
Bauhaus-Universität Weimar
Faculty of Media
Degree Programme Digital Engineering

Investigating Transformer Input
Embedding in Neural Translation

Language Model for Search

Master’s Thesis

Eyasu Berhane Habte

1. Referee: Prof. Dr. Benno Stein
2. Referee: Jun. Prof. Dr. Harry Scells

Submission date: April 10, 2025

Declaration

Unless otherwise indicated in the text or references, this thesis is entirely the
product of my own scholarly work.

Weimar, Germany, April 10, 2025

. .
Eyasu Berhane Habte

Abstract

Information retrieval (IR) is the process of searching for relevant information from large
collections based on users’ needs. One of the challenges in IR is the vocabulary gap, where
discrepancies between query and document terms lower retrieval effectiveness. This thesis
investigates the Neural Translation Language Model (NTLM) approach to address this
challenge, leveraging an input embedding from the transformer models. Originally, the
NTLM approach was implemented using Word2Vec embeddings. This thesis extends the
NTLM by incorporating transformer input embeddings, aiming to improve reranking ef-
fectiveness. We compare our NTLM approach to the Dirichlet-smoothed language model
for first-stage retrieval and evaluate its effectiveness across diverse datasets. Additionally,
we assess the NTLM effectiveness against the WordLlama method [23], a lightweight NLP
toolkit for effective document reranking through semantic cosine similarity.

We conduct multiple experiments using the PyTerrier platform for indexing, initial rank-
ing, and evaluation. We use ten benchmark datasets from the BEIR collection [16], a
benchmark suite for evaluating retrieval models on a diverse range of datasets and the
ir_datasets 1 [20] that provides standardized access to many IR datasets. The effec-
tiveness is assessed using standard IR evaluation measures. The results indicate that
the Dirichlet model, with a well-tuned smoothing parameter µ, maintains high effective-
ness, while reranking with the NTLM often leads to lower effectiveness in most cases.
Among the NTLM models, MonoBERT input embedding was effective, while others like
Word2Vec, GPT, and RoBERTa were less so. In contrast, the WordLlama method shows
better overall effectiveness, making it a strong candidate for document reranking tasks.

A key reason for the NTLM lower effectiveness lies in its word-to-word translation quality,
which directly affects its reranking effectiveness. Analyzing word translations reveals that
while most embeddings accurately translate common words, differences emerge with less
frequently occurring terms. The Skip-Gram (Google News) model is consistently more
effective than others in handling less frequent terms. The MonoBERT and RoBERTa in-
put embedding use subword tokenization to process unknown words effectively, whereas
GPT-2 input embedding, despite its large vocabulary, shows the lowest effectiveness.
These findings highlight the impact of embedding architectures and training data on
word translation tasks, directly influencing the NTLM effectiveness in document ranking.

This thesis demonstrates how the input embedding can be integrated into the NTLM
approach, providing insights into the relationship between embedding characteristics and
document ranking effectiveness. While the Dirichlet smoothed model remains a strong
initial ranker, often more effective than the NTLM approach using different word embed-
ding and input embedding across datasets. The word embeddings still require further
refinement to improve semantic understanding and document ranking effectiveness using
the NTLM method. Future work could investigate integrating contextualized embeddings
and neural query expansion techniques into the NTLM, potentially enhancing its ability
to capture query-document interactions and improve ranking effectiveness.

1https://ir-datasets.com/

Contents

1 Introduction 3

2 Background 6
2.1 IR Components and Retrieval Functions 7
2.2 Traditional IR models . 11

2.2.1 Language Modelling . 11
2.2.2 Translation Language Model . 12

2.3 Neural Word Representation . 14
2.3.1 Vector Represenation . 14
2.3.2 Dense Vector Representations Model 16

2.4 Transformer Models . 17
2.5 IR Evaluation . 17

3 Experimental Setup 19
3.1 Datasets . 19
3.2 Retrieval Setup . 21

4 Methodology 23
4.1 Dirichlet Language Model . 23
4.2 Static Word Embeddings Implementation 24
4.3 Input Embeddings from Transformers Model 25
4.4 Word Translation Using Word Embeddings 26
4.5 Neural Translation Language Model (NTLM) 27
4.6 Ranking Documents using the NTLM . 28
4.7 WordLlama for Reranking . 29

5 Experimental Results 31
5.1 Comparative Analysis of the NTLM . 31
5.2 Results and Analysis of NTLM Retrieval 34
5.3 Comparison of the NTLM with Previous Related Works 36
5.4 NTLM Evaluation Result . 37
5.5 Estimation of the Translation Probabilities 39

6 Discussion 43
6.1 RQ1: Comparative Analysis of the NTLM 43
6.2 RQ2: Impact of Embedding Variations and Fine-Tuned Transformers . . 44
6.3 RQ3: Effectiveness of WordLlama for Reranking 45

7 Conclusion 47

ii

CONTENTS

Bibliography 49

iii

List of Figures

2.1 IR System. 7
2.2 Conceptual model for IR . 8
2.3 Local (One-Hot) Vector Representations 14
2.4 Distributed Vector Representations . 15
2.5 High Dimensional Vector Space Representation 15
2.6 Skip-gram Model: The target word “flying” predicts its surrounding con-

text words. 16
2.7 Continuous Bag of Words Model: The context words predict the target

word “flying.” . 17

4.1 Probabilistic translation model showing how document terms (e.g., “Jun-
gle,” “Rainforest”) contribute to generating a query term (“Forest”). Edges
represent translation probabilities pt(w|u), and the self-loop denotes the
self-translation probability p(Forest|Forest). 27

5.1 Mean Average Precision (MAP) scores for the top 100 documents at various
µ values across AP, WSJ, and DOTGOV datasets. 32

5.2 Mean Average Precision (MAP) scores for the top 100 documents at various
µ values across MS-MARCO, Quora, Scifact, and FiQA datasets. 33

5.3 ndcg@100 scores for the top 100 documents at various µ values across
NF-Corpus, TREC-Covid, and Webis-touch2020 datasets. 33

5.4 NTLM Mean Average Precision (MAP) scores for the top 100 documents
at various α values across AP, WSJ, DOTGOV datasets. 34

5.5 NTLM Mean Average Precision (MAP) scores for the top 100 documents
at various α values across SciFact, MSMARCO, Quara and FiQA datasets. 35

5.6 NTLM nDCG scores for the top 100 documents at various α values across
TREC-Covid-19, Webis-Touche-2020-V2, NFCorpus datasets. 35

1

List of Tables

2.1 Comparison of Indexing and Embedding for Document Representation . 8

3.1 Statistics and Characteristics of the Datasets 21

4.1 Datasets and Model Parameters used during training to create Word2Vec
model. 24

4.2 static word Embedding Models Taken from NLPL Repository 25
4.3 Input Embedding Dimensions and Vocabulary Sizes of Different Models . 25

5.1 Optimal µ values for maximizing MAP@100 and nDCG@100 in the Dirich-
let Smoothed Model across different datasets. This table presents the
best-performing µ parameter settings that achieve the highest retrieval
effectiveness for each dataset. 34

5.2 Optimal α Parameter and Max MAP@100 and nDCG@100 using the
NTLM model for Different Datasets . 36

5.3 Comparison of MAP and P@10 scores for top 1000 documents between
previous work and our results. Bold values indicate the highest scores
achieved for each metric (MAP or P@10) across models for a given dataset. 36

5.4 Effectiveness Dirichlet smoothed and NTLM model across different datasets
for Top 100 Documents. Bold values indicate the highest scores achieved
for each metric across different models for a given dataset. Note that the
word2vec used in this table is the Google News model 38

5.5 Comparison of word translations, along with translation probabilities, for
Common words across different Models 40

5.6 Comparison of translation probabilities for Not-Common Words across dif-
ferent Models . 40

5.7 Static Word Embedding Models Result Trained on AP and WSJ Datasets 41
5.8 Comparison of Translation Probabilities for Common and Rare Words in

WSJ and AP Datasets using Skipgram and CBOW Models. 41
5.9 Word-to-Word Translation Probabilities for Common and Rare Words us-

ing Wordllama Input Embedding Model. 42

2

Chapter 1

Introduction

Information retrieval (IR) systems play an important role in our increasingly digital
world, giving access to large amounts of information. The design of efficient and effec-
tive retrieval models has been a central focus in the field of IR for decades. Over the
years, various models have been proposed and implemented, each aiming to improve the
effectiveness and efficiency of IR. In the early development of IR, vector space models
[33, 34] and probabilistic models [12, 28] emerged as dominant approaches, primarily due
to their ability to represent and compare documents and queries in a way to compute and
express them mathematically. These foundational methods established the groundwork
for subsequent innovations in the field.

A significant advancement in IR performance came with the introduction of language
modeling techniques [28, 43], which proposed a probabilistic approach that ranks docu-
ments based on the likelihood of a query being generated from each document’s model.
These document models are estimated using multinomial distributions, with smooth-
ing techniques ensuring accurate estimation. Despite their empirical success, language
models face the ongoing challenge of addressing the vocabulary gap, where a mismatch
between the terms used in queries and documents can impact retrieval effectiveness. The
vocabulary gap arises from the natural disparity between the user queries and the exten-
sive, diverse language used in relevant documents. This mismatch can impact retrieval
effectiveness, as relevant documents may be overlooked due to terminological differences.
To address this issue, statistical translation language models [2] were proposed drawing
inspiration from the field of statistical machine translation [6].

Translation language models aim to estimate the likelihood of translating a document into
a query, assigning probabilities to term translations. This approach directly mitigates the
vocabulary gap problem by allowing for semantic connections between different terms.
The process of query formulation can be viewed as a form of translation: from the vast
language of documents to the concise language of queries. This perspective frames the IR
problem as a translation task, where the goal is to bridge the gap between document and
query languages. However, a primary challenge in applying translation language models
to IR is the accurate estimation of the true probability that a query could be generated
as a translation of a document.

3

CHAPTER 1. INTRODUCTION

Translation language model approaches to this problem have relied on statistical and
probabilistic methods. However, recent advancements in machine learning, particularly in
neural networks, have opened new methods for addressing this challenge. The emergence
of word embedding techniques, like Word2Vec [22], has advanced how we represent and
process textual data. Word embeddings capture semantic relationships between words in
a dense vector space, allowing for more detailed comparisons between terms. Specifically,
two such models, the continuous bag-of-words model and the skipgram model, produce
vector representations of words that have shown effectiveness on a number of linguistic
tasks, including word similarity and word analogy [22].

Building on the success of word embeddings, transformer models [39] have significantly
advanced the state of the art in natural language processing. The input embeddings from
transformer models offer rich representations of words, capturing semantic similarities
and fine-grained details of word usage. The input embedding layer provides these initial
word representations before any contextual processing occurs. These embeddings form
the initial stage of the transformer architecture, mapping each token to a dense vector in
a high-dimensional space. The input embedding layer consists of learned parameters that
capture the lexical and semantic properties of words, similar to traditional word embed-
dings, but with the added benefit of being trained within a larger neural network. Since
these embeddings are generated before the self-attention layers, they remain consistent
across different contexts, preserving the core meaning of tokens. Moreover, the model’s
ability to handle subword units enhances the robustness of these embeddings, especially
for out-of-vocabulary words and morphological variations.

As different transformer models continue to evolve, the WordLlama model [23] emerges as
a promising approach. WordLlama, a lightweight model, extracts token representations
from large language models like LLaMA, offering compact, high-quality word embeddings.
This makes it a better alternative to traditional models like Word2Vec. By incorporating
WordLlama embeddings into the NTLM, we also aim to improve reranking effectiveness.

Extending Zuccon’s [46] prior work, which integrates static Word2Vec embeddings into
the NTLM approach, we enhance this approach by incorporating transformer input em-
beddings into the NTLM. By leveraging these embeddings within the translation lan-
guage model, we aim to address the vocabulary gap and enhance semantic understanding
between documents and queries, improving reranking effectiveness. This thesis primar-
ily investigates whether transformer input embeddings achieve higher effectiveness than
static word embeddings within the NTLM, while also evaluating the effectiveness of the
Dirichlet-smoothed language model as an initial ranker [43]. Although the Dirichlet model
has shown its effectiveness as a first-stage ranker, its reliance on exact term matching lim-
its its ability to capture deeper semantic relationships. In contrast, the NTLM enriches
translation modeling by incorporating word embedding, providing a more advanced ap-
proach to capturing term relationships.

This thesis demonstrates how Word2Vec and transformer input embeddings can be effec-
tively integrated into the NTLM and compares their effectiveness across different datasets.
The analysis extends beyond simple effectiveness comparisons, examining how different
embedding types and configurations impact the effectiveness of the model on word-to-
word translation analysis. The primary focus is on assessing the impact of transformer-

4

CHAPTER 1. INTRODUCTION

based input embeddings on reranking effectiveness. The research aims to address the
following questions:

RQ1: Comparative Analysis of Neural Translation Language Model To what
extent do the NTLM using Word2Vec embeddings and the transformer input embed-
dings improve effectiveness compared to the initial ranker, Dirichlet-smoothed language
model, across different datasets? This question investigates whether incorporating word
embedding into the translation language model can better capture semantic relationships
between queries and documents, potentially offering improved solutions to the vocabulary
mismatch problem and improving the reranking of the documents.

RQ2: Impact of Embedding Variations and Fine-Tuned Transformers How
do different configurations of Word2Vec models, input embeddings from various trans-
former architectures, and fine-tuned transformer models like MonoBERT affect retrieval
effectiveness? This investigation examines the relationship between embedding types,
characteristics, and ranking effectiveness, analyzing how architectural choices, training
configurations, and fine-tuning influence the model’s ability to capture semantic similar-
ities and improve retrieval and ranking effectiveness.

RQ3: Effectiveness of WordLlama for Reranking and NTLM Enhancement
How effectively does the WordLlama model, with its lightweight and efficient embedding
derived from large language models (LLMs), enhance the effectiveness of the NTLM and
reranking tasks? This question investigates whether WordLlama’s compact yet high-
quality embeddings, extracted from LLMs like LLaMA 3, can improve semantic rep-
resentation and reranking effectiveness compared to Word2Vec and transformer input
embeddings.

5

Chapter 2

Background

This chapter provides an overview of key concepts and developments in IR relevant to the
thesis. It focuses on the evolution from traditional IR systems to modern neural models,
emphasizing their role in IR tasks.

IR has evolved from early well-known models like Salton’s vector space model [33] and
Robertson’s probabilistic model [30], to more advanced statistical approaches. Techniques
from speech recognition, such as Shannon’s noisy channel and n-gram models [8], laid the
foundation for the Translation Language Model (TLM), which estimates query-document
relevance through translation probabilities.

In the following decades, IR research has continued to evolve, incorporating more ad-
vanced and effective models. For instance, the BM25 model, an extension of the proba-
bilistic approach, has become one of the most widely used ranking models in modern IR
systems [29]. The emergence of distributed representations of words, such as Word2Vec
[22], marked a significant shift towards leveraging word embeddings to capture semantic
relationships, improving the effectiveness of IR models. More recently, Transformer-based
models like BERT [11] have improved the field, providing rich representations that sup-
port more effective retrieval.

This chapter focuses more explaining the technical foundations necessary for understand-
ing the NTLM. We begin by examining core IR components and retrieval functions that
form the basis of modern search systems. The discussion then progresses through the
fundamentals of IR models, from traditional approaches to advanced language modeling
techniques, with particular attention to the Dirichlet language model and translation
language models. A large portion of this chapter focuses on neural approaches in IR,
specifically the evolution of vector representations for text. We present dense vector rep-
resentation methods, including the Skip-gram and Continuous Bag-of-Words (CBOW)
architectures, and analyze the input embedding mechanisms of transformer models to
improve retrieval and ranking effectiveness.

The chapter concludes with an overview of standard IR evaluation metrics, including
Mean Average Precision (MAP), Precision at 10 (P@10), and normalized Discounted Cu-
mulative Gain (nDCG), which provide the quantitative framework for assessing retrieval
effectiveness.

6

CHAPTER 2. BACKGROUND

2.1 IR Components and Retrieval Functions
The effectiveness of an IR system depends on several key components, including document
representation, query representation, and the retrieval function that assesses the relevance
of documents to the query [1]. This section explores these components, clarifying their
roles and how they contribute to the overall performance of IR systems.

Figure 2.1: IR System.

As shown in the figure the key components of an IR system are:

• Document Representation

• Query Representation

• Retrieval Function

Document Representation: Document representation is a foundational component
of IR systems. It involves transforming raw text documents into structured formats that
capture their essential features, enabling efficient processing and analysis. The first step
in this process is text processing, which includes tokenization, normalization (e.g., low-
ercasing, stemming), and stopword removal. These steps ensure that the text is clean,
consistent, and ready for further analysis. As shown in the conceptual model diagram
Figure 2.2, the Document Representation node results from transforming raw documents
through processes like indexing and embedding. These processes extract and encode
key features, such as term frequencies and semantic relationships, which are critical for
matching documents to user queries.

Effective document representation relies on indexing, which creates a structured index of
terms or features extracted from documents. A common method is the inverted index,
which maps terms to the documents containing them. For example, if a document con-
tains the word “information,” the inverted index stores entries for each term, pointing

7

CHAPTER 2. BACKGROUND

back to the document. This enables fast lookup during retrieval, making it a very im-
portant component of traditional IR systems.

In modern IR systems, embedding-based representations are widely used. Unlike tradi-
tional sparse representations (e.g., term-frequency vectors), embeddings represent doc-
uments in a dense vector space, capturing semantic relationships between words and
phrases. Techniques like Word2Vec, GloVe, and BERT generate dense vectors that encode
semantic information. For instance, the embeddings for “happy,” “joyful,” and “cheerful”
might reflect their close semantic similarity. These embeddings enable the system to
understand the underlying meaning of documents, improving retrieval effectivenss and
addressing challenges like vocabulary mismatch. Refer the key difference between the
indexing and embedding in Table 2.1.

Documents

Document representation Query

Retrieved documents

Information need

Indexing or Embedding Formulation

Retrieval Functions

R
elevance

feedback

Figure 2.2: Conceptual model for IR

Table 2.1: Comparison of Indexing and Embedding for Document Representation

Aspect Indexing Embedding

Representation Sparse (e.g., term-frequency vectors) Dense (e.g., neural embeddings)

Semantic Capture Limited to term-based matching Captures semantic relationships and context

Scalability Highly scalable for large datasets Computationally intensive but more effective

Use Case Keyword-based searches Semantic searches

8

CHAPTER 2. BACKGROUND

Query Representation: Query representation is an important component of an IR
system, as it captures the user’s search intent and ensures effective matching of queries
to relevant documents. While document representation focuses on structuring raw docu-
ments for efficient retrieval, query representation centers on understanding and encoding
the user’s information needs. This process mirrors document representation but must
also account for the variable nature of queries, which can range from simple keywords to
complex natural language questions.

Queries, like documents, must be represented in a format that the IR system can process.
The key challenge lies in aligning the query representation with the document repre-
sentation to facilitate effective relevance assessment. This alignment ensures that the
retrieval function can process both the query and documents consistently, improving the
accuracy of search results. For example, if documents are represented using embeddings
(e.g., Word2Vec or BERT), the query must also be encoded in the same embedding space
to enable meaningful comparison. This is particularly important for the NTLM, where
semantic alignment between queries and documents is essential for addressing challenges
like vocabulary mismatch.

Retrieval Function: The retrieval function is the core algorithmic component of an
IR system. It evaluates the relevance of documents to a given query and ranks them ac-
cordingly, ensuring that the most relevant documents are returned to the user. As shown
in the conceptual model diagram Figure 2.2, the Retrieval Functions node connects the
Document Representation and Query Representation nodes to the Retrieved Documents
node. This shows how the retrieval function acts as the intermediary that bridges queries
and documents by performing tasks such as representation alignment, relevance scoring,
and ranking. The retrieval function operates through the following key aspects: relevance
scoring, efficiency, and scalability. These aspects ensure that the system can effectively
match queries to documents while handling large-scale datasets and delivering results
with low latency.

Relevance Scoring is the primary task of a retrieval function. It involves computing a
relevance score for each document with respect to a query, which quantifies how well the
document matches the query. This score allows the system to rank documents in order of
relevance, ensuring that the most relevant results are presented to the user at the top of
the list. For example, in a search for “climate change impacts”, documents discussing the
effects of climate change on ecosystems would receive higher relevance scores than those
with only indirect mentions of the topic.

Efficiency and Scalability are important for retrieval functions, especially in real-time
search systems. They must be computationally efficient to handle large-scale datasets
and deliver results with low latency. Techniques like inverted indexing for term-based
retrieval and approximate nearest neighbor search for neural retrieval are implemented
to ensure that the system can process queries quickly, even when dealing with millions of
documents. This efficiency is essential for providing a smooth user experience in modern
IR systems.

9

CHAPTER 2. BACKGROUND

Different retrieval models use various types of retrieval functions. The IR models imple-
mented in this thesis are based on the following retrieval function:
Probabilistic Retrieval Models: These models rank documents based on the probability
that a document is relevant to the query. For example, BIM and BM25 models compute
relevance based on term occurrence probabilities [32], as shown in the equation below:

ρ(q, d) = P (R = 1|q, d) (2.1)

where ρ(q, d) represents the probability that document d is relevant to query q.

Language Models: These models build a probabilistic model of the language in a docu-
ment. The retrieval function measures the likelihood of generating the query from the
document’s language model:

ρ(q, d) = P (q|d) (2.2)

where ρ(q, d) represents the probability of generating the query q from the document
language model. Smoothing techniques, such as Dirichlet smoothing, are often used to
handle cases where certain terms in the query do not appear in the document.

Neural Retrieval Models: These models differ from traditional approaches by using dense
embeddings to represent queries and documents [14, 25].
Word2Vec: It is a shallow neural model that represents words as dense vectors in a
continuous vector space [22]. These embeddings capture semantic relationships between
words but are static and do not account for context. For example, the word “bank” will
have the same embedding regardless of whether it appears in the context of “river bank”
or “financial bank.” The retrieval function typically uses cosine similarity to measure the
similarity between query and document vectors.

Transformer Input Embeddings: These models use the learned token embedding layer
from pre-trained transformers like BERT as static word representations [11]. Unlike
the contextual representations from the full transformer, this approach uses only the
initial embedding table containing fixed vectors for each token in the vocabulary. These
embeddings are learned during pre-training and capture semantic relationships similar to
Word2Vec, but benefit from the transformer’s extensive training data and objectives. For
retrieval documents, and queries are represented by aggregating their token embeddings
(e.g., by averaging), and similarity is computed using cosine similarity:

Cosine Similarity =
q⃗ · d⃗

||q⃗|| × ||d⃗||
, (2.3)

where q⃗ and d⃗ are the vector representations of the query and document, respectively.

This section explains the fundamental principles and advancements in IR models. IR has
evolved from early traditional methods to current advanced neural approaches. Here, we
outline the theoretical foundations and significant innovations in word embedding models,
setting the framework for this thesis. Traditional IR models are also discussed, as they

10

CHAPTER 2. BACKGROUND

provide essential insights and act as benchmarks for the NTLM approaches. Although
many IR models exist, this thesis will focus on those most relevant to our goals.

2.2 Traditional IR models
This section introduces relevant traditional IR models and approaches that serve as foun-
dational baseline for the NTLM. These models provide the theoretical groundwork for
formulating the Dirichlet language model and the NTLM.

2.2.1 Language Modelling

The language modeling-based approach [28, 43] to IR ranks documents based on the
probability that a document d is relevant to a query q. This probability is expressed
as p(d|q). The key idea is to estimate the likelihood of generating the query q from the
document language model.

The probability of a document d given a query q can be expressed as:

p(d|q) = p(q|d) · p(d)∑
d̄∈D p(q|d̄) · p(d̄)

(2.4)

p(d|q) ∝ p(q|d) · p(d) (2.5)
p(d|q) = p(q|d), assuming p(d) is uniform (2.6)

Here, p(q|d) is the likelihood of generating the query q from the document d’s lan-
guage model, and p(d) is the prior probability of the document d. The denominator∑

d̄∈D p(q|d̄) ·p(d̄) is a normalization factor that ensures the probabilities sum to 1. Under
the assumption that p(d) is uniform (i.e., all documents are equally likely), the equation
simplifies to p(d|q) ∝ p(q|d). This means that the ranking of documents depends solely
on the likelihood p(q|d).

The query likelihood p(q|d) is computed as the product of the probabilities of each term
tq in the query q given the document d:

p(q|d) =
∏
tq∈q

p(tq|d) (2.7)

Here, p(tq|d) is the probability of the term tq in the document d, which can be estimated
using the maximum likelihood estimate (MLE):

p(tq|d) =
tf(tq, d)

|d|
(2.8)

where tf(tq, d) is the term frequency of tq in document d, and |d| is the length of the
document (i.e., the total number of terms in d).

11

CHAPTER 2. BACKGROUND

However, a major challenge in language modelling is handling terms that appear in the
query but not in the document. Without smoothing, such terms would have a prob-
ability of zero, leading to a zero likelihood for the entire query. So most approaches
to language modeling-based retrieval generally incorporate some form of smoothing [43],
which involves sampling terms from both the specific document d and the entire collection
D.
The two most commonly used smoothing techniques are:

1. Jelinek-Mercer Smoothing: This technique linearly interpolates between the document
language model and the collection language model:

p(tq|d) = λ
tf(tq, d)

|d|
+ (1− λ)

∑
d̄∈D tf(tq, d̄)∑

d̄∈D |d̄|
(2.9)

Where: λ is the interpolation parameter (typically between 0 and 1), which controls the
weight given to the document language model versus the collection language model. The
term tf(tq, d) represents the term frequency of tq in document d, and |d| is the length of
document d. Additionally,

∑
d̄∈D tf(tq, d̄) is the total frequency of term tq in the entire

collection D, and
∑

d̄∈D |d̄| is the total length of all documents in the collection D.

2. Dirichlet Prior Smoothing: It uses a Bayesian approach to smooth the document
language model with the collection language model. The probability of a term tq in
document d is given by:

p(tq|d) =
tf(tq, d) + µ

∑
d̄∈D tf(tq ,d̄)∑

d̄∈D |d̄|

|d|+ µ
(2.10)

Where: µ is the Dirichlet prior parameter, which controls the amount of smoothing
[36, 37]. The term tf(tq, d) represents the term frequency of tq in document d, and |d| is
the length of document d. Additionally,

∑
d̄∈D tf(tq, d̄) is the total frequency of term tq in

the entire collection D, and
∑

d̄∈D |d̄| is the total length of all documents in the collection
D.

Without smoothing, a term that is missing from a document would have a probability
of zero, which would highly affect retrieval scores. Smoothing reduces this issue by ad-
justing term probabilities based on collection-wide statistics. In Dirichlet smoothing, the
parameter µ acts as a weight that determines how much influence the collection frequency
should have. A higher values of µ leads to more reliance on the collection language model,
making ranking more robust for shorter documents. This ensures better retrieval effec-
tiveness by reducing the impact of data sparsity and improving score stability.

The Dirichlet smoothed model was chosen as the initial ranker in this study due to its
ability to provide a stable and effective first-stage ranking before applying the NTLM
reranking method.

2.2.2 Translation Language Model

The Translation Language Model, introduced by Berger and Lafferty [2], is an approach
that addresses some of the limitations of traditional language modeling in Information

12

CHAPTER 2. BACKGROUND

Retrieval (IR). This model redefines how query terms are generated from documents by
incorporating a “translation” process, which allows for more flexible and semantically rich
matching between queries and documents.
In the Translation Language Model, the query q is assumed to be generated through a
translation process from the document d. This process is mathematically expressed as:

p(tq|d) =
∑
td∈d

p(tq|td) · p(td|d) (2.11)

Where: tq is a term in the query q, and td is a term in the document d. The term p(tq|td)
represents the translation probability, which captures the likelihood that the query term
tq is a “translation” of the document term td. Additionally, p(td|d) is the probability of the
document term td in the document d, typically estimated using the maximum likelihood
estimate (MLE):

p(td|d) =
tf(td, d)

|d|
, (2.12)

where tf(td, d) is the term frequency of td in document d, and |d| is the length of the
document.

The translation process allows the model to capture relationships between query terms
and document terms that may not be identical but are semantically related. For example,
the query term “automobile” might be translated from the document term “car,”. This
flexibility helps bridge the vocabulary gap between queries and documents, improving
the effectiveness.

The key components of the Translation Language Model include:
Translation Probability p(tq|td): This component enables the model to bridge the
vocabulary gap by allowing non-identical but semantically related terms to contribute
to the relevance score. Berger and Lafferty proposed estimating p(tq|td) using query-
document paired data. For instance, if a document containing the term “car” is fre-
quently retrieved for queries containing the term “automobile,” the translation probabil-
ity p(automobile|car) would be high.

Document Term Probability p(td|d): This component represents the importance of
the document term td in the document d. It is typically estimated using the term fre-
quency tf(td, d) normalized by the document length |d|.

Summation Over Document Terms: The summation
∑

td∈d ensures that all terms in
the document contribute to the probability of generating the query term tq. This allows
the model to consider multiple document terms that might be related to the query term,
even if they are not exact matches.

13

CHAPTER 2. BACKGROUND

2.3 Neural Word Representation

The field of IR has evolved with the introduction of neural network models, which enhance
retrieval effectiveness and efficiency beyond traditional heuristic and statistical methods
[18, 24]. Neural IR models improve the understanding of complex queries and document
relationships through learned representations [13]. This section explains how these neural
methods influence document ranking, vector representation, and relevance estimation.

2.3.1 Vector Represenation

Vector representations are fundamental to both IR and machine learning [3, 38]. In
IR, terms are the basic units for indexing and retrieval. This makes effective vector
representations very important. These representations balance different levels of general-
ization—some treat each term as a unique entity, while others identify shared attributes
among terms. The way vector spaces are defined determines how similarity between
terms is measured, with some relying on fixed-size vocabularies and others avoiding such
constraints [25].

There are two primary types of vector representations used in IR:

1. Local (or One-Hot) Representations

2. Distributed Representations

Local representations: Each term is assigned a unique binary vector, where only one
position is “1” and the rest are “0.” This approach treats terms as distinct entities with
no inherent similarity. For example, in Figure 2.3, terms like “car,” “bicycle,” and “apple”
are represented as independent vectors, capturing no semantic relationships.

0 0 0 0 1 0 0 0 0 0car

0 1 0 0 0 0 0 0 0 0bicycle

0 0 0 0 0 0 0 1 0 0apple

Figure 2.3: Local (One-Hot) Vector Representations

Distributed Representations: Each term is assigned a vector that captures its at-
tributes, allowing terms to be compared based on shared features. For example, “car”
might be closer in vector space to “bicycle” than to “apple” because both are modes of
transportation. These vectors can be sparse or dense, with dense vectors (embeddings)
learned from data. Neural models often use embeddings, where a term’s meaning is cap-
tured by the combined activations of multiple neurons, providing a richer representation

14

CHAPTER 2. BACKGROUND

than traditional methods.

Figure 2.4 illustrates distributed representations, where terms like “car,” “bicycle,” and
“apple” are represented by vectors with multiple active dimensions, capturing semantic
similarities based on shared attributes. For example, “car” and “bicycle” share dimensions
like “has tire,” while “apple” is associated with attributes like “fruit” and “edible.”

0 1 0 0 1 0 0 0 0 0car

0 1 0 0 0 0 0 0 0 1bicycle

0 0 1 0 0 0 0 1 0 0apple

has tire fruitengineedible pedal

Figure 2.4: Distributed Vector Representations

D1

D2

D3

car

bicycle
apple

Figure 2.5: High Dimensional Vector Space Representation

Figure 2.5 shows how semantic relationships are captured in vector space. Terms like
“car” and “bicycle” are closer in the D1-D2 plane, reflecting shared attributes, while “ap-
ple” is positioned along D2-D3, indicating fewer shared attributes. This highlights how
similar terms are grouped based on common characteristics.

15

CHAPTER 2. BACKGROUND

2.3.2 Dense Vector Representations Model

In natural language processing, two closely related dense vector representation models
that are highly relevant to our thesis are the Skip-gram and Continuous Bag of Words
(CBOW) models [22]. These popular techniques are used to learn word embeddings,
which are dense vector representations of words. These embeddings capture the semantic
relationships between words based on their context within a corpus.

1. Skip-gram Model The Skip-gram model, introduced by Mikolov [22], aims to
predict the context words surrounding a given target word. For a given target word,
the model uses its embedding to predict the probability of each word within a fixed-size
context window around it. For example, in the sentence:

“Birds are flying over the field.”

If “flying” is the target word, the Skip-gram model will learn to predict “Birds,” “are,”
“over,” “the” and “field” as the context words. This approach is particularly effective in
capturing semantic similarities between words based on their usage in various contexts.
Figure 2.6 below illustrates this concept.

flying

Birds are over the field

Figure 2.6: Skip-gram Model: The target word “flying” predicts its surrounding context words.

2. Continuous Bag of Words (CBOW) Model The CBOW model, also proposed
by Mikolov [22] works in the reverse direction of Skip-gram. Instead of predicting context
words from a target word, CBOW predicts a target word given its surrounding context.
For a given context (i.e., a set of surrounding words), the model predicts the probability
of the target word being within that context. Using the same example sentence:

“Birds are flying over the field,”

The CBOW model would use the context words “Birds,” “are,” “over,” “the,” and “field” to
predict the target word “flying.” This model is particularly effective for tasks where under-
standing the surrounding context of a word is important. Figure (2.7) shows this concept.

16

CHAPTER 2. BACKGROUND

Birds are over the field

flying

Figure 2.7: Continuous Bag of Words Model: The context words predict the target word
“flying.”

2.4 Transformer Models
The Transformer is a deep learning model architecture that revolutionized sequence-to-
sequence tasks by replacing recurrent neural networks (RNNs) and convolutional neural
networks (CNNs) with an attention mechanism. This mechanism allows the model to
capture relationships between tokens in a sequence more effectively, making it highly ef-
ficient for tasks like machine translation, text generation, and information retrieval.

In this research, we focus on the initial part of the Transformer model—the input embed-
ding layer. This layer is responsible for converting textual tokens into continuous vector
representations that neural networks can process. These embeddings serve as learned
representations, capturing the semantic and syntactic properties of each token in the
input sequence. This process is particularly relevant to our work on the NTLM, which
leverages Transformer input embeddings to improve retrieval effectiveness.

Token embeddings represent the fundamental mechanism for converting textual tokens
into continuous vector representations that neural networks can process. In the Trans-
former architecture, these embeddings serve as learned representations that capture the
semantic and syntactic properties of each token in the input sequence. The token
embedding process begins with a learnable embedding matrix E ∈ R|V |×dmodel , where
|V |represents the vocabulary size and dmodel represents the embedding dimension. Each
row in this matrix corresponds to a unique token in the vocabulary, and the values in this
matrix are initialized randomly and then optimized during the training process through
back-propagation. When a token is processed, its corresponding embedding vector is
retrieved from this matrix through a simple lookup operation.

2.5 IR Evaluation
In this thesis, several standard metrics are used to evaluate the effectiveness of the re-
trieval models. Mean Average Precision (MAP) is used to assess the overall quality of
the retrieved results [27], and Precision at 10 (P@10) focuses on the accuracy of the top
10 results [26]. Together, these metrics provide a comprehensive evaluation of model
effectiveness.

Precision and recall Precision and recall both compute the fraction of relevant doc-
uments retrieved for a query q, but with respect to the total number of documents in

17

CHAPTER 2. BACKGROUND

the retrieved set Rq and the total number of relevant documents in the collection D,
respectively. Both metrics assume that the relevance labels are binary.

Precisionq =

∑
(i,d)∈Rq

relq(d)
|Rq|

(2.13)

Recallq =

∑
(i,d)∈Rq

relq(d)∑
d∈D relq(d)

(2.14)

Mean average precision (MAP) The average precision [44] for a ranked list of doc-
uments R is given by:

AvePq =

∑
(i,d)∈Rq

Precisionq,i × relq(d)∑
d∈D relq(d)

(2.15)

MAP =
AvePq

total No of Queries
(2.16)

where, Precisionq,i is the precision computed at rank i for the query q. The average
precision metric is generally used when relevance judgments are binary, although variants
using graded judgments have also been proposed [31]. The mean of the average precision
over all queries gives the MAP score for the whole set.

Mean reciprocal rank (MRR) Mean reciprocal rank [9] is also computed over binary
relevance judgments. It is given as the reciprocal rank of the first relevant document
averaged over all queries.

RRq = max
hi,di∈Rq

relq(d)
i

(2.17)

Normalized Discounted Cumulative Gain (nDCG) [15]. The Discounted Cumu-
lative Gain (DCG) is a measure that incorporates both the relevance and position of
documents in a ranked list. Unlike MAP, nDCG can handle graded relevance judgments
naturally. For a ranked list R, DCG is computed as:

DCGq =

|Rq |∑
i=1

2relq(di) − 1

log2(i+ 1)
(2.18)

where relq(di) is the relevance grade of document di for query q. To normalize DCG and
obtain scores between 0 and 1, we divide by the ideal DCG (IDCG), which is computed
by sorting documents by their relevance grades in descending order:

nDCGq =
DCGq

IDCGq

(2.19)

The final nDCG score for the system is computed by averaging over all queries.

18

Chapter 3

Experimental Setup

In this chapter, we provide an overview of the datasets used in this thesis for document
retrieval and ranking tasks. The datasets are collected from: BEIR [16], ir_datasets 1

[20]. A total of 10 different datasets were selected to evaluate and compare the generaliza-
tion ability of the retrieval models proposed in this work. The datasets encompass a wide
range of domains, including both broad topical datasets, such as Wikipedia, and more
specialized domains, like COVID-19 publications. Additionally, they cover various text
types (e.g., news articles, research papers, finance), with varying query and document
sizes.

The chosen datasets span a broad spectrum of sizes, from smaller collections (containing
as few as 3.6k documents) to large-scale datasets (containing up to 3.2 million docu-
ments). They also differ in terms of query and document lengths, with average query
lengths ranging from 3 to 13 words, and document lengths ranging from 11 to 292 words.
This diversity allows for a thorough evaluation of model effectiveness across different set-
tings, providing insights into the scalability and adaptability of retrieval models.

The datasets used in this thesis adhere to this experimental setup, ensuring the evaluation
of retrieval models. Below, we describe the specific datasets used for evaluation.

3.1 Datasets

The following datasets are used in this thesis for retrieval and ranking tasks:

Associated Press (AP) Dataset: The Associated Press (AP) dataset, provided by
the Linguistic Data Consortium (LDC), contains newswire articles from the Associated
Press, dating back to the late 1980s. Specifically, we use articles from the AP88-89 collec-
tion (TREC disks 1 and 2), along with topics from TREC 1, 2, and 3 ad-hoc collections
(topics 51–200). The dataset spans a wide array of topics, such as politics, business,
sports, and societal issues, making it well-suited for general-purpose document retrieval
research. Each document in the collection is uniquely identified and contains a body of
text, providing a rich resource for exploring news-oriented information retrieval tasks.

1https://ir-datasets.com/

19

CHAPTER 3. EXPERIMENTAL SETUP

Wall Street Journal (WSJ) Dataset: The Wall Street Journal (WSJ) dataset con-
sists of articles published in the Wall Street Journal during the late 1980s. It includes
news articles from the WSJ87-92 collection (TREC disk 1), along with topics from TREC
1, 2, and 3 ad-hoc collections (topics 51–200). The dataset provides comprehensive cov-
erage of business and financial matters, as well as a broad range of other topics such as
technology, world affairs, and government policy. Similar to the AP dataset, the WSJ
documents are structured with unique identifiers and text bodies, ensuring an organized
and standardized collection suitable for document retrieval and ranking tasks.

DOTGOV Dataset: The DOTGOV dataset consists of webpages crawled from the
“.gov” domain, specifically focusing on topics from the TREC 2002 (topics 551-600). The
dataset aims to support research in information retrieval, particularly for government-
related content. Judgments for relevance are binary, with documents classified as either
relevant or irrelevant to the corresponding topics. This dataset offers a valuable resource
for exploring document retrieval and ranking in the context of government websites.

Natural Questions (NQ) Dataset [19]: The Natural Questions (NQ) dataset is a
large-scale question-answering dataset comprising real, anonymized, aggregated queries
submitted to the Google search engine. In NQ, all relevance judgments are binary, with
documents judged as either relevant (grade 1) or non-relevant, making it suitable for
binary relevance evaluation in information retrieval tasks.

Finance Opinion Mining and Question Answering (FiQA) Dataset [21]: This
dataset supports research in understanding financial text by enabling aspect-based sen-
timent analysis and opinion-based question answering. It includes English texts from
diverse sources, such as microblogs, news, and reports, focusing on detecting target as-
pects and predicting sentiment scores (-1 to 1) or answering financial queries. Systems
can either rank relevant documents or generate direct answers, with relevance judged as
binary (relevant or not). This dataset enables in-depth exploration of domain-specific
challenges, offering a detailed view of sentiment and opinion mining in financial contexts.

Quora Dataset [35]: The Quora dataset consists of pairs of questions from the Quora
question-and-answer platform, with the task of determining whether the two questions
are duplicates, i.e., if they have the same meaning. Quora is a popular site where users
post questions and provide answers, and the best responses are up-voted. Judgments for
this dataset are binary, classified as either relevant or irrelevant.

SciFact Dataset [41]: SciFact introduces the task of scientific claim verification, where
the goal is to identify abstracts from the research literature that either support or refute
a given scientific claim, along with providing rationales for each decision. The SciFact
dataset contains 1.4K expert-written scientific claims paired with evidence-rich abstracts,
annotated with labels and rationales.

Nutrition Facts (NF) Dataset [5]: The NF corpus is a dataset designed for learning-
to-rank tasks within the medical domain. It includes thousands of full-text queries con-
nected to numerous research articles. The queries originate from health-related topics

20

CHAPTER 3. EXPERIMENTAL SETUP

written in plain English, sourced from the non-commercial website NutritionFacts.org.
Relevance assessments are categorized into three levels, derived from both direct and indi-
rect connections between the queries and PubMed research articles, providing a valuable
resource for evaluating medical information retrieval systems.

TREC-COVID Dataset [40]: is an IR dataset in the biomedical domain consisting
of questions about Coronavirus and scientific articles as document collection. We use
the question from the query set and the documents from the COVID-19 Open Research
Dataset. Relevance judgments in TREC-COVID are categorized into three grades: rele-
vant, partially relevant, and non-relevant. For evaluation purposes, we consider all three
relevance levels.

Webis-Touché 2020 Dataset [4]: Webis-Touché 2020 is an argument retrieval dataset
comprising arguments collected from debate websites. The queries are presented as di-
rect questions and relevance judgments are divided into three levels: relevant, partially
relevant, and non-relevant. For evaluation, all three relevance levels are considered.

MS MARCO-Document TREC 2020 DL Dataset [10]: The MS MARCO TREC
Deep Learning 2020 dataset is a large-scale information retrieval dataset designed to
support research on document and passage ranking using deep learning methods. The
dataset supports document ranking, enabling the development and evaluation of retrieval
models under a large training data regime. Relevance judgments are provided on a four-
point scale: perfectly relevant, highly relevant, relevant, and irrelevant, offering good
evaluation criteria for ranking models.

Table 3.1: Statistics and Characteristics of the Datasets

Dataset Domain Relevancy #Query #Corpus Avg Word Length
Query Document

AP News Binary 150 242K 5.2 285.1
WSJ Finance Binary 150 173K 5.2 283.5
DOTGOV Governmental Binary 50 1.24M 3.3 72.34
NQ Wikipedia Binary 3452 2.6M 9.16 78.88
FiQA Finance Binary 500 57.6K 10.77 132.32
Quora Quora Binary 300 522.9K 9.53 11.44
SciFact Scientific Binary 300 5.1k 12.37 213.63
NFCorpus Biomedical 3-level 324 3.63K 3.30 232.26
TREC-COVID Biomedical 3-level 50 171K 10.60 160.77
Webis-Touché-2020-v2 Mics 3-level 49 382K 6.55 292.37
MS MARCO-Document Document Retrieval 4-level 200 3.2M 5.8 234.1

3.2 Retrieval Setup
The retrieval setup for the NTLM experiment is designed to leverage advanced embedding
techniques and efficient retrieval models. The experiment uses the PyTerrier platform
for indexing, ranking, and evaluation. PyTerrier is chosen for its flexibility and efficiency
in handling large-scale retrieval tasks. Additionally, it integrates the smoothing param-
eter easily into the model and has futures to save the initial ranked result with their
corresponding documents to use for the reranking task.

21

CHAPTER 3. EXPERIMENTAL SETUP

Static word embeddings are used to enhance document and query representations. We
use the Word2Vec algorithm, implemented via the gensim library, to generate these em-
beddings. Word2Vec offers two architectures: Skip-gram and CBOW. Both architectures
are used to assess their impact on retrieval effectiveness.

We also extract input embeddings from pre-trained transformer models (e.g., mono-
BERT, GPT-2, RoBERTa) by accessing their token embedding layers. For each model,
we load the tokenizer and model architecture from Hugging Face, then retrieve the word
embeddings layer. These embeddings, which map tokens to high-dimensional vector rep-
resentations, are converted into NumPy arrays for efficient manipulation and stored in a
dictionary mapping tokens to their corresponding embeddings. This approach ensures
consistent access to pre-trained semantic representations, which are integrated into our
retrieval model.

Additionally, WordLlama leverages the token embedding layer of large language models
like LLaMA to extract dense vector representations of words and subwords. For our
implementation, we use the l3_supercat_1024.safetensors file, containing a 1024-
dimensional embedding matrix for 128,256 tokens, and the l3_supercat_tokenizer
_config.json file, which defines the tokenizer configuration. These files, sourced from
the WordLlama L3 Supercat repository on Hugging Face 2, enable rich semantic repre-
sentations of text. The embeddings are stored in an optimized safetensors format for
efficient access and integrated into a model to enhance retrieval effectiveness.

2https://huggingface.co/dleemiller/wordllama-l3-supercat/tree/main

22

Chapter 4

Methodology

In this chapter, we describe the methods used to implement the Dirichlet smoothed model
and the NTLM. The Dirichlet model serves as the initial ranker, representing a probabilis-
tic method, while the NTLM is implemented using two types of embeddings: Word2Vec
and input embeddings from transformer models. We will detail the process from data
preparation to the final implementation, highlighting how each model is structured and
integrated to assess its effectiveness in document retrieval and ranking.

4.1 Dirichlet Language Model

This study implemented the Dirichlet Smoothed Language Model as the initial ranker
probabilistic retrieval method. This model, grounded in language modeling principles,
estimates the p(w|d) by mixing the maximum likelihood estimation, pml(w|d), with the
collection background probability p(w|C). Dirichlet smoothing is applied to address un-
seen terms in documents, ensuring that the probability of observing a query term is never
zero, even when the term does not appear in a particular document, as we see in Equation
2.10

Building on the foundational work of Zhai and Lafferty [42] on Dirichlet smoothing lan-
guage models, we use PyTerrier1 to implement and evaluate the Dirichlet smoothing
language model across multiple datasets. PyTerrier provides a flexible and efficient frame-
work for indexing, retrieval, and evaluation, making it ideal for our experiments. After
preprocessing and indexing the datasets, we configured the Dirichlet Language Model
with the appropriate smoothing parameter µ, which plays an important role in balancing
document-specific term frequencies with collection-wide term probabilities.

The smoothing parameter µ was fine-tuned for each dataset to optimize retrieval effec-
tiveness. For example, the optimal values of µ were determined to be 600 for the AP88-89
collection and 900 for the WSJ87-92 collection. These values were chosen based on em-
pirical evaluation, ensuring that the model effectively addresses variations in document
length and term distributions. The retrieval process involved querying the indexed doc-
uments using the Dirichlet model, which computes relevance scores for each document
based on the smoothed probability estimates. The results were then ranked and returned
in descending order of relevance, providing a ranked list of documents for each query.

1https://pyterrier.readthedocs.io/en/latest/installation.html

23

https://pyterrier.readthedocs.io/en/latest/installation.html

CHAPTER 4. METHODOLOGY

This initial ranked list serves as the input for a subsequent reranking task using the
NTLM.

4.2 Static Word Embeddings Implementation
In this study, we use static word embeddings to enhance document and query repre-
sentation for the NTLM. The goal is to evaluate the effectiveness of static embeddings
generated from different datasets and models, focusing on their impact on retrieval and
ranking tasks.
We leverage the Word2Vec algorithm, implemented using the gensim library, to gener-
ate static word embeddings. Word2Vec provides two main architectures: Skip-gram and
CBOW. By using these two models, we aim to investigate how each affects the quality of
the embeddings and, in turn, their impact on retrieval effectiveness.

Table 4.1: Datasets and Model Parameters used during training to create Word2Vec model.

Dataset AP WSJ DOTGOV
Dataset Size: 0.72 GB 0.52 GB 19 GB
Number of documents: 243 k 173 k 1.25 M
Number of tokens: 69 M 49 M 903 M
Number of terms: 301 k 176 k 2.90 M
Embedding Dimension: 300 300 300
Window Size: 5 5 5
Min Word Frequency: 2 2 2
Negative Samples: 15 15 15
Epochs: 50 50 30

The Word2Vec models are trained on different datasets, each representing distinct tex-
tual domains. This allows us to assess how domain-specific training influences the em-
beddings and their use in various tasks. The datasets used for training include:AP88-89
and WSJ87-92 datasets. Each dataset is tokenized, preprocessed, and used to train both
the Skip-gram and CBOW models, yielding different sets of embeddings for comparison.
The training parameters, such as the context window size, embedding dimension, and
minimum word frequency, were fine-tuned based on preliminary experiments.

In addition to training custom word embeddings, we incorporate the widely used Google
News-vectors-negative300 embeddings from the NLPL repository 2. These embed-
dings were pre-trained on the Google News dataset, consisting of approximately 100
billion words. The model uses the Skip-gram architecture with 300-dimensional vectors,
capturing a vast range of word relationships from general news articles.
For domain-specific applications, we also use an Oil and Gas corpus embedding model,
adapted to industry-specific language. This model was trained using the CBOW ar-
chitecture, producing 400-dimensional embeddings. The CBOW model is known for its
efficiency in representing frequent co-occurrences, which is advantageous for capturing
terms and relationships unique to the oil and gas sector.

2http://vectors.nlpl.eu/repository/

24

CHAPTER 4. METHODOLOGY

Table 4.2: static word Embedding Models Taken from NLPL Repository

Corpus Model Vocabulary Size Dimensions Size

Google News 2013 Skip-gram 3,000,000 300 3.3 GB
Oil and Gas Corpus CBOW 285,055 400 450 MB

4.3 Input Embeddings from Transformers Model

In this research, we also leverage pre-trained transformer models to obtain rich word
representations. The process begins with accessing the word embeddings layer, which is
the first layer of these transformer architectures. This layer serves as an advanced lookup
table where each token in the model’s vocabulary is mapped to a high-dimensional vec-
tor representation. These vectors are not randomly initialized but have been carefully
optimized during the pre-training phase on large text corpora, enabling them to capture
semantic relationships between words.

To create these embeddings, we use a systematic extraction process from the word em-
beddings layer. Each token in the model’s pre-trained vocabulary has an associated
embedding vector within this layer, represented as a dense vector of floating-point values.
By extracting the weights from the embedding layer, we obtain an embedding matrix
where each row corresponds to the embedding of a unique token in the vocabulary. For
example, in BERT-base, this matrix has dimensions of 30,522 × 768, where 30,522 rep-
resents the vocabulary size and 768 is the embedding dimension. The entire matrix
encapsulates the model’s learned knowledge about word meanings and relationships.

The extraction process fully preserves these pre-trained representations, retaining the
semantic information learned during the model’s training phase. These embeddings are
then stored in a structured format, typically as memory-efficient numpy arrays, ensuring
fast access and retrieval during the cosine similarity computation.

Table 4.3: Input Embedding Dimensions and Vocabulary Sizes of Different Models

Model Embedding Dimension Vocabulary Size

BERT-base 768 30,522
GPT-2 768 50,257
RoBERTa-base 768 50,265
MonoBERT-large-msmarco 1024 30,522

In this study, we evaluate how different models with varying embedding dimensions influ-
ence retrieval and ranking. We use input embeddings from BERT-base, RoBERTa-base,
GPT-2, and MonoBERT (castorini/monobert-large-msmarco). MonoBERT is a vari-
ant of BERT, fine-tuned for passage ranking tasks such as MS MARCO documents. This
setup allows us to assess the impact of embedding size and model fine-tuning on ranking
performance. Based on these input embeddings, we show their impact on the ranking
task to understand how model selection influences retrieval effectiveness.

25

CHAPTER 4. METHODOLOGY

4.4 Word Translation Using Word Embeddings

Before first directly analyzing the results, it is important to understand how word transla-
tion is analyzed using different embedding models, as this defines how words are mapped
across languages in an embedding space. By examining word-to-word translations, we
can uncover semantic relationships and ensure that embeddings effectively capture lin-
guistic meaning and improve translation effectiveness.

This section outlines the methodology for implementing a word translation method
using various word embedding models, including Word2Vec, BERT, RoBERTa, and
MonoBERT. The core approach involves leveraging the semantic representations captured
by these embeddings to identify translation candidates for a given source word. While
the overall method is consistent across models, each embedding technique has unique
characteristics that influence its implementation and effectiveness. The methodology is
divided into the following components: (1) initialization of the models and extraction
of word embeddings, (2) computation of word similarities, (3) calculation of translation
probabilities, and (4) generation of translation candidates. A comparison of the tech-
niques used in each model is also provided.

To measure semantic similarity, cosine similarity is used across all models. Values closer
to 1 indicate higher similarity. For a given source word, its embedding is obtained by
tokenizing the word and extracting the embedding of the first token, ensuring consis-
tency across different tokenization methods. While Word2Vec does not require tokeniza-
tion, BERT and MonoBERT use WordPiece tokenization, GPT2 uses byte pair encoding
(BPE), and RoBERTa uses byte-level BPE tokenization.

The translation probability pt(w|u) of a target word w given a source word u is calculated
using a softmax function with temperature scaling. This involves three steps: computing
the cosine similarity between the source and target embeddings, scaling the similarity by
a temperature parameter (typically around 0.9), and normalizing the probabilities using
the top-k nearest neighbors. Finally, translation candidates are generated by identifying
the top-k nearest neighbors, calculating their probabilities, and retaining the top similar
words for the given source word based on their computed probability.

The diagram 4.1 shows how different words in a document can translate into a given
query term with varying probabilities. In the diagram, the nodes represent words, and
the edges denote translation probabilities. For example, if “Forest” is a query term, the
surrounding words such as “Jungle,” “Rainforest,” “Woodland,” and “Tree” represent doc-
ument terms that might contribute to generating this query. Each connection in the
diagram is weighted by a translation probability pt(w|u), where u is a document term
and w is the query term.

Words with a stronger semantic relationship, such as “Jungle” and “Rainforest,” typically
have higher translation probabilities, as they are more likely to be associated with the
query term “Forest.” In contrast, less directly related terms like “Tree” and “Woodland”
may have lower probabilities, reflecting their weaker semantic connection to “Forest.”
The self-loop on “Forest” indicates that exact matches are also considered, reinforcing the
importance of direct term occurrences. This self-translation probability p(Forest|Forest)

26

CHAPTER 4. METHODOLOGY

accounts for cases where the query term is generated directly from itself, independent of
other document terms. In most cases, this probability is higher, as exact matches are
typically more relevant than translations from other terms.

Jungle
p(Jungle|d)

Rainforest
p(Rainforest|d)

Woodland
p(Woodland|d)

Tree
p(Tree|d)

Forest
p(Forest|d)

p(Forest|Jungle)

p(F
ore

st|R
ain

fore
st)

p(F
ore

st|W
ood

lan
d)

p(Forest|Tree)

p(Forest|Forest)
self-translation

Figure 4.1: Probabilistic translation model showing how document terms (e.g., “Jungle,” “Rain-
forest”) contribute to generating a query term (“Forest”). Edges represent translation probabili-
ties pt(w|u), and the self-loop denotes the self-translation probability p(Forest|Forest).

4.5 Neural Translation Language Model (NTLM)

The NTLM method from previous work by Zuccon [45] builds on the foundational work
of Berger and Lafferty [2], who introduced a method to estimate P (w|d) by framing in-
formation retrieval as a form of machine translation. In their approach, the likelihood
of generating a query depends on translating document terms into corresponding query
terms. The NTLM extends this idea by incorporating advanced techniques such as word
embeddings and cosine similarity to improve the estimation of translation probabilities.
While both approaches treat query generation as a translation process, the NTLM lever-
ages word embedding to improve the estimation of translation probabilities Pt(w|u) as
shown in Equation 2.11.

As Karimzadehgan and Zhai [17] noted, this translation probability allows for the incor-
poration of semantic relationships between terms, even for terms that do not explicitly
co-occur in the document, thus providing a form of semantic smoothing for P (w|d).
A key challenge in translation language models is accurately estimating Pt(w|u), the
probability of translating u into w. To address this, word embeddings can be used, using
cosine similarity as a proxy for P (u|w):

Pcos(u|w) =
cos(u,w)∑

u′∈V cos(u′, w)
, (4.1)

where cos(u,w) is the cosine similarity between the vector representations of the word

27

CHAPTER 4. METHODOLOGY

u and the query term W , and the denominator normalizes this value into a probability
distribution over all possible translations.

4.6 Ranking Documents using the NTLM

In the language modeling approach, documents are ranked by computing the log-likelihood
of the query given the document [43]. In this study, we used the following equation as
the foundational formula for document ranking using the NTLM:
The log-likelihood Equation 4.2 below represents the probability of a query given a doc-
ument. This measure is central to document ranking by assessing which documents are
more likely to generate a specific query. Documents with higher log-likelihood values for
a query are ranked higher, as they are considered more relevant to the query.

log p(q|d) =
∑

i:c(qi;d)>0

log

(
p(qi|d)

αd · p(qi|C)

)
+ n logαd +

n∑
i=1

logP (qi|C) (4.2)

In this equation, ps(qi|d) is the smoothed probability of query term qi given document d,
αd is the document-dependent smoothing parameter, p(qi|C) is the probability of query
term qi given the collection C, and n represents the number of query terms (or the length
of the query). The last term in the equation is document-independent and can be ignored
for ranking purposes.

Translation Model for Query Likelihood: The query generation process is modeled as a
translation from document terms to query terms. The translation probability pt(w|d) is
calculated as:

pt(w|d) =
∑
u∈d

pt(w|u)p(u|d) (4.3)

In this equation, pt(w|u) represents the probability of translating a candidate document
term u into a target query term w and can be expressed as:

pt(w | u) = cos(w, u)∑
u′∈V cos(w, u′)

(4.4)

where cos(u,w) is the cosine similarity between the vector representations of words w
and u, V is the vocabulary. The denominator normalizes the cosine values to produce a
valid probability distribution over all possible translations.
p(u|d) is the probability of term u occurring in document d. The probability p(u|d) is
given by:

p(u|d) = tf(u, d)∑
v∈d tf(v, d)

(4.5)

where tf(u, d) is the term frequency of u in document d and
∑

v∈d tf(v, d) is the total
number of terms in document d.
Similarly, the probability of a query term qi occurring in the collection C is calculated as:

p(qi|C) =
cf(qi, C)∑
v∈C cf(v, C)

(4.6)

28

CHAPTER 4. METHODOLOGY

where cf(qi, C) is the collection frequency of query term qi in the collection C, and∑
v∈C cf(v, C) is the total number of terms in the collection.

Most smoothing methods make use of two distributions, a model ps(w | d) used for “seen”
words that occur in the document, and a model pu(w | d) for “unseen” words that do not.
The probability of a query q can be written in terms Of these models as follows, where
c(w; d) denotes the count of word w in d:

log p(q|d) =
∑
i

log p(qi|d). (4.7)

log p(q|d) =
∑

i:c(qi;d)>0

log ps(qi|d) +
∑

i:c(qi;d)=0

log pu(qi|d). (4.8)

log p(q|d) =
∑

i:c(qi;d)>0

log

(
ps(qi|d)
pu(qi|d)

)
+
∑
i

log pu(qi|d). (4.9)

The probability of an unseen word is typically taken as being proportional to the general
frequency of the word, e.g., as computed using the document collection. So, let us assume
that pu(qi|d) = αdp(qi|C), where αd is a document-dependent constant and p(qi|C) is the
collection language model. Now we have:

log p(q|d) =
∑

i:c(qi;d)>0

log

(
ps(qi|d)
αdp(qi|C)

)
+ n logαd +

∑
i

log p(qi|C). (4.10)

where n is the length of the query. Note that the last term on the right-hand side is
independent of the document d, and thus can be ignored in ranking.
Combining the translation model and collection probabilities, the final log-likelihood for
document ranking is:

log p(q|d) =
∑

i:c(qi;d)>0

log

(∑
u∈d pt(qi|u)p(u|d)

αdp(qi|C)

)
+ n logαd. (4.11)

4.7 WordLlama for Reranking

In addition to Word2Vec and input embedding from transformer models, we incorpo-
rate the WordLlama model proposed by Miller [23]. WordLlama recycles components
from large language models (LLMs) to create efficient and compact word representa-
tions, similar to Word2Vec or GloVe. By extracting the token embedding codebook
from state-of-the-art LLMs (e.g., LLaMA 2, LLaMA 3 70B), WordLlama trains a small,
context-less model within a general-purpose embedding framework. This approach re-
sults in a lightweight model that performs well on tasks such as text similarity, ranking,
and fuzzy deduplication. Despite its compact size—e.g., a 16MB default model with 256
dimensions—it provides a highly efficient alternative to larger models like Word2Vec.

Large language models like LLaMA or BERT have extensive token embedding matrices
due to their large vocabularies. To create efficient word representations, WordLlama bor-
rows the embedding matrix (codebook) from these large models by extracting the token
embeddings layer. The process is outlined as follows:

29

CHAPTER 4. METHODOLOGY

Token Embedding Layer: Large LLMs have a dedicated layer usually the first layer in
the model where each token in the vocabulary is assigned a unique embedding vector.
This layer is trained to capture the meaning of each token in the context of the model’s
training data.

Extracting Embeddings: WordLlama’s method accesses this token embedding layer to
extract the full matrix. This matrix can be saved in a format such as safetensors for
optimized storage. For example, in LLaMA, this matrix may be found in the model’s
first safetensors file, e.g., l2_supercat_256.safetensors.

Saving the Codebook: Once extracted, WordLlama can use this codebook in a lighter
model. In some cases, the codebook embeddings from multiple models (like l2_supercat
.safetensors and l3_supercat.safetensors) are concatenated to improve diversity
and generalization, making the embeddings useful across a variety of tasks. In our imple-
mentation, We use the best model suggested, which is l3_supercat_1024.safetensors
with around 128256 vocabulary words and 1024 dimensions.

We propose that embeddings from WordLlama have the potential to enhance the NTLM
effectiveness. This proposition is based on the idea that WordLlama’s lightweight yet
high-quality embeddings, which draw on LLaMA token representations, could serve as
effective word-level features for the NTLM. If WordLlama’s embeddings capture semantic
relationships more efficiently, as suggested by its success on Massive Text Embedding
Benchmark MTEB3.

3https://github.com/dleemiller/WordLlama?tab=readme-ov-file#quick-start

30

Chapter 5

Experimental Results

5.1 Comparative Analysis of the NTLM
The Dirichlet Language Model (DLM) serves as an initial ranker model, providing the
initial rankings for the experiments. This probabilistic model addresses the challenge
of term sparsity in document retrieval by using Dirichlet smoothing, which balances
the influence of document-specific term frequencies and collection-wide statistics. The
smoothing parameter µ is key in this balancing act: when µ is small, the model relies
more on the frequency of terms within each document, while larger µ values shift the
focus toward the overall collection statistics.

To create a strong initial ranker, we evaluated the Dirichlet model’s effectiveness across
multiple test collections, with a primary focus on optimizing the smoothing parameter µ
to maximize retrieval effectiveness. Specifically, we tuned µ and observed its impact on
MAP and nDCG scores for the top 100 documents. For datasets with binary relevance
judgments, we used MAP, while nDCG was applied for datasets with graded relevance
judgments, such as TREC-COVID, NFCorpus, and Webis-Touché2020-v2.

When ranking documents, the model aims to assess the likelihood that terms from a query
will appear in a given document. However, relying only on term frequencies within each
document can cause issues. If a term is frequent in a document, it may indicate relevance,
but if the document is short or lacks a particular query term, this reliance could lead to a
zero probability for relevant but unmatched documents. To mitigate this, collection-wide
statistics provide a smoothing effect, ensuring that even terms absent from a document
have a small, non-zero probability of being relevant.
The µ parameter in the Dirichlet model adjusts the balance between document-specific
term frequencies and collection-wide statistics. With a high µ, the model places more
weight on collection-wide term frequencies, which is useful for capturing broader context.
With a low µ, the model depends more heavily on document-specific term frequencies,
focusing more on the terms that actually appear within each document.

31

CHAPTER 5. EXPERIMENTAL RESULTS

Figure 5.1, 5.2, 5.3 below shows the relationship between various µ values and MAP
scores across different datasets. The plot shows MAP scores obtained at different µ val-
ues, ranging from 0 to 2000 in increments of 300. As shown, MAP increases quickly as
µ moves from 0 to 300. Beyond this range, MAP remains steady for almost all datasets,
except for DOTGOV, Quora, FiQA, and TREC-Covid datasets, it gradually decreases
as µ continues to increase beyond 300. Our analysis indicates that the model performs
optimally within a µ different range between 300-900 for datasets. Refer to Table 5.1
below for a detailed comparison.

In particular, the MAP scores are very low when µ = 0. In this scenario, the Dirichlet
Language Model behaves like a maximum likelihood estimate (MLE), relying exclusively
on document-specific term frequencies. which proves problematic given our average query
length of 4-10 words as shown in Table 3.1. Without smoothing, any document lacking
one or more query terms is assigned a zero probability, regardless of their potential rele-
vance. This leads to significant limitations in the retrieval process. Relevant documents
lacking exact query terms are completely excluded from the results, and the model fails
to recognize related terms or broader context. These constraints explain the consistently
low MAP scores observed at µ = 0 across all datasets. This highlights the importance of
appropriate smoothing for effective retrieval.

Figure 5.1: Mean Average Precision (MAP) scores for the top 100 documents at various µ
values across AP, WSJ, and DOTGOV datasets.

32

CHAPTER 5. EXPERIMENTAL RESULTS

Figure 5.2: Mean Average Precision (MAP) scores for the top 100 documents at various µ
values across MS-MARCO, Quora, Scifact, and FiQA datasets.

Figure 5.3: ndcg@100 scores for the top 100 documents at various µ values across NF-Corpus,
TREC-Covid, and Webis-touch2020 datasets.

33

CHAPTER 5. EXPERIMENTAL RESULTS

Table 5.1: Optimal µ values for maximizing MAP@100 and nDCG@100 in the Dirichlet
Smoothed Model across different datasets. This table presents the best-performing µ parameter
settings that achieve the highest retrieval effectiveness for each dataset.

Dataset µ Parameter Max MAP@100 Max nDCG@100

AP 600 0.12
WSJ 900 0.20
DOTGOV 300 0.17
NQ 300 0.19
MS MARCO 600 0.35
FiQA 300 0.19
Quora 300 0.60
SciFact 300 0.60
NFCorpus 300 - 0.23
TREC-COVID 300 - 0.27
webis-touche2020-v2 900 - 0.49

5.2 Results and Analysis of NTLM Retrieval
In information retrieval, particularly with language models, the goal is to accurately
estimate the probability of a query given a document, p(q|d). This probability depends on
both document-specific term probabilities and collection-wide term frequencies. As shown
in Eq.(4.10), the alpha parameter (αd) balances these components, ensuring effective
handling of both “seen” and “unseen” words. In the NTLM model’s log-likelihood equation
Eq.(4.11), αd adjusts the influence of the collection language model p(qi|C) relative to
document-specific term probabilities. Fine-tuning αd is important because it balances
specificity and generality: a higher αd emphasizes document-specific terms, while a lower
αd leverages collection-wide frequencies. It also smooths probabilities for unseen words
and normalizes document length, preventing bias towards longer or shorter documents.
This ensures optimal retrieval effectiveness adapted to each dataset’s characteristics.

Figure 5.4: NTLM Mean Average Precision (MAP) scores for the top 100 documents at various
α values across AP, WSJ, DOTGOV datasets.

34

CHAPTER 5. EXPERIMENTAL RESULTS

Figure 5.5: NTLM Mean Average Precision (MAP) scores for the top 100 documents at various
α values across SciFact, MSMARCO, Quara and FiQA datasets.

Figure 5.6: NTLM nDCG scores for the top 100 documents at various α values across TREC-
Covid-19, Webis-Touche-2020-V2, NFCorpus datasets.

The experimental results, as illustrated in the plot graphs Figure 5.4, 5.5, 5.6 and sum-
marized in Table 5.2, reveal insights about the effectiveness of the NTLM model across
various datasets. The optimal α values vary considerably, indicating that the balance be-
tween document-specific and collection-wide term probabilities must be tailored to each
dataset. For instance, datasets like Quora, SciFact, and webis-touche2020-v2 achieve
their best effectiveness at α = 1.0, suggesting that these datasets benefit from a stronger
reliance on document-specific term probabilities. In contrast, datasets such as AP and
DOTGOV perform optimally at α = 0.4, highlighting the need for a more balanced
approach. The MS MARCO dataset achieves a MAP@100 of 0.272 at α = 0.6, demon-
strating the importance of moderate parameter tuning for large-scale datasets.

These variations in precision highlight the importance of fine-tuning α to optimize re-
trieval effectiveness based on the unique characteristics of each dataset. The analysis,
supported by the plot graphs and summarized table, emphasizes the role of the α param-
eter in achieving optimal retrieval effectiveness across diverse datasets.

35

CHAPTER 5. EXPERIMENTAL RESULTS

Table 5.2: Optimal α Parameter and Max MAP@100 and nDCG@100 using the NTLM model
for Different Datasets

Dataset α Parameter Max MAP@100 Max nDCG@100

AP 0.4 0.100
WSJ 0.8 0.162
DOTGOV 0.4 0.132
MS MARCO 0.6 0.272
FiQA 1.0 0.066
Quora 1.0 0.377
SciFact 1.0 0.40
NFCorpus 0.8 - 0.196
TREC-COVID 1.0 - 0.113
webis-touche2020-v2 1.0 - 0.374

5.3 Comparison of the NTLM with Previous Related
Works

In this section, we compare the effectiveness of the NTLM with the results reported
in previous work by Zuccon [45]. The comparison is based on MAP and P@10 scores
across three datasets: AP88-89, WSJ87-92, and DOTGOV for the top 1000 documents.
Both works use the Dirichlet smoothed model as an initial ranker and we use the same
parameters for a fair comparison.
Table 5.3 summarizes the results from the previous work and our current implementation.
The MAP and P@10 scores are calculated for the top 1000 documents.

Table 5.3: Comparison of MAP and P@10 scores for top 1000 documents between previous
work and our results. Bold values indicate the highest scores achieved for each metric (MAP or
P@10) across models for a given dataset.

Method AP88-89 (µ = 1, 000) WSJ87-92 (µ = 1, 500) DOTGOV (µ = 500)
MAP P@10 MAP P@10 MAP P@10

Previous Work
DirichletLM 0.2269 0.3960 0.2171 0.4080 0.1873 0.2460
NTLM-skipgram 0.2427 0.4100 0.2266 0.4240 0.1932 0.2500
NTLM-cbow 0.2418 0.4193 0.2262 0.4227 0.1916 0.2480
Our Results
DirichletLM 0.1840 0.3060 0.2731 0.4481 0.1943 0.2560
NTLM-skipgram 0.1000 0.1712 0.1296 0.2480 0.0828 0.1200
NTLM-cbow 0.1081 0.1783 0.1320 0.2595 0.0876 0.1380
NTLM-Wordllama 0.0668 0.0713 0.0892 0.1275 0.0516 0.0610

DirichletLM Effectiveness: Our implementation of the DirichletLM shows mixed results
compared to the previous work. On the AP88-89 dataset, our MAP score (18.40) is lower
than the previous result (22.69), indicating a slight drop in effectiveness. However, on
the WSJ87-92 dataset, our MAP score (27.31) is higher than the previous result (21.71),
suggesting an improvement. On the DOTGOV dataset, the effectiveness is comparable,
with our MAP score (19.43) slightly higher than the previous result (18.73).

36

CHAPTER 5. EXPERIMENTAL RESULTS

NTLM-skipgram Effectiveness: Our NTLM-skipgram model has a lower effectiveness re-
sult compared to the previous work across all datasets. On the AP88-89 dataset, our
MAP score (10.00) is statistically lower than the previous result (24.27). Similarly, on
the WSJ87-92 dataset, our MAP score (12.86) is much lower than the previous result
(22.66). The same trend is observed on the DOTGOV dataset, where our MAP score
(11.32) is lower than the previous result (19.32).

NTLM-cbow Effectiveness: Similar to the NTLM-skipgram model, our NTLM-cbow
model also underperforms compared to the previous work. On the AP88-89 dataset,
our MAP score (10.18) is lower than the previous result (24.18). On the WSJ87-92
dataset, our MAP score (13.52) is lower than the previous result (22.62). On the DOT-
GOV dataset, our MAP score (13.16) is lower than the previous result (19.16).

The lower effectiveness of our NTLM method (skipgram and cbow) compared to the
previous work could be attributed to subtle differences in the model architecture or im-
plementation. For example, variations in how embeddings are initialized, updated, or
normalized might lead to discrepancies in effectiveness. Additionally, the previous work
may have used a different codebase which could introduce differences in optimization
algorithms, numerical precision, or other implementation-specific details. These factors,
even if minor, can impact the final results, explaining the observed effectiveness gap.

5.4 NTLM Evaluation Result

The evaluation results as shown in Table 5.4 demonstrates the effectiveness of the Dirichlet-
smoothed language model and the NTLM using the following embedding Word2Vec,
monoBERT, Roberta, GPT2, and WordLlama method across multiple datasets. The
initial ranked Dirichlet model result shows better effectiveness in datasets like WSJ,
DOTGOV, fiqa, msmarco-trec-dl-2020, scifact, nfcorpus, and webis-touche2020. For ex-
ample, in webis-touche2020, Dirichlet model scores a MAP of 0.244, a P@10 of 0.406 and
in scifact, it scores a MAP of 0.581 and nDCG@10 of 0.621.

Among the NTLM, monoBERT input embedding shows better effectiveness in some
datasets, such as DOTGOV, where it achieves the highest P@10 (0.230) and nDCG
@100 (0.314). But, it scores low effectiveness in fiqa, with a MAP of only 0.066, com-
pared to Dirichlet’s 0.167 and WordLlama’s 0.160. The NTLM using the input embedding
from transformer models like Roberta and GPT2 shows mixed results but still lower than
the Dirichlet smoothed model and the NTLM when we use the monoBERT embedding.
The NTLM using GPT2 input embedding was effective well in quora (MAP: 0.448), the
NTLM using Roberta input embedding struggles in webis-touche2020, achieving the low-
est MAP (0.070) and nDCG@10 (0.100).

Despite its strength in word translation, the Google New word2vec model was not as much
as effective as the Dirichlet, the NTLM with monoBERT embedding, and Wordllama
method. For instance, in fiqa, Word2Vec achieves a MAP of 0.096, much lower than
the Dirichlet model and the WordLlama method. Compared with the other NTLM it

37

CHAPTER 5. EXPERIMENTAL RESULTS

scores better effectiveness in webis-touche2020 MAP of 0.184. In contrast, the WordLlama
method shows a good and competitive effectiveness result in the AP, quora, and trec-covid
datasets. In quora, WordLlama method achieves a MAP of 0.705 and an nDCG@10 of
0.751, more effective than the Dirichlet model (MAP: 0.469, nDCG@10: 0.508). Similarly,
in trec-covid, it achieves the highest P@10 (0.624) and nDCG@10 (0.588). Refer Table
5.4 for a detailed and complete analysis.

Table 5.4: Effectiveness Dirichlet smoothed and NTLM model across different datasets for Top
100 Documents. Bold values indicate the highest scores achieved for each metric across different
models for a given dataset. Note that the word2vec used in this table is the Google News model

Dataset Model MAP MAP@10 P@10 P@100 nDCG@10 nDCG@100

AP

Dirichlet 0.121 0.043 0.307 0.204 0.319 0.329
AP-Skipgram 0.099 0.028 0.238 0.203 0.243 0.305
AP-CBOW 0.100 0.029 0.246 0.203 0.250 0.306
word2vec 0.087 0.021 0.195 0.203 0.199 0.291
monoBERT 0.100 0.029 0.241 0.201 0.251 0.305
Roberta 0.072 0.013 0.157 0.203 0.157 0.269
GPT2 0.080 0.014 0.185 0.203 0.181 0.281
wordllama 0.127 0.048 0.316 0.205 0.340 0.340

WSJ

Dirichlet 0.202 0.072 0.449 0.268 0.485 0.434
WSJ-Skipgram 0.154 0.038 0.355 0.269 0.373 0.391
WSJ-CBOW 0.154 0.038 0.356 0.269 0.373 0.391
word2vec 0.143 0.028 0.317 0.269 0.321 0.375
monoBERT 0.162 0.047 0.363 0.269 0.379 0.396
Roberta 0.134 0.027 0.284 0.269 0.285 0.367
GPT2 0.145 0.033 0.341 0.269 0.339 0.380
wordllama 0.186 0.060 0.464 0.268 0.489 0.425

DOTGOV

Dirichlet 0.133 0.086 0.196 0.085 0.250 0.290
DOTGOV-Skipgram 0.103 0.047 0.152 0.108 0.177 0.288
DOTGOV-CBOW 0.105 0.049 0.156 0.108 0.182 0.290
word2vec 0.091 0.045 0.174 0.094 0.201 0.266
monoBERT 0.132 0.075 0.230 0.108 0.255 0.314
Roberta 0.078 0.021 0.144 0.109 0.149 0.254
GPT2 0.083 0.023 0.154 0.109 0.155 0.261
wordllama 0.108 0.059 0.202 0.083 0.236 0.275

fiqa

Dirichlet 0.167 0.156 0.050 0.010 0.197 0.251
word2vec 0.096 0.082 0.029 0.011 0.110 0.193
monoBERT 0.066 0.051 0.023 0.011 0.074 0.164
Roberta 0.058 0.044 0.020 0.011 0.063 0.154
GPT2 0.104 0.090 0.035 0.011 0.125 0.202
wordllama 0.160 0.152 0.056 0.010 0.204 0.253

quora

Dirichlet 0.469 0.447 0.113 0.020 0.508 0.574
word2vec 0.348 0.320 0.098 0.020 0.394 0.486
monoBERT 0.377 0.352 0.096 0.020 0.425 0.511
Roberta 0.171 0.140 0.062 0.020 0.199 0.334
GPT2 0.448 0.423 0.115 0.020 0.501 0.572
wordllama 0.705 0.689 0.156 0.020 0.751 0.769

msmarco-trec-dl-2020

Dirichlet 0.338 0.177 0.520 0.190 0.483 0.544
word2vec 0.201 0.071 0.322 0.192 0.249 0.421
monoBERT 0.272 0.138 0.382 0.190 0.367 0.496

Continued on next page

38

CHAPTER 5. EXPERIMENTAL RESULTS

Table 5.4 – Continued from previous page

Dataset Model MAP MAP@10 P@10 P@100 nDCG@10 nDCG@100

Roberta 0.223 0.090 0.364 0.190 0.314 0.444
GPT2 0.248 0.101 0.404 0.190 0.359 0.471
wordllama 0.289 0.146 0.487 0.182 0.454 0.511

scifact

Dirichlet 0.581 0.574 0.082 0.010 0.621 0.650
word2vec 0.331 0.316 0.053 0.010 0.359 0.441
monoBERT 0.400 0.387 0.063 0.010 0.436 0.500
Roberta 0.288 0.270 0.047 0.010 0.312 0.407
GPT2 0.343 0.325 0.055 0.010 0.371 0.455
wordllama 0.498 0.488 0.076 0.010 0.541 0.585

trec-covid

Dirichlet 0.033 0.006 0.328 0.275 0.297 0.249
word2vec 0.037 0.006 0.428 0.309 0.372 0.284
monoBERT 0.039 0.007 0.460 0.309 0.411 0.291
Roberta 0.036 0.005 0.342 0.309 0.289 0.271
GPT2 0.037 0.006 0.342 0.309 0.303 0.274
wordllama 0.044 0.013 0.624 0.265 0.588 0.290

nfcorpus

Dirichlet 0.119 0.092 0.230 0.063 0.290 0.249
word2vec 0.061 0.037 0.088 0.063 0.104 0.169
monoBERT 0.094 0.067 0.184 0.063 0.225 0.219
Roberta 0.087 0.063 0.154 0.063 0.189 0.204
GPT2 0.091 0.065 0.164 0.063 0.203 0.211
wordllama 0.111 0.085 0.223 0.062 0.274 0.237

webis-touche2020-V2

Dirichlet 0.244 0.185 0.406 0.088 0.451 0.485
word2vec 0.184 0.119 0.320 0.089 0.335 0.428
monoBERT 0.132 0.074 0.222 0.089 0.242 0.374
Roberta 0.070 0.022 0.102 0.089 0.100 0.292
GPT2 0.150 0.083 0.241 0.089 0.252 0.389
wordllama 0.181 0.113 0.273 0.087 0.308 0.418

5.5 Estimation of the Translation Probabilities

A key component of the translation language model is learning the word-to-word trans-
lation probability, pt(w|u), and it has a high impact on the overall effectiveness of the
model. So, it is necessary to assess the effectiveness of all models. To achieve this, we use
different types of input embeddings from transformer models and word embeddings to
estimate translation probabilities. We compute the cosine similarity between the vector
representations of the target word w and the candidate word u. These similarities are
then normalized to create a probability distribution over all possible translations. Un-
derstanding the impact of word-to-word translation using different embeddings is very
important, as it forms the core of the translation language model equation. This process
captures the semantic relationship between query and document words, potentially im-
pacting the effectiveness of the NTLM.

In the analysis, we estimated the translation probabilities for different words across dif-
ferent embedding models. As shown in Table 5.5, nearly all models demonstrated good
word translation for very common words, assigning a high probability to self-translation
pt(w|w), which is generally ranked higher among possible translations. A comparative
review of the GPT-2 and CBOW models reveals that they struggle to assign the self-
translation target word to the higher rank. In contrast, the Skip-Gram, BERT, Mono

39

CHAPTER 5. EXPERIMENTAL RESULTS

Table 5.5: Comparison of word translations, along with translation probabilities, for Common
words across different Models

skipgram (Google News 2013) cbow (Oil and Gas Corpus) BERT base
w_1 = forest w_2 = visitor w_1 = forest w_2 = visitor w_1 = forest w_2 = visitor

u p(w|u) u p(w|u) u p(w|u) u p(w|u) u p(w|u) u p(w|u)
forests 0.5017 visitors 0.3457 woodland 0.1876 tourist 0.2674 forest 0.1801 visitor 0.1677
forested 0.1045 tourist 0.1443 rainforest 0.1653 people 0.1479 forests 0.1125 visitors 0.1195

forestland 0.0820 Visitor 0.1345 deciduous_forest 0.1503 landowner 0.1286 woodland 0.0949 visitation 0.0912
forestry 0.0734 vistor 0.1053 coniferous_forest 0.1250 volunteer 0.1001 forestry 0.0896 tourist 0.0900
Forests 0.0696 tourists 0.0785 vegetation 0.1034 foreign_investment 0.0971 woods 0.0896 traveller 0.0887

woodlands 0.0650 traveler 0.0751 montane_forest 0.0962 person 0.0919 rainforest 0.0889 intruder 0.0886
rainforest 0.0517 vistors 0.0701 grassland 0.0913 hike 0.0857 jungle 0.0879 guests 0.0879

Mono BERT RoBERTa GPT-2
forest 0.2024 visitor 0.1814 forest 0.2849 Visit 0.1163 forest 0.2133 Vis 0.1122
forests 0.1118 visitors 0.1238 forestation 0.2849 Guest 0.1142 forestation 0.2133 Visit 0.1087
woods 0.0918 visiting 0.0904 Forest 0.1625 resident 0.1096 Forest 0.1404 vis 0.0855

woodland 0.0882 visitation 0.0890 woods 0.1383 Vis 0.1052 woods 0.1243 quickShip 0.0778
forestry 0.0865 intruder 0.0879 pine 0.0981 Welcome 0.1004 Tree 0.0938 ÿ 0.0759

rainforest 0.0856 visits 0.0875 leaf 0.0914 Customer 0.0967 wild 0.0903 ý 0.0759
jungle 0.0855 tourist 0.0874 Park 0.0914 Tour 0.0855 Wild 0.0868 û 0.0759

Table 5.6: Comparison of translation probabilities for Not-Common Words across different
Models

Skipgram (Google News 2013) CBOW (Oil and Gas Corpus) BERT Base
w_1 = radioactive w_2 = pneumonia w_1 = radioactive w_2 = pneumonia w_1 = radioactive w_2 = pneumonia

u p(w|u) u p(w|u) u p(w|u) u p(w|u) u p(w|u) u p(w|u)
radioactive_material 0.2135 respiratory_infection 0.1915 radioactive_decay 0.2230 unavailable 0.0 radioactive 0.7443 pneumonia 0.7312

radioactivity 0.1940 bacterial_pneumonia 0.1712 uranium_thorium 0.1496 unavailable 0.0 contaminated 0.0316 tuberculosis 0.0479
radioactive_materials 0.1535 viral_pneumonia 0.1360 radioactivity 0.1293 unavailable 0.0 unavailable 0.0 influenza 0.0373

radiation 0.1209 lung_infection 0.1289 heat-producing_element 0.1073 unavailable 0.0 unavailable 0.0 cholera 0.0308
radioactive_substances 0.0959 respiratory_illness 0.1098 heat-producing 0.1023 unavailable 0.0 unavailable 0.0 infections 0.0287

radioactive_wastes 0.0753 bacterial_infection 0.0984 radioactive_nuclide 0.1005 unavailable 0.0 unavailable 0.0 malaria 0.0280
radioactive_isotopes 0.0738 bronchitis 0.0870 radiogenic 0.0944 unavailable 0.0 unavailable 0.0 unavailable 0.0

Mono BERT RoBERTa GPT-2
radioactive 0.1770 pneumonia 0.1739 nuclear 0.1333 cancer 0.1170 nuclear 0.1117 Ę 0.0751

contaminated 0.0948 tuberculosis 0.0974 atomic 0.1166 pox 0.0817 Ĕ 0.0774 Ĕ 0.0751
poisonous 0.0918 influenza 0.0936 electric 0.0996 itis 0.0762 ę 0.0774 ċ 0.0751
unavailable 0.0 infections 0.0933 obyl 0.0742 rosis 0.0737 Ą 0.0774 ă 0.0751
unavailable 0.0 cholera 0.0925 agnetic 0.0692 philis 0.0735 ö 0.0750 Ĝ 0.0751
unavailable 0.0 asthma 0.0914 utonium 0.0670 monary 0.0721 ú 0.0750 Ă 0.0751
unavailable 0.0 leukemia 0.0904 uclear 0.0665 thritis 0.0706 ü 0.0750 ę 0.0751

BERT, and RoBERTa models perform well, achieving higher self-translation probabilities
and better rankings.

The difference in model effectiveness emerges when evaluating less common words, as
shown in Table 5.6. The analysis of various terms such as “hypertension,” “pesticide,” and
“geology” shows variations in translation effectiveness. The Skip-Gram model (trained on
Google News 2013) is consistently more effective than the other models, likely due to its
training on a substantial dataset of approximately 100 billion words, resulting in a model
size of around 3.3 GB. While this model yields excellent results, it requires considerably
more processing time compared to the other embeddings, indicating a trade-off between
efficiency and computational speed.

Following the Skip-Gram model, both MonoBERT and RoBERTa exhibited better effec-
tiveness. Particularly, they attempted to split unfamiliar words into recognizable sub-
words within their vocabularies. For example, for the word “hypertension,” the models
generated “hyper” as a potential translation candidate. In contrast, despite GPT-2’s
vocabulary of approximately 50,000 vocabulary size, it achieved the lowest effectiveness
among the models evaluated. This suggests that model architecture and the size of the
training data could impact translation effectiveness, especially for less common words.

Based on the parameters detailed in Table 4.2 in the methodology chapter, the Word2Vec

40

CHAPTER 5. EXPERIMENTAL RESULTS

models were trained using two distinct datasets, AP88-89 and WSJ87-92, to examine how
domain-specific training influences the effectiveness of word embeddings. The training
parameters, including embedding dimensions, window size, and number of epochs, were
kept consistent across both datasets to ensure a fair comparison. The AP88-89 dataset,
with a size of 0.72 GB and 242,918 documents, is larger than the WSJ87-92 dataset,
which has a size of 0.52 GB and 173,252 documents, indicating greater linguistic diver-
sity and coverage.

Table 5.7: Static Word Embedding Models Result Trained on AP and WSJ Datasets

Corpus Model Voc.Size Dimensions Window Size Size(MB)

WSJ Skip-gram 81,970 300 5 95
WSJ CBOW 81,486 300 5 95
AP Skip-gram 127,285 300 5 146
AP CBOW 126,764 300 5 146

These distinctions are reflected in the effectiveness of the embeddings, particularly in
word translation tasks. The Word2Vec embeddings trained on AP88-89 demonstrate
greater effectiveness than those trained on WSJ87-92, particularly for rare words. This
improvement is largely due to AP88-89 being a larger dataset, offering greater vocabulary
diversity, which enables the model to learn richer and more generalizable word repre-
sentations. A comparison between Word2Vec embeddings and transformer-based input
embeddings revealed comparable effectiveness in word translation tasks. This suggests
that while transformer embeddings benefit from advanced architectures, static embed-
dings like Word2Vec can achieve similar effectiveness when trained on large and diverse
datasets such as AP88-89.

Table 5.8: Comparison of Translation Probabilities for Common and Rare Words in WSJ and
AP Datasets using Skipgram and CBOW Models.

AP Skipgram AP CBOW
w_1 = forest w_2 = visitor w_3 = pesticide w_1 = forest w_2 = visitor w_3 = pesticide

u p(w|u) u p(w|u) u p(w|u) u p(w|u) u p(w|u) u p(w|u)
forests 0.3810 visitors 0.4131 pesticides 0.4982 forests 0.4168 visitors 0.5099 pesticides 0.4087

bakersnoqualmie 0.2049 tourist 0.1325 phosdrin 0.1089 park 0.1937 tourists 0.1041 aldicarb 0.1220
timber 0.1046 visits 0.0909 malathion 0.0724 wildlife 0.0962 traveler 0.1009 insecticide 0.1074

wilderness 0.0647 tourists 0.0879 residues 0.0708 lodgepole 0.0679 tourist 0.0699 captan 0.0797
acres 0.0627 visiting 0.0752 aldicarb 0.0658 lightningsparked 0.0606 guests 0.0580 fungicide 0.0738

bridgerteton 0.0617 visit 0.0727 chemicals 0.0657 timber 0.0600 resident 0.0559 fungicides 0.0724
forestry 0.0607 visited 0.0642 cancercausing 0.0599 wilderness 0.0577 guest 0.0517 ebdc 0.0694

WSJ Skipgram WSJ CBOW
w_1 = forest w_2 = visitors w_3 = pesticide w_1 = forest w_2 = visitors w_3 = pesticide

u p(w|u) u p(w|u) u p(w|u) u p(w|u) u p(w|u) u p(w|u)
forestproducts 0.2043 tourists 0.3714 pesticides 0.2513 sonoco 0.1887 visitors 0.3478 pesticides 0.3409

forests 0.1418 tourist 0.1681 residues 0.2060 forests 0.1640 guests 0.1214 cancer-causing 0.1480
timber 0.1385 visitor 0.1093 isocyanate 0.1208 timber 0.1533 fourthfloor 0.1059 residues 0.1455

portlandbased 0.1312 guests 0.0909 cancercausing 0.1137 lawncare 0.1103 tourists 0.0985 herbicide 0.0873
northwood 0.1101 blitar 0.0843 cyanazine 0.0805 forestproducts 0.1099 balcony 0.0925 cyhexatin 0.0779
timberlands 0.0956 sightseers 0.0619 ebdc 0.0792 fishery 0.1002 guest 0.0854 formaldehyde 0.0680

diboll 0.0913 shooed 0.0579 cyhexatin 0.0757 logging 0.0927 tour 0.0764 herbicides 0.0664
DOTGOV Skipgram DOTGOV CBOW

w_1 = forest w_2 = visitor w_3 = pesticide w_1 = forest w_2 = visitor w_3 = pesticide
u p(w|u) u p(w|u) u p(w|u) u p(w|u) u p(w|u) u p(w|u)

forests 0.3420 visitors 0.4541 pesticides 0.4792 forests 0.4178 visitors 0.5109 pesticides 0.4097
timber 0.2259 visits 0.1335 phosdrin 0.1099 park 0.1947 tourists 0.1051 aldicarb 0.1230

timberland 0.1056 tourist 0.0919 insecticide 0.0734 wildlife 0.0972 traveler 0.1019 insecticide 0.1084
forestry 0.0657 tourists 0.0889 residues 0.0718 lodgepole 0.0689 tourist 0.0709 captan 0.0807
acres 0.0637 visiting 0.0762 aldicarb 0.0668 acres 0.0616 guests 0.0590 fungicide 0.0748

wilderness 0.0627 visited 0.0737 chemicals 0.0667 timber 0.0610 resident 0.0569 fungicides 0.0734
northwood 0.0617 visit 0.0652 cancercausing 0.0609 wilderness 0.0587 tour 0.0527 ebdc 0.0704

41

CHAPTER 5. EXPERIMENTAL RESULTS

Table 5.9: Word-to-Word Translation Probabilities for Common and Rare Words using Wordl-
lama Input Embedding Model.

Wordllama l3_supercat.safetensors model
w_1 = forest w_2 = visitor w_3 = car w_4 = radioactive w_5 = pesticide w_6 = hypertension

u p(w|u) u p(w|u) u p(w|u) u p(w|u) u p(w|u) u p(w|u)
Forest 0.6717 Visitor 0.1268 Car 0.1268 no translation — no translation — no translation —
forest 0.6559 visitor 0.1246 cars 0.1259 — — — — — —
Forest 0.6527 visitors 0.1230 Car 0.1250 — — — — — —
forests 0.5458 Visitors 0.1222 car 0.1240 — — — — — —

forestation 0.5363 _visitor 0.1203 (car 0.1239 — — — — — —
trees 0.4237 visiting 0.1137 -car 0.1226 — — — — — —
fore 0.4188 — — /car 0.1223 — — — — — —

Table 5.9, shows that the WordLlama input embedding l3_supercat_1024_.safetensors
assigns high self-translation probabilities for common words but lacks diversity in gener-
ating semantically related alternatives. It also struggles with rare words like “radioactive”
and “pesticide,” failing to produce valid translations. This limitation suggests weaker han-
dling of both low-frequency terms and broader lexical variation, unlike models such as
GPT2 and RoBERTa, which leverage subword decomposition. While effective for direct
self-translation, WordLlama may require improvements to enhance word diversity and
rare-word representations.

42

Chapter 6

Discussion

6.1 RQ1: Comparative Analysis of the NTLM

This research question investigates the effectiveness of integrating Word2Vec and trans-
former based input embeddings into the NTLM for improving document reranking. The
question investigates whether incorporating word embedding into the translation lan-
guage model can better capture semantic relationships between queries and documents,
potentially offering improved semantic matching and addressing vocabulary mismatch
issues.

The experimental results provide valuable insights into the effectiveness of the rerank-
ing result of the NTLM compared to the initial ranker, the Dirichlet-smoothed language
model. Table 5.4 shows the retrieval results for the Dirichlet-smoothed language model
and the NTLM using Word2Vec, input embeddings, and the WordLlama method, with
the best overall results highlighted in bold. Despite its simplicity, the Dirichlet model
consistently demonstrates strong effectiveness across multiple datasets. This shows the
effectiveness of traditional probabilistic methods in document ranking tasks, particularly
in scenarios where exact term matching is important. However, the Dirichlet model does
not achieve the best results for the AP, Quora, and TREC-COVID datasets, suggesting
limitations in handling some specific datasets.

The effectiveness of reranking results of the NTLM varies across different datasets. Over-
all, the NTLM with monoBERT input embedding shows better effectiveness compared to
the other neural models like the NTLM with word2vec, GPT2, and RoBERTa embedding.
For example, in the DOTGOV dataset, the NTLM with monoBERT input embedding
achieves even better results than the other NTLM and the WordLlama method. This
could be the NTLM with monoBERT is a fine-tuned variant of the BERT model, which
might enable the model to increase its effectiveness. Additionally, the monoBERT input
embedding has good translation as shown in the word translation Table 5.6. The Roberta
input embedding shows less effectiveness in translating the word into possible candidate
words that have semantically related translated words. As a result, the effectiveness of
the reranking NTLM using the Roberta model is the lowest. Even though the NTLM
using GPT2 input embedding has lower effectiveness compared to the other models, but
still has better effectiveness than the NTLM using the Roberta input embedding.

43

CHAPTER 6. DISCUSSION

The NTLM relatively lower effectiveness compared to the Dirichlet smoothed model might
be due to these factors. First, as demonstrated in prior work by Karimzadehgan and
Zhai [17], translation language models based on mutual information have been shown
to be more effective than the simple language models like the Dirichlet model, which
rely on exact term matching. While the NTLM approaches treat query generation as a
translation process and leverage word embedding to improve the estimation of translation
probabilities, the effectiveness of these methods depends heavily on the quality of the
translation probability estimation. In our case, the estimation of P (u|w) using cosine
similarity may not sufficiently improve the overall effectiveness of the NTLM model.
From the analysis, we observed that models that have lower effectiveness in word-to-
word translation have lower effectiveness in the NTLM. So this weakness might impact
the overall NTLM effectiveness. Second, the initial retrieval step using PyTerrier may not
provide an optimal foundation for the NTLM reranking. If the initial retrieval results are
suboptimal, the reranking process is inherently limited in its ability to improve reranking
effectiveness.

6.2 RQ2: Impact of Embedding Variations and Fine-
Tuned Transformers

In this research question, we investigate how different Word2Vec configurations, input em-
beddings from various transformer models, and fine-tuned input embedding from trans-
formers like MonoBERT affect retrieval effectiveness. Specifically, we analyze whether
embedding characteristics, architectural choices, and training configurations enhance se-
mantic similarity capture and reranking effectiveness.

As shown in Table 5.4, we tested multiple Word2Vec embeddings and transformer-based
input embeddings. Overall, the differences in retrieval effectiveness were minor, but some
patterns were shown. The experiment compared the reranking effectiveness of the NTLM
using Word2Vec embeddings with the NTLM using transformer-based input embeddings
(e.g., MonoBERT, GPT-2, RoBERTa) to assess the impact of different architectures and
training methods.

We trained Word2Vec embeddings on three datasets (AP, WSJ, and DOTGOV) us-
ing consistent parameters: a 300-dimensional embedding space, a window size of 5, a
minimum word frequency of 2, 15 negative samples, and 50 epochs (30 for DOTGOV
due to its larger size), as detailed in Table 4.1. The results showed little variation
in effectiveness across these datasets. However, the CBOW model was slightly more
effective than the Skip-gram model, though both remained less effective than the ini-
tial ranked Dirichlet-smoothed model. Furthermore, Word2Vec embeddings trained on
domain-specific datasets (AP, WSJ, and DOTGOV) were slightly more effective than the
general pre-trained Google News Word2Vec model. This suggests that domain-specific
training leads to improved effectiveness, even if the differences are small.

Unlike Word2Vec, transformer-based embeddings offer higher-dimensional representa-
tions and richer semantic relationships. We tested MonoBERT-large-msmarco (1024 di-
mensions), GPT-2 (768 dimensions), and RoBERTa-base (768 dimensions). These models

44

CHAPTER 6. DISCUSSION

benefit from large-scale pretraining on diverse corpora, enhancing their ability to capture
semantic meaning. Among the transformer input embeddings, the NTLM using the
MonoBERT embedding was the most effective, particularly on the DOTGOV dataset.
As shown in Table 4.3, despite having a smaller vocabulary size (30,000 words) compared
to GPT-2 and RoBERTa (50,000 words), the NTLM using the MonoBERT that was
fine-tuned on the MS MARCO datasets showed higher retrieval effectiveness. This high-
lights the role of fine-tuning in improving ranking effectiveness, potentially more than
vocabulary size. Additionally, higher-dimensional embeddings, such as MonoBERT’s
1024 dimensions, provided richer semantic representations. However, the NTLM using
the monoBERT embedding does not do well for msmarco-trec-dl-2020 datasets compared
to the Dirichlet smoothed model. The NTLM using the RoBERTa input embedding,
despite its larger vocabulary, was the least effective among the other NTLM using the
transformer-based embeddings. This suggests that a larger vocabulary alone does not
necessarily lead to better retrieval effectiveness.

6.3 RQ3: Effectiveness of WordLlama for Reranking

In this research question, we investigate how effectively the WordLlama method and
WordLlama input embeddings, designed for lightweight and efficient word representa-
tions, enhance the effectiveness of the NTLM reranking tasks. Specifically, we evaluate
whether WordLlama’s compact input embeddings, extracted from LLaMA 3, improve
semantic representation and retrieval effectiveness compared to the Dirichlet-smoothed
model, Word2Vec, and transformer-based input embeddings.

As discussed in Section 4.7, we hypothesized that WordLlama’s input embeddings could
enhance the NTLM effectiveness. This assumption was based on the idea that WordL-
lama’s lightweight yet high-quality embeddings, derived from LLaMA token representa-
tions, could serve as effective word-level features for the NTLM probabilistic calculations.
To test this, we used the best-effective input embedding, l3_supercat_1024.safetensors.
However, our experiments showed that WordLlama’s word-to-word translation, particu-
larly for less common words, was suboptimal, meaning it struggles to generate semanti-
cally richer candidate words for a given target word. This limitation carried over to the
NTLM approach, where WordLlama’s input embeddings resulted in the lowest effective-
ness among all models, as shown in Table 5.3.

In addition to evaluating the embeddings, we also analyzed the effectiveness of the WordL-
lama method, as proposed by Miller [23], for ranking documents based on query-document
similarity. This framework, which reuses components from large language models (LLMs)
to create compact and effective word representations, showed mixed results. Overall, the
WordLlama method was effective and better than all the NTLM in reranking across most
datasets. Especially, its effectiveness was particularly strong for short queries and docu-
ments, as shown in datasets like Quora Table 5.4. This is likely due to Quora’s shorter
average query and document lengths as shown in Table 3.1. However, the WordLlama
method struggled with longer queries and documents, showing lower effectiveness than the
initial Dirichlet language model, except for the AP, TREC-COVID, and Quora datasets.
These results suggest that while WordLlama does well in sentence-level similarity and

45

CHAPTER 6. DISCUSSION

ranking tasks, it is less effective when dealing with longer query-document datasets.

These findings highlight both the strengths and limitations of the WordLlama method.
While its lightweight design and efficient embeddings make it an appealing alternative to
larger models like Word2Vec, its effectiveness is highly dependent on dataset character-
istics and task requirements.

46

Chapter 7

Conclusion

This thesis has shown the effectiveness of different models for document ranking with a
focus on the Dirichlet-smoothed language model, the NTLM with various embeddings,
and the WordLlama framework. The research provides key insights into the strengths
and limitations of these approaches, evaluating their impact on retrieval and reranking
effectiveness across multiple datasets. The experimental results showed the importance
of embedding types and configurations, highlighting their influence on the overall effec-
tiveness of document ranking. This chapter summarizes the key findings of the thesis.

The integration of Word2Vec and transformer-based input embeddings into the NTLM
was assessed for their effectiveness in document reranking. The results showed that while
the NTLM benefits from word embedding for semantic matching and resolving vocabu-
lary mismatches, it often produces lower effectiveness in reranking compared to the initial
ranking Dirichlet-smoothed language model. The Dirichlet model maintained effective-
ness across multiple datasets. In contrast, the NTLM effectiveness varied depending on
the dataset and the choice of embeddings. Among the NTLM, MonoBERT input embed-
ding achieved the best reranking effectiveness, while the RoBERTa-based NTLM was the
least effective due to its weaker word translation ability. These findings suggest that the
NTLM effectiveness is influenced by the effectiveness of word translation estimation and
the alignment of embeddings with the specific task or domain.

The experiment comparing WordLlama’s reranking effectiveness showed that, despite its
compact embeddings, WordLlama’s input embedding was the least effective among all
NTLM. Its weaker word-to-word translation ability limited its effectiveness in generat-
ing semantically rich candidates. However, WordLlama’s ranking method was effective
across most datasets, especially in short-query datasets like Quora. This suggests that
WordLlama is effective for sentence-level ranking tasks.

In the word translation analysis, we found that most models demonstrated high effec-
tiveness in translating common words, assigning strong probabilities to self-translation
pt(w|w) and ranking them highly among possible candidates. The Skip-Gram, CBOW,
BERT, MonoBERT, and RoBERTa models were effective, achieving higher self-translation
probabilities. However, effectiveness varied for less common words. Google News showed
higher effectiveness than others due to its rich vocabulary, handling even rare or un-
common words. MonoBERT and RoBERTa also performed effectively, using subword
tokenization to process unfamiliar words. In contrast, GPT-2, despite its large vocab-

47

CHAPTER 7. CONCLUSION

ulary, was the least effective for uncommon words. This highlights the importance of
model architecture and training data size in word translation tasks.

From this research, we learned that the success of a ranking model isn’t just about hav-
ing a large vocabulary or complex embeddings. The most important factors are how well
the embeddings fit the specific task and how well the model can handle both translating
common and rare words. It also showed that fine-tuning and domain-specific training
have an impact on improving ranking effectiveness.

In conclusion, this thesis demonstrates the integration of transformer-based input em-
beddings into the NTLM and their impact on retrieval effectiveness. While the Dirichlet-
smoothed language model remains a strong initial ranker, the NTLM method requires
further refinement to enhance semantic matching and improve its effectiveness. Fine-
tuned transformer embeddings, particularly MonoBERT, improve reranking but show
varying effectiveness across datasets. Although we expected the NTLM to achieve better
effectiveness than the Dirichlet model in reranking by leveraging embeddings, the Dirich-
let model consistently demonstrated higher effectiveness. This suggests that the word
embeddings still have room for improvement.

This thesis has identified several areas for future research to address the limitations of
current models and further advance the field of document ranking and information re-
trieval. One promising direction is the integration of contextualized into the NTLM
framework. Contextualized embeddings, such as those from transformer-based models
like BERT, RoBERTa, or GPT, can capture semantic and contextual relationships com-
pared to static embeddings like Word2Vec and input embedding from a transformer
model. For example, contextualized embeddings could replace the word2vec and input
embedding to estimate the translation probability, enabling the model to better capture
the query-document interactions.

Another promising direction for future work is the extension of the NTLM framework to
incorporate neural query expansion [7] techniques. This could involve developing meth-
ods to automatically identify and add relevant terms from the document collection to the
original query, thereby improving retrieval performance. For instance, leveraging con-
textualized embeddings or transformer-based models to generate query expansions that
capture semantic and contextual relationships could help address vocabulary mismatch
and improve recall. Such advancements would enhance the NTLM ability to handle
complex queries and improve its overall retrieval effectiveness.

48

Bibliography

[1] Ricardo Baeza-Yates, Berthier Ribeiro-Neto, et al. Modern information retrieval,
volume 463. ACM press New York, 1999.

[2] Adam Berger. Information retrieval as statistical translation. 1999.

[3] Michael W Berry, Zlatko Drmac, and Elizabeth R Jessup. Matrices, vector spaces,
and information retrieval. SIAM review, 41(2):335–362, 1999.

[4] Alexander Bondarenko, Lukas Gienapp, Maik Fröbe, Meriem Beloucif, Yamen
Ajjour, Alexander Panchenko, Chris Biemann, Benno Stein, Henning Wachsmuth,
Martin Potthast, et al. Overview of touché 2021: argument retrieval. In Experi-
mental IR Meets Multilinguality, Multimodality, and Interaction: 12th International
Conference of the CLEF Association, CLEF 2021, Virtual Event, September 21–24,
2021, Proceedings 12, pages 450–467. Springer, 2021.

[5] Vera Boteva, Demian Gholipour, Artem Sokolov, and Stefan Riezler. A full-text
learning to rank dataset for medical information retrieval. In Advances in Informa-
tion Retrieval: 38th European Conference on IR Research, ECIR 2016, Padua, Italy,
March 20–23, 2016. Proceedings 38, pages 716–722. Springer, 2016.

[6] Peter F Brown, Stephen A Della Pietra, Vincent J Della Pietra, and Robert L
Mercer. The mathematics of statistical machine translation: Parameter estimation.
Computational linguistics, 19(2):263–311, 1993.

[7] Claudio Carpineto and Giovanni Romano. A survey of automatic query expansion
in information retrieval. Acm Computing Surveys (CSUR), 44(1):1–50, 2012.

[8] Kenneth Church and Robert L Mercer. Introduction to the special issue on compu-
tational linguistics using large corpora. Computational linguistics, 19(1):1–24, 1993.

[9] Nick Craswell. Mean reciprocal rank. Encyclopedia of database systems, pages 1703–
1703, 2009.

[10] Nick Craswell, Bhaskar Mitra, Emine Yilmaz, and Daniel Campos. Overview of the
trec 2020 deep learning track, 2021.

[11] Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language
understanding. arXiv preprint arXiv:1810.04805, 2018.

[12] Norbert Fuhr. Probabilistic models in information retrieval. The computer journal,
35(3):243–255, 1992.

49

BIBLIOGRAPHY

[13] Lukas Galke, Ahmed Saleh, and Ansgar Scherp. Word embeddings for practical infor-
mation retrieval. In Informatik 2017, pages 2155–2167. Gesellschaft für Informatik,
2017.

[14] Christophe Van Gysel, Maarten De Rijke, and Evangelos Kanoulas. Neural vector
spaces for unsupervised information retrieval. ACM Transactions on Information
Systems (TOIS), 36(4):1–25, 2018.

[15] Kalervo Järvelin and Jaana Kekäläinen. Ir evaluation methods for retrieving highly
relevant documents. In ACM SIGIR Forum, volume 51, pages 243–250. ACM New
York, NY, USA, 2017.

[16] Ehsan Kamalloo, Nandan Thakur, Carlos Lassance, Xueguang Ma, Jheng-Hong
Yang, and Jimmy Lin. Resources for brewing beir: Reproducible reference mod-
els and statistical analyses. In Proceedings of the 47th International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR ’24, page
1431–1440, New York, NY, USA, 2024. Association for Computing Machinery.

[17] Maryam Karimzadehgan and ChengXiang Zhai. Estimation of statistical translation
models based on mutual information for ad hoc information retrieval. In Proceedings
of the 33rd international ACM SIGIR conference on Research and development in
information retrieval, pages 323–330, 2010.

[18] Tom Kenter, Alexey Borisov, Christophe Van Gysel, Mostafa Dehghani, Maarten
de Rijke, and Bhaskar Mitra. Neural networks for information retrieval. In Proceed-
ings of the 40th International ACM SIGIR Conference on Research and Development
in Information Retrieval, pages 1403–1406, 2017.

[19] Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur
Parikh, Chris Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee,
et al. Natural questions: a benchmark for question answering research. Transactions
of the Association for Computational Linguistics, 7:453–466, 2019.

[20] Sean MacAvaney, Andrew Yates, Sergey Feldman, Doug Downey, Arman Cohan,
and Nazli Goharian. Simplified data wrangling with ir datasets. In SIGIR, 2021.

[21] Macedo Maia, Siegfried Handschuh, André Freitas, Brian Davis, Ross McDermott,
Manel Zarrouk, and Alexandra Balahur. Www’18 open challenge: financial opinion
mining and question answering. In Companion proceedings of the the web conference
2018, pages 1941–1942, 2018.

[22] Tomas Mikolov. Efficient estimation of word representations in vector space. arXiv
preprint arXiv:1301.3781, 2013.

[23] D. Lee Miller. Wordllama: Recycled token embeddings from large language models,
2024.

[24] Bhaskar Mitra, Nick Craswell, et al. An introduction to neural information retrieval.
Foundations and Trends® in Information Retrieval, 13(1):1–126, 2018.

[25] Bhaskar Mitra, Fernando Diaz, and Nick Craswell. Learning to match using local
and distributed representations of text for web search. In Proceedings of the 26th
international conference on world wide web, pages 1291–1299, 2017.

50

BIBLIOGRAPHY

[26] University of Mannheim. Evaluation in information retrieval, 2020.

[27] Pinecone. Evaluation measures in information retrieval, 2012.

[28] Jay M Ponte and W Bruce Croft. A language modeling approach to information
retrieval. In ACM SIGIR Forum, volume 51, pages 202–208. ACM New York, NY,
USA, 2017.

[29] Stephen Robertson, Hugo Zaragoza, et al. The probabilistic relevance framework:
Bm25 and beyond. Foundations and Trends® in Information Retrieval, 3(4):333–
389, 2009.

[30] Stephen E Robertson and K Sparck Jones. Relevance weighting of search terms.
Journal of the American Society for Information science, 27(3):129–146, 1976.

[31] Stephen E Robertson, Evangelos Kanoulas, and Emine Yilmaz. Extending average
precision to graded relevance judgments. In Proceedings of the 33rd international
ACM SIGIR conference on Research and development in information retrieval, pages
603–610, 2010.

[32] Stephen E Robertson and Steve Walker. A probabilistic model of information re-
trieval. Information Processing Management, 36:809–840, 2000.

[33] G Salton. Introduction to modern information retrieval, 1983.

[34] Gerard Salton. Automatic text processing: The transformation, analysis, and re-
trieval of. Reading: Addison-Wesley, 169, 1989.

[35] Lakshay Sharma, Laura Graesser, Nikita Nangia, and Utku Evci. Natural lan-
guage understanding with the quora question pairs dataset. arXiv preprint
arXiv:1907.01041, 2019.

[36] Mark D Smucker and James Allan. An investigation of dirichlet prior smoothing’s
performance advantage. Technical report, Citeseer, 2005.

[37] Mark D Smucker, David Kulp, and James Allan. Dirichlet mixtures for query esti-
mation in information retrieval. Center for Intelligent Information Retrieval, 2005.

[38] Christophe Van Gysel and Maarten de Rijke. Neural vector spaces for unsupervised
information retrieval. arXiv preprint arXiv:1708.02702, 2017.

[39] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, and
Aidan N Gomez. L. u. kaiser, and i. polosukhin,“attention is all you need,”. Advances
in neural information processing systems, 30:5998–6008, 2017.

[40] Ellen Voorhees, Tasmeer Alam, Steven Bedrick, Dina Demner-Fushman, William R
Hersh, Kyle Lo, Kirk Roberts, Ian Soboroff, and Lucy Lu Wang. Trec-covid: con-
structing a pandemic information retrieval test collection. In ACM SIGIR Forum,
volume 54, pages 1–12. ACM New York, NY, USA, 2021.

[41] David Wadden, Shanchuan Lin, Kyle Lo, Lucy Lu Wang, Madeleine van Zuylen,
Arman Cohan, and Hannaneh Hajishirzi. Fact or fiction: Verifying scientific claims.
arXiv preprint arXiv:2004.14974, 2020.

51

BIBLIOGRAPHY

[42] Chengxiang Zhai and John Lafferty. A study of smoothing methods for language
models applied to information retrieval. ACM Transactions on Information Systems
(TOIS), 22(2):179–214, 2004.

[43] Chengxiang Zhai and John Lafferty. A study of smoothing methods for language
models applied to ad hoc information retrieval. In ACM Sigir Forum, volume 51,
pages 268–276. ACM New York, NY, USA, 2017.

[44] Mu Zhu. Recall, precision and average precision. Department of Statistics and
Actuarial Science, University of Waterloo, Waterloo, 2(30):6, 2004.

[45] Guido Zuccon, Bevan Koopman, Peter Bruza, and Leif Azzopardi. Integrating and
evaluating neural word embeddings in information retrieval. In Proceedings of the
20th Australasian document computing symposium, pages 1–8, 2015.

[46] Guido Zuccon, João R. M. Palotti, and Allan Hanbury. Query variations and
their effect on comparing information retrieval systems. In Snehasis Mukhopadhyay,
ChengXiang Zhai, Elisa Bertino, Fabio Crestani, Javed Mostafa, Jie Tang, Luo Si,
Xiaofang Zhou, Yi Chang, Yunyao Li, and Parikshit Sondhi, editors, Proceedings
of the 25th ACM International Conference on Information and Knowledge Manage-
ment, CIKM 2016, Indianapolis, IN, USA, October 24–28, 2016, pages 691–700.
ACM, 2016.

52

	Introduction
	Background
	IR Components and Retrieval Functions
	Traditional IR models
	Language Modelling
	Translation Language Model

	Neural Word Representation
	Vector Represenation
	Dense Vector Representations Model

	Transformer Models
	IR Evaluation

	Experimental Setup
	Datasets
	Retrieval Setup

	Methodology
	Dirichlet Language Model
	Static Word Embeddings Implementation
	Input Embeddings from Transformers Model
	Word Translation Using Word Embeddings
	Neural Translation Language Model (NTLM)
	Ranking Documents using the NTLM
	WordLlama for Reranking

	Experimental Results
	Comparative Analysis of the NTLM
	Results and Analysis of NTLM Retrieval
	Comparison of the NTLM with Previous Related Works
	NTLM Evaluation Result
	Estimation of the Translation Probabilities

	Discussion
	RQ1: Comparative Analysis of the NTLM
	RQ2: Impact of Embedding Variations and Fine-Tuned Transformers
	RQ3: Effectiveness of WordLlama for Reranking

	Conclusion
	Bibliography

