the thesis standard format. This
method lets us quickly link the web page with its gold standard. A source parameter that
gives a description of the dataset and the filename of the web page provides additional
information to look over. Text structure was not cleaned up; the same number of spaces,

22

CHAPTER 3. CREATING AND ANALYZING DATASETS FOR
BENCHMARKING EXTRACTORS

new lines, and tabs as in the original were maintained.

When parsing the gold standard for various source datasets to JSON standard format,
the following uncertainties occurred:

• In the CleanEval gold standard, multiple concatenated underscores distinguished
one segment of the main text from another, using leaf node markup in front of the
segment of the main text from which the text was extracted. Before it was saved in
the standard JSON format, the use of underscores was cleaned up, and any HTML
tags at the beginning were deleted. Figure 3.1b depicts the CleanEval gold standard
format.

• The gold standard of the Readability dataset maintained markup with the main
content. Only the text from the gold standard was extracted, excluding markups,
and the output was saved in the standard JSON format. Figure 3.1a illustrates the
gold standard format for Readability.

After establishing the gold standard for all the data sources in the defined JSON format,
each extractor’s output for all the web pages in the dataset was saved in the same standard
JSON format. Each extractor accepts a web page in text format as input and outputs the
primary content in text format (string). This made it easier and faster to compare the
gold standard and extractor output using text similarity measures.

3.3 Classifying Web Pages used for Benchmarking to

Determine Diversity

Web classification refers to categorizing a webpage’s main content into pre-defined cate-
gories. The data sources contained minimal or no information regarding the genre of the
web pages. Classifying web pages is required to establish if the dataset is sufficiently di-
verse, as generic content extractors that do not require domain-specific modification are
being assessed.

There are two methods for classifying webpages into predefined categories. However, be-
cause the first strategy was ineffective, the second approach was implemented. The first
approach to classifying is manually analyzing and categorizing each webpage into prede-
fined categories. An individual could not categorize web pages in a time-efficient manner,

23

CHAPTER 3. CREATING AND ANALYZING DATASETS FOR
BENCHMARKING EXTRACTORS

hence the approach was discarded. The second approach is Google’s cloud-based natural
language processing, the content classification API, that examines documents and delivers
a list of categories together with their confidence score (Figure 3.3a). The API uses NLP
techniques to categorize web pages. Google Cloud has developed more than 600 categories,
including subcategories, for text classification. The API will deliver the most relevant cat-
egory. For example, Travel/Tourist Destination is returned if the content is classified as
both Tourist and Travel/ and Travel/Tourist Destination. The generic category for the
study was chosen and disregarded subcategory classification. For example, if the API
classifies the text as Travel/Tourist Destination, the web page was categorized as Trav-
el/. The gold standard was utilized to classify webpages. If a gold standard was divided
into numerous categories, the category with the highest confidence score was selected. Due
to an API limitation, the text in the gold standard was reduced to the first 1000 characters.

The web pages in the dataset were divided into 28 categories, with the news category
containing the most web pages, followed by Arts Entertainment with 298 web pages (Ta-
ble 3.2). The metrics are not 100 percent correct because confidence intervals as low as 60%
were considered when classifying webpages. It would have been impractical for an individ-
ual to test the classification accuracy manually, but the statistics provide a rough sense of
the diversity of the web pages in the dataset, which would be used for benchmarking in
the coming chapters.

24

CHAPTER 3. CREATING AND ANALYZING DATASETS FOR
BENCHMARKING EXTRACTORS

Android users biggest data hogs of them all By Jacqui Cheng Last updated
22 days ago Move over iPhoneophiles: Android phone users are the biggest
data hogs of all according to a new report. Network management firm Arieso
conducted a series of studies in order to find out how much data current
smartphone users are downloading and how often while the iPhone 4 is
definitely near the top of the rankings, Android is king pig. Arieso used the
old iPhone 3G as a reference point to create its comparison benchmarks. In
general, current smartphone users have shown an increase of 130 percent in
the number of times they make some sort of data request, along with an
increase in uplink and downlink traffic of 130 and 40 percent respectively.
When looking specifically at the iPhone 4, the firm saw 44 percent more data
calls and 41 percent more data being downloaded. The device was the leading
data gobbler compared to the iPhone 3G until Arieso looked at Android
devices.

(a) Gold Standard text

{
"Internet Telecom/Mobile &Wireless/Mobile Phones": 0.670000016689301,
"Computers & Electronics/Consumer Electronics": 0.620000004768372
}

(b) Google Api classify text result for 3.3a

Figure 3.3: Google Cloud Classify Text Api to categorize webpage’s main content

25

CHAPTER 3. CREATING AND ANALYZING DATASETS FOR
BENCHMARKING EXTRACTORS

Table 3.2: Web page classification collected from various sources.

Category Count Percent

News 745 23.924
Arts & Entertainment 298 9.569
Computers & Electronics 249 7.996
Business & Industrial 195 6.262
Sports 171 5.491
Science 164 5.266
Law & Government 159 5.105
People & Society 157 5.041
Sensitive Subjects 109 3.500
Health 105 3.371
Internet & Telecom 95 3.050
Jobs & Education 85 2.729
Food & Drink 73 2.344
Hobbies & Leisure 66 2.119
Games 65 2.087
Online Communities 54 1.734
Books & Literature 47 1.509
Finance 45 1.445
Autos & Vehicles 43 1.380
Reference 38 1.220
Travel 35 1.123
Shopping 33 1.059
Beauty & Fitness 30 0.963
Home & Garden 28 0.899
Real Estate 19 0.610
Pets & Animals 4 0.128
Adult 2 0.064
Total 3114

3.4 Catalogue and Quantify Gold Standard Manual An-

notation Error

Human annotators produced the gold standard by manually copying and pasting web page
sections that were recognised as the main text; hence they are susceptible to human errors.
There was no documentation available for the error analysis and gold standard quality. To
ensure that benchmarking is not influenced, it is vital to ensure that the quality of the

26

CHAPTER 3. CREATING AND ANALYZING DATASETS FOR
BENCHMARKING EXTRACTORS

gold standard is maintained.
Common human errors that had occured while producing gold standards include:

• Issue 1: Text duplication (Figure 3.4) One of the frequent errors in the gold
standard is duplicated text. For instance, a leaf node section of the main text is
copied more than once in the gold standard.

• Issue 2: Concatenation of words without spaces between two html ele-
ments This common error is when words are joined together without using spaces.
For instance, the HTML element <p>Text1</p> can be represented as
Text1 or Text 1. At times, annotators concatenated the element text without a space;
at other times, they inserted a space. The issue cannot be considered a mistake, but
the absence of conventional guidelines for such situations has led to uncertainty,
which might affect benchmarking scores.

• Issue 3: Incorrect linking of gold standard to its webpage There were two web
pages in the dragnet corpora affected by this problem. The web pages were wrongly
archived, as the archived web pages indicated error:500, internal server error, yet its
gold standard referred to other text. One of the potential causes of the issue might be
that the annotators utilized the active URL for annotation rather than the archived
web pages.

• Issue 4: Web page lacks content, yet the gold standard contains it There
were rare instances where a portion of content from a gold standard was absent from
the source webpage.

• Issue 5: Adding alt attribute text of images to the gold standard (Figure
3.5) The Alt attribute specifies a replacement text if the image cannot be displayed.
On some web pages, media tags such as photos and alt attribute text were added to
the gold standard. The majority of content extractors do not regard the alt property
portion as the primary text; hence, this issue will result in biased benchmarking.
Some of the gold standards with this issue were rectified manually, however it was
not possible to address the issue in every instance.

Two different techniques were utilized to detect human mistakes in the gold standard: N-
Gram technique and bag of words technique. However, N-Gram technique was discarded
in favour of the bag of words technique.

27

CHAPTER 3. CREATING AND ANALYZING DATASETS FOR
BENCHMARKING EXTRACTORS

(a) A Webpage snapshot

Apple Threatens to Close iTunes Store Over Possible Royalty Spikes
Posted on September 30th, 2008
Fortune states that the Copyright Royalty Board in Washington D.C. supposed to rule on
This increase will raise on average increase prices from 9 cents to 15 cents a track.
“If the [iTunes music store] was forced to absorb any increase in the

Apple Threatens to Close iTunes Store Over Possible Royalty Spikes
Posted on September 30th, 2008 in iPod Touch |
Fortune states that the Copyright Royalty Board in Washington D.C. supposed to rule on...
This increase will raise on average increase prices from 9 cents to 15 cents a track.

(b) Text duplication in gold standard

Figure 3.4: Example of Text duplication in gold standard: Issue 1

• N-Gram technique In this procedure, n-gram tokens for the gold standard were
generated, and their occurrences were recorded; if any n-gram token count is greater
than 1, the flag count is incremented by 1. If the number of flags exceeds the threshold
k, the gold standard and its source web page were thoroughly examined. The value
of n in n-gram was 10, whereas the threshold k was 15. Approximately 800 web pages
were collected. Examining 800 web pages was time-consuming and impractical for
the study’s purposes. As a result, the strategy was discarded in favour of the bag of
words approach, as discussed below.

• Bag of words technique A bag of words is a textual representation of the occur-

28

CHAPTER 3. CREATING AND ANALYZING DATASETS FOR
BENCHMARKING EXTRACTORS

#1.7
− Tue Jul 24 , 2012 1 :38 PM EDT

. . .
. . .
<div class="c_author">

<div class="normal">

<img class="comment_author_avatar"
alt="Comment author avatar" >

GovHater

</div>

</div>
. . .
. . .
<p>Free market economy i s what did i t . When the companies
could f r e e l y compete , p r i c e s came down .
</p>
<p>Bwaaahahahahahaha ! That ’ s the f unn i e s t th ing
I ’ ve heard in a long time . . .</p>

(a) Webpage IMG element containing the alt attribute

Tue Jul 24, 2012 1:38 PM EDT\nComment author avatarGovHater\n \nwillowbrook\n\nF̈ree
market economy is what did it. When the companies could freely compete, prices came
down.\̈n\nBwaaahahahahahaha! That’s the funniest thing I’ve heard in a long time...

(b) The gold standard section of a webpage containing alt attribute text of IMG HTML tag

Figure 3.5: Example of adding alt attribute text of IMG tag to the gold standard: Issue 5

29

CHAPTER 3. CREATING AND ANALYZING DATASETS FOR
BENCHMARKING EXTRACTORS

Figure 3.6: Gold standard error distribution according to the equation 3.2

rence of words in a document. The occurrence of each token in the gold standard to
its occurrence in the source web page was compared. A token’s frequency in the gold
standard should be less than or equal to its frequency on the source web page. The
inaccuracy for each web page was determined (Equation 3.1 3.2). Figure 3.6 depicts
the distribution of errors.

BK(x) =

1, if FG
K(x) > FS

K(x)

0, otherwise
(3.1)

E(K) =

∑
BK(x)

M
(3.2)

where:

30

CHAPTER 3. CREATING AND ANALYZING DATASETS FOR
BENCHMARKING EXTRACTORS

K : Webpage
G : Gold standard
S : Source webpage
x : Distinct alphanumeric token in K
F Y

K(x) : Frequency of token x in K in the representation Y
E(K) : Error of K
M : Total alphanumeric tokens in K

Analyses were conducted on web pages with error rates over 1%. There were two web
pages with an error rate of 100%. These web pages were linked to issue 3 (incorrect linking
of gold standard to its webpage) stated previously. Issue 1 (text duplication) , issue 4
(web page lacks content, yet gold standard contains it) , and issue 5 (adding alt attribute
text of images to the gold standard) were linked to the web pages with an error ratio
between 1% and 10%. However, numerous web pages with an error ratio of less than
1% were linked to the issue 2 (concatenation of words without spaces between two html
elements). Some of the problems relating to the issue 4 were addressed manually, but it was
difficult and impractical to fix all errors in a complete dataset. During the benchmarking
of extractors, all web pages with an error rate of greater than 2% were discarded in order
to limit evaluation errors to a minimal. 3100 web pages were narrowed down to 2804 web
pages during this process.

3.5 Grouping Web Pages by the Complexity

One of the important findings by benchmarking extractors using the source dataset (section
6.1.1) is that no single extractor outperforms the others and choice of a content extractor
depends on the properties of a webpage. Regarding the RougeLSum score metric, the
web2text extractor performs best on the CleanEval dataset, whereas 14 extractors perform
better than the web2text extractor on the Article Extraction Benchmark dataset. As the
dataset varies, there is a drastic variation in rankings. Selecting a single extractor for a
random webpage content extraction is tricky.

After thoroughly evaluating webpages from each source, the choice of webpages in the
source dataset group varied. In the CleanEval dataset, in the gold standard, most web-
pages contained all of their text; however, in the Article Extraction Benchmark dataset,
just a few sections of HTML were recognized as the main text (Table 3.3). This finding

31

CHAPTER 3. CREATING AND ANALYZING DATASETS FOR
BENCHMARKING EXTRACTORS

concludes that the choice of extractor depends on the webpage. Therefore, webpages from
various sources were gathered and categorized according to their complexity.

As a first stage, the website complexity is computed, which is the ratio of the number
of tokens in the gold standard to the number of tokens in the source webpage for each
webpage, where a token is an alphanumeric word (Equation 3.3). The ratio indicates the
proportion of a webpage’s text that comprises the main text. The ratio is inversely pro-
portional to the complexity of a website; the smaller the ratio, the more complicated the
web page. We define complexity ratio C as:

C =
|Tg|
|Ts|

× 100 (3.3)

where:

Tg : multiset of alphanumeric tokens in gold standard
Ts : multiset of alphanumeric tokens in source webpage

The webpages from all the sources were divided into three categories: complex, mid-
complex, and easy. The quantile technique was chosen to divide the web pages into cat-
egories based on complexity. If a webpage ratio is below the 25th percentile, it was cat-
egorized as complex; if it was above the 75th percentile, it was defined as easy; and if it
was between the 25th and 75th percentiles, it was classified as mid-complex (Equation 3.4,
Table 3.3).

f(K) =

easy, if C(K) ≥ P75

complex, if C(K) ≤ P25

mid− complex, if P25 < C(K) < P75

(3.4)

where:

K : Webpage
C(K) : Complexity ratio of a web page as per Equation 3.3
f(K) : Complexity of a webpage (Equation 3.3)
P75 : Webpages complexity ratio 75th percentile.
P25 : Webpages complexity ratio 25th percentile.

32

CHAPTER 3. CREATING AND ANALYZING DATASETS FOR
BENCHMARKING EXTRACTORS

Table 3.3: Equation 3.3 complexity of webpages percentile value.

DataSet Source 25th percentile 50th percentile 75th percentile

Article Extraction Benchmark 33.534 48.838 69.398
Content Extraction via Text Density 53.742 64.190 80.212
CleanEval 79.019 91.708 97.213
Readability 43.116 62.205 83.637
Dragnet 28.704 46.528 67.046

All Sources Combined (Mean) 40.816 62.640 84.078

Table 3.4: The proportion of webpages from the source dataset assigned to each complexity
group.

Dataset
Group by
Complexity

Source Dataset Group

Dragnet Readability Article
Extraction
Benchmark

Content
Extraction
via Text
Density

CleanEval

Easy 7.98 46.08 7.18 20.31 67.97
Mid-Complex 50.82 33.91 55.80 71.92 26.99
Complex 41.18 20 37.01 7.77 5.04

For the easy complexity group, it was anticipated that the performance of simple ex-
tractors would be comparable to or superior to that of main content extractors. Table
6.4 indicates the expected outcome indicated in the previous statement. The evaluation
results based on the complexity-based dataset group provide more detailed information on
which extractor to choose; for example, if a webpage belongs to the easy group, simple
extractors will be suitable, whereas, for complex webpages, main content extractors such
as web2text, readability, and trafilatura are the best options.

3.6 Grouping Web Pages using the K-means Clustering

Algorithm

Two terms must be discussed before discussing dataset grouping by the K-means cluster
algorithm.

33

CHAPTER 3. CREATING AND ANALYZING DATASETS FOR
BENCHMARKING EXTRACTORS

• TSNE dimensionality reduction Dimensionality reduction is a technique to em-
bed higher-dimension data to lower dimensions. Tsne (T-distributed Stochastic
Neighboring technique) is a non-linear dimensionality reduction technique in which
similar data points are assigned with high probability, and non-similar data points are
assigned with low probability. It minimizes the Kullback-Leibler divergence between
the two distributions regarding points position1.

• K-mean clustering The process of grouping together related objects is known as
clustering. K-means clustering is a non-supervised machine learning technique that
separates n observations into k-clusters, making it simple to discover groupings in
unlabeled datasets. The technique begins with a specified k centroid (k clusters), and
the centroid nearest to each observation is assigned. Each centroid is changed to de-
crease the distance between it and its representative set of observations (Madhulatha
[2011]).

In section 6.1.2, it seemed more logical to evaluate extractors based on the complexity of
the web page, as this offered information on which extractor to select for a web page. It is
improbable, however, that a user would already have the main text before extraction, as
this would render the creation of extractors pointless. There should be an alternative way
to separate the collected, labelled web pages from various sources into distinct categories
with identical properties without using the gold standard. This section discusses the k-
means clustering strategy for separating web pages. Before k-means cluster analysis, the
following steps were taken:

• Each webpage’s features were retrieved. First, research was conducted on the most
frequently used HTML tags on a webpage2, and for each of the most frequently used
tags, the ratio of the number of occurrences of a tag to the total number of HTML
tags on the webpage was calculated (Equation: 3.5). A total of 14 features were
gathered (Table 3.5).

∀x,Rx =
Y

Z
(3.5)

where:
1https://towardsdatascience.com/what-why-and-how-of-t-sne-1f78d13e224d
2https://www.geeksforgeeks.org/most-commonly-used-tags-in-html/

34

CHAPTER 3. CREATING AND ANALYZING DATASETS FOR
BENCHMARKING EXTRACTORS

Figure 3.7: Steps performed on the web pages from all sources to group web pages by K-Means
clustering.

x : most frequently used tags in a webpage (Table 3.5)
Rx : Ratio of x
Y : count of x in a web page
Z : count of all tags in a webpage

• The 14-featured dataset generated in the preceding step was subjected to Tsne di-
mensionality reduction. A 14-dimensional data collection was reduced to eight, ten,
and two dimensions. K-means clustering algorithm was used to cluster web pages on
8- and 10-dimensional data (Step B ,Figure 3.7). K-means clustering was performed
using two and three clusters.

• The labels generated by K-means on eight- and ten-dimensional datasets were al-
located to a two-dimensional dataset and analyzed for cluster formation (Step C ,
Figure 3.7). The cluster formation on variable parameters of K for K-means and the
number of dimensions for TSNE is evident from Figure 3.8.

35

CHAPTER 3. CREATING AND ANALYZING DATASETS FOR
BENCHMARKING EXTRACTORS

Table 3.6: The proportion of web pages in each complexity group assigned to each K-means
cluster group (in percent).

DataSet
Group by
Complexity

K-Means Cluster Group (TSNE reduction 8 dimensions, K-Means=3)

label 0 label 1 label 2

Easy 11.98 20.47 67.55
Mid-Complex 62.48 19.94 17.58
Complex 70.29 18.54 11.17

Figure 3.7 depicts a summary of the preceding phases. Two-dimensional data visualization
reveals a clear clustering structure (Figure 3.8). There are a few outliers; however, as
dimensions increase, they will probably move closer to their cluster position. The clusters,
formed by adopting 8 dimensions, and 3 clusters were chosen for assessing extractors on
the dataset grouping by K-Means clustering since the grouping in visualization (Figure
3.8) seemed more feasible. K = 3 was used for K-means to match the number of clusters
with the number of groups created while classifying the dataset by a web page complexity
(Section 3.5). According to Table 3.4, the two categories discussed in Sections 3.5 and 3.6
appear to be unrelated. Each K-means cluster has a reasonable number of pages from each
category of the complexity dataset.

Table 3.5: Most frequently used HTML elements

tag Description

h1 Most commonly used to mark up a web page title
h2 Sub-level heading
h3 Sub-level heading
h4 Sub-level heading
h5 Sub-level heading
h6 Sub-level heading
p Represents a paragraph
ul Unordered list
a Defines a hyperlink
div Division or a Section
br create a line or break
strong Define text with bold characters
em Define emphasized text

36

CHAPTER 3. CREATING AND ANALYZING DATASETS FOR
BENCHMARKING EXTRACTORS

(a) No dimensionality reduction, K-means clusters=2

(b) No dimensionality reduction, K-means clusters=3

(c) TSNE 8 dimensions, K-means clusters=2

37

CHAPTER 3. CREATING AND ANALYZING DATASETS FOR
BENCHMARKING EXTRACTORS

(d) TSNE 8 dimensions, K-means clusters=3

(e) TSNE 8 dimensions, K-means clusters=4

(f) TSNE 10 dimensions, K-means clusters=3

Figure 3.8: Cluster visualization using variable dimensions for TSNE dimensionality reduction
and K-means clusters.

38

Chapter 4

Surveying Text Similarity Metrics for
Benchmarking Extractors

Text similarity indicates the degree of lexical or semantic similarity between two words,
texts, or sentences. Text similarity measures play an increasingly important role in text re-
lated research and applications in tasks such as information retrieval and text classification
(Gomaa et al. [2013]). Text similarity metrics can also be used to evaluate the extractor’s
performance to compare the extractor’s outcome to the gold standard.

Semantic similarity measures the likelihood that two text blocks have the same mean-
ing. Typically, the measurement ranges from 0 to 1. 0 implies that two text segments are
not semantically related, whereas 1 shows semantic similarity. Semantic similarity defines
"is a" connection. For example, vehicle and automobile are semantic identical. Euclidean
distance and cosine similarity are an example of semantic similarity measurements (Corley
and Mihalcea [2005]).

The lexical similarity assessment determines the degree of similarity between two blocks of
text based on the intersection of their respective word sets. Lexical similarity analyzes the
similarity between two documents at the word level. A score of 1 indicates complete word
overlap between two text blocks. Lexical similarity measurements consist of the Jaccard
Index, Levenshtein edit distance, RougeLsum, Bag of Words, and N-grams. Taking note
of the two phrases 1. A man drives an automobile 2. An automobile drives a man. As
their word sets overlap, the phrases are lexically similar but not semantically (Gomaa et al.
[2013]).

39

CHAPTER 4. SURVEYING TEXT SIMILARITY METRICS FOR
BENCHMARKING EXTRACTORS

Because extractors scrape text sections from a webpage without modifying the text block
corresponding to the main content, the lexical similarity is the best for benchmarking
extractors.

• Levensthein Edit Distance measures the dissimilarity between two blocks of text1.
Edit distance is the minimal number of tokens that must be inserted, deleted, or
substituted to change one text block to another. Each operation has a unit cost,
which is normalized by dividing by the maximum number of tokens present in one of
the text blocks. The score then ranges from 0 to 1. A score of 0 indicates that two
blocks of text are identical, while a score of 1 indicates that they are entirely distinct.

Example:
s1 = A black dog chases a cat
s2 = A lion chases a zebra

For the text blocks s1 and s2, Edit distance is:

ED =
O
M

=
3

6
= 0.5

where:

O : Minimum number operations required to make s1 and s2 identical
M : Maximum token count in s1 or s2
ED : Levensthein Edit distance

The least number of operations necessary to make the text blocks s1 and s2 identical
is 3. The lion token can be substituted with a dog token, the zebra token with a cat
token, and the black token can be eliminated.

• Jaccard Index compares the members of two sets to discover which are unique and
which are duplicates2. The score ranges from 0 to 1, with 0 being entirely distinct
and 1 being identical. It estimates the overlap between two token sets. It is the
intersection of two token sets by the union of two token sets. The intersection of

1https://en.wikipedia.org/wiki/Levenshtein_distance
2https://www.statisticshowto.com/jaccard-index/

40

CHAPTER 4. SURVEYING TEXT SIMILARITY METRICS FOR
BENCHMARKING EXTRACTORS

tokens refers to the tokens shared by two blocks of text, whereas the union of tokens
refers to the collection of tokens shared by both blocks.

J(A,B) =
|A ∩B|
|A ∪B|

(4.1)

Example:
s1 = A black dog chases a cat
s2 = A lion chases a zebra

For the text blocks s1 and s2, Jaccard Index is:
s1 tokens = t1 = {A, black, dog, chases, a, cat}
s2 tokens = t2 ={A, lion, chases, a, zebra}

J(s1, s2) =
|t1 ∩ t2|
|t1 ∪ t2|

=
3

8

• Bag of Words is a natural language programming technique that defines a phrase
by the set of tokens used to construct the text3. Bag of Words is used to classify
documents using the frequency of words as characteristics (wikipedia [2007]). Bag of
Words is also utilized as a measure of text similarity. Bag of word text similarity is
determined by the precision (equation 4.2), recall (equation 4.3, and F1 (equation
4.4) scores, with each score ranging from 0 to 1. A token is an alphanumeric word.

Let x and y be two blocks of text where x is the gold standard and y is the pre-
dicted text of an extractor.
Let xt and yt be set of tokens for the x and y blocks, respectively.

true positive = |xt ∩ yt|

false positive = |yt− xt|

false negative = |xt− yt|

Precision =
true positive

true positive + false positive
(4.2)

3https://machinelearningmastery.com/gentle-introduction-bag-words-model/

41

CHAPTER 4. SURVEYING TEXT SIMILARITY METRICS FOR
BENCHMARKING EXTRACTORS

Recall =
true positive

true positive + false negative
(4.3)

F1 =
2× Precison*Recall
Precision + Recall

(4.4)

• N-Gram are continuous sequences of n tokens extracted from a text block. In
contrast to bag of words text similarity, N-Gram identifies token ordering in a text
block. The precision, recall, and F1 score measure N-Gram text similarity. For
example the sentence "A dog chases a cat for fun", all possible 4-gram would be (A,
dog, chases, a), (dog, chases, a, cat), (chases, a, cat, for), (a, cat, for, fun). For
benchmarking extractors based on the n-gram similarity metric, the n-value was set
to 4. The value of 4 was selected to compare the findings to an extractors benchmark
previously available on a corpus of 181 web pages4. The implementation of the N-
Gram similarity measure is identical to that of the Bag of Words, except that the
token count is considered in N-Gram.

• RougeLSum is the combination of Rouge-N and LCS (longest common subse-
quence)5. LCS detects the longest matching token sequence between two text blocks
that are not necessarily sequential but are in order. The benefit of LCS is that it does
not need consecutive matches; instead, it looks for matches within a sequence that
corresponds to the word order at the block level. Since it automatically contains the
longest consecutive common n-grams, the approach does not require a fixed length
for the n-grams. Precision, recall and F1-score for RougeLSum can be defined as:

Precision :
|LCS(s1, s2)|

|TS2|

Recall :
|LCS(s1, s2)|

|TS1|
where:

4Konstantin Lopukhin, Evaluating the quality of article body extraction for commercial services and
open-source libraries

5https://medium.com/free-code-camp/what-is-rouge-and-how-it-works-for-evaluation-of-summaries-
e059fb8ac840

42

CHAPTER 4. SURVEYING TEXT SIMILARITY METRICS FOR
BENCHMARKING EXTRACTORS

s1 : Gold standard text block
s2 : Predicted text block
TS1 : Mutliset of tokens in s1
TS2 : Multiset of tokens in s2
LCS(s1, s2) : Longest common subsequence between s1 and s2

Example:
s1 = The bus is on the highway
s2 = A Red bus is on the road

For the text blocks s1 and s2, RougeLSum is:
LCS(s1, s2) = bus is on the
TS1 = {The, bus, is, on, the, highway}
TS2 = {A,Read, bus, is, on, the, road}

Precision =
|LCS(s1, s2)|

|TS2|
=

4

7

Recall =
|LCS(s1, s2)|

|TS1|
=

4

6

There are a total of five lexical similarity measures addressed in this section. However,
as will be seen in the following sections, evaluating extractors using the aforementioned
metrics is correlated for some metrics.

43

Chapter 5

Designing Ensemble Model Extractors

Open-source content extractors were explored in Section 2.2. These main content extractors
utilize statistical methods or machine learning. In contrast, a new extractor based on an
ensemble model and using existing content extractors as a foundation is developed and
explained. Ensemble Modeling is a technique that entails the execution of two or more
related but otherwise distinct models, followed by the integration of the results into a single
value to improve performance. Three types of ensemble model methods exist: stacking,
boosting, and bagging1.

• Stacking is the process of fitting multiple models to the same data and integrating
the findings of all models using additional models. The procedure consists of two
steps. In the first phase, each model output based on input data is determined, and
in the second step, the results from the first step are compiled into a single outcome.

• Bagging is the aggregation of various variants of a model. Each model is trained
independently before being integrated. The objective of Bagging is to minimize
variance, and Bagging is also known as bootstrap aggregation.

• Boosting combines multiple weak classifiers into a single robust classifier. First,
a model is produced using the training data; subsequently, a second model is con-
structed using the first model’s errors as the basis for its corrections. The number
of models is increased until the model has a minimal bias or until a predetermined
maximum number of models has been added.

The purpose of the ensemble model design was to combine the decisions of all viable
extractors into one. The stacking ensemble model is the best solution in this situation. As

1https://www.analyticsvidhya.com/blog/2018/06/comprehensive-guide-for-ensemble-models/

44

CHAPTER 5. DESIGNING ENSEMBLE MODEL EXTRACTORS

Table 5.1: Selection of extractors for the y parameter in threshold based ensemble model content
extractor.

y extractors

5 resiliparse, body text extraction, trafilatura, readability, go domdistiller

8 resiliparse, body text extraction, trafilatura, readability, go domdistiller,
boilerpipe, justext, goose3

previously noted, Layer 1 of the stacking model consists of fitting multiple extractors to the
same data, while Layer 2 consists of an aggregator model that aggregates the decisions of
all the models’ outputs from Layer 1. This study evaluated two distinct stacking ensemble
models: 1) Layer 2 threshold-based binary classifier 2) Layer 2 machine learning binary
classifier.

5.1 Threshold based Ensemble Content Extractor

The ensemble stacking model was designed as follows (Figure 5.1):

• Determine the main content of a web page using each extractor in layer 1.

• Extract all leaf nodes from the web page. Count, for each leaf node, the layer 1
extractors whose output includes the leaf node’s text as the main content.

• If the number of extractors exceeds or equals the threshold value, the text of the leaf
node is included in the main content.

In the above architecture, the parameters are the threshold value in layer 2 and the se-
lection and number of content extractors in layer 1. The ensemble stacking model for the
mentioned design was designated em_x_y, where x is the threshold value in layer 2 and
y is the number of extractors in layer 1. Various combinations of x and y were selected to
assess the extractor’s performance (Table 5.1, Section 6.1).

45

CHAPTER 5. DESIGNING ENSEMBLE MODEL EXTRACTORS

5.2 Machine Learning based Ensemble Content Extrac-

tor

In the prior ensemble model-based extractor, the threshold value determined whether leaf
node text should be included in the main text. It can, however, be substituted by a machine
learning classifier, such as a logistic regression classifier or a random forest classifier. Using
the machine learning classifier necessitates classifier training, which involves training and
test data.
The ensemble stacking model was designed as follows (Figure 5.1)

• Determine the main content of a web page using each extractor in layer 1 when given
a webpage.

• Extract all leaf nodes from the web page.

• For each leaf node, determine for each extractor in layer 1 whether the leaf node text
is included in the main text. If the leaf node is part of the main text, set the content
extractor feature to 1; otherwise, set it to 0.

• The features acquired in the previous step serve as input for the machine learning
classifier at layer 2. If the prediction of the ml classifier is positive, the leaf node text
is appended to the final main content text; otherwise, the leaf node is omitted.

em_y is the name of the ensemble stacking model for the above architecture, where y is the
number of content extractors in layer 1. The chosen value of y was 13. In layer 1, thirteen
extractors were selected, as described in section 2.2, except the web2text extractor, whose
binary outputs served as features for the machine learning classifier in layer 2.

Before developing the ensemble model described above, it is necessary to train the ml
classifier and evaluate its accuracy in identifying leaf nodes as the main content text or
boilerplate. The dataset discussed in section 3.1 was divided into training and test sets for
this purpose. 70% of the web pages were utilized for training the classifier, whereas 30%
were used as the validation set. Each web page’s leaf nodes were extracted, and each leaf
node’s text was used to train and test the ml classifier. The total number of features was
thirteen, the number of extractors in layer 1. Each extractor’s binary output served as the
feature for layer 2.

46

CHAPTER 5. DESIGNING ENSEMBLE MODEL EXTRACTORS

Table 5.2: ML based ensemble model content extractor results on training and validation data.

ML Classifier Training Data Validation Data

10 Fold Cross-Validation F1 Score AUC Score F1 Score AUC Score

Mean Std deviation

Logistic Regression 0.859 0.0013 0.926 0.820 0.924
Random Forest
Classifier 0.872 0.00152 0.933 0.8355 0.925

Each feature had a binary value of 0 or 1, where 0 indicates that the leaf node text is
not a subset of the extractor’s main text block, and 1 indicates that it is a subset. Each
page’s gold standard was utilized to assess if the leaf node content is a subset of the gold
standard. A total of 465K data points were collected, of which 233810 were classified neg-
atively and 231801 were classed positively. The dataset was balanced before the classifier
was trained.

Random Forest Classifier and Logistic Regression were trained to identify which classi-
fier exhibited superior performance. The 10-Cross validation process with scoring metric
F1 was utilized. Table 5.2 provides an overview of the results. The AUC represents the
level of separation, and it describes whether or not the model can differentiate between
positive and negative classes2. A model with an Auc score of 0.5 is equal to a random
classifier and is incapable of class distinction. The greater the AUC score, the greater the
model’s ability to discriminate across classes. Table 5.2 demonstrates that Random Forest
Classifier is the superior classifier for layer 2 due to its higher average F1 score for 10
fold cross-validation and higher F1 score on the validation set, as well as its higher AUC
score. Due to its superior performance on training and validation data, the Random Forest
Classifier was chosen over the Logistic Regression classifier in the layer 2 ml classifier.

2https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5

47

CHAPTER 5. DESIGNING ENSEMBLE MODEL EXTRACTORS

(a) Stacking Ensemble Model Extractor Design Layer Overview

• Step A

– Initialize main_text = ""

– Initialize threshold Θ (for binary threshold classifier)

– Extract all leaf nodes from a webpage and loop over each leaf node (i)

• Step B

– Threshold based ensemble model content extractor

∗ Count (C), ENR with leaf node text is included in its main content.
∗ check condition: C >= Θ, if true proceed to Step C.

– Machine Learning based ensemble model content extractor

∗ Extract features of leaf node text.
∗ Feed features into the ml classifier and predict if leaf node is a subset of the

main content. If the prediction is positive, proceed to step C.

• Step C

– main_text = main_text + i

(b) Layer 2 Aggregator Steps in 5.1a

Figure 5.1: Stacking Ensemble Model Extractor Design

48

Chapter 6

Evaluation

To effectively extract the main content of a webpage using one of the extractors (Section
2.2), it is essential to comprehend the performance of extractors in different data contexts.
This part describes the benchmarking of extractors utilizing text similarity metrics in
detail. The benchmarking of extractors is first addressed in several data contexts, followed
by an insightful analysis of the benchmarks. This review aims to provide extensive insights
and a conclusion on the extractors for extracting a webpage’s main content.

6.1 Benchmarking of Extractors

A benchmark is a process of executing a program or group of programs to evaluate the
relative performance of an object, often by subjecting it to a series of standard tests1. A
benchmark is a measurement used to compare the performance of comparable entities. Ex-
tractor benchmarking allows an objective view of how well one extractor performs relative
to others. 15 extractors were evaluated on various dataset groups discussed in Chapter 3.

6.1.1 Benchmarking using the Source Dataset

The section 3.1 discusses the source dataset group. The benchmarking of extractors on
source dataset groups is illustrated in Table 6.1 and Table 6.2. The following are observa-
tions on benchmark scores:

• In terms of each particular statistic, no single extractor outperforms the others in the
dataset group. For instance: em_3_5 ranks top in the article-extraction-benchmark

1https://en.wikipedia.org/wiki/Benchmark(computing)

49

CHAPTER 6. EVALUATION

dataset, but web2text performs best on F1 score metrics (RougeLSum text similarity
measure) in the readability dataset.

• In the article extraction benchmark dataset, web2text ranks last for the Levenshtein
edit distance measure; however, it ranks second in the ClenEval dataset. The trafi-
latura extractor produces a comparable outcome.

A question raised by the benchmarks is: Why does the ranking vary so drastically when
the dataset changes? One of the explanations may be attributable to the selection of
web pages within each source dataset group. By analyzing the CleanEval dataset, it was
discovered that virtually all of the web page’s text was tagged as the main content, but in
the article extraction benchmark dataset, just a few webpage sections were recognized as
the main content (Table 3.3). Therefore, benchmarking extractors on the source dataset
group yields no useful information regarding each extractor’s performance. Based on these
observations, web pages were then categorized according to their complexity (Section 3.5).

50

CHAPTER 6. EVALUATION

Table 6.1: Benchmarking of Extractors using Edit Distance Metric on Source Dataset. The
Body Text Extraction (bte) performs best in the CETD dataset with the lowest Edit Distance
score of 0.018, whereas in the RDB dataset, it performs average with a score of 0.048. The ranking
of the extractors changes as the dataset changes, which indicates that benchmarking on the source
dataset yields no helpful information.

Metric Edit Distance (Mean)

Source Dataset CETD RDB AEB DG CE

Extractor

boilerpipe 0.031 0.057 0.036 0.050 0.037
beautifulsoup 0.055 0.062 0.081 0.088 0.026
bte 0.018 0.048 0.039 0.047 0.022
em_13 0.053 0.054 0.063 0.077 0.030
em_2_5 0.018 0.044 0.026 0.045 0.021
em_3_5 0.022 0.044 0.018 0.045 0.022
em_4_5 0.028 0.053 0.015 0.050 0.032
em_4_8 0.023 0.046 0.021 0.044 0.021
em_6_8 0.030 0.058 0.020 0.050 0.031
go_domdistiller 0.024 0.041 0.022 0.048 0.024
goose3 0.033 0.064 0.026 0.053 0.042
html_text 0.055 0.062 0.080 0.087 0.026
html2text 0.052 0.058 0.072 0.080 0.025
inscriptis 0.037 0.043 0.057 0.061 0.010
justext 0.033 0.096 0.057 0.052 0.023
lxmlCleaner 0.052 0.050 0.057 0.078 0.028
readability 0.020 0.049 0.020 0.043 0.024
resiliparse 0.024 0.038 0.017 0.058 0.025
trafilatura 0.025 0.037 0.015 0.041 0.033
web2text 0.021 0.030 0.170 0.044 0.015
xpath_text 0.052 0.034 0.081 0.075 0.030

CETD: Content Extraction via Text Density.
RDB: Readability
AEB: Article Extraction Benchmark
DG: Dragnet
CE: CleanEval

51

CHAPTER 6. EVALUATION

T
ab

le
6.

2:
B
en

ch
m
ar
ki
ng

of
E
xt
ra
ct
or
s
us
in
g
R
ou

ge
LS

um
M
et
ri
c
on

So
ur
ce

D
at
as
et
.

T
he

em
_
2_

5
co
nt
en
t
ex
tr
ac
to
r
m
od

el
pe

rf
or
m
s
be

st
in

th
e
C
E
T
D

da
ta
se
t
w
it
h
an

F
1
sc
or
e
of

0.
93
7,

w
he

re
as

in
th
e
R
D
B

da
ta
se
t,

it
pe

rf
or
m
s
av
er
ag

e
w
it
h
a
sc
or
e

of
0.
90

6.
T
he

to
p
pe

rf
or
m
in
g
co
nt
en
t
ex
tr
ac
to
rs

ac
ro
ss

di
ffe

re
nt

so
ur
ce

da
ta
se
ts

co
ns
id
er
in
g
R
ou

ge
LS

um
F
1
sc
or
e
ar
e
em

_
2_

5,
em

_
3_

5,
tr
afi

la
tu
ra

an
d
w
eb

2t
ex
t.

W
eb

2t
ex
t
ra
nk

s
hi
gh

es
t
in

tw
o
of

th
e
so
ur
ce

da
ta
se
ts

R
D
B

an
d
C
E
.

M
et

ri
c

F
1

S
co

re
P

re
ci

si
on

R
ec

al
l

S
ou

rc
e

D
at

as
et

C
E
T

D
R

D
B

A
E
B

D
G

C
E

C
E
T

D
R

D
B

A
E
B

D
G

C
E

C
E
T

D
R

D
B

A
E
B

D
G

C
E

E
xt

ra
ct

or

b
oi

le
rp

ip
e

0.
87

3
0.

82
8

0.
84

8
0.

78
7

0.
81

9
0.

99
3

0.
90

7
0.

85
6

0.
89

7
0.

95
0

0.
81

8
0.

81
1

0.
88

4
0.

76
5

0.
78

9
b
ea

u
ti

fu
ls

ou
p

0.
78

7
0.

77
0

0.
62

7
0.

60
6

0.
89

3
0.

67
1

0.
68

6
0.

49
3

0.
47

6
0.

83
8

0.
99

8
0.

99
9

1.
00

0
0.

99
6

0.
99

9
b
te

0.
93

6
0.

83
6

0.
82

0
0.

81
3

0.
89

9
0.

94
2

0.
83

7
0.

76
9

0.
77

8
0.

90
3

0.
94

7
0.

88
5

0.
93

3
0.

91
4

0.
93

4
em

_
13

0.
80

5
0.

82
9

0.
73

3
0.

67
1

0.
87

9
0.

70
2

0.
76

3
0.

61
9

0.
55

3
0.

85
0

0.
98

2
0.

98
1

0.
98

9
0.

98
3

0.
95

3
em

_
2_

5
0.

93
7

0.
90

7
0.

90
6

0.
83

1
0.

91
0

0.
98

0
0.

93
4

0.
86

8
0.

88
3

0.
91

7
0.

90
6

0.
91

5
0.

97
4

0.
84

9
0.

93
3

em
_

3_
5

0.
92

1
0.

89
5

0.
95

0
0.

82
6

0.
90

3
0.

99
0

0.
94

8
0.

95
6

0.
93

4
0.

92
9

0.
87

5
0.

88
1

0.
95

6
0.

80
0

0.
91

2
em

_
4_

5
0.

89
5

0.
86

3
0.

95
0

0.
78

4
0.

84
7

0.
99

1
0.

96
4

0.
95

6
0.

93
8

0.
92

6
0.

83
5

0.
82

6
0.

95
6

0.
73

8
0.

82
6

em
_

4_
8

0.
91

5
0.

89
6

0.
92

8
0.

82
3

0.
90

4
0.

99
2

0.
95

7
0.

90
9

0.
93

0
0.

93
5

0.
86

5
0.

87
9

0.
96

9
0.

79
8

0.
90

8
em

_
6_

8
0.

88
6

0.
79

8
0.

91
9

0.
78

8
0.

84
7

0.
99

2
0.

90
3

0.
95

6
0.

93
8

0.
93

9
0.

82
3

0.
75

5
0.

90
9

0.
73

6
0.

82
0

go
_

d
om

d
is

ti
ll
er

0.
91

1
0.

92
9

0.
91

4
0.

80
0

0.
87

7
0.

98
9

0.
95

0
0.

88
9

0.
89

9
0.

90
4

0.
86

2
0.

92
3

0.
96

2
0.

78
1

0.
88

7
go

os
e3

0.
87

6
0.

76
2

0.
87

7
0.

77
5

0.
79

6
0.

98
4

0.
86

6
0.

93
1

0.
92

8
0.

88
2

0.
81

1
0.

72
1

0.
85

9
0.

72
1

0.
77

7
ht

m
l_

te
xt

0.
78

7
0.

77
0

0.
62

7
0.

60
6

0.
89

3
0.

67
1

0.
68

6
0.

49
3

0.
47

6
0.

83
8

0.
99

8
0.

99
9

1.
00

0
0.

99
6

0.
99

9
ht

m
l2

te
xt

0.
78

6
0.

77
3

0.
63

3
0.

60
4

0.
88

5
0.

66
9

0.
69

6
0.

49
9

0.
47

6
0.

83
5

0.
99

8
0.

99
1

1.
00

0
0.

98
9

0.
98

7
in

sc
ri

p
ti

s
0.

79
2

0.
78

8
0.

64
2

0.
62

1
0.

89
0

0.
67

8
0.

71
2

0.
51

0
0.

49
2

0.
83

9
0.

99
7

0.
99

6
1.

00
0

0.
99

5
0.

99
1

ju
st

ex
t

0.
86

8
0.

53
6

0.
72

6
0.

78
9

0.
89

2
0.

96
3

0.
57

2
0.

73
2

0.
84

2
0.

92
8

0.
81

4
0.

53
8

0.
76

4
0.

78
1

0.
88

0
lx

m
lC

le
an

er
0.

80
3

0.
84

4
0.

75
0

0.
66

2
0.

87
1

0.
69

3
0.

77
9

0.
64

1
0.

54
2

0.
83

6
0.

99
6

0.
99

4
0.

98
9

0.
99

1
0.

96
5

re
ad

ab
il
it
y

0.
92

6
0.

86
9

0.
91

4
0.

82
0

0.
88

1
0.

99
2

0.
94

3
0.

92
9

0.
93

5
0.

93
0

0.
88

3
0.

86
0

0.
93

6
0.

78
6

0.
88

8
re

si
li
p
ar

se
0.

90
6

0.
92

6
0.

93
8

0.
73

9
0.

89
1

0.
94

9
0.

91
7

0.
90

2
0.

82
2

0.
87

3
0.

88
9

0.
95

1
0.

98
8

0.
75

3
0.

95
1

tr
afi

la
tu

ra
0.

90
9

0.
93

5
0.

94
0

0.
84

3
0.

84
1

0.
98

1
0.

94
8

0.
93

0
0.

91
5

0.
87

8
0.

86
5

0.
94

4
0.

97
1

0.
83

5
0.

84
2

w
eb

2t
ex

t
0.

92
6

0.
96

6
0.

81
5

0.
83

0
0.

93
2

0.
92

4
0.

98
1

0.
72

7
0.

77
5

0.
93

0
0.

94
3

0.
95

5
0.

98
8

0.
94

4
0.

95
4

xp
at

h
_

te
xt

0.
64

1
0.

60
0

0.
33

9
0.

44
1

0.
82

5
0.

51
6

0.
52

8
0.

23
3

0.
32

2
0.

75
0

0.
99

9
0.

99
9

1.
00

0
0.

99
6

0.
99

5

C
E
T
D
:C

on
te
nt

E
xt
ra
ct
io
n
vi
a
T
ex
t
D
en

si
ty
.

R
D
B
:R

ea
da

bi
lit
y

A
E
B
:A

rt
ic
le

E
xt
ra
ct
io
n
B
en

ch
m
ar
k

D
G
:D

ra
gn

et
C
E
:C

le
an

E
va
l

52

CHAPTER 6. EVALUATION

6.1.2 Benchmarking using the Dataset Formed by Web Pages Com-

plexity

It was noticed in the section 6.1.1 that benchmarking of extractors on respective source
datasets does not produce meaningful information. Therefore, a new dataset group was
created based on the complexity of the web pages (section 3.5). Tables 6.3 and 6.4 offers a
quick overview of the benchmark scores. For complex webpages, em_3_5 scores highest,
but simple extractors perform better than main content extractors for the easy dataset
group.

The benchmark score makes it easy to select an extractor based on a web page’s com-
plexity, which builds credibility in the extracted main content of a webpage through the
judicious selection of an extractor. The score indicates that selecting a simple extractor
over others is sometimes preferable to prevent loss of main content yet minimise the noisy
content.

53

CHAPTER 6. EVALUATION

Table 6.3: Benchmarking of extractors using Edit Distance Metric on Complexity Dataset. The
em_2_5 content extractor performs best in the complex dataset with the lowest edit distance
score of 0.040, whereas in the easy dataset, it performs average with a score of 0.028. The bench-
mark shows that the lxml cleaner used by trafilatura internally for removing generic boilerplates
performs much better on the easy dataset. The result shows that a simple extractor should be
preferred for the easy dataset.

Metric Edit Distance (Mean)

Complexity Dataset Complex Mid-Complex Easy

Extractor

boilerpipe 0.051 0.034 0.049
beautifulsoup 0.123 0.063 0.013
bte 0.070 0.027 0.015
em_13 0.111 0.056 0.016
em_2_5 0.040 0.030 0.028
em_3_5 0.047 0.028 0.026
em_4_5 0.048 0.034 0.041
em_4_8 0.042 0.029 0.032
em_6_8 0.048 0.034 0.042
go_domdistiller 0.048 0.030 0.034
goose3 0.049 0.040 0.050
html_text 0.122 0.063 0.013
html2text 0.108 0.059 0.014
inscriptis 0.079 0.043 0.008
justext 0.074 0.033 0.032
lxmlCleaner 0.109 0.056 0.014
readability 0.040 0.029 0.031
resiliparse 0.057 0.037 0.030
trafilatura 0.042 0.030 0.032
web2text 0.078 0.033 0.015
xpath_text 0.086 0.065 0.019

54

CHAPTER 6. EVALUATION

T
ab

le
6.

4:
B
en

ch
m
ar
ki
ng

of
ex
tr
ac
to
rs

us
in
g
R
ou

ge
LS

um
M
et
ri
c
(M

ea
n)

on
C
om

pl
ex
it
y
D
at
as
et
.
T
he

w
eb

2t
ex
t
co
nt
en
t
ex
tr
ac
to
r

pe
rf
or
m
s
be

st
in

th
e
m
id
-c
om

pl
ex

da
ta
se
t
w
it
h
an

F
1
sc
or
e
of

0.
92

1,
w
he

re
as

in
th
e
co
m
pl
ex

da
ta
se
t,

it
pe

rf
or
m
s
be

lo
w

av
er
ag

e
w
it
h
a
sc
or
e
of

0.
70

9.
T
he

to
p
pe

rf
or
m
in
g
co
nt
en
t
ex
tr
ac
to
rs

ar
e
em

_
3_

5,
w
eb

2t
ex
t
an

d
be

au
ti
fu
ls
ou

p.
Se

le
ct
in
g
a
si
m
pl
e
co
nt
en
t

ex
tr
ac
to
r
fo
r
a
w
eb
pa

ge
be

lo
ng

in
g
to

th
e
ea
sy

da
ta
se
t
ca
te
go

ry
sh
ou

ld
be

pr
ef
er
re
d.

M
et

ri
c

F
1

S
co

re
(M

ea
n
)

P
re

ci
si

on
(M

ea
n
)

R
ec

al
l
(M

ea
n
)

C
om

p
le

xi
ty

D
at

as
et

C
om

p
le

x
M

id
-C

om
p
le

x
E
as

y
C

om
p
le

x
M

id
-C

om
p
le

x
E
as

y
C

om
p
le

x
M

id
-C

om
p
le

x
E
as

y
E
xt

ra
ct

or

b
oi

le
rp

ip
e

0.
76

9
0.

86
6

0.
77

3
0.

79
7

0.
96

4
0.

98
5

0.
79

7
0.

82
9

0.
71

0
b
ea

u
ti

fu
ls

ou
p

0.
38

2
0.

75
9

0.
96

1
0.

24
6

0.
62

3
0.

93
2

0.
99

9
0.

99
8

0.
99

5
b
te

0.
68

7
0.

90
5

0.
94

1
0.

64
1

0.
88

6
0.

95
6

0.
86

2
0.

95
0

0.
93

9
em

_
13

0.
47

7
0.

79
7

0.
95

1
0.

33
6

0.
68

2
0.

94
7

0.
98

3
0.

98
1

0.
96

2
em

_
2_

5
0.

81
5

0.
89

9
0.

90
4

0.
78

5
0.

94
1

0.
98

4
0.

91
1

0.
89

0
0.

87
0

em
_

3_
5

0.
84

1
0.

89
2

0.
87

2
0.

87
3

0.
96

5
0.

98
5

0.
85

4
0.

86
3

0.
83

4
em

_
4_

5
0.

78
9

0.
86

6
0.

82
2

0.
88

1
0.

96
8

0.
98

1
0.

76
6

0.
82

4
0.

76
7

em
_

4_
8

0.
83

0
0.

89
2

0.
86

6
0.

85
7

0.
96

7
0.

98
8

0.
85

0
0.

86
3

0.
82

4
em

_
6_

8
0.

78
1

0.
86

5
0.

81
2

0.
87

3
0.

97
1

0.
98

5
0.

75
1

0.
81

7
0.

75
3

go
_

d
om

d
is

ti
ll
er

0.
79

7
0.

88
3

0.
84

9
0.

82
0

0.
95

5
0.

95
7

0.
82

4
0.

85
6

0.
81

9
go

os
e3

0.
77

8
0.

84
0

0.
77

4
0.

85
4

0.
95

7
0.

94
4

0.
75

0
0.

78
9

0.
71

8
ht

m
l_

te
xt

0.
38

2
0.

75
9

0.
96

1
0.

24
6

0.
62

3
0.

93
2

0.
99

9
0.

99
8

0.
99

5
ht

m
l2

te
xt

0.
38

6
0.

75
4

0.
95

8
0.

25
0

0.
62

1
0.

93
0

0.
99

9
0.

98
8

0.
99

0
in

sc
ri

p
ti

s
0.

40
2

0.
76

7
0.

96
1

0.
26

4
0.

63
5

0.
93

4
0.

99
8

0.
99

5
0.

99
2

ju
st

ex
t

0.
65

9
0.

87
0

0.
85

7
0.

67
6

0.
93

1
0.

93
9

0.
70

2
0.

84
0

0.
81

3
lx

m
lC

le
an

er
0.

47
3

0.
79

1
0.

94
9

0.
33

5
0.

67
3

0.
93

4
0.

99
2

0.
98

8
0.

97
7

re
ad

ab
il
it
y

0.
82

8
0.

88
3

0.
86

2
0.

87
8

0.
96

3
0.

98
0

0.
82

9
0.

85
2

0.
83

2
re

si
li
p
ar

se
0.

74
8

0.
84

6
0.

87
3

0.
73

7
0.

89
1

0.
95

9
0.

82
8

0.
85

4
0.

85
7

tr
afi

la
tu

ra
0.

82
7

0.
88

9
0.

86
3

0.
84

5
0.

95
0

0.
95

0
0.

86
1

0.
86

7
0.

82
9

w
eb

2t
ex

t
0.

70
9

0.
92

1
0.

95
7

0.
62

2
0.

89
4

0.
97

5
0.

92
5

0.
96

3
0.

94
4

xp
at

h
_

te
xt

0.
22

7
0.

56
6

0.
91

0
0.

13
5

0.
42

1
0.

85
8

0.
99

9
0.

99
6

0.
99

5

55

CHAPTER 6. EVALUATION

6.1.3 Benchmarking using the Dataset Formed by K-Means Clus-

tering Algorithm

It was made apparent in section 6.1.2 that the choice of extractor serves an essential
function for a webpage. However, grouping webpages by complexity was based on its gold
standard. In an ideal scenario, just the webpage is accessible, not its gold standard; this
is the issue that extractors are attempting to address. Grouping webpages using K-means
cluster analysis was conducted for this purpose (Section 3.6). The overview of extractors’
performance for each cluster is presented in Table 6.5 and 6.6. Webpages were categorized
into three clusters to correspond with the number of complexity groups. When a new web
page’s main content is to be extracted, the first step would be to determine the cluster it
belongs to and then uses the extractor with the highest performance in that cluster.

56

CHAPTER 6. EVALUATION

Table 6.5: Benchmarking of extractors using Edit Distance Metric on K-Means Cluster Dataset.
The em_3_5 and readability content extractors perform best in the label 0 dataset with the
lowest edit distance score of 0.035, whereas in the label 2 dataset, simple extractor inscriptis
ranks highest with a score of 0.019.

Metric Edit Distance (Mean)

K-Means Cluster Dataset Label 0 Label 1 Label 2

Extractor

boilerpipe 0.041 0.043 0.045
bs4 0.083 0.065 0.036
bte 0.040 0.035 0.025
em_13 0.074 0.059 0.035
em_2_5 0.037 0.029 0.028
em_3_5 0.035 0.029 0.029
em_4_5 0.042 0.036 0.037
em_4_8 0.036 0.032 0.029
em_6_8 0.041 0.039 0.039
go_domdistiller 0.038 0.036 0.031
goose3 0.044 0.041 0.049
html_text 0.082 0.064 0.036
html2text 0.076 0.060 0.034
inscriptis 0.056 0.045 0.019
justext 0.047 0.046 0.035
lxmlCleaner 0.073 0.058 0.034
readability 0.035 0.030 0.029
resiliparse 0.048 0.032 0.031
trafilatura 0.036 0.031 0.032
web2text 0.048 0.046 0.022
xpath_text 0.072 0.055 0.037

57

CHAPTER 6. EVALUATION

T
ab

le
6.

6:
B
en

ch
m
ar
ki
ng

of
ex
tr
ac
to
rs

us
in
g
R
ou

ge
LS

um
M
et
ri
c
on

K
-M

ea
ns

C
lu
st
er

D
at
as
et
.
T
he

to
p
pe

rf
or
m
in
g
ex
tr
ac
to
r
in

la
be

l0
,l
ab

el
1
an

d
la
be

l2
ar
e
em

_
3_

5,
em

_
2_

5
an

d
w
eb

2t
ex
t
re
sp
ec
ti
ve
ly
.
O
ne

of
th
e
ob

se
rv
at
io
ns

fr
om

th
e
be

nc
hm

ar
k
is

th
at

th
e
m
ai
n
co
nt
en
t
ex
tr
ac
to
rs

pe
rf
or
m

be
tt
er

th
an

th
e
si
m
pl
e
ex
tr
ac
to
r
in

al
lt

he
da

ta
se
t
ca
te
go

ri
es
.

M
et

ri
c

F
1

S
co

re
(M

ea
n
)

P
re

ci
si

on
(M

ea
n
)

R
ec

al
l
(M

ea
n
)

K
-M

ea
n
s

D
at

as
et

L
ab

el
0

L
ab

el
1

L
ab

el
2

L
ab

el
0

L
ab

el
1

L
ab

el
2

L
ab

el
0

L
ab

el
1

L
ab

el
2

E
xt

ra
ct

or

b
oi

le
rp

ip
e

0.
83

3
0.

81
3

0.
79

6
0.

91
0

0.
94

8
0.

94
5

0.
81

4
0.

78
0

0.
75

9
b
s4

0.
63

6
0.

72
6

0.
85

3
0.

50
4

0.
61

2
0.

78
7

0.
99

8
0.

99
9

0.
99

4
b
te

0.
84

1
0.

86
0

0.
89

3
0.

81
2

0.
85

7
0.

88
7

0.
92

4
0.

91
7

0.
93

5
em

_
13

0.
69

2
0.

76
6

0.
86

3
0.

57
3

0.
66

4
0.

82
2

0.
98

1
0.

98
6

0.
96

2
em

_
2_

5
0.

86
5

0.
89

4
0.

89
5

0.
90

0
0.

92
5

0.
92

7
0.

88
0

0.
89

8
0.

90
4

em
_

3_
5

0.
86

8
0.

88
5

0.
87

8
0.

94
2

0.
96

0
0.

94
7

0.
84

4
0.

85
8

0.
86

8
em

_
4_

5
0.

82
9

0.
84

7
0.

83
9

0.
94

6
0.

96
0

0.
94

8
0.

78
8

0.
80

2
0.

80
5

em
_

4_
8

0.
86

3
0.

87
4

0.
88

1
0.

93
5

0.
95

6
0.

95
3

0.
84

3
0.

84
7

0.
86

6
em

_
6_

8
0.

83
2

0.
83

2
0.

82
8

0.
94

3
0.

96
1

0.
95

4
0.

78
5

0.
78

1
0.

78
6

go
_

d
om

d
is

ti
ll
er

0.
85

0
0.

85
2

0.
86

1
0.

91
7

0.
93

8
0.

91
8

0.
83

2
0.

82
7

0.
85

8
go

os
e3

0.
81

7
0.

82
6

0.
77

8
0.

93
0

0.
95

6
0.

90
5

0.
76

7
0.

77
1

0.
74

5
ht

m
l_

te
xt

0.
63

6
0.

72
6

0.
85

3
0.

50
4

0.
61

2
0.

78
7

0.
99

8
0.

99
9

0.
99

4
ht

m
l2

te
xt

0.
63

4
0.

72
6

0.
84

8
0.

50
3

0.
61

3
0.

78
7

0.
99

2
0.

99
9

0.
98

4
in

sc
ri

p
ti

s
0.

65
0

0.
72

8
0.

85
7

0.
52

0
0.

61
7

0.
79

4
0.

99
7

0.
99

7
0.

99
0

ju
st

ex
t

0.
80

3
0.

80
6

0.
83

9
0.

85
2

0.
89

6
0.

88
2

0.
79

7
0.

77
1

0.
82

1
lx

m
lC

le
an

er
0.

68
8

0.
76

4
0.

85
6

0.
56

7
0.

65
9

0.
80

8
0.

99
2

0.
99

4
0.

97
1

re
ad

ab
il
it
y

0.
85

8
0.

87
4

0.
86

8
0.

94
6

0.
95

2
0.

94
2

0.
82

6
0.

84
9

0.
86

3
re

si
li
p
ar

se
0.

78
8

0.
87

0
0.

87
2

0.
84

2
0.

91
5

0.
88

9
0.

80
3

0.
87

5
0.

91
1

tr
afi

la
tu

ra
0.

86
5

0.
88

1
0.

86
0

0.
92

6
0.

95
1

0.
90

1
0.

85
5

0.
85

3
0.

85
9

w
eb

2t
ex

t
0.

85
6

0.
86

6
0.

92
4

0.
80

8
0.

84
7

0.
91

5
0.

95
3

0.
93

2
0.

95
4

xp
at

h
_

te
xt

0.
44

6
0.

59
7

0.
76

7
0.

32
3

0.
48

4
0.

68
8

0.
99

9
1.

00
0

0.
99

2

58

CHAPTER 6. EVALUATION

6.2 Extractors Rank Correlation Among Text Similar-

ity Metrics

Five text-based similarity metrics were explored in Chapter 4; however, only the RougeL-
Sum and Edit Distance metrics were reported in section 6.1 for benchmarking. For each
dataset group, it was determined that RougeLSum, Jaccard Index, Bag of Words, and 4-
Gram have a high correlation with one another (Figure 6.1d, 6.1g, 6.1h, 6.1b, 6.1a). Figure
6.1 only depicts the rank correlation plot for the article extraction benchmark dataset, but
similar trends can be observed in other dataset groups. An extractor with a high ranking
in RougeLSum will almost certainly have a relative ranking in the other text similarity
measures listed above. If the ranking in one of the metrics mentioned above is known, it is
possible to forecast the extractor’s performance on any other measure. There appears to
be a low-rank correlation between the text similarity measures mentioned above and the
Levenshtein edit distance (Figure 6.1c, 6.1e, 6.1i, 6.1f). Because of the above reasoning,
the RougeLSum and Levenshtein Edit Distance findings were recorded in section 6.1.

59

CHAPTER 6. EVALUATION

(a) 4 Gram vs Bag of Words

(b) 4 Gram vs Jaccard Index

(c) 4 Gram vs Levensthein Edit Distance

60

CHAPTER 6. EVALUATION

(d) Bag of Words vs Jaccard Index

(e) Bag of Words vs Levensthein Edit Distance

(f) Jaccard Index vs Levensthein Edit Distance

61

CHAPTER 6. EVALUATION

(g) RougeLSum vs 4 Gram

(h) RougeLSum vs Bag of Words

(i) RougeLSum vs Levensthein Edit Distance

Figure 6.1: Rank correlation plot of extractors among text similarity measures for Article Ex-
traction Benchmark dataset. RougeLSum and Levenshtein edit distance benchmark scores were
documented due to their low-rank correlation.

62

CHAPTER 6. EVALUATION

6.3 Most Effective Score Distribution Across Web Pages

for all the Benchmarked Extractors

Figure 6.2 depicts the RougeLSum F1 measure distribution for evaluating extractors’ per-
formance across all web pages. The majority of webpages have an F1 score between 0.8
and 1 for the main content extractors like trafilatura(6.2s), web2text(6.2t), and body text
extraction(6.2c). In contrast, the F1 measure distribution has a significant number of web
pages in each bin for the simple extractors such as html2text(6.2m), xpath text(6.2u), beau-
tifulsoup(6.2b), inscriptis(6.2n) and em_13 (a machine learning based ensemble model,
section 5).

(a) boilerpipe (b) BeautifulSoup (c) Body Text Extraction (d) em_13

(e) em_2_5 (f) em_3_5 (g) em_4_5 (h) em_4_8

(i) em_6_8 (j) go domdistiller (k) goose (l) html_text

(m) html2text (n) inscriptis (o) justtext (p) lxmlCleaner

63

CHAPTER 6. EVALUATION

(q) readability (r) resiliparse (s) trafilatura (t) web2text

(u) xpath_text

Figure 6.2: Distribution plot of RougeLSum F1 measure for each content extractor. X-axis: F1
measures between 0 and 1 with a bin size of 0.2, Y-axis: count of web pages. The majority of
web pages have an F1 score between 0.8 and 1 for the main content extractors in contrast to the
simple extractors, which have many web pages in each bin.

64

Chapter 7

Conclusion and Future Works

In the thesis, we have covered the definition of content extraction and its implementation.
We studied the widely used extractors’ benchmark scores by extending prior content ex-
traction and benchmarking research. As shown, one extractor does not outperform the
others, and selecting a suitable extractor for the webpage to extract its primary content
is crucial. We have also observed that the dataset has a binding effect on the conclusion.
The thesis began with the Introduction (Chapter 1), which emphasized the prevalence of
unstructured data on the web and the need to extract the main content and reduce boil-
erplate. We reviewed the HTML boilerplate elements and the benefits of automated and
manual content extraction.

In Chapter 2, we examined the open-source extractors that can be utilized for research
purposes and their requirements. In addition, we analyzed the existing research publi-
cations on content extraction, the authors’ content extraction model technique, and the
dataset information.

In Chapter 3, we explored the sources of labelled datasets and the format of the gold
standard. We first determined the diversity of the web pages in the corpus. We discovered
that web pages were classified into 28 groups, indicating that the dataset was sufficiently
diversified. We assessed dataset error, enhanced the dataset’s quality, and catalogued the
forms of error in the gold standard. We also discussed categorizing web pages into groups
based on their complexity or using the K-means clustering algorithm. The objective was
to group webpages with similar features; as we discovered in subsequent chapters, simple
extractors work better than main content extractors on a few dataset groups.

Chapter 4 discussed semantic and lexical text similarity metrics and elaborated on the
many lexical similarity measures, including the Jaccard index, RougeLSum, N-Gram, Bag

65

CHAPTER 7. CONCLUSION AND FUTURE WORKS

of Words, and Levenshtein edit distance. In a subsequent chapter, it was discovered that
there appears to be a high-rank correlation between text similarity measure scores. For
this reason, only the RougeLSum and the Levenshtein edit distance scores were recorded.

In Chapter 5, we explored the design and implementation of two content extractors
based on the stacking ensemble model, with layer 2 serving as a threshold-based binary
classifier and a machine learning-based binary classifier. We evaluated Logistic Regression
and Random Forest Classifier in a machine-learning-based classifier to identify whether a
leaf node contains boilerplate text or main content. By assessing the benchmarking results,
it was discovered that a threshold-based binary classifier appears to perform better than
one based on machine learning.

In Chapter 6, we compared the outcomes of benchmarking extractors on several dataset
groupings. We determined that a single extractor is inadequate for all web pages. On sev-
eral web pages, it was discovered that the simple extractors outperform the main content
extractors based on machine learning and statistics. The selection of an extractor relies
on the webpage. Complex extractors should not always be selected since doing so might
result in losing a few main content sections.

In the study, we researched unexplored areas of content extractor benchmarking and de-
veloped an ensemble-based content extractor. Nevertheless, there is an opportunity for
improvement as several aspects remain unanswered.

Extractor based on machine learning was addressed in section 5.2; however, its perfor-
mance on the benchmarking tests was average. The extractor seems to perform poorly in
complex dataset group as well. The model may be improved by incorporating additional
features and experimenting with other classifiers as an aggregator in layer 2, such as the
support vector machine, decision trees, etc.

In Section 3.3, we determined that the dataset was partitioned into 28 distinct cate-
gories, such as news, fitness, and arts entertainment, but no benchmarking was conducted
on each category to establish the optimal extractors for each category. For news-related
webpages, for instance, does the trafilatura extractor perform better than readability?

We covered K-means clustering and complexity-based grouping of webpages in Section
3.5 and 3.6. However, benchmarking scores (Section 6.1) using the complexity group was
more intuitive than the K-means clustering group. As complexity-based grouping of web
pages is based on the gold standard, which appears to be non-ideal in real-world scenarios,
the future steps could be to group webpages similar to complexity-based without using the
gold standard, either through machine learning or clustering-based techniques.

66

Bibliography

Adrien Barbaresi. Trafilatura: A web scraping library and command-line tool for text
discovery and extraction. In Proceedings of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing: System Demonstrations, pages 122–131, Online, August 2021.
Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-demo.15. URL
https://aclanthology.org/2021.acl-demo.15.

Marco Baroni, Francis Chantree, Adam Kilgarriff, and Serge Sharoff. Cleaneval: a compe-
tition for cleaning web pages. In Proceedings of the Sixth International Conference on
Language Resources and Evaluation (LREC’08), Marrakech, Morocco, May 2008. Eu-
ropean Language Resources Association (ELRA). URL http://www.lrec-conf.org/

proceedings/lrec2008/pdf/162_paper.pdf.

Stefan Behnel. Lxml, 2011. URL https://github.com/lxml/lxml.

Janek Bevendorff, Benno Stein, Matthias Hagen, and Martin Potthast. Elastic ChatNoir:
Search Engine for the ClueWeb and the Common Crawl. In Leif Azzopardi, Allan
Hanbury, Gabriella Pasi, and Benjamin Piwowarski, editors, Advances in Information
Retrieval. 40th European Conference on IR Research (ECIR 2018), Lecture Notes in
Computer Science, Berlin Heidelberg New York, March 2018. Springer.

Deng Cai, Shipeng Yu, Ji-Rong Wen, and Wei-Ying Ma. Extracting content structure
for web pages based on visual representation. In Xiaofang Zhou, Maria E. Orlowska,
and Yanchun Zhang, editors, Web Technologies and Applications, pages 406–417, Berlin,
Heidelberg, 2003. Springer Berlin Heidelberg. ISBN 978-3-540-36901-1.

Courtney D Corley and Rada Mihalcea. Measuring the semantic similarity of texts. In
Proceedings of the ACL workshop on empirical modeling of semantic equivalence and
entailment, pages 13–18, 2005.

67

https://aclanthology.org/2021.acl-demo.15
http://www.lrec-conf.org/proceedings/lrec2008/pdf/162_paper.pdf
http://www.lrec-conf.org/proceedings/lrec2008/pdf/162_paper.pdf
https://github.com/lxml/lxml

BIBLIOGRAPHY

dragnet org. dragnet-org/dragnet, 2012. URL https://github.com/dragnet-org/

dragnet.

Aidan Finn, Nicholas Kushmerick, and Barry Smyth. Fact or fiction: Content classification
for digital libraries. In DELOS, 2001.

Lichao Zhu Gaël Lejeune. A new proposal for evaluating web page cleaning tools. Mar-
rakech, Morocco, May 2020. Computación y sistemas, Instituto Politécnico Nacional
IPN Centro de Investigación en Computación, 2018, ff10.13053/CyS-22-4-3062f. URL
https://hal.archives-ouvertes.fr/hal-02467732/document.

Wael H Gomaa, Aly A Fahmy, et al. A survey of text similarity approaches. international
journal of Computer Applications, 68(13):13–18, 2013.

Thomas Gottron. Content code blurring: A new approach to content extraction. 2008
19th International Conference on Database and Expert Systems Applications, 2008. doi:
10.1109/dexa.2008.43.

GravityLabs. goose, 2010. URL https://github.com/GravityLabs/goose.

David Insa Cabrera, Josep Francesc Silva Galiana, and Salvador Tamarit. Using the word-
s/leafs ratio in the dom tree for content extraction. Journal of Logic and Algebraic
Programming, 82(8):311–325, 2013.

Christian Kohlschütter, Peter Fankhauser, and Wolfgang Nejdl. Boilerplate detection using
shallow text features. In Proceedings of the Third ACM International Conference on
Web Search and Data Mining, WSDM ’10, page 441–450, New York, NY, USA, 2010.
Association for Computing Machinery. ISBN 9781605588896. doi: 10.1145/1718487.
1718542. URL https://doi.org/10.1145/1718487.1718542.

scrapinghub Konstantin Lopukhin. Evaluating quality of article body extraction for com-
mercial services and open-source libraries. URL https://github.com/scrapinghub/

article-extraction-benchmark#more-details.

Tagaram Soni Madhulatha. Comparison between k-means and k-medoids clustering algo-
rithms. In David C. Wyld, Michal Wozniak, Nabendu Chaki, Natarajan Meghanathan,
and Dhinaharan Nagamalai, editors, Advances in Computing and Information Technol-
ogy, pages 472–481, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg. ISBN 978-3-
642-22555-0.

68

https://github.com/dragnet-org/dragnet
https://github.com/dragnet-org/dragnet
https://hal.archives-ouvertes.fr/hal-02467732/document
https://github.com/GravityLabs/goose
https://doi.org/10.1145/1718487.1718542
https://github.com/scrapinghub/article-extraction-benchmark#more-details
https://github.com/scrapinghub/article-extraction-benchmark#more-details

BIBLIOGRAPHY

Markus Mobius and Radhi Fadlillah. markusmobius/go-domdistille, 2020. URL https:

//github.com/markusmobius/go-domdistiller.git.

Mozilla. mozilla/readability, 2015. URL https://github.com/mozilla/readability.

Jan Pomikálek. Removing boilerplate and duplicate content from web corpora. PhD thesis,
Masaryk university, Faculty of informatics, Brno, Czech Republic, 2011.

Leonard Richardson. Beautifulsoup, 2010. URL https://code.launchpad.net/

beautifulsoup/.

Fei Sun, Dandan Song, and Lejian Liao. Dom based content extraction via text den-
sity. In Proceedings of the 34th International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ’11, page 245–254, New York,
NY, USA, 2011. Association for Computing Machinery. ISBN 9781450307574. doi:
10.1145/2009916.2009952. URL https://doi.org/10.1145/2009916.2009952.

Aaron Swartz. html2text, 2014. URL https://github.com/soundasleep/html2text.

TeamHG-Memex. Html to text, 2016. URL https://github.com/TeamHG-Memex/

html-text.

videoinu. How does firefox’s reader view work?, 2020. URL https://videoinu.com/blog/

firefox-reader-view-heuristics/.

Thijs Vogels, Octavian-Eugen Ganea, and Carsten Eickhoff. Web2text: Deep structured
boilerplate removal. CoRR, abs/1801.02607, 2018. URL http://arxiv.org/abs/1801.

02607.

weblyzard. inscriptis – html to text conversion library, command line client and web service,
2016. URL https://github.com/weblyzard/inscriptis.

Tim Weninger, William H. Hsu, and Jiawei Han. Cetr: Content extraction via tag ra-
tios. In Proceedings of the 19th International Conference on World Wide Web, WWW
’10, page 971–980, New York, NY, USA, 2010. Association for Computing Machinery.
ISBN 9781605587998. doi: 10.1145/1772690.1772789. URL https://doi.org/10.1145/

1772690.1772789.

wikipedia. Bag-of-words model, 2007. URL https://en.wikipedia.org/wiki/

Bag-of-words_model.

69

https://github.com/markusmobius/go-domdistiller.git
https://github.com/markusmobius/go-domdistiller.git
https://github.com/mozilla/readability
https://code.launchpad.net/beautifulsoup/
https://code.launchpad.net/beautifulsoup/
https://doi.org/10.1145/2009916.2009952
https://github.com/soundasleep/html2text
https://github.com/TeamHG-Memex/html-text
https://github.com/TeamHG-Memex/html-text
https://videoinu.com/blog/firefox-reader-view-heuristics/
https://videoinu.com/blog/firefox-reader-view-heuristics/
http://arxiv.org/abs/1801.02607
http://arxiv.org/abs/1801.02607
https://github.com/weblyzard/inscriptis
https://doi.org/10.1145/1772690.1772789
https://doi.org/10.1145/1772690.1772789
https://en.wikipedia.org/wiki/Bag-of-words_model
https://en.wikipedia.org/wiki/Bag-of-words_model

	Introduction
	Motivation
	Goals & Approach

	Background
	Related Work
	Statistics-based Content Extraction
	Machine Learning Based Content Extraction
	Visual Based Content Extraction
	Benchmarking of Extractors

	Extractors

	Creating and Analyzing Datasets for Benchmarking Extractors
	Collecting Annotated Web Pages for Benchmarking Extractors
	Data Preparation
	Classifying Web Pages used for Benchmarking to Determine Diversity
	Catalogue and Quantify Gold Standard Manual Annotation Error
	Grouping Web Pages by the Complexity
	Grouping Web Pages using the K-means Clustering Algorithm

	Surveying Text Similarity Metrics for Benchmarking Extractors
	Designing Ensemble Model Extractors
	Threshold based Ensemble Content Extractor
	Machine Learning based Ensemble Content Extractor

	Evaluation
	Benchmarking of Extractors
	Benchmarking using the Source Dataset
	Benchmarking using the Dataset Formed by Web Pages Complexity
	Benchmarking using the Dataset Formed by K-Means Clustering Algorithm

	Extractors Rank Correlation Among Text Similarity Metrics
	Most Effective Score Distribution Across Web Pages for all the Benchmarked Extractors

	Conclusion and Future Works
	Bibliography

